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Does extensive practice reduce or eliminate central interference in dual-task processing?
We explored the reorganization of task architecture with practice by combining interfer-
ence analysis (delays in dual-task experiment) and random-walk models of decision mak-
ing (measuring the decision and non-decision contributions to RT). The main delay
observed in the Psychologically Refractory Period at short stimulus onset asynchronies
(SOA) values was largely unaffected by training. However, the range of SOAs over which
this interference regime held diminished with learning. This was consistent with an overall
shift observed in single-task performance from a highly variable decision time to a reliable
(non-decision time) contribution to response time. Executive components involved in
coordinating dual-task performance decreased (and became more stable) after extensive
practice. The results suggest that extensive practice reduces the duration of central deci-
sion stages, but that the qualitative property of central seriality remains a structural
invariant.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Several cognitive theories share the hypothesis that
most mental and neural operations are modular and a ded-
icated architecture is required to establish flexible links
amongst them (Baars, 1989; Chun & Potter, 1995; Dehae-
ne, Kerszberg, & Changeux, 1998; Posner, 1994; Shallice,
1988). It has been proposed that this flexible architecture,
capable of routing information according to any arbitrary
program (task-setting) may result in serial information
processing bottlenecks (Zylberberg, Fernandez Slezak,
Roelfsema, Dehaene & Sigman, 2010). Processing bottle-
necks are indeed ubiquitous in dual-task performance.
For instance, when two tasks are presented simultaneously
or sequentially at a short interval a systematic delay ob-
. All rights reserved.
served in the execution of the second task, a phenomenon
referred to as the Psychological Refractory Period (Pashler
& Johnston, 1989; Smith, 1967; Telford, 1931).

1.1. Mapping the PRP bottleneck

The exact nature of the processes causing the PRP bot-
tleneck has been debated. A typical observation in the
PRP design is that response time to the first task (RT1) is
little affected while response time to the Task 2 (RT2) is
greatly slowed as SOA is decrease (with a slope approach-
ing �1). This can easily be explained in terms of a sequen-
tial processing scheme in which certain aspects of Task 2
cannot proceed until Task 1 is completed. Experiments
investigating which aspects of Task 2 can proceed in paral-
lel and which reflect serial queuing have mapped the bot-
tleneck to the response selection process (Kamienkowski &
Sigman, 2008; Pashler, 1984).
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However, while the response selection bottleneck is
the principal source of the PRP, both psychophysical and
physiological evidence have suggested systematic depar-
tures from the simple sequential bottleneck model (All-
port, Styles, & Hsieh, 1994; De Jong, 1993, 1995;
Jentzsch, Leuthold, & Ulrich, 2007; Logan & Gordon,
2001; Meiran, Chorev, & Sapir, 2000; Ruthruff, Pashler, &
Klaassen, 2001; Sigman & Dehaene, 2006). In a classic
PRP experiment, responses to Task 1 are independent of
SOA, but they are slower than when performing the task
in isolation (Jiang, Saxe, & Kanwisher, 2004; Sigman & Deh-
aene, 2005). We reasoned that this could be related to an
executive control stage engaged before the execution of
the first task. We hypothesized that in situations in which
task order is unknown, this executive time should increase,
reflecting a hierarchical decision processes: first, which
task to respond to, and second, the specific decision in-
volved in each task. This hypothesis was verified in a
new series of experiments in which we concluded that in
a situation of task uncertainty, executive components
(engaging and disengaging in a task) had to be incorpo-
rated in order to account for a broad range of behavioral
observations (Sigman & Dehaene, 2006).

Evidence for the involvement of such executive compo-
nents could also be derived from human electrophysiolog-
ical studies of the PRP. In an event-related potential (ERP)
study in which a visual number comparison task was per-
formed as Task 1 and an auditory pitch discrimination task
was performed as Task 2, it was found that the peak of an
early sensory component of Task 2 (Auditory N1 wave) oc-
curred at a fixed delay after S2 presentation, indicating
that certain perceptual stages of Task 2 can occur in paral-
lel with Task 1. By contrast, the peak of the P3 wave, an-
other ERP component which relates mostly to distributed
parietal, temporal and frontal sources and thought to be in-
volved in working memory, flexible routing of information
and conscious perception (Donchin & Coles, 1998), showed
a strictly serial delay. While this was in very good accor-
dance with the predictions of the bottleneck model (Sig-
man & Dehaene, 2008), several other observations
deviated from this simple model. First, the amplitude of
the sensory N1 component of the second task decreased
slightly during the interference regime. Second, the tempo-
ral course of the N1 component of Task 2 started prior to
stimulus presentation, probably reflecting task expectation
and preparation. Finally, a Task 2 related P3 component
emerged at long SOAs, even before the Task 2 stimulus
(auditory tone) was presented. This anticipatory compo-
nent peaked around 500 ms, thus coinciding closely with
the end of the visual P3 evoked by Task 1 (Sigman & Deh-
aene, 2008). This ERP sequence is compatible with the
hypothesis that as soon as Task 1 was completed, subjects
re-oriented their attention to prepare for Task 2, reflecting
an executive component of task engagement (De Jong,
1993; Logan & Gordon, 2001; Meiran et al., 2000; Ruthruff
et al., 2001; Sigman & Dehaene, 2006). In addition, it sug-
gests that the absence of attentional top-down control
may explain the amplitude attenuations observed during
interference (Gilbert & Sigman, 2007). Overall, these data
indicate that PRP experiments involve both a central bot-
tleneck and an active process of task-oriented attention.
1.2. Can the PRP bottleneck be bypassed? Effects of practice on
dual-task interference

Another unsolved matter which has attracted the atten-
tion of many scientists in cognitive psychology is whether
central resources can be bypassed with extensive practice
or in very ‘‘natural’’ stimulus–response mappings (McLeod,
1977; Posner & McLeod, 1982) such as responding with the
right-hand to a right pointing arrow (Greenwald & Shul-
man, 1973; Lien, McCann, Ruthruff, & Proctor, 2005; Pash-
ler, Carrier, & Hoffman, 1993; Schumacher, Seymour, Glass,
Kieras, & Meyer, 2001). Recent results suggest that even
under conditions of high ideomotor compatibility, the lo-
cus of the central processing bottleneck may be reduced
but not completely eliminated (Lien et al., 2005). This sug-
gests that establishing a temporary mapping between
otherwise independent processors involves the engage-
ment of a strictly serial processing stage which can be
drastically reduced for highly practiced or non-arbitrary
tasks (Greenwald, 2003; Lien, Proctor, & Allen, 2002; Lien
et al., 2005).

