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Total Variation Regularization for fMRI-Based
Prediction of Behavior

Vincent Michel*, Alexandre Gramfort, Gaél Varoquaux, Evelyn Eger, and Bertrand Thirion

Abstract—While medical imaging typically provides massive
amounts of data, the extraction of relevant information for predic-
tive diagnosis remains a difficult challenge. Functional magnetic
resonance imaging (fMRI) data, that provide an indirect measure
of task-related or spontaneous neuronal activity, are classically
analyzed in a mass-univariate procedure yielding statistical
parametric maps. This analysis framework disregards some
important principles of brain organization: population coding,
distributed and overlapping representations. Multivariate pattern
analysis, i.e., the prediction of behavioral variables from brain
activation patterns better captures this structure. To cope with
the high dimensionality of the data, the learning method has to
be regularized. However, the spatial structure of the image is not
taken into account in standard regularization methods, so that the
extracted features are often hard to interpret. More informative
and interpretable results can be obtained with the ¢; norm of
the image gradient, also known as its total variation (TV), as
regularization. We apply for the first time this method to fMRI
data, and show that TV regularization is well suited to the purpose
of brain mapping while being a powerful tool for brain decoding.
Moreover, this article presents the first use of TV regularization
for classification.

Index Terms—Classification, functional magnetic resonance
imaging (fMRI), regression, regularization, spatial structure, total
variation (TV).

I. INTRODUCTION

UNCTIONAL magnetic resonance imaging (fMRI) has

been widely used for more than 15 years for neurosci-
entific and cognitive studies. The analysis of these data largely
relies on the general linear model (GLM), introduced for func-
tional imaging by Friston et al. [1]. The GLM is a simple yet
powerful framework for deciding which brain regions exhibit
a significantly positive task-related effect. This inference, also
called classical inference, is based on statistical tests applied to
each voxel separately, yielding significance maps [also known
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as statistical parametric maps (SPMs)] for the effects under con-
sideration. However, despite its simplicity and the accuracy of
the SPMs, classical inference suffers from a major drawback:
it analyzes each voxel separately and consequently cannot fully
exploit the correlations existing between different brain regions
to improve the inference. Spatial information is only taken into
account in testing procedures, e.g., by using the cluster size tests
in random field theory.

Correlations between brain activations are likely to arise as
a consequence of processing in distributed populations of neu-
rons [2]-[4]. This is particularly the case in population coding
models [5], [6]. For the purpose of statistical inference, these
models suggest that effects that differ between experimental
conditions are not optimally characterized by the effect signif-
icance at individual voxels [7], and that one should rather con-
sider the combined information from different voxels/regions of
the brain [8]. Moreover, statistical power in the case of classical
inference is limited by the multiple comparison problem (one
statistical test is performed for each voxel and the number of
comparisons has to be corrected for).

Recently, the inference of behavioral information or cognitive
states from brain activation images such as those obtained with
fMRI has emerged as an alternative neuroimaging data analysis
paradigm [9]-[11]. It can be used to assess the specificity of sev-
eral brain regions for certain cognitive or perceptual functions,
by evaluating the accuracy of the prediction of a behavioral vari-
able of interest—the target—based on the activations measured
in these regions. This inference relies on a prediction function,
the accuracy of which depends on whether it uses the relevant
variables, i.e., the correct brain regions. This approach, called
inverse inference, has some major advantages.

* As multivariate approach, it is consistent with population
coding models. Indeed, the neural information, which can
be encoded by different populations of neurons, can be de-
coded using a pattern of voxels [9], [12].

* It avoids the multiple comparison issue, as it performs only
one statistical test (on the predicted behavioral variable).
In that sense, it can detect significant links between image
data and target that would not have been detected by stan-
dard statistical parametric mapping procedures [13]; note
however that the statistical interpretation of these two tests
are clearly different.

» It addresses new challenges, in particular by allowing to
identify a new stimulus in a large dataset, based on already
seen stimuli (as visual stimuli [14], or nouns associated
with new images [15]). Moreover, it can be used for the
more challenging generalization of the prediction to un-
known high level stimuli [16], which opens a deeper un-
derstanding on brain functional organization.
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Many machine learning methods have been applied to fMRI
activation images. Among them are linear discriminant analysis
[9], support/relevance vector machines [10], neural networks
[17], Lasso [18], elastic net regression [19], kernel ridge regres-
sion [20], boosting [21], sparse logistic regression [22], [23],
or Bayesian regularization [24]-[26]. Moreover, fMRI data are
intrinsically smooth, so that their spatial structure has to be
taken into account. Spatial information has thus been consid-
ered within the inverse inference framework, by using specific
priors in a Bayesian framework [27] or by creating spatially in-
formed features [28]. In the inverse inference problem the main
objective remains the extraction of informative regions within
the brain volume (see [12] for a review). Besides prediction ac-
curacy, an even greater challenge in brain functional imaging, is
the ability of the method to provide an interpretable model (see
e.g., [19]). Ultimately, the predictive function learned from the
data should be as explicit as standard statistical mapping results.
This double objective is addressed by the present contribution.

In practice, selecting the relevant voxels—called features in
machine learning—is fundamental in order to achieve accurate
prediction. However, when the number of features (voxels) is
much larger than the numbers of samples (images), the predic-
tion method may overfit the training set. In other words, it fits
seemingly predictive information from noise in the training set,
and thus does not generalize well to new data. To address this
issue, one can reduce the number of features. A classical strategy
consists of preceding the learning algorithm with a feature se-
lection procedure that drastically reduces the spatial support of
predictive regions. To date, the most widely used method for fea-
ture selection is voxel-based analysis of variance (ANOVA), that
evaluates each voxel independently. This is often combined with
the use of support vector machine as prediction function (see
[10], [29]-[32]). An alternative approach consists in performing
the model estimation by taking the high dimensional data as
input while using relevant regularization methods. These reg-
ularizations are performed with two possible goals: stabilizing
the estimation of the weights of the features, and/or forcing a
majority of features to have close to zero weights (i.e., pro-
moting sparsity).

