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Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path be-
tween genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to
identify the part of genetic variability that explains some neuroimaging variability. Classical univariate ap-
proaches often ignore the potential joint effects that may exist between genes or the potential covariations
between brain regions. In this paper, we propose instead to investigate an exploratory multivariate method
in order to identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of neuroimaging
phenotypes derived from functional Magnetic Resonance Imaging (fMRI). Recently, Partial Least Squares
(PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse DNA and
transcriptomics. Here, we propose to transpose this idea to the DNA vs. imaging context. However, in very
high-dimensional settings like in imaging genetics studies, such multivariate methods may encounter
overfitting issues. Thus we investigate the use of different strategies of regularisation and dimension reduc-
tion techniques combined with PLS or CCA to face the very high dimensionality of imaging genetics studies.
We propose a comparison study of the different strategies on a simulated dataset first and then on a real
dataset composed of 94 subjects, around 600,000 SNPs and 34 functional MRI lateralisation indexes comput-
ed from reading and speech comprehension contrast maps. We estimate the generalisability of the multivar-
iate association with a cross-validation scheme and demonstrate the significance of this link, using a
permutation procedure. Univariate selection appears to be necessary to reduce the dimensionality. However,
the significant association uncovered by this two-step approach combining univariate filtering and L1-
regularised PLS suggests that discovering meaningful genetic associations calls for a multivariate approach.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Imaging genetics studies that include a large amount of data in
both the imaging and the genetic components are facing challenges
for which the neuroimaging community has no definitive answer so
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far. Current imaging genetics studies are often either limiting the
brain imaging endophenotype studied to a few candidate variables
but testing their relationship with a large number of Single Nucleo-
tide Polymorphisms (SNPs) as one usually proceeds during gene
screening (e.g., Furlanello et al., 2003), or limiting the number of can-
didate SNPs or genes to be tested on the whole brain or some large
portion of it (e.g., Glahn et al., 2007; McAllister et al., 2006; Roffman
et al., 2006). When faced with both a large number of SNPs and a
large number of voxels, one has to design an appropriate analysis
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strategy that should be as sensitive and specific as possible. Without
any priors on genetic or brain regions involved, exploratory methods
can be used. The simplest approach to exploratory imaging genetics
studies is clearly to apply a massive univariate analysis on both genet-
ic and imaging data (Stein et al., 2010), which may be called
Mass-Univariate Linear Modelling (MULM). However, while univari-
ate techniques are simpler, they encounter a multiple comparison
problem in the order of 1011. Moreover, the link between genetic
and imaging data is likely to be in part multivariate, as for instance
epistasis or pleiotropy are likely phenomena in common traits or dis-
eases. Indeed, brain imaging endophenotypes are probably influenced
by the combined effects of several SNPs and different brain regions
may also be influenced by the same SNP(s). A way to partially take
into account epistasis may be to use a gene-based method to test
for the joint effect of the different SNPs within each gene across the
voxels of the whole brain (Hibar et al., 2011).

In this work, we try to go further and to identify a functional brain
network covarying with a set of genetic polymorphisms, using some
multivariate methods that take into account potential joint effects
or covariations within each block of variables. Partial Least Squares
(PLS) regression (Wold et al., 1983) and Canonical Correlation Analy-
sis (CCA) (Hotelling, 1936) appear to be good candidates in order to
look for associations between two blocks of data, as they extract
pairs of covarying/correlated latent variables (one linear combination
of the variables for each block). Another approach has also been pro-
posed by Calhoun et al. (2009) based on parallel Independent Compo-
nent Analysis in order to combine functional MRI data and SNPs from
candidate regions. Nevertheless, all these multivariate methods en-
counter critical overfitting issues due to the very high dimensionality
of the data.

To face these issues, methods based on dimension reduction or
regularisation can be used.

Dimension reduction is essentially based on two paradigms: fea-
ture extraction and feature selection. Feature extraction looks for a
low-dimensional representation of the data that explains most of its
variability, the transformation being either linear such as Principal
Components Analysis (PCA) or non-linear such as manifold learning
methods. Feature selection methods may be divided into two catego-
ries: some univariate methods (filters), which select relevant features
independently from each other, and some multivariate methods,
which consider feature inter-relations to select a subset of variables
(Guyon et al., 2006).