Logan and colleagues have extensively studied the pro-
cess of automatization, using an alphabet arithmetic task
(e.g. H + 3 = K) (Compton & Logan, 1991). Based on subjec-
tive reports and on an analysis of the time-course of the re-
sponse time variability during the course of learning, they
provided substantial evidence in favor of a race model.
According to this model, different strategies to solve the
task co-occur: an algorithmic computation and a memory
retrieval process. These two mechanisms operate simulta-
neously and the selection process is determined by a race.
During the course of learning, memory retrieval is consol-
idated and becomes faster than the slow algorithmic com-
putation, thus dominating the race and leading to
automatic performance (Compton & Logan, 1991). An
important assumption of such model is that practice does
not affect the qualitative organization of the system, but
rather changes the parameters of an invariant architecture.
Evidence for such continuous progression in the automa-
ticity process with practice came from a study in which
an alphabet arithmetic task, at different stages of practice,
was performed concurrently with a speech task (Klapp,
Boches, Trabert, & Logan, 1991a, 1991b).

1.3. Random-walk models can decompose processing stages in
a cognitive task

Virtually all PRP research – including the study of the
effects of practice – has focused exclusively on mean RTs.
It is possible however, that certain effects of practice do
not directly affect the mean response time, but rather re-
sult in a change of the relative contributions of distinct
processing stages to RT. Alternatively, of course, learning
could result in a combination of both effects. How can
one parse a task, simply relying on response time informa-
tion, into different processing stages and understand the
relative contribution of each processing stage to response
time?

A separate psychological research tradition seeks to an-
swer these questions, investigating how the decision to re-
spond is achieved. The decision-making process has been
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modeled as a noisy integrator that accumulates evidence
provided by the sensory system (Gold & Shadlen, 2001;
Link & Heath, 1975; Luce, 1986; Machens, Romo, & Brody,
2005; Ratcliff, 1988; Reddi & Carpenter, 2000; Schall, 2000;
Schwarz, 2001; Shadlen & Newsome, 1996; Usher & McC-
lelland, 2001; Vickers, 1970; Wong & Wang, 2006).

Although many variants have been proposed, the basic
idea is that perceptual evidence is stochastically accumu-
lated in time. A decision results from a random walk of
an internal abstract variable. Indeed, in many circum-
stances, such a decision mechanism can be optimal in the
sense that it maximizes the overall likelihood of a correct
classification of the stimuli (Edwards, 1965; Laming, 1968).

Within this framework, one can choose to model RT dis-
tributions with elaborated or with comparatively simpler
models. Detailed reviews of the use of diffusion models
to account for RT distributions can be found in (Luce,
1986; Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 2002).
As a brief summary, we present here some variants which
are relevant for the present work.

Two-barrier diffusion process models (Ratcliff & McK-
oon, 2008; Ratcliff & Rouder, 1998) have been very suc-
cessful in explaining in full detail two-choice forced
tasks, including many observations of RT in error trials.
One of the caveats of the full model with two-barriers is
that it has too many parameters requiring a complex fit-
ting-procedure (Diederich & Busemeyer, 2003; Ratcliff &
Tuerlinckx, 2002) and sufficient information both in cor-
rect and incorrect responses (which in turn requires suffi-
cient error trials to be fitted). Different simplifications of
the full model have been proposed:

Wagenmakers and collaborators – in the EZ-diffusion
model – simplified the full Two-Barrier Diffusion Process,
including only what they considered to be the most psy-
chologically relevant parameters of the Ratcliff model: drift
rate m (i.e., quality of information), boundary separation a
(i.e., response conservativeness), and non-decision time
T0. Under these simplifications, they could derive an ana-
lytical solution for the resulting distribution which can
be calculated from the mean and the variance of RT and
percentage of correct responses. (Grasman, Wagenmakers,
& van der Maas, 2009; Wagenmakers, van der Maas, Dolan,
& Grasman, 2008; Wagenmakers, van der Maas, & Gras-
man, 2007);

An even more simplified model postulates a single-bar-
rier Diffusion Process (Gold & Shadlen, 2002; Heathcote,
2004; Link, 1992; Link & Heath, 1975; Luce, 1986; Schwarz,
2001; Sigman & Dehaene, 2005). This modeling strategy
ignores the possibility that the second barrier can absorb
trajectories and is only valid if error rates are very low. It
is broadly used in one-choice alternatives although it has
also been used in two-choice alternatives as in go/no-go
procedures (Schwarz, 2001). The fitting parameters of this
model are the same as in the EZ-diffusion model (i.e. m, a
and NDT). A considerable advantage of this model is that
it has an analytical solution and thus the parameters of
the model can be fitted without explicitly simulating the
random walk.

As for any scientific investigation, choosing the ade-
quate model poses a compromise between Occam’s razor
and accurate descriptions. Here we opted for an iterative
modeling procedure, starting from the simplest model
capable of describing the key observables of these experi-
ments and progressing towards more realistic models
(Fig. 1). As in other empirical studies (Gold & Shadlen,
2002; Heathcote, 2004; Link, 1992; Link & Heath, 1975;
Luce, 1986; Reddi & Carpenter, 2000; Schwarz, 2001; Sig-
man & Dehaene, 2005) we started by using the simplest
modeling scheme, fitting RT distributions to a single bar-
rier decision model. This model assumes that all the vari-
ance comes from decision variable and it also makes the
implicit assumption that – given that errors are very rare
– a single-barrier model is sufficient. Since these assump-
tions are not frequently made in RT distribution studies
we have progressively expanded the model to see if under
broader and more realistic assumptions our main observa-
tions remained stable. We thus extended the one-barrier
model to Wagenmakers EZ model, the main difference
(Fig. 1) being that it has two-barriers and takes into ac-
count the errors and possible differences in decisions
thresholds. The EZ model does not assume variability in
non-decision time and hence the next progression in the
space of models was to extend our results to a Ratcliff
model which includes variability in non-decision time
and a possible initial bias in the decision.