Let us introduce the following predictive linear model:

y = f(X,w,b) = F(Xw +b) M

where y represents the behavioral variable and (w, b) are the pa-
rameters to be estimated on a training set. A vector w € R? can
be seen as an image; p is the number of features (or voxels) and
b € R is called the intercept. The matrix X € R™*? is the design
matrix. Each row is a p-dimensional sample, i.e., an activation
map related to the observation. It has been shown [9], [10] that
using a nonlinear classifier does not improve the prediction ac-
curacy, and yields interpretation issues. Thus, we only focus on
linear classifiers in this paper. Depending on whether the vari-
able to be predicted takes scalar or discrete values, the learning
problem is either a regression or a classification problem. In a
linear regression setting, f reads

fX,w,b)=Xw+b 2)
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with y € R™. In the case of classification with a linear model,
f is defined by

F(X,w,b) = sign(Xw + b) 3)

where “sign” denotes the sign function and y € {—1,1}".

The crucial issue here is that n < p, so that estimating w is
an ill-posed problem. The estimation requires therefore adapted
regularization. A standard approach to perform the estimation
of w with regularization uses penalization of a maximum likeli-
hood estimator. It leads to the following minimization problem:

VAV:argmilr)lﬁ(y,F(Xw—l—b))+)\J(W),1)\ >0 @

where A\J(w) is the regularization term and L(y, F(Xw + b))
is the loss function. The parameter A balances the loss function
and the penalty J(w). Note that the intercept b is not included
in the regularization term.

The use of the intercept is fundamental in practice as it allows
the separating hyperplane to be offset from 0. However for the
sake of simplicity in the presentation of the method, we will
from now on consider b as an added coefficient in the vector w.
This is classically done by concatenation of a column filled with
1 in the matrix X. The loss function will also be abbreviated
L(w).

In the formalism of (4), the reference method is elastic net
[33], which is a combined ¢; and /5 penalization

p
AT(w) = MWl + Ao [[Wl3 =D Mwi| + Aow?.  (5)

i=1

Elastic net has two limit cases: Ao = 0 is the Lasso [34] which
yields an extreme sparsity in the selected features, and Ay = 0
corresponds to ridge regression [35].

A major limitation of the methods cited above, including the
latter penalization, is that they do not take into account the un-
derlying structure of w. In the case of brain images, w is defined
on a spatial 3-D grid. The main motivation for using this spatial
structure is that the predictive information is most likely orga-
nized in regions, and not randomly spread across voxels [28],
[36]. As it is demonstrated in this contribution, one can both
decrease the complexity of the results (i.e., increase the inter-
pretability of the results by extracting a small set of spatially
coherent regions of interest) as well as increase the accuracy of
the prediction by taking into account the spatial relations be-
tween voxels.

In this paper, we develop an approach for regularized predic-
tion based on total variation (TV), J(w) = TV (w). TV, mathe-
matically defined as the /1 norm of the image gradient, has been
primarily used for image denoising [37], [38] as it preserves
edges. The motivation for using TV for brain imaging is that it
promotes estimates w of w with a block structure, creating re-
gions with piecewise constant weights, and therefore outlining
the brain regions correlated to the target behavioral variable.
Indeed, we are expecting that the spatial layout of the neural
code is sparse and spatially structured in the sense that nonzero
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weights are grouped into connected clusters. Weighted maps
showing such characteristics will be called interpretable, as they
fulfill our hypothesis on the spatial layout of neural coding [39].
This approach is closely related to the one developed in [40],
that introduce proximity information about the features in the
regularization term.

In this contribution, the mathematical and implementation de-
tails of TV regression/classification are first detailed. As far as
we know, the present work is the first to use TV in the context
of image classification and also the first one to propose the use
of the image structure in the learning framework of (4) in the
context of fMRI inverse inference. We apply both TV regres-
sion and TV classification to an fMRI paradigm that studied the
processing of object shape and size in the human brain. Results
show that TV outperforms other state of the art methods, as it
yields better prediction performance while providing weights w
with an interpretable spatial structure.

II. TOTAL VARIATION AND PREDICTION

We first detail the notations of the problem. We then develop
the TV regularization framework. Finally, we detail the algo-
rithm used for regression and classification.

A. Notations

Let us define Q C R? the 3-D image domain, discretized on
a finite grid. The coefficients w define a function from 2 to R,
ie.,w: Q — R.Its TV reads

TV(w) =) |[Vw](w)

wEN

-2 VYew(©)? + ¥, w(w)? + Vaw(w)?

Let us assume that w stands for the voxel at position (i, 7, k),
away from the border of (2, then V,w(w)? corresponds to
(Wit1,k — Wi jk)? (see Appendix A for more details). TV can
be used with different discretizations, such as an anisotropic
discretization. However, such a discretization is biased in
the direction of the axes of the image, which is problematic
especially with a strong regularization. Indeed, an isotropic
discretization promotes sparse gradient along the image axes.
We use therefore the standard isotropic discretization of TV
[38], [41].

We denote y € R™ the targets to be predicted, and X €
R™*P the set of activation images related to the presentation of
different stimuli. The integer p is the number of voxels and n
the number of samples (images). Typically, p ~ 103 to 10° (for
a whole volume), while n ~ 10 to 102. We denote M the mask
of the brain that comes from standard fMRI analysis, and that is
used to avoid computation outside of the brain volume. M is a
pi X p;j X py 3-D grid, with

if the voxel is in the mask

Mi e =1,
if the voxel is not in the mask

Mi e =0,
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with >, ., M; j i = p. Additionally, we define grad : R(€2) —
R3(Q) a gradient operator and div : R3(2) — R() the asso-
ciated adjoint divergence operator [the adjoint operator is used
in the convex optimization algorithm, see Appendix A for more
details, in particular (13)].

Let K the convex set defined by

K={g:9—R*Vw e Q,|gw)| <1}

and Il the projection operator onto the set K

Hk(9)(w) = g(w)/ llg(w)ll,  otherwise.

This projection operator will be used in the optimization loop
solving (2), to apply the constraint. It can be viewed as the pro-
jection on the ¢, norm (dual of the £; norm) ball.