As for regularisation, multivariate methods based on L1 and/or L2
penalisations, like sparse Partial Least Squares (Chun and Keleş, 2010;
Lê Cao et al., 2008, 2009; Parkhomenko et al., 2007, 2009;
Waaijenborg et al., 2008; Witten and Tibshirani, 2009) or regularised
CCA (Soneson et al., 2010), have recently been shown to provide good
results in correlating two blocks of data such as transcriptomic and
metabolomic data, gene expression levels and gene copy numbers,
or gene expression levels and SNP data. One may note that such
sparse multivariate methods based on L1 penalisation actually per-
form variable selection. Vounou et al. (2010) also introduced a prom-
ising similar method, called sparse Reduced-Rank Regression (sRRR)
and based on L1 penalisation, that they applied to a simulated dataset
made of 111 brain imaging features and 10s of 1000s of SNPs. The im-
plementation of the method becomes equivalent to sparse PLS in high
dimensional settings, since they make the classical approximation
that in this case the covariance matrix of each block may be replaced
by its diagonal elements (see Appendix). However, whether these
multivariate techniques can resist even higher dimensions remains
an open question. In this paper we investigate this question by adding
a first step of dimension reduction on SNPs, either by PCA or univar-
iate filtering, before applying (sparse) PLS or (regularised) CCA. We
first use a simulated dataset mimicking fMRI and genome-wide SNP
data and compare the performances of the different methods, by
assessing their positive predictive value, as well as their capacity to
generalise the link found between the two blocks with a cross-
validation procedure. Indeed, we first compared PLS and CCA, then
we investigated the influence of L2 regularisation on CCA and L1
regularisation on PLS, and finally we tried to add a first step of dimen-
sion reduction such as PCA or filtering.

Finally, we apply these different methods with the same cross-
validation procedure on a real dataset made of fMRI and genome-
wide SNP data and the statistical significance of the link obtained on
“test” subjects is assessed with randomisation techniques.

In the next sections we first detail the datasets, then introduce the
multivariate methods and the performance evaluation techniques
that we used, and illustrate the results we obtained. Last we discuss
the potential pitfalls and extensions of this work.

2. Data

2.1. Experimental dataset

This study is based on N=94 subjects who were genotyped for
1,054,068 SNPs and participated in a general cognitive assessment
fMRI task described in Pinel et al. (2007). The study (both imaging
and genetics components) was approved by the local ethics commit-
tee and all subjects gave their informed consent. The task consisted of
a short 5 min BOLD acquisition during which subjects were reading
or listening to sentences, asked to perform a motor response (button
click), subtract numbers, or were shown visual checkerboard. The
functional images were acquired either on a 3 T Bruker scanner or a
3 T Siemens trio scanner using an EPI sequence (TR=2400 ms,
TE=60 ms, matrix size=64×64, FOV=19,2 cm×19,2 cm). T1 ana-
tomical images were acquired during the same acquisition session
with a resolution of (1.1×1.1×1.2) mm3. Pre-processing classically
comprised slice-timing correction, motion estimation, spatial
normalisation (with a resampling of the functional images at 3 mm
resolution) and smoothing (FWHM=10 mm). The preprocessings
and first level model analyses were performed with SPM5 (www.fil.
ucl.ac.uk/spm).

In our study, we focused only on two activation contrasts: reading
minus checkerboard viewing and speech comprehension minus rest. We
used a first level, subject-specific, General Linear Model (GLM), to ob-
tain parametric estimates of the BOLD activity at each voxel in each
subject; the analysis was performed using SPM5, with standard pa-
rameters (frequency cut=128 s, AR(1) temporal noise model). For
each subject s in {1, …, n} and each voxel v of the normalised volume,
we obtained a map β̂ s vð Þ that represents the amount of BOLD signal
associated with the contrast, normalised by the average signal. We
defined a global brain mask for the group by considering all the voxels
that belong to at least half of the individual brain masks (the individ-
ual masks were estimated using the standard SPM5 procedure). Then
we selected thirty‐four brain locations of interest (19 from the “read-
ing” contrast and 15 from the “speech comprehension” contrast):
most of them were the peaks of maximal activation, while the others
had been reported to be atypically activated during reading in dyslex-
ia (Paulesu et al., 2001). Each contrast map was locally averaged
within 4 voxel-radius spheres centred on these peaks, keeping only
active clusters of voxels (T≥1 and cluster size≥10 voxels) (Pinel
and Dehaene, 2009). This yielded 34 average values corresponding
to 34 regions of interest (ROI) and we computed the average values
for the 34 mirror ROIs by symmetry with respect to the inter-
hemispheric plane. Finally, lateralisation indexes were derived from
those regions. For each pair of ROIs in the normalised volume and in
each subject, an index was computed as follows:

Indexs ¼
β̂ right

s −β̂
left
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β̂ right
s

� �2 þ β̂ left
s

� �2
r : ð1Þ
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The distribution of these indexes spanned the range of [−1.5; 1.5],
and variances were homogeneous across regions of interest. The term
“phenotypes” will now refer to the lateralisation indexes thus
obtained in the different regions.

For each subject, an Illumina platform was used to genotype
1,054,068 SNPs and processed with the standard platform software.
Considering all genotyped data available, we successively applied
the following filters on all SNPs: (1) Minor Allele Frequency (MAF)
at least 10%, (2) call rate at least 95%, and (3) Hardy-Weinberg test
not significant at the 0.005 level. Assuming an additive genetic
model, genetic data were recoded as the number of minor alleles (de-
noted as A), {0, 1, 2}, hence a value of 0 means homozygous wild-type
individuals (BB). The frequency of homozygous individuals for the
minor allele (AA) was 0.03–0.13 in 75% of the cases. Missing SNP
data were imputed with their corresponding median value across
subjects.1 These analyses were carried out using the open-source R
software (R Development Core Team, 2009) and the storage facilities
for genetic data provided in the package snpMatrix (Clayton and
Cheung, 2007).

After these preprocessing steps, our analyses were performed on
two blocks of data Y (fMRI) and X (genetics) of size 94×34 and
94×622,534 respectively.

2.2. Simulated dataset

A simulated dataset mimicking the real dataset was also simulated
in order to study the behaviour of the different methods of interest,
while knowing ground truth. 500 samples of 34 imaging phenotypes
were simulated from a multivariate normal distribution with param-
eters estimated from the experimental data.

In order to simulate genotyping data with a genetic structure sim-
ilar to that of our real data, we considered a simulation method that
uses the HapMap CEU panel. We used the gs algorithm proposed by
Li and Chen (2008) with the phased (phase III) data for CEU unrelated
individuals for chromosome 1; we only consider the genotype simu-
lation capability of this software that may also generate linked pheno-
types. We generated a dataset consisting in 85,772 SNPs and 500
samples, using the extension method of the algorithm. We randomly
selected 10 SNPs (out of 85,772) having a MAF=0.2 and 8 imaging
phenotypes (out of 34). We induced two independent causal pat-
terns: for the first pattern we associated the first 5 SNPs with the
first 4 imaging phenotypes; the second pattern was created associat-
ing the 5 remaining SNPs with the 4 last phenotypes. For each causal
pattern i∈{1, 2}, we induced a genetic effect using an additive genetic
model involving the average of the causative SNPs (xik): �xi ¼
∑5

k¼1
1
5 xik. Then each imaging phenotype yij (j∈ [1,…, 4]) of the pat-

tern i was affected using a linear model:

y⋆ij ¼ yij þ βij�xi ð2Þ

The parameter βij was setted by controlling for the correlation (at
a value of 0.5) between the jth affected imaging phenotype (yij⋆) and

the causal SNPs �xið Þ i.e.: corr y⋆ij; xi
� �

¼ 0:5. Such control of the corre-

lation (or the explained variance) is equivalent to the control of the
effect size while controlling for the variances of SNPs var xi