In this study we explore the robustness and plasticity
of different contributions to processing bottlenecks by
training subjects on a PRP experiment involving a visual
(number comparison), and an auditory task (pitch com-
parison). We examine changes in RT distributions, mea-
suring the dynamics of RT models of decision time. We
investigate the evolution of the parameter models
throughout the course of learning to determine which
components of processing bottlenecks are robust and
which are plastic.
2. Methods

2.1. Participants

Three females and 1 male (ages between 18 and 24)
participated in this study. Participants were all native Eng-
lish speakers. All subjects gave written informed consent
and were naïve about the aims of the experiment.
2.2. General procedure

Participants performed a total of 16 experimental ses-
sions of about 40 min each. The experiment was divided
into three phases. In the first phase, participants performed
six sessions in different days. Each session comprised nine
independent blocks: three blocks of Number Comparison
Task (80 trials per block, numbers were presented in Arabic
Digits and Spelled Words), 3 blocks of Tone Task (40 tri-
als � 3 blocks), and 3 Double Task blocks (120 trials per
blocks) with numbers presented in Arabic Digits and
Spelled Words. Each session comprises a total of 720 trials.
The blocks were presented in random order.

In the second phase (day 7) participants performed
seven blocks (80 trials each) in which they had to name
a number presented in a new notation, a string of



Fig. 1. RT Models of decision making (A) Single-Barrier (Wald) model. We used a fixed boundary separation (a = 1) and a fixed diffusion constant r across all
conditions, and fitted the distributions of RTs for correct responses with two parameters: {m, NDT}. (B) EZ-diffusion model. This model incorporates a second
absorbing barrier which can account for errors. Parameters do not vary in a trial-by-trial basis and there is no original decision bias. Under these
assumptions parameters {a, m, NDT}. can be obtained analytically from measured variables: {MRT, VRT, Pc}. (C) Simplified Ratcliff diffusion model (RDM):
We incorporate to further parameters: the initial bias (z) and the variability in the NDT (st).
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consonants. Subjects were given feedback on a trial-by-
trial basis. We refer to this task as the ‘‘Naming task’’.

The third phase involved nine sessions. Each session
of phase 3 of the experiment was identical to sessions
of phase 1 except that it also included, in addition, a
single Naming Task block, and that the number compar-
ison task was also performed using the consonant-string
notation.

The trials with the consonant-string notation are not in-
cluded in any of the analyses presented in this paper.
2.3. Stimuli and tasks

(1) In the Tone Task participants heard a tone lasting
200 ms (either 440 Hz or 880 Hz) and responded
with the middle and index finger of the right-hand,
indicating whether it was high or low pitch. Partici-
pants had 2.5 s to respond.

(2) In the Number Comparison Task a number between 1
and 9 (excluding 5) was presented on the center of
the screen, and participants responded whether it
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was larger or smaller than 5 with the middle and
index fingers of the right-hand. The numbers were
randomly presented as either digits or words, for
250 ms. At the end of each block feedback was pro-
vided indicating the percentage of correct trials.

(3) In the Dual-Task subjects had to perform the tone
and number comparison task in a classic PRP design.
In each trial the sound was presented first followed
by the number at 4 possible Stimulus Onset Asynchro-
nies (SOA = {100, 250, 1100, 1250} milliseconds).
Participants had to respond with the left-hand to
Tone Task and with the right-hand to the Number
Comparison Task.

Participants had 3.5 s to respond both tasks. To discour-
age a grouping strategy (i.e. wait for both stimuli to be pre-
sented and respond to them simultaneously) participants
were explicitly instructed to respond accurately but as fast
as possible to each stimuli.
2.4. Data analysis

Dual-Task trials were considered correct if responses to
Task 1 and to Task 2 were correct. For RT analysis, we ex-
cluded RTs slower than 1500 ms for single-task trials, and
for the First Task; and RTs slower than 2000 msec for the
Second Task (in Dual-Task trials). Less than 5% of the trials
were excluded using this criterion. Performance in the
experiment was very accurate throughout all sessions
and was independent of SOA (see Fig. 2 GH and Supple-
mentary Fig. 1; p = 0.1016 (df = 3, F = 2.08) ANOVA with
Pc as independent variable and {SOA, Task, Learning} as
dependent variables, and Subject as Random Variable).

To study the effect of learning (Fig. 2) we concatenated
all the trials acquired throughout the successive sessions of
the experiment in a single sequence. We then performed a
running average of 20 trials for each subject � condition
(in Fig. 2 CDEGH) and 40 trials in Fig. 2F. The resulting run-
ning average was fitted to an exponential function to ob-
tain a time-scale of learning.
2.5. Specifications, choice of models and parameters of RT
distribution analysis

The analyses of the single-barrier model were based so-
lely on correct trials. Analysis of the EZ (Wagenmakers
et al., 2007, 2008) and the RDM models (Ratcliff, 1978; Rat-
cliff & Rouder, 1998; Vandekerckhove & Tuerlinckx, 2007)
included error trials In all cases, all reported parameter val-
ues were calculated fitting the model for each individual
subject, condition (Notation or SOA) and learning bin,
and then averaging. Since we had four participants in this
study and those were not sufficient to perform reliable sta-
tistics on the parameters, many of the statistical tests on
the regressions were performed on the average data. In
Figs. 3–5 and Supplementary Fig. 2 we presented the
(mean ± std error) of estimated parameters for the differ-
ent models. In Supplementary Table 1, we report the fitted
values of the model and their corresponding linear regres-
sions for each individual participant.
The single-barrier model is based on a random walk with
a drift described by the following Markov process (see
Fig. 1A):

dðev idenceÞ ¼ m � dðtimeÞ þ r � dðrandom variableÞ

where m is the drift rate, r is the standard deviation of a
gaussian noise with zero mean. The resulting distribution
for first hitting times to a fixed threshold a could be esti-
mated analytically and is determined by the Wald (also re-
ferred as Inverse Gaussian) distribution:

pdf ðtÞ ¼ a

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � t3
p � exp �ða� m � tÞ2

2 � r2 � t

 !

Response Times are then modeled by this distribution
plus a fixed delay (fix here refers to the fact that it does
not vary from trial to trial) TER, which accounts for contri-
butions to RT not related to the decision as motor execu-
tion of the response.

The analytical form of the resulting RT distribution is
referred as the shifted-Wald distribution (see Fig. 2A):

pdf ðtÞ ¼ a

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � ðt � T0Þ3

q � exp �ða� m � ðt � T0ÞÞ2

2 � r2 � ðt � T0Þ

 !