{HMQW) (w), if lg(w)ll <1

B. Convex Optimization

We consider the minimization problem (4). When J(w) is
nonsmooth (i.e., not differentiable), an analytical solution does
not exist and the optimization can unfortunately not be per-
formed with simple algorithms such as Gradient descent and
Newton method. This is for example the case with J(w) =
|lw]|1 (¢1 norm also known as Lasso penalty) and with J(w) =
TV (w), both of which require advanced optimization strate-
gies.

A recently studied strategy ([42]-[45]) is based on iterative
procedures involving the computation of proximity operators
(see def. 1) [46]. Such approaches are adapted to composite
problems with both a smooth term and a nonsmooth term as
it is the case here (see [47] for a recent review). In the con-
text of neuroimaging, such optimization schemes have been pro-
posed recently in order to solve the inverse problem of magneto-
and electro-encephalography (collectively M/EEG) when con-
sidering non {5 priors [48], [49].

Definition 1 (Proximity Operator): Let J : RP — R be a
proper convex function. The proximity operator associated with
J and A € R, denoted by prox, ; : R — RP is given by

1
prox, ;(w) = arg 111%1 <§||v - w2+ /\J(V)) .
veERP

The iterative procedure known as iterative shrinkage-thresh-
olding algorithm (ISTA, also known as forward—backward iter-
ations) [42], [43], is based on the alternate minimization of the
loss term £(w), by gradient descent, and the penalty J(w), by
computing a proximity operator. One can show (see Appendix B
for a sketch of the proof), that this can be done in one single step
by iterating

, : 1
wkt) — proxy s/, <w<k) — ZVC (W(k))> 6)

where (1/L)V L(w(®)) is the gradient descent term with a step-
size 1/L, prox, 5 /1, 1s the proximity operator of the penalty and
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the scalar L is an upper bound on the Lipschitz constant Lg of
the gradient of the loss function. The pseudo code of the ISTA
procedure is defined in Algorithm 1.

Algorithm 1: ISTA procedure

Compute the Lipschitz constant Ly of the operator VL.

Initialize w(® € RP

repeat
wt ) = prox, 5, (w®) — (1/L)VL(w®))
where L > L.

until convergence;

return w

Inspired by previous findings [44], the fast iterative
shrinkage-thresholding algorithm (FISTA) procedure [45],
[50] has been developed to speed up the convergence of ISTA.
While ISTA converges in O(1/K), FISTA is proven to con-
verge in O(1/K?), where K is the number of iterations. The
pseudo code of the FISTA procedure is given in Algorithm 2.
The main improvement in FISTA is to compute the next descent
direction using the previous one. Such an idea is also present
in the well known conjugate gradient algorithm that uses all
previous iterates to compute the next descent direction.

Algorithm 2: FISTA procedure

Compute the Lipschitz constant Ly of the operator VL.
Initialize w(® € R?, v(D) = w(® and t; = 1.

repeat

1
wk) =Pprox, <v(k) — EVL (V(k))>

1+ /1+48
tht1 T S—

VD () (M) (w® — wit=D)
b1

until convergence;

return w

Let us introduce now the notion of duality gap. The duality
gap is a natural stopping condition for approaches as ISTA and
FISTA. In practice, if the duality gap is below a value ¢ > 0,
it guarantees that the solution obtained is e-optimal, i.e., that
the value of the cost-function reached by the algorithm is not
greater than € more the globally optimal value. A comprehen-
sive presentation of this notion [51] is beyond the scope of this
paper, and we now give some details in the particular case of the
proximity operator prox,ry- known as the ROF problem [37]
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(named after the authors Rudin, Osher, and Fatemi) in the image
processing literature.
The computation of prox,y, and the associated duality gap
requires the derivation of a Lagrange dual problem [51].
Proposition 2 (proxy v Dual Problem): A dual problem as-
sociated with proxry is given by

z* :argmz}?—ﬂdin-l-W//\H% ™
VAS

where z is the dual variable that satisfies v* = w + Adivz*,
with v* = prozry(w)

This result is adapted from [38] (see Appendix C for a sketch
of the proof). The problem (7) is a maximization of a smooth
concave function over a convex set. As shown in [50], it can
be solved with the FISTA iterative procedure. The resolution
of the ROF problem is therefore achieved by solving the dual
problem. Once z* is obtained, v* = prox,py (W) is given by
v* = w + Adivz*.

The latter result also gives an estimate of the duality gap.

Proposition 3 (Duality Gap): The duality gap 4., associated
with the ROF problem is given by

Suap(¥) = lIw = VI + ATV(v) = 5 (Il + ) > 0

®)
where the primal variable v is obtained during the iterative pro-
cedure from the current estimate of the dual variable z with
v = w + Adivz (see Appendix C for more details).

This duality gap will be used as a stopping criterion for the
FISTA procedure solving the ROF problem. At each iteration
of the FISTA procedure, we will stop the iterative loop if the
duality gap is below a given threshold e. In practice, € is set to
10~* x ||w||3 to be invariant to the scaling of the data.

Note that the ROF problem can be also solved using very
efficient combinatorial optimization methods [41], when using
the anisotropic discretization of TV.

C. Prediction Framework

We now detail the original contribution of this work, that is
the construction of a predictive framework using the TV regular-
ization. For J(w) = TV(w), the global algorithm for solving
the minimization problem defined in (4) consists in a FISTA
procedure (resolution of the ROF problem) nested inside an
ISTA procedure (resolution of the main minimization problem).
The FISTA procedure is performed at each step of ISTA with a
warm restart on the dual variable z. We do not use FISTA for
solving the main minimization problem, as this procedure re-
quires an exact proximity operator. The resolution of the ROF
problem only leads to an e-optimal solution. The pseudo-code
of the global algorithm for the TV regularization is provided in
Table III.

A difficulty specific to fMRI data is the computation of the
gradient and divergence over a mask of the brain with correct
border conditions (see Appendix A for details). Moreover, with
such an irregular domain, the upper bound L for the Lipschitz
constant of the FISTA procedure also needs to be estimated
on each input data. To do this we use a power method that is



1332

classically used to estimate the spectral norm of a linear op-
erator, here equal to the Laplacian A : @ — € defined by
A(w) = div(grad(w)).