� �� �
and

(unaffected) imaging phenotypes (var(yij), as well as any spurious co-

variance between them cov yij; xi
� �� �

. We favour such control over a

simple control for the effect size since the later may result in arbitrary
huge or weak associations depending on the genetic/imaging vari-
ances ratios.
1 Other imputation methods were tested, e.g. the Markov Chain based haplotyper
proposed by Abecasis and coworkers (Sanna et al., 2008; Willer et al., 2008). All yield
similar profiles of allele frequencies for our data set.
SNP whose r2 coefficient with any of the causal SNPs is at least 0.8
is also considered as causal. Such LD threshold, commonly used in the
literature (de Bakker et al., 2005), led to 56 causal SNPs: 32 in “pat-
tern 1” and 24 in “pattern 2”. We will use those SNPs as “ground
truth” of truly causal SNPs to compute the true positive rates of the
learning methods. Finally, we striped off 10 blocks of SNPs around
the 10 causal SNPs, from the whole genetic dataset, considering that
neighbouring SNPs were in LD with the marker if their r2 were at
least 0.2. The 5 first (resp. last) blocks, of pattern 1 (resp. 2), are
made of 127 (resp. 71) SNPs and contain all the 32 (resp. 24) SNPs
that were declared as causal. The striped blocks were concatenated
and moved at the beginning of the dataset leading to 198
(127+71) informative features followed by 85,574 (85,772−198)
non-informative (noise) features. Such a dataset organisation
provides a simple way to study the methods' performances while
the dimensionality of the input dataset increases from 200 (mostly
made of informative features) to 85,772 mostly made of noise.

Next, we will present the different strategies we investigated in
order to analyse such data.

3. Methods

3.1. Partial Least Squares regression

Partial Least Squares regression is used to model the associations
between two blocks of variables hypothesising that they are linked
through unobserved latent variables. A latent variable (or compo-
nent) corresponding to one block is a linear combination of the
observed variables of this block.

More precisely, PLS regression builds successive and orthogonal
latent variables for each block such that at each step the covariance
between the pair of latent variables is maximal. For each step h in
1..H, where H is the maximal number of pairs of components, it
optimises the following criterion:

max∥uh∥2¼∥vh∥2¼1 cov Xh−1uh;Yh−1vhð Þ
¼ max∥uh∥2¼∥vh∥2¼1 corr Xh−1uh;Yh−1vhð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Xh−1uhð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Yh−1vhð Þp

ð3Þ

where uh and vh are the weight vectors for the linear combinations of
the variables of blocks X and Y respectively. Xh−1 and Yh−1 are the
residual (deflated) X and Y matrices after their regression on the
h-1 previous pairs of latent variables , starting with X0=X and Y0=
Y (whose columns have been standardised). There exist two ways
of deflation: an asymmetric way (the original PLS regression) and a
symmetric way (canonical-mode PLS). The difference is that in the
first case both blocks are deflated on the latent variables of block X
(which becomes the predictor block), while in the second case each
bock is deflated on its own latent variables. In our case, we are
more interested in canonical-mode PLS as we investigate exploratory
methods trying to extract covarying networks among a huge amount
of neuroimaging and SNP data, many of which are very likely to be ir-
relevant. Note that, on the first pair of components, the original PLS
regression and canonical-mode PLS give exactly the same results. In
the rest of the paper, we have dropped the h index that stands for
the number of pairs of components to make the notations simpler.

Once the variables are standardised, the previous criterion for
each new pair of components is equivalent to optimising:

max
∥u∥2¼∥v∥2¼1

u′X′Yv ð4Þ

This optimisation problem is solved using the iterative algorithm
called NIPALS (Wold, 1966) and more precisely the NIPALS inner
loop, the NIPALS outer loop being the iteration over the number of
pairs of components. The optimal vectors u and v are in fact the
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first pair of singular vectors of the matrix X'Y. Please note that the cri-
terion tends to maximise the relative value of the covariance, which
implies that the covariance is forced to be null or positive. In the
case of a negative association between a variable from block X and a
variable from block Y, a negative weight will thus be assigned to
one of them in order to obtain a positive covariance.

However, multivariate methods such as PLS regression encounter
overfitting issues in high-dimensional settings. For instance, Chun
and Keleş (2010) recently showed that asymptotic consistency of
the PLS regression estimator does not hold when p ¼ O nð Þ, where p
is the number of variables for blocks X and n the number of observa-
tions or individuals.