The threshold was set to a fix value (arbitrarily taken as
one) and we obtain the distribution that we used to fit RT
distributions:

pdf ðtÞ ¼ 1

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � ðt � T0Þ3

q � exp �ð1� m � ðt � T0ÞÞ2

2 � r2 � ðt � T0Þ

 !

We also used a fixed value of r across subjects and con-
ditions for each task (number or tone). We found this opti-
mal value as a global minima for all subjects and
conditions. The results reported here were very stable
regarding changes in the value of r.

Fits were based on the Mean Square Distance (MSD) of
the cumulative distributions because this fitting procedure
turned out to be the more stable. To fit the parameters of
the model we used the Nelder–Mead Simplex Method
(Lagarias, Reeds, Wright, & Wright, 1998), implemented
in Matlab using the fminsearch() function. This is the same
algorithm used in the DMAT toolbox (Vandekerckhove &
Tuerlinckx, 2007; Vandekerckhove & Tuerlinckx, 2008;
http://ppw.kuleuven.be/okp/software/dmat/) which we
used to fit the Ratcliff Diffusion Model.

The EZ-diffusion model is the analytical resolution of the
simplest version of a two-barrier model. Wagenmakers
and collaborators showed that using a reduction of the full
Ratcliff model (parameters do not have trial-to-trial vari-
ance and there is no decision bias) could map analytically
the mean RT (MRT), the variance of RT (VRT) and Probabil-
ity of Correct Response (Pc) to the parameters of the Rat-
cliff Diffusion Model (see Wagenmakers et al., 2007 for a
rationale on this reduction from the larger Ratcliff Diffu-
sion Model). Under these assumptions, the EZ-diffusion
model considers only three free parameters (Fig. 1B): the
drift rate (m), the non-decision time (TER) and the boundary
separation (a). These parameters are calculated analyti-
cally from MRT, VRT and Pc (Wagenmakers et al., 2007).

http://ppw.kuleuven.be/okp/software/dmat/


Fig. 2. What aspects of dual-task performance change with extensive practice? (A) Main PRP effect: mean RT2 (black line) decreases with SOA with a slope
of –1. for short SOA values. Mean RT1 (grey line) remains almost constant. (B) mean RT as a function of SOA at different stages of learning. Trials were
grouped in two categories: before learning (the first 20% of trials in the course of learning) and after learning (the last 20% of trials in the course of learning).
(C and D) RT1 (C) and RT2 (D) for different SOA values and RT of the single-task as a function of learning. We observed an effect of SOA on RT1 (compare
darkest and lightest) which decreased with learning. The bulk of the learning effect on mean response times occurred during the first training sessions. (E)
The PRP effect, defined as the slope of RT2 between the first SOA values (RT2(SOA = 100 ms) – RT2(SOA = 250 ms))/150 ms shows a small, but progressive
change with practice. (F) The correlation between RT1 and RT2. (C–F: Dotted lines: Experimental data, Solid Lines: The best exponential fit
(RT(n) = A + B � exp(�n/s)). (G and H) Probability of Correct Responses (Pc) for Task 1 (G) and Task 2 (H), for different SOA values as a function of learning.
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Fig. 3. What aspects of single-task architecture change with extensive practice? (A) Response time distributions of the number comparison task (Spelled
words) at the beginning (black lines) and at the end (grey lines) of learning. (B) Evolution of estimated parameters from the three models: Wald distribution,
EZ-diffusion model and RDM model, for both Notations in the Number task as presented as single-task. We observed, consistently, an increase in the drift m
with learning.
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All parameters of the EZ model were calculated with the
ezdiff() function of the DMAT toolbox.

The Ratcliff Diffusion model (RDM). Parameters of
the RDM were obtained using the DMAT toolbox
(Vandekerckhove & Tuerlinckx, 2008). To verify whether
changes in the variance with learning might be accounted
by variability in non-decision time, we added an additional
parameter determining inter-trial variability on non-decision



Fig. 4. Departure from strictly sequential model of dual-task: Effect of interference on RT1. (A) RT of tone task (single-task: black line, and as first task of
dual-task for different SOA) as function of learning. (B) Difference between RT1 and RT (tone-task), as a function of learning. (C) Fraction of NDT for the Tone
Task when performed as a single-task or as the first task of a PRP experiment. The fraction is larger than one indicating that NDT is slower when the task is
performed as the first task of a PRP experiment. The effect does not depend on SOA and decreases with learning. (D) Same as (C), for DT. The effect increases
for shorter SOA and decreases with learning.
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(st) (Fig. 1C). The bias in the decision was also included as
an additional free parameter to verify the hypothesis of the
EZ model. The model – a simplified version of the full-
RDM, has five free parameters (which are modeled for
every participant, condition and learning bin) {a, NDT, m,
z, st}. Since multi-dimensional fitting is more sensitive to
initial conditions, we used an iterative procedure, taking
the resulting values from the EZ-diffusion model as initial
conditions for the shared parameters {a, NDT, m}, and a/2
(no bias) as the initial condition for z.

3. Results

3.1. What aspects of dual-task performance change with
extensive practice?

We first grouped the data across all learning sessions
and observed a classic PRP effect: RT2 decreased with
SOA with a slope close to �1 for short SOA values
(RT2SOA=100–RT2SOA=250)/(250–100), averaged across sub-
jects = �0.96 ± 0.12) consistent with serial processing
(during T1 processing, each acceleration in T2 presentation
time is translated into a corresponding slowing of RT2).
RT2 was constant for long SOA values ((RT2SOA=1100–
RT2SOA=1250)/(1250–1100)-, averaged value across sub-
jects = 0.00 ± 0.01). We observed a small, yet significant
slowing of RT1 at short SOA (Fig. 2A and C) (Sigman & Deh-
aene, 2006) and is not predicted by the classic sequential
model. We will later come back to this observation in more
detail.