Algorithm 3: TV regularization solver

Set maximum number of iterations K (ISTA).

Set the threshold € on the dual gap (FISTA). Set L = 1.1y
where L is the Lipschitz constant of VL.

Set L. = 1.1E0 where Eo is the Lipschitz constant of the
Laplacian operator A : w € R(Q2) — div(grad(w)).

Initialize z € R(2?) with zeros.
#i## ISTA loop #i#H#
fork =1...K do
u=w-—(1/L)VL(w)
#i## FISTA loop ##H#
Initialize Zgyy = 2, t = 1
repeat
Zold = Z
z = 1k (Zaus — (1/AL)grad(Lu + Adiv(2Zquz)))
tola =1
t = (t+ 1+ 4t2)/2
Zauz = Z + ((tora — 1)/t)(2 — Zo1a)
until 6., (u + Adiv(z)) < €
w = u + Adiv(z)

return w

TV Regression: The regression version of the TV is called
TV regression. In this case, we use the least-squares loss

{aw) = Ly - Xw]?
VL(w) = —1XT(y — Xw).

The Lipschitz constant Ly of the operator VL is Ly =
IIIXTX]|||/n, where |||.||| stands for the spectral norm equal
to largest singular value. The constant L is set in practice to
L = 1.1Ly.

TV Classification: The classification version of the TV is
called TV classification. This algorithm is based on a logistic
loss [52]. We now give the mathematical formulation for the bi-
nary case with y € {—1,1}". The logistic regression model
defines the conditional probability of y; given the data x; as

1

: ©)
1+ exp_y’(

p(yilxi, w) =

x?w)
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The corresponding loss and the loss gradient read

L(w) =30 log (1 + eXP’yi("‘TW))
1 n YiXi
VL(W) = =3 Xict Trom oa™o)

The Lipschitz constant Ly of the operator VL is
Lo = ||X||?/(4n). The classification framework developed in
this paper treats the binary case with a logistic model, also know
as, binomial model. In our analysis, we expand this frame-
work to multiclass classification using a one-versus-one voting
heuristic. The number of classifiers used is (k) x (k — 1)/2,
where k£ is the number of classes. The predicted class is then
selected as the class which yields the highest probability across
the predictions of all of the classifiers, as defined in (9). Note
that a multinomial approach could also be used [53]. However
the resulting weights w become impossible to interpret, so
that the multinomial model may not adapted to the applicative
context. Indeed, with three classes, one gets two hyperplanes
from which it is hard to draw any neuroscientific conclusions.
The weights of each binary classifier have a simpler meaning.
This one-versus-one voting heuristic is the one used in LibSVM
[54].

D. Performance Evaluation

Our method is evaluated with a cross-validation procedure
that splits the available data into training and validation sets.
In the following, (X!, y!) are a learning set, (X*,y?) a test set
and y' = F(X'Ww) refers to the predicted target, where W is
estimated from the training set.

For regression analysis, the performance of the different
models is evaluated using (, the ratio of explained variance

C(yt7$’t) = var(y?) — var(y* — yt)

var(y*)

This is the amount of variability in the response that can be
explained by the model (perfect prediction yields ( = 1, while
¢ < 0 if prediction is worse than chance).

For classification analysis, the performance of the different
models is evaluated using the classification score denoted &,
classically defined as

iy O (yt 40)

sy y') = -

where n! is the number of samples in the test set, and § is Kro-
necker’s delta.

The p-values are computed using a Wilcoxon signed-rank test
on the prediction score.

E. Competing Methods

In our experiments, TV regression is compared to different

state of the art regularization methods.

* FElastic net regression [33], that requires setting two param-
eters A1 and Ay (5). In our analyzes, a cross-validation pro-
cedure within the training set is used to optimize these pa-
rameters. Here, we use \; € {0.25\, 0.1, 0.05;\,0.015\},
where A = ||X7y]|o, and Ay € {0.1,0.5,1.,10.,100.}
(A1 and Ay parametrize two different types of norm).
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* Support Vector Regression (SVR) with a linear kernel [55],
which is the reference method in neuroimaging. The C pa-
rameter is optimized by cross-validation in the range 103
to 10! in multiplicative steps of 10.

TV classification is compared to different state of the art classi-
fication methods.

» Sparse Multinomial Logistic Regression (SMLR) classifi-
cation [53], that requires a double optimization, for the
two parameters A; and A;. A cross-validation procedure
within the training set is used to optimize these parame-
ters. Here, we use \; € {0.25\, 0.1\, 0.05, 0.015\}, where
A = || X"yl and A2 € {0.1,0.5,1.,10.,100.}.

* Support Vector Classification (SVC) with a linear kernel
[55], which is the reference method in neuroimaging. The
C parameter is optimized by cross-validation in the range
1073 to 10* in multiplicative steps of 10.

All these methods are used after an ANOVA-based feature se-
lection as this maximizes their performance. Indeed, irrelevant
features and redundant information can decrease the accuracy of
apredictor [56]. The optimal number of voxels is selected within
the range {50, 100, 250, 500}, through a nested cross-valida-
tion within the training set. We do not select directly a threshold
on p-value or cluster size, but rather a number of features. Ad-
ditionally, we check that increasing the range of voxels (i.e.,
adding 2000 in the range of number of selected voxels) does
not increase the prediction accuracy on our datasets. The param-
eter estimation of the learning function is also performed using
a nested cross-validation within the training set, and thus, the
cross-validation framework is used rigorously in all the exper-
iments of this paper. All methods are developed in C' and used
in Python. The implementation of Elastic net is based on coor-
dinate descent [57], while SVR and SVC are based on LibSVM
[54]. Methods are used from Python via the Scikit-learn open
source package [58].