3.2. PLS–SVD

A variant of PLS regression is called Tucker Inter-battery Analysis
(Tucker, 1958) or PLS–SVD (McIntosh et al., 1996). This variant is
symmetric and consists in computing all pairs of left and right singu-
lar vectors ofX′Y at once, which form the weight vectors uh and vh for
X and Y blocks respectively. It gives the same results as PLS regression
on the first pair of latent variables, but differs on further pairs due to a
different orthogonality constraint. While PLS regression forces suc-
cessive latent variables of each block to be orthogonal, PLS–SVD
forces successive weight vectors of each block to be orthogonal,
which leads to the orthogonality between each latent variable Xuh

of block X and each latent variable Yvj of block Y, as long as they
are of different order (h≠ j).

3.3. Canonical Correlation Analysis

A similar method is Canonical Correlation Analysis (CCA), which
differs in that the correlation between the two latent variables, in-
stead of the covariance, is maximised at each step. CCA builds succes-
sive and orthogonal latent variables for each block such as, at each
step h in 1..H, they optimise the following criterion:

max
∥uh∥2¼∥vh∥2¼1

corr Xuh;Yvhð Þ

where uh and vh are weight vectors.
Once the variables are standardised, it becomes equivalent to

optimising:

max
∥uh∥2¼∥vh∥2¼1

uhX
′Yvhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uhX
′Xuh

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vhY

′Yvh
q

The solution may be obtained by computing the SVD of
X′X−1=2 X′Y Y′Y−1=2. The successive pairs of weight vectors uh and
vh are obtained by:

uh ¼ X′X−1=2e andvh ¼ Y′Y−1=2f, where the columns of e and f are
the left and right singular vectors respectively.

Like PLS regression, CCA has to face overfitting issues in
high-dimensional settings. Moreover, CCA requires the inversion of
the scatter matrices X′X and Y′Y, which are ill-conditioned in our
high-dimensional settings with very large p and q (numbers of vari-
ables for blocks X and Y respectively) and a small N (number of obser-
vations or individuals).

For numerical issues, we used the dual formulation of CCA based
on a linear kernel: Kernel CCA (KCCA).

3.4. Regularisation techniques

3.4.1. L2 regularisation
In order to first solve the overfitting and the non-invertibility

issues of CCA, regularisation based on L2 penalisation may be used,
by replacing the matrices X′X and Y′Y by X′Xþ λ2I and Y′Y þ λ2I
respectively. However, in such high-dimensional settings the approx-
imation is often made that the scatter matrices X′X and Y′Y may be
replaced by identity matrices, which is an extreme case of shrinkage
of the scatter matrices and makes CCA equivalent to PLS–SVD and
thus to PLS regression as well on the first component. Shrinkage of
the scatter matrices is similar to L2-regularisation, leading to propor-
tional solutions for weight vectors (with a 1+λ2 factor).

3.4.2. L1 regularisation
Another solution to the overfitting issue may be to use

regularisation techniques based on L1 penalisation. Recently Lê Cao
et al. (2008) proposed an approach that includes variable selection
in PLS regression, based on L1 penalisation (Tibshirani, 1996) and
leading to a sparse solution. By contrast, it should be noted that L1
penalisation may not be easily implemented on PLS–SVD without
loosing the orthogonality constraint on weight vectors (Zou et al.,
2006). In sparse PLS regression (sPLS), the PLS regression criterion
for each new pair of components is modified by adding a L1
penalisation on weight vectors u and v:

min
∥u∥2¼∥v∥2¼1

−u′X′Yv þ λ1X∥u∥1 þ λ1Y∥v∥1 ð5Þ

where λ1X and λ1Y are L1-penalisation parameters for the weight vec-
tors of blocks X and Y respectively. The sPLS criterion is bi-convex in u
and v and may be solved iteratively for u fixed or v fixed, using
soft-thresholding of variable weights at each iteration of the NIPALS
inner loop. Weight vectors u and v are computed using the following
algorithm:

1. Initialise u and v using for instance the first pair of singular vectors
of the matrix X′Y and normalise them.

2. Until convergence of u and v:
(a) For fixed v:

û ¼ arg min
∥u∥2¼1

−u′X′Yv þ λ1X∥u∥1 ¼ gλ1X
X′Yv

� �
ð6Þ

where gλ(y)=sign(y)(|y|−λ)+ is the soft-thresholding
function.