We then investigated which aspects of the PRP effect
changed with extensive practice. There was a reduction
in RT with learning, both in RT1 and RT2 and for all SOA
conditions (Fig. 2B and Table 1). The effect was quite small,
ranging between 10 and 70 ms depending on the condi-
tion, and marginally significant (see Table 1). Fig. 2 shows
that the bulk of the learning effect seems to be on the first
trials, as suggested by exponential models of learning
(Heathcote, Brown, & Mewhort, 2000). To quantify this
observation we fit an exponential model of RT with learn-
ing: RT = A + B � exp(�N/s), where A is the asymptotic va-
lue, B is the amplitude of the learning and s is the
characteristic learning scale and N the trial number since
the beginning of learning. This analysis confirmed that
learning occurred rapidly, in about 100 trials (sRT1 = 106
trials CI: [98, 117] trials; sRT2 = 58 trials CI: [53, 65] trials),
indicating that the bulk of the learning effect on mean RTs
is obtained in the first session (Fig. 2C and D). The ampli-
tude of the effect was more pronounced for Task 2 trials
(BRT1 = 144 ms CI: [136, 151] ms; BRT2 (short SOAs) =
275 ms CI: [259, 290] ms; BRT2 (long SOAs) = 231 ms CI:
[119, 143] ms).



Fig. 5. Task Setting: A model of nested series of decisions. (A) Sketch of the single-barrier diffusion model used to measure DT and NDT from the response
time distributions. (B) Sketch of the model used to model RT1 distributions as the convolutions of two shifted-Wald processes. The first decision models a
task-setting procedure and the second decision the choice determined by the task. (C and D) DT and NDT contributions of the task-setting process. Most of
the contribution results from DT which increases for shorter values of SOA. This effect decreases with learning. Trials were grouped in six bins to estimate
the parameters of the model.
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The bottleneck model predicts that RT2 should decrease
with SOA with a slope of �1 during the interference regime
and then remain constant, thus creating an ‘‘elbow’’ in the
RT2 curve, although trial to trial variability will tend to
smooth this out. To quantify the shift in the elbow location
we measured the slope of change in RT2 between consec-
utive SOAs values (Table 1). A slope of 0 (respectively �1)
would imply that the considered SOAs lie outside (resp. in-
side) the interference regime, with intermediate values
providing a continuous weighted estimate of the critical
SOA range.

The slope of the PRP function (considering the change in
RT between the shortest SOA conditions, 100 and 250 ms)
showed a moderate effect of learning (Fig. 2B and E; linear
regression of slope versus trials was significant,
b = 5 � 10�4 [4 � 10�4 6 � 10�4], F = 0.1, p < 10�8; mean
value of the slope for the first (last) five sessions =
�1.01 ± 0.06 (�0.83 ± 0.11)). The difference in RT2 at SOA
values of 100 and 250 ms remained highly significant even
in the last sessions of training (124.26 ± 17.89 ms). These
results indicate a progressive shift of the interference re-
gime towards shorter SOA values, but suggest that, at least
with this amount of learning, the serial queuing of central
processing of both tasks remains present.

Further evidence for the persistence of a serial bottle-
neck comes from an analysis of RT1 and RT2 correlations.
The serial model predicts that these correlations are high
in the interference regime, where every extra millisecond
taken by Task 1 slows down Task 2 by a corresponding
amount. We measured RT1/RT2 correlations as a function
of SOA, during the course of learning (Fig. 2F). For the
shortest SOA value (100 ms), the correlations are very
strong (mean correlation = (0.85 ± 0.04)) and remain
essentially invariant during the course of learning (linear
regression of correlations versus trials: b = �7 � 10�6

[�0.3 � 10�6, �15 � 10�6], F = 3.56, p = 0.0596)). For the
SOA 250 ms conditions, correlations are also strong (mean
correlation = (0.76 ± 0.07)) and decrease with practice (lin-
ear regression of correlations versus trials: b = �6 � 10�4

[�4 � 10�4, �7 � 10�4], F = 72.09, p < 10�15). Within the



Table 1
Effects of learning: Statistical tests of the regression analysis the main variables (RT1, RT2 for different SOA values) with learning. Effects of SOA: t-test
comparisons for different SOA values collapsing all experimental sessions. Interactions between learning and SOA: Statistical tests of the regression analysis of
RT differences with learning. Effect Sizes in Learning and interaction of SOA with learning were calculated comparing RTs for the first five and the last five
training sessions.

X= RT1 RT2

Effect size Significance Effect size Significance

Effect of Learning X(SOA = 100) 57.35 ms F=3.39; p < 0005 72.16 ms F = 2.87; p < 0.01
X(SOA = 250) 40.19 ms F = 2.32; p < 0.05 45.28 ms F = 1.71, p > 0.05
X(SOA = 1100) 32.66 ms F = 2.20; p < 0.05 9.49 ms F = 1.12; p > 0.05
X(SOA = 1250) 20.55 ms F = 1.56; p > 0.05 5.49 ms F = 0.87; p > 0.05

Effect of SOA {X(SOA = 100), X(SOA = 250)} �0.17 (�25.68 ms) t = 7.48; p < 0.0001 �0.93 (�139.04 ms) t = 30.24; p < 0.0001
{X(SOA = 250), X(SOA = 1100)} �0.03 (�28.04 ms) t = 10.10; p < 0.0001 �0.24 (�201.85 ms) t = 22.51; p < 0.0001
{X(SOA = 1100), X(SOA = 1250)} 0.01 (1.31 ms) t = 0.37; p > 0.05 0.00 (0.20 ms) t = 0.09; p > 0.05

Interaction between
Learning and SOA

X(SOA = 100) – X(SOA = 250) �0.11 (�17.16 ms) F = 2.55; p < 0.05 �0.18 (�26.88 ms) F = 4.12; p < 0001

X(SOA = 250) – X(SOA = 1100) �0.01 (�7.52 ms) F = 1.59; p > 0.05 �0.04 (�35.80 ms) F = 1.75; p > 0.05
X(SOA = 1100) – X(SOA = 1250) �0.08 (�12.11 ms) F = 1.49; p > 0.05 �0.03 (�4.00 ms) F = 0.59; p > 0.05

(⁄) Bold values indicates significant effects at a = 0.05.

1 Interestingly the tone task – in the single-task condition – showed
virtually no effects of practice (see Fig. 4A). This task was responded very
rapidly and thus it is likely that response times were close to saturation.
Another difference is that the visual task involved to distinct perceptual
modalities (words and digits) while the auditory task always was presented
with the same two tones.
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non-interference regime, correlations are weak throughout
the course of learning (mean correlation for both large SOA
values = (0.14 ± 0.04)).

Note that both the change in the slope of the PRP effect
and of the correlations between RT1 and RT2 for short SOA
values progressed with learning even beyond a few hun-
dred trials, when the mean RTs had reached a plateau. This
finding indicates that learning may result in changes in
task architecture which are not simply visible by mean
RT analysis, and motivates our subsequent decomposition
of RTs using random-walk models.