III. EXPERIMENTS

A. Details on Simulated Data

The simulated data set X consists of n = 100 images (size
12 x 12 x 12 voxels) with a set of four square Regions of Interest
(ROIs) (size 2 x 2 x 2). We call R the support of the ROIs
(i.e., the 32 resulting voxels of interest). Each of the four ROIs
has a fixed weight in {—-0.5, 0.5, —0.5, 0.5}. We call w;_; ;, the
weights of the (i, 7, k) voxel. The resulting images are smoothed
with a Gaussian kernel with a standard deviation of two voxels,
to mimic the correlation structure observed in real fMRI data.
To simulate the spatial variability between images (inter-subject
variability, movement artifacts in intra-subject variability), we
define a new support of the ROIs, called R such as, for each
image /th, 50% (randomly chosen) of the weights w are set to
zero. Thus, we have R C R. We simulate the target y for the
[th image as

= Y, wijaXijrite (10)

(i,5,k)ER
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with the signal in the (4, j, k) voxel of the [th image simulated
as

Xijka ~N(0,1) (1D
and ¢, ~ N(0,) is a Gaussian noise with standard deviation
v > 0. We choose 7 in order to have a signal-to-noise ratio of
5 dB. We compare TV regression cross-validated with different
values of A in the range {0.01, 0.05, 0.1,}, with the two ref-
erence algorithms, elastic net and SVR. All three methods are
optimized by four-fold cross-validation in the range described
below.

B. Details on Real Data

We apply the different methods on a real fMRI dataset re-
lated to an experiment studying the representation of objects,
on ten subjects, as detailed in [59]. During this experiment, ten
healthy volunteers viewed objects of two categories (each one
of the two categories used in equal halves of subjects) with four
different exemplars each shown in three different sizes (yielding
12 different experimental conditions), with four repetitions of
each stimulus in each of the six sessions. We pooled data from
the four repetitions, resulting in a total of n = 72 images by
subject (one image of each stimulus by session). Functional im-
ages were acquired on a 3-T MR system with eight-channel head
coil (Siemens Trio, Erlangen, Germany) as T2*-weighted echo-
planar image (EPI) volumes. Twenty transverse slices were ob-
tained with a repetition time of 2 s (echo time, 30 ms; flip angle,
70°; 2 x 2 x 2 — mm voxels; 0.5-mm gap). Realignment, nor-
malization to MNI space, and general linear model (GLM) fit
were performed with the SPMS5 software.! The normalization
is the conventional one of SPM (implying affine and nonlinear
transformations) and not the one using unified segmentation.
The normalization parameters are estimated on the basis of a
whole-head EPI acquired in addition, and are then applied to the
partial EPI volumes. The data are not smoothed. In the GLM,
the effect of each of the 12 stimuli convolved with a standard
hemodynamic response function was modeled separately, while
accounting for serial autocorrelation with an AR(1) model and
removing low-frequency drift terms by a high-pass filter with
a cutoff of 128 s. The GLM is fitted separately in each session
for each subject, and we used in the following analyzes the re-
sulting session-wise parameter estimate images the 3-maps are
used as rows of X). All the analyzes are performed without any
prior selection of regions of interest, and use the whole acquired
volume.

Regression Experiments: First, we perform an intra-subject
regression analysis. The four different shapes of objects (for the
two categories) were pooled across for each one of the three
sizes, and we are interested in finding discriminative informa-
tion between sizes. This reduces to a regression problem, in
which our goal is to predict a simple scalar factor (size of an
object) (see Fig. 1). Each subject is evaluated independently, in
a 12-fold cross-validation. The dimensions of the real data set

Ihttp://www fil.ion.ucl.ac.uk/spm/software/spm5
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Fig. 1. Experiment paradigm for the classification of object in each of the cate-
gory (left) and regression (right) experiments. Each color represents the stimuli
which are pooled together in one of the three experiments (classification cate-
gory 1, classification category 2, and regression).

for one subject are p ~ 7 x 10* and n = 72 (divided in three dif-
ferent sizes, 24 images per size). We evaluate the performance of
the method by a leave-one-condition-out cross-validation (i.e.,
leave-6-images-out), and doing so the GLM is performed sep-
arately for the training and test sets. The parameters of the ref-
erence methods are optimized with a nested leave-one-condi-
tion-out cross-validation within the training set, in the ranges
given before.

Additionally, we perform an inter-subject regression anal-
ysis on the sizes. The inter-subject analysis relies on subject-
specific fixed-effects activations, i.e., for each condition, the
six activation maps corresponding to the six sessions are av-
eraged together. This yields a total of 12 images per subject,
one for each experimental condition. The dimensions of the real
data set are p ~ 7 x 10* and n = 120 (divided in three dif-
ferent sizes). We evaluate the performance of the method by
cross-validation (leave-one-subject-out). The parameters of the
reference methods are optimized with a nested leave-one-sub-
ject-out cross-validation within the training set, in the ranges
given before.

Classification Experiments: We evaluate the performance on
a second type of discrimination which is object classification
(see Fig. 1). In that case, we averaged the images for the three
sizes and we are interested in discriminating between individual
object exemplars/shapes. For each of the two categories, this
can be handled as a classification problem, where we aim at
predicting the shape of an object corresponding to a new fMRI
scan. In order to investigate the performance of TV classifica-
tion, which is an original contribution, we perform an inter-sub-
ject analysis in the same way as described for the regression
study, except that now, we perform two analyzes corresponding
to the two categories used, each one including five subjects.

Statistical Parametric Maps: For comparison purposes, the
corresponding maps of ANOVA (F-score), or SPMs, for the
inter-subject analysis are given Fig. 2, for the representation
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Fig. 2. Inter-subject analysis—Maps of ANOVA (—log(p — values)) for the
sizes prediction experiment (top) and the objects identifications for category 1
(middle) and category 2 (bottom). We threshold the p-values higher than 103
(i.e., —log(p values) > 3).

of sizes (top) and representation of objects for the two cate-
gories (middle and bottom). As expected, the sizes are mostly
processed in primary visual cortex, while for objects, discrimi-
nation is additionally observed in lateral occipital regions [59].