(b) Normalise u: u← u
∥u∥2.

(c) For fixed u:

v̂ ¼ arg min
∥v∥2¼1

−u′X′Yv þ λ1Y∥v∥1 ¼ gλ1Y
Y′Xu

� �
ð7Þ

(d) Normalise v: v← v
∥v∥2.

In the version of sparse PLS that we used, L1 penalisation is
performed by soft-thresholding of variable weights and instead of
setting λ1X and λ1Y directly, the corresponding numbers of X and Y
variables to be kept in the model are chosen. We then defined the
sPLS selection rates, sλ1X

and sλ1Y
, as the number of selected variables

from each block out of the total number of variables of that block. In
our case, we chose to apply sparsity on SNPs only and to set sλ1Y

to 1
for imaging phenotypes, as we had a very large number of SNPs and
only a few imaging phenotypes.

Sparse versions of CCA have also been proposed by Parkhomenko
et al. (2007, 2009), Waaijenborg et al. (2008), Witten and Tibshirani
(2009). However, in order to solve the non-invertibility issue, they
make the approximation that the covariance matrices 1

n−1X
′X and

1
n−1Y

′Y may be replaced by their diagonal elements, which makes
sparse CCA equivalent to sparse PLS regression.

However, whether sparse PLS can face overfitting issues by itself
in the case of such high-dimensional data remains an open question.
This is the reason why we decided to combine it with a first step of
dimension reduction on SNPs.
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3.5. Dimension reduction methods

3.5.1. PC-based dimension reduction
A first way to perform dimension reduction might be to add a first

step of Principal Component Analysis on each block of data before ap-
plying PLS or CCA. Regularisation is not necessary anymore in that
case, as the dimension has been dramatically reduced. For each
block of data, we kept as many components as necessary to explain
99% of the variance of that block. We also investigated the perfor-
mance of Principal Component Regression (PCR) of the two first
imaging principal components onto the genetic components
explaining 99% of the genetic variance.

3.5.2. Univariate SNP filtering
Another way to perform dimension reduction is to add to sparse

PLS or regularised CCA a first step of massive univariate filtering.
This step consisted of 1 — p×q pair-wise linear regressions based
on an additive genetic model, 2 — ranking the SNPs according to the
minimal p-value each SNP gets across all phenotypes, and 3 —

keeping the set of SNPs with the lowest “minimal” p-values. Indeed,
even though univariate filtering may seem to contradict the very na-
ture of multivariate methods such as PLS or CCA, it still allows them to
extract multivariate patterns among the remaining variables and may
even be necessary to overcome the overfitting issue in very high di-
mensional settings. We may note at this point that the univariate
approach alone did not yield any significant SNP/phenotype associa-
tions at the 5% level after Bonferroni or FDR correction.

3.6. Comparison study

We compared the performances of the different methods on both
simulated and real datasets. Indeed we first compared PLS and CCA,
then we investigated how their performance is improved by
regularisation with sparse PLS and L2-regularised CCA, and we finally
assessed the influence of a first dimension reduction step by PCA or
filtering. Note that computations were always limited to the two
first pairs of latent variables for computational time purposes. More-
over we were also interested in comparing the different methods
with MULM. Table 1 summarises the different methods we tested
and the acronyms we used.

In this paper we investigated in particular the performance of
fsPLS on both simulated and real data and we tried to assess how
much the performance of fsPLS is influenced by the fact of varying
the sparse PLS penalisation parameter sλ1X

and the number k of SNPs
kept by the filter.

3.7. Performance evaluation

We decided to evaluate the performances of the different methods
by assessing the generalisability of the link they find between the
blocks, on both simulated and real data, using a 5-fold and a 10-fold
cross-validation (CV) scheme respectively. On the real dataset, we
used “training” sets of 84 or 85 subjects and “test” sets of 9 or 10
Table 1
Summary of the different strategies investigated.

Method Acronym

Mass Univariate Linear Modelling MULM
Partial Least Squares PLS
Kernel Canonical Correlation Analysis KCCA
sparse PLS sPLS
regularised KCCA rKCCA
Principal Component Analysis+PLS PCPLS
Principal Component Analysis+KCCA PCKCCA
Filtering