Finally we explored whether an important departure
from the passive bottleneck model, the observed effect of
SOA on RT1, changed with practice. As seen in Fig. 2C, dur-
ing the first sessions, RT1 is on average almost 100 ms lar-
ger for short SOA values (difference between blue and
green, and red and yellow curves). In the last session, how-
ever, this difference virtually vanishes. The reduction of the
effect of SOA on RT1 is accompanied by an overall decrease
of RT1 (Table 1).

Summarizing, we observe the following effects with
practice in dual-task performance: (1) A reduction of mean
response times in both tasks. (2) A shift of the extent of
interference regime (‘‘the elbow location’’) to shorter SOA
values, (3) the reduction or virtually disappearance of an
effect of SOA on RT1 and (4) a constancy of the PRP bottle-
neck effect, even after extensive practice, for SOA values
shorter than 200 ms, as evidenced by the persistence of
high correlations between RT1 and RT2 and by the consis-
tent decrease of RT2 for short SOA values.

3.2. Changes in single-task architecture and contributions to
RT during the course of learning

As described in the previous section, we observed a
small reduction of RT with learning, mainly in the first ses-
sions of training. The question we investigate here is
whether the differential contributions of different stages
to RT varied significantly throughout the course of learn-
ing, beyond this initial regime. RT distributions were dif-
ferent prior and after extensive learning (see Fig. 3A). To
provide a quantitative measure of the change of different
contributions to RT, we analyzed the evolution of the dif-
ferent parameters of the models throughout the course of
learning. This analysis was performed independently for
the Arabic digits and spelled words numerical task.1

The single-barrier model (see methods and Fig. 1) as-
sumes a fixed onset delay referred to as Non-Decision-
Time (NDT), followed by a forced random walk to a thresh-
old b with slope (drift rate) m and diffusion constant r. Only
NDT and m are free parameters. The fixed delay (NDT) indi-
cates a non-stochastic contribution to response time. The
Decision Time (DT), the main stochastic contribution to
RT is determined by b/m. Since the threshold is fixed, an in-
crease in m implies a reduction in decision time. Analysis
revealed a progressive increase of drift rate m with learning
(Fig. 3B top-left, p < 0.002 for Words and p < 0.015 for Dig-
its, see Table 2 for all details of the regression). NDT
showed a very moderate, non significant increase with
learning (Fig. 3B left column, second-row, p > 0.18 for
Words and p > 0.46). The fraction of RT devoted to decision
time (DT/RT) decreased during the course of learning
(Regression on mean curves for both Notations: Digits: Ef-
fect Size (mean ± std error) = (�0.056 ± 0.005); F = 13.01;
p < 0.01; and Words: Effect Size (mean ± std error) =
(�0.056 ± 0.005); F = 22.49; p < 0.0005).

The EZ model assumes two symmetrical barriers at the
cost of an additional free parameter, the distance between
both barriers, referred as a. We observed the same depen-
dence for the shared parameters (Fig. 3B, 2nd column) m
and NDT. We observed a progressive increase in drift rate
m throughout the course of learning which was significant
for Words (p < 0.0036, see Table 2) and marginally signifi-
cant for Digits (p < 0.066, see Table 2) and NDT did not
change with learning (see Table 2). The separation be-
tween both barriers a did not change with learning (see
Table 2).



Table 2
Statistical tests of the regression analysis the estimated parameters of the Numerical Task as Single-Task (and both Notations) for the three models with
learning.

Wald EZ RDM

Drift Rate (v) Words 0.0002 F = 18.81; p < 0005 0.0144 F = 16.59; p < 0005 0.0141 F = 15.14; p < 0005
Digits 0.0002 F = 9.50; p < 0.05 0.0070 F = 4.52; p = 0.0663 0.0072 F = 5.62; p < 0.05

Non-Decision Time (NDT) Words 0.0026 F = 2.17; p = 0.179 0.0017 F = 1.49; p = 0.2576 0.0023 F = 1.69; p = 0.2293
Digits 0.0010 F = 0.58; p = 0.467 �0.0006 F = 0.15; p = 0.7084 �0.0005 F = 0.12; p = 0.7391

Boundary Separation (a) Words 0.0002 F = 0.02; p = 0.8933 0.0009 F = 0.37; p = 0.5588
Digits 0.0004 F = 0.26; p = 0.6214 0.0022 F = 4.36; p = 0.0703

Initial Bias (z) Words 0.0009 F = 1.09; p = 0.3279
Digits 0.0027 F = 6.12; p < 0.05

Variability of NDT (st) Words 0.0002 F = 0.01; p = 0.9124
Digits �0.0009 F = 0.41; p = 0.5418

(⁄) Bold values indicates significant effects at a = 0.05.
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The RDM further incorporates two additional parame-
ters (Fig. 3B, 3rd column), the variability of non-decision
time st and an initial bias towards one of the barriers (z)
and hence has a total of five free parameters: {a, NDT, m,
z, st}. Analysis of the evolution of the parameter models
through of learning revealed, as with the simpler models,
an increase in m (see Table 2). All other parameters, with
the exception of z only for Digits, did not show any effect
of learning (Table 2). The mean value of z for both nota-
tions was not-significantly different from (a/2)
(a(mean ± std across participants) = (0.10 ± 0.03) and
z(mean ± std across participants) = (0.06 ± 0.02)) indicating
that, as expected, none of the responses had an a priori
bias. The variance of non-decision time (st) was on average
(mean ± std across participants = 0.26 ± 0.04) which is
within normal ranges of what has been found in prior stud-
ies on other tasks (Ratcliff & Smith, 2004; Ratcliff, Thapar,
& McKoon, 2001; Ratcliff, Thapar, & McKoon, 2004; Ratcliff,
Thapar, Gomez, & McKoon, 2004).

In summary, a distribution analysis of RT showed that
even beyond the extent where we could observe changes
in mean RT, there is a reorganization of the contribution
of the different stages of a task to RT variability, revealing
a shift from decision to non-decision time. We observed a
consistent pattern of all three models revealing an increase
of m with learning.