IV. RESULTS

A. Results on Simulated Data

We compare the different methods on the simulated data, see
Fig. 3. The true weights (a) and resulting ANOVA F-scores (b)
are shown. Only TV regression (e) is able to extract the simu-
lated discriminative regions. Elastic net (d) only retrieves part
of the support of the weights, and yields an overly sparse so-
lution. This sparsity pattern obtained with elastic net is the one
that yields the highest prediction accuracy: one could seek a less
sparse solution, but this would decrease the prediction accuracy.
We note that the weights in the primal space estimated by SVR
(c) are everywhere nonzero and do not retrieve the support of
the weights.

B. Sensitivity Study on Real Data

Before any further analysis on real data, we have performed
a sensitivity analysis of our model with regards to the parameter
A. In the inter-subject analysis for the size regression, we com-
pute the cross-validated prediction accuracy for twelve different
values of A between 10~* and 0.95. The aim of the sensitivity
study is to assess the stability of the prediction with respect to
the regularization parameter. The results, detailed in Fig. 4, are
extremely stable with respect to \ in the range [5.10~4,5.1071].
For this reason, we can fix A = 0.05 in the following analyzes.
The value of ) is the same for all the experiments, in both clas-
sification and regression settings. The correct way of choosing
the regularization parameter is to embed the TV regularization
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Fig. 3. Two-dimensional slices of the three-dimensional volume of simulated data (top), and weights found on the diagonal (green squares) of the first two-
dimensional slice (bottom). Comparisons of the weights found by different methods, with the true target (a), and the F-score found by ANOVA (b). The TV method
(e) retrieves the true weights. The reference methods [(c), (d)] yield less accurate maps. Indeed, the support of the weights found by elastic net is too sparse and
does not yield convex regions. SVR yields smooth maps that do not look like the ground truth.
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Fig. 4. Explained variance ¢ for different values of A, in the inter-subjects
regression analysis. The accuracy is very stable regarding to A in the range
[5.107%,5.107].

within an internal cross-validation on the training set. However,
such approach can be computationally costly.

C. Results for Regression Analysis

In a first set of analyzes, we assess the performance of TV
regression in both intra-subject and inter-subject cases, where
the aim is to predict the size of an object seen by the subject
during the experiment.

Intra-Subject Analysis: The results obtained by the three
methods are given in Table I. TV regression outperforms the
two alternative methods, yielding an average explained vari-
ance of 0.92 across the subjects. The difference with SVR is
significant, but not with elastic net. Moreover, the results of the
regularized methods (TV, elastic net) are more stable (standard
deviation three times smaller) across subjects, than the results
of the SVR.

Inter-Subject Analysis: The results obtained with the three
methods are given in Table II. As in the intra-subject anal-
ysis, TV regression outperforms the two alternative methods,
yielding an average explained variance of 84%, and also more
stable predictions. Such stability can be illustrated on the

TABLE I
REGRESSION—SIZES PREDICTION EXPERIMENT—INTRA-SUBJECT ANALYSIS.
EXPLAINED VARIANCE ( FOR THE THREE DIFFERENT METHODS. TV
REGRESSION YIELDS THE BEST PREDICTION ACCURACY, WHILE BEING MORE
STABLE THAN THE TWO REFERENCE METHODS (STANDARD DDEVIATION OF (
THREE TIMES SMALLER THAN SVR). THE P-VALUES ARE COMPUTED ON THE
EXPLAINED VARIANCE OF THE DIFFERENT SUBJECTS

[ Methods [ mean ¢ [ std ¢ [ max ¢ [ min ¢ [ p-value to TV |
SVR 0.82 0.07 0.9 0.67 0.0051
Elastic net 0.9 0.02 0.93 0.85 0.0745
TV a = 0.05 0.92 0.02 0.95 0.88 -

TABLE II

REGRESSION—SIZES PREDICTION EXPERIMENT—INTER-SUBJECT ANALYSIS.
EXPLAINED VARIANCE ¢ FOR THE THREE DIFFERENT METHODS. TV
REGRESSION STILL YIELDS THE BEST PREDICTION ACCURACY, WITH AN
EXPLAINED VARIANCE 0.06 HIGHER THAN THE BEST REFERENCE METHOD
(ELASTIC NET). THE P-VALUES ARE COMPUTED ON THE EXPLAINED
VARIANCE OF THE DIFFERENT SUBJECTS

[ Methods [ mean ¢ | std ¢ [ max ¢ [ min ¢ [ p-value to TV |
SVR 0.77 0.11 0.97 0.58 0.0284
Elastic net 0.78 0.1 0.97 0.65 0.0469
TV A =0.05 0.84 0.07 0.97 0.72 -

subject 3, where both reference methods yield poor results,
while TV regression yields an explained variance 0.2 higher.
Moreover, we have tested that feature selection minimizes
overfitting. Indeed, without such feature selection, we obtain a
smaller explained variance of 76% for SVR and 64% for elastic
net.

The weighted maps found by the different methods are given
in Figs. 5 and 6. One can notice that, as A increases, the spa-
tial support of these maps tends to be aggregated in few clus-
ters within the occipital cortex, and that the maps have a nearly
constant value on these clusters. By contrast, both reference
methods yield uninterpretable (i.e., more complex) maps, with
a few informative voxels scattered in the whole occipital cortex.
The average positions and the sizes of the three main clusters
found by the TV algorithm, using all the subjects, are given
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Fig. 5. Regression—Sizes prediction experiment—Inter-subject analysis.
Maps of weights found by TV regression for various values of the regularization
parameter A. When A decreases, the TV regression algorithm creates different
clusters of weights with constant values. These clusters are easily interpretable,
compared to voxel-based map. The TV regression algorithm is very stable for
different values of A, has shown by the explained variance (.

[
-le-02 0e+00 1e-02 |

Fig. 6. Regression—Sizes prediction experiment—Inter-subject analysis.
Maps of weights found by the SVR (top) and elastic net (bottom) methods.
The optimal number of voxels selected by ANOVA is 500, but elastic net
further reduces this set to 21 voxels. These voxel-based methods do not yield
interpretable features (especially when compared to TV regression), which is
due to the fact that they do not consider the spatial structure of the image.

Table III. TV regression is able to adapt the regularization to
tiny regions, yielding ROIs from 25 to 193 voxels. The clus-
ters are found within the occipital cortex. The majority of infor-
mative voxels are located in the posterior part of the occipital
cortex (y < —90 mm), most likely corresponding to primary
visual cortex, with one additional slightly more anterior cluster
in posterior lateral occipital cortex. This is consistent with the
previous findings [59] where a gradient of sensitivity to size was
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TABLE III
INTER-SUBJECT REGRESSION ANALYSIS: POSITIONS AND SIZES OF
THE THREE MAIN CLUSTERS FOR THE TV REGRESSION METHOD

[ x(mm) [ y (mm) [ z(mm) [ Sizes (voxels) |

24 -92 -16 25

-26 -96 -10 103

16 -96 12 193
TABLE IV

CLASSIFICATION—OBIJECTS PREDICTION EXPERIMENT. AVERAGED
CLASSIFICATION SCORE k FOR THE THREE DIFFERENT METHODS, ACROSS
THE TWO CATEGORIES. TV CLASSIFICATION YIELDS SIMILAR PREDICTION

ACCURACY THAN THE REFERENCE METHOD SVC. P-VALUES ARE COMPUTED
ON THE CLASSIFICATION SCORE OF THE DIFFERENT SUBJECTS

| Methods | mean k | std x [ max k | min | p-value to SVC |
SVC 48.33 | 15.72 | 75.0 25.0 -
SMLR 42.5 9.46 | 58.33 | 33.33 0.0 **
TV A=0.06| 46.67 | 11.3 | 66.67 | 25.0 1.0

observed across object selective lateral occipital ROIs, and the
most accurate discrimination of sizes in primary visual cortex.

D. Results of Classification Experiments

In a second analysis, we assess the performance of TV classi-
fication in an inter-subject classification analyzes, in which the
aim is to predict which of four object exemplars is seen by the
different subjects.

The results (average across the two categories) found by the
three methods are given in Table IV. As in the inter-subject re-
gression analysis, the TV-based method outperforms the SMLR
method. Moreover, it yields an average classification score sim-
ilar to the SVC while being more stable. Seeking clusters of
activation thus seems a reasonable way to cope with inter-sub-
ject variability. The average number of selections of each voxels
within one of the three larger clusters for each one-versus-one
map are given Fig. 7. The informative clusters are more anterior
and more ventral than the ones found within the sizes predic-
tion paradigm. We thus confirm the results found by classical
brain mapping approach, such as ANOVA (see Fig. 2), while
providing a classification score based on cross-validation on in-
dependent data which allows to check the actual implication of
these regions in the cognitive process.

V. DISCUSSION

In this paper, we present the first use of TV regularization for
brain decoding. This method outperforms the reference methods
on prediction accuracy, and yields sparse brain maps with clear
informative foci.

Moreover, with regard to the classification paradigm, we
integrate the TV in a logistic regression framework. This
approach, which to our knowledge, has not been used before,
yields high prediction accuracy, and seems to be a promising
method for more machine learning problems beyond the scope
of neuroimaging.

One major advantage of the proposed method is that, in the
case of a multi-subject studies, considering extended regions is
expected to compensate for spatial misalignment, hence it can
better generalize than voxel-based methods. As proven on both
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Fig. 7. Inter-subject analysis. Top—voxels selected within one of the
three main clusters by TV regression, for the sizes prediction experiment.
Bottom—voxels selected at least one time within one of the three main
clusters for each of the one-versus-one TV classification, for the objects pre-
diction experiment. Some clusters found in the objects prediction experiment
(y = —40 mm, y = —74 mm) are more anterior than the ones found for the
Sizes prediction experiment (y = —92 mm, ¥y = —96 mm). This is coherent
with the hypothesis that the processing of shapes is done at a higher level in
the processing of visual information, and thus the implied regions are found
further in the ventral pathway.

inter-subject analyzes, the proposed TV approach yields signif-
icantly higher prediction accuracy than reference voxel-based
methods. In addition, the proposed approach yields weight
maps very similar to the maps obtained by a classical brain
mapping approach (such as ANOVA). We note that the solu-
tion found by our method has a sparse block structure and is
sufficient for good prediction accuracy, which explains the fact
that the regions observed may be more compactly localized
than the ones from ANOVA. Thus, the TV approach has the
assets of a predictive framework, while leading to accurate
brain maps. It is important to notice that, even if TV does not
promote a strict sparsity of the weights, most voxels are associ-
ated with very small weights, and only a few clusters get high
weightings. Moreover, TV regression allows to consider the
whole brain in the analysis, without requiring any prior feature
selection. As many accurate dimension reduction approaches
such as recursive feature elimination [60] can be extremely
costly in computational time, avoiding this step is a major
asset. An important feature of our implementation is thus that
it reduces computation time to a reasonable amount, so that
it is not significantly more costly than SVR or elastic net in
practical settings (i.e., including the cross-validation loops). In
the inter-subject regression analysis, the average computational
time is 185 s for TV regression, 131 s for ANOVA + SVR
and 121 s for ANOVA + elastic net, on a Intel Xeon CPU at
2.83 GHz. Regularization of the voxel weights significantly
increases the generalization ability in regression problems,
by performing feature selection and training of the prediction
function jointly. However, to date, regularization has most
often been performed without using the spatial structure of
the images. By applying a penalization on the gradient of the
weight and thus taking into account the spatial structure of the
image-based information, our approach performs an adaptive
and efficient regularization, while creating sparse weight maps
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with regions of quasi constant weights. TV regularization
method fulfills thus the two requirements that make it suitable
for neuroimaging brain mapping: a good prediction accuracy
(better than the reference methods for regression experiments,
and equal for classification), and a set of interpretable features,
made of clusters of similarly-tuned voxels. In that sense, it
can be seen as the first method for performing a large scale
multivariate brain mapping (the searchlight [61] only consider
the multivariate information in a small neighborhood).