3.3. Relating single and dual-task performance: departures
from the passive bottleneck model

The sequential bottleneck model predicts a highly spe-
cific relationship between dual and single-task perfor-
mance. In particular, it predicts no difference between
RT1 and RT of the first task when performed in isolation
(RTsingle). In this experiment the tone discrimination task
was performed as the first task in the dual-task experi-
ment. Contrary to the prediction of the passive bottleneck
model, we observed that the mean RT1 was significantly
larger than RTsingle (Fig. 4A, paired t-test comparison com-
paring RT1 with RTsingle p < 0001 for all SOA values). Previ-
ous experiments have observed a comparable slowing of
the first task of about 100 ms (Sigman & Dehaene, 2005).

The difference between RT1 and RTsingle decreased with
training (p < 0.01 for all SOA values), but remained positive
even after extensive training (p < 0.01 for all SOA values,
before training 150.94 ms (averaged across all SOA values),
after training 87.66 ms, see Fig. 4A and B). We then inves-
tigated which stages of task execution accounted for this
increase in RT and whether this changed with learning
(Fig. 4B).

As previously, we first parsed RTs into decision time and
non-decision time using the Wald (single-barrier model)
and subsequently extended these results to the two-bar-
rier models (EZ and RDM).

For each SOA value of the double task, for each indepen-
dent session we computed the RT distributions which were
submitted to the Wald model to obtain the parameter val-
ues. For each condition (learning session and SOA), DT and
NDT of the RT1 of the dual-task experiment were normal-
ized to the values of DT and NDT of RTsingle.

Decision Time and Non-Decision Time were greater in RT1
as compared with RTsingle. Indeed, mean (RT1) was greater
than mean (RTsingle) for every SOA value and learning bin,
and hence the ratio is systematically greater than 1
(Fig. 4C and D).

The dependencies of these two contributions to re-
sponse time with SOA and learning showed qualitatively
distinct patterns. First, the increase in Non-Decision Time
was independent of SOA (Fig. 4C, see Table 3) and reached
a non-zero asymptote, i.e. remained significant even after
extensive practice (Fig. 4D). The effect in Decision Time
was strongly dependent of SOA and vanished after learning
was completed (Fig. 4C, see Table 3).

Both contributions of response time decreased with
learning but the effect was much more pronounced for
the Decision Time contribution at short SOA values
(Fig. 4D and Table 4).

The results were highly consistent and reproducible for
the three models (Supplementary Fig. 2, Tables 3 and 4). In
all cases we observed that a strong dependence of m with
SOA (which simply accounts for the observation of the
DT dependency with SOA). On the contrary, NDT of all
three models were insensitive to SOA. The additional
parameters of the models {a, z, st} did not change with
SOA (Supplementary Fig. 2). In all three models NDT and
its variability showed very similar patterns. Both were
insensitive to SOA and both increased for RT1 as compared
to RTsingle.

In summary, we observed a systematic departure from
the passive bottleneck model: an increase of RT1 compared
to RTsingle. This effect decreases with learning, and reflects
both stochastic and non-stochastic components of RT, with



Table 3
Results of an ANOVA with DT or NDT as independent variable and {SOA, Learning} as dependent variables, and Subject as Random Variable.

Model SOA Learning SOA � Learning

Non-Decision Time Wald F = 0.67; p = 0.4742 F = 0.18; p = 0.9660 F = 0.71; p = 0.6230
EZ F = 0.52; p = 0.5258 F = 0.54; p = 0.7460 F = 2.69; p = 0.0627
RDM F = 0.35; p = 0.5960 F = 0.20; p = 0.9559 F = 3.09; p < 0.05

Decision Time Wald F = 18.06; p < 0.05 F = 1.86; p = 0.1618 F = 3.18; p < 0.05
EZ F = 25.62; p < 0.05 F = 2.67; p = 0.0639 F = 9.62; p < 0.0005
RDM F = 30.37; p < 0.05 F = 4.39; p < 0.05 F = 7.03; p < 0005

(⁄) Bold values indicates significant effects at a = 0.05.

Table 4
Statistical tests of the regression analysis the DT and NDT for the shortest and largest SOA, and the three models with learning.

Model SOA = 100 ms SOA = 1250 ms

Slope Significance Slope Significance

Non-Decision Time Wald �0.002 F = 0.03; p = 0.8725 �0.019 F = 3.15; p = 0.1506
EZ 0.009 F = 0.27; p = 0.6280 �0.022 F = 2.31; p = 0.2035
RDM 0.028 F = 10.89; p < 0.05 �0.008 F = 0.78; p = 0.4265

Decisión Time Wald �0.093 F = 84.08; p < 0001 �0.039 F = 37.75; p < 0005
EZ �0.136 F = 28.59; p < 0.01 �0.013 F = 0.35; p = 0.5875
RDM �0.262 F = 51.59; p < 0005 �0.054 F = 1.88; p = 0.2425

(⁄) Bold values indicates significant effects at a = 0.05.
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only the non-stochastic contributions (unaffected by SOA)
remaining significant after extensive practice.

3.4. A model of nested series of decisions

In our previous work, we had suggested that dual-task
execution could involve a nested series of decisions: first
choosing a task-schedule (which task to respond first)
and then executing the two successive task decisions (Sig-
man & Dehaene, 2006). We showed in particular that the
former, executive decision was influenced by SOA (it is
harder to focus on the auditory task when the distracting
visual information is presented simultaneously or at a
short time interval). We implemented a model of two
chained decisions, by modeling each decision with a
shifted Wald-distribution and then convolving the two
resulting distributions (Fig. 5A and B). The parameters
(NDT and DT) of the RTsingle were obtained from the sin-
gle-task experiment. We then convolved this with a
shifted-Wald distribution with unknown DT and NDT val-
ues, corresponding to the executive decision. We obtained
these parameters comparing the resulting convolution
with the RT1 distribution. A caveat which must be taken
into consideration is that single-task (both auditory and vi-
sual) were responded with the right-hand, while in the
PRP, the first task was responded with the right-hand
and the second task with the left-hand.