From a neuroscientific point of view, the regions extracted
from the whole analysis volume in the size discrimination task
are concentrated in the early visual cortex. This is consistent
with the fact that early visual cortex yields highly reliable
signals that are discriminative of feature/shape differences be-
tween object exemplars, which holds as long as no high-level
generalization across images is required (see e.g., [9] and [59]).
This is expected given the small receptive fields of neurons in
these regions that will reliably detect differences in the spatial
envelop or other low-level structure of the images. Most im-
portantly, the predictive spatial pattern is stable enough across
individuals to make reliable predictions in new subjects. In
fact our method compares best with regards to the state of the
art in the inter-subjects setting, because it selects predictive
regions that are not very sensitive to anatomo-functional vari-
ability. In the object discrimination task, the clusters found
by our approach are also in the visual cortex, but including
more anterior ones (probably corresponding to posterior lateral
occipital region) compared to size discrimination, which is
consistent with the fact that shape discrimination requires
intermediate/higher level visual areas. The finding that also
large parts of early visual cortex were discriminative here
is explained by the fact that generalization across viewing
conditions was not a part of the analysis and classification can
therefore be driven by lower-level features. However, even if
similar maps as the ones found by our method can be obtained
using ANOVA, they do not provide a prediction score for
generalization to independent data (i.e., a global measure of
the involvement of the regions in the cognitive process).

VI. CONCLUSION

In this paper we introduce TV regularization for extracting
information from brain images, both in regression or classifi-
cation settings. Feature selection and model estimation are per-
formed jointly and capture the predictive information present in
the data better than alternative methods. A particularly impor-
tant property of this approach is its ability to create spatially co-
herent regions with similar weights, yielding simplified and still
informative sets of features. Experimental results show that this
algorithm performs well on real data, and is far more accurate
than voxel-based reference methods for multisubject analysis.
In particular, the segmented regions are robust to inter-subject
variability. These observations demonstrate that TV regulariza-
tion is a powerful tool for understanding brain activity and spa-
tial mapping of cognitive process, and is the first method that is
able to derive statistical weight maps, as in the standard SPM
approach, within the inverse inference framework.
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APPENDIX A
GRADIENT AND DIVERGENCE

The gradient operator which has to be computed on a mask
in our case (mask of the brain). With I € RP:*Pi*Pk an image,
it is defined by

(grad I)%7k :{ éi-I—l,J}k ~Lijjks Mk =My k=1

, otherwise

(grad 1)iik = Toatin = Tigeo A0 M= Mijiap =1
Y 0, otherwise

(grad 1)k = Tointr = Lijw, 30 Mij = Mijpeir =1
0, otherwise

The divergence operator for a gradient p is defined by

Dijk — Pi-1jk> if M je=Mi-1jk=1

(div p)"* =< Pij ko if M; g # Mi—1,j1=0
—Di_1 k> if Mi g 7# Mi—1,j,6 =1
y y 1 .. e .. J—

Pijk —Pijoig T Mije=M; 1p=1
y - _

+ < Pijke if M j 7 M j—1,6=0
Y . _

—Pi 1k if M je # M j—1,r=1
z 4 . L. —_ L. _

P ik~ Pijk—1, if M; =M jr-1=1

+ QP ke if M jp#M; jr—1=0
4 M _

—Pi k-1 lfMi,jyk;éMiJ’k_l—l.

APPENDIX B
ISTA PROCEDURE

We give the sketch of proof of (6). The loss £(w) being dif-
ferentiable, the second-order linearization of £(w) reads

£t~ £ () + (w0 5 ()

% (w- w<k>)T V2L (w®) (w - w®).

With Lg the Lipschitz constant of V£, we have

fretm w2 (s < oo -w ]

Using [62], we obtain

wkt) = argn‘l"i,nﬁ (w(k)) + g HW — w(k)H2
FAT(w) + (w w<k>)T v (wh).

Ignoring constant terms, this can be rewritten as

2
1 1
wk+D) — arg min 3 HW — (w(k’) — EVL (w(k))

+%)\J(W)
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where L. > L [42]. Finally, using definition (1) of the proximity
operator for J(w), this is equivalent to (6)

1 .

APPENDIX C
DUAL PROBLEM AND DUALITY GAP COMPUTATION

We give the sketch of proofs of propositions 2 and 3. We recall
[51] that the duality between the /1 norm and the /., norm yields

TV(v) =||Vv|1 = max (Vv,z)

llzll oo <1

12)

and that the adjoint relation between the gradient and the diver-
gence operator reads
(Vv,z) = —(v,divz). (13)

Using (12) and (13), we minimize

1
min <§||W — v||2 + )\TV(V))

1
= Amin <ﬁ||w —v|*+ max (Vv,z))

llz]| oo <1

=)\ max

. 1 )
2]l <1 <me (ﬁ”w —v["+ (Vv,z>>>
= i ! 2 .
= IIZHHIj}él <mv1n <§”w —v|" - (V,dlvz)>) .

The computation of the minimum and the maximum above can
be exchanged because the optimization over v is convex and the
optimization over z is concave [51].

By setting the derivative with respect to v to 0 one gets the
resulting solution of the minimization problem over v

min <%||w —v|?* - <v,divz>) = v* = w4 \divz.

Replacing v by v* in the previous expression leads to

1
min <§||W — v||2 + ATV(V))

<%||divz||2 —(w,divz) — )\||divz||2>

= A max
llzlleo <1
A o .
= A max [——|divz|]* — (w,divz)
llzlleo <1 2
1
= — max (—)\2||divz||2 — 2/\<w7divz))
2 |zl <1
1 2 . 2
= — max (||w]||*—[|Adivz + w||7) .
5 (I = | I?)



MICHEL et al.: TOTAL VARIATION REGULARIZATION FOR fMRI-BASED PREDICTION OF BEHAVIOR

This gives the proof of Prop. 2. Also, given a variable z satis-
fying ||z||c < 1 and an associated w such that v = w+ Adiv z,
one can guarantee that

1
W =VIE+ATV(v) > 2 ([[wls = [Iv])3) -

N =

The strict convexity of the problem guarantees that, at the op-
timum, the equality holds. This last derivation proves the propo-
sition 3.
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