We observed that the task-engaging stage had a Non-
Decision-time which was unaffected by SOA and decreased
moderately with learning, and a Decision-Time which in-
creased significantly for short SOA values and showed a
very strong decrease with learning (Fig. 5C and D; Effect
of SOA: NDT: p = 0.1496, t = 1.70, df = 5, and DT:
p = 0.0010, t = 6.81, df = 5; paired t-test between values at
short and large SOAs; and Effect of Learning: NDT:
p = 0.0273 and DT: p = 0.0482).
4. Discussion

A broad literature has examined the process of task
automatization (Compton & Logan, 1991; Schneider & Shif-
frin, 1977; Shiffrin & Schneider, 1977), and within the PRP
paradigm, a series of studies have explored the changes of
the PRP effect after extensive practice (Greenwald, 2003;
Greenwald & Shulman, 1973; Lien et al., 2002; Maquesti-
aux, Lague-Beauvais, Ruthruff, & Bherer, 2008; Pashler,
Johnston, & Ruthruff, 2001; Ruthruff, Hazeltine, & Reming-
ton, 2006; Ruthruff, Johnston, Van Selst, Whitsell, & Rem-
ington, 2003; Ruthruff, Van Selst, Johnston, & Remington,
2006; Ruthruff et al., 2001; Van Selst, Ruthruff, & Johnston,
1999). These studies have consistently found a marked
reduction of interference during the PRP. However, the
nature of this speedup has been debated. Does it reflect a
complete parallelization of the two tasks or, alternatively,
a persisting central seriality but with a speedup in the cen-
tral stages of each task?

The main novelty of the present work is that we com-
bined interference analysis (delays in dual-task experi-
ment) and random-walk models of decision making to
measure the decision and non-decision contributions to
RT. This allowed us to explore the reorganization of task
architecture throughout the course of learning, investigat-
ing the contributions of different stages of task execution
to response time, response time variability and serial pro-
cessing bottlenecks.

The observed effect of learning on the PRP is consistent
with previous findings. We found that the regime of inter-
ference was reduced, but that nevertheless, for sufficient
short SOA values, the PRP effect remained intact. It is of
course possible that with even more practice sessions the
interference regime may be further reduced and that even
for the SOA values we have explored we could have found a
reduction of the PRP effect. However, our results suggests
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that for such simple, yet arbitrary tasks (as compared for
instance to highly compatible ideomotor tasks with very
regular and overtrained stimulus–response mappings),
even after extensive practice, a strong residual of the PRP
effect is found. The quantitative parameters of the PRP vary
(particularly the location of the ‘‘elbow’’ in the curve relat-
ing RT2 to SOA), but the qualitative pattern of central seri-
ality is unaffected.

This persistence of bottleneck-type interference seems
potentially consistent with the ‘‘global workspace theory’’.
The global workspace constitutes a broadcasting system
enabling communication to take place between arbitrary
and otherwise not directly connected processes (Baars,
1989; Dehaene & Naccache, 2001; Dehaene et al., 1998).
According to this theory, when the relation between stim-
uli and responses is entirely arbitrary, a temporary map-
ping between otherwise independent processors must be
established. This is achieved through the mediation of a
central workspace. While this interference can be reduced
for highly non-arbitrary tasks (Greenwald, 2003; Lien &
Proctor, 2000; Lien, Schweickert, & Proctor, 2003; Lien
et al., 2002), thousands of training trials are, according to
our results, insufficient to route information from arbitrary
stimuli to arbitrary responses, bypassing the workspace
system.

We observed that the reduction of the basic PRP effect
(the range in which the two tasks interfere) was accompa-
nied by a progressive increase in the fraction of processing
time devoted to non-decision time. This consistent pro-
gression towards more reliable and more task overlap
may explain the general observation of task automatiza-
tion (Schneider & Shiffrin, 1977; Shiffrin & Schneider,
1977) and is also at least broadly consistent with the idea
that learning may result in earlier stages in cortical pro-
cessing coming to represent complex task-relevant fea-
tures over the course of training (Gilbert, Sigman, & Crist,
2001; Sigman & Gilbert, 2000; Sigman et al., 2005). Our re-
sults are also in line with the hypothesis that memory re-
trieval and slow algorithmic decision coexist and compete
in a race (Compton & Logan, 1991; Klapp et al., 1991a,
1991b). As in these studies, we propose a model of a fixed
cognitive architecture where only the parameters change
through the course of learning.

The final objective of this paper was to explore the im-
pact of extensive practice on executive components in-
volved in dual-task coordination. The involvements of
such components is more evident in situations in which
the effectors of each task share a common representation
(De Jong, 1993, 1995) and in experiments in which the or-
der of actions to achieve a complex goal is not known in
advance (Sigman & Dehaene, 2006). The evidence that re-
sponse times in PRP include some executive component
is inconsistent with a simple passive queuing model of
the PRP. It favors models of cognitive architecture which
postulate more than one bottleneck. Previous studies
found that, besides the response selection bottleneck, there
is another one corresponding to response initiation, which
is more pronounced when the same effector is used (i.e.
bimanual tasks) than when combining effectors that do
not share an abstract motor representation as in voice-
manual dual-task experiment (De Jong, 1993; Logan &
Burkell, 1986). Here we found that task-setting executive
components are also present and sensitive to the critical
interference parameter, the SOA. After extensive practice,
we could detect a remaining very short (100 ms, see
Fig. 5) but very reliable contribution of task engagement
which, in turn was completely unaffected by SOA. Thus,
our results suggest that the executive decisions involved
in the scheduling of two consecutive tasks also benefit
from an automatization process and, after extensive prac-
tice, are accomplished within a very short and temporally
reliable processing stage.

Encouragingly, our analysis of the different contribu-
tions to RT during single-task and during dual-task inter-
ference yielded consistent results across the three models
examined. This suggests that, for the specific distributions
analyzed in this experiment, the task analyses provided by
those models are roughly equivalent. This conclusion need
not hold in other situations, of course. The reason why
these models generally agreed in the present experiment
depends upon several features of the dataset. First, there
is apparently no response bias: RTs were identical for the
HIGH and LOW pitch responses (a t-test comparison be-
tween these distributions was not-significantly different
from zero for all subjects and learning bin). This is very dif-
ferent for instance in the lexical decision task, which has
been widely studied using two-barrier models (Ratcliff &
McKoon, 2008; Ratcliff & Rouder, 1998; Wagenmakers,
Van der Mass, & Grasman, 2007), in which the two-choice
boundaries ‘‘Is a word’’ and ‘‘Is not a word’’ are not sym-
metric. Second, the number of errors is extremely low –
and independent of experimental conditions. The indepen-
dence of the variance of NDT with SOA and learning was
not intuitive a priori and required explicit investigation.

In summary, extensive practice significantly improves
the speed and reliability of our decisions, but for the arbi-
trary tasks that we studied here, it does not alleviate or cir-
cumvent the serial bottleneck. The inability to process two
tasks at once appears, once more, as a robust and—in some
senses at least—structural feature of the cognitive
architecture.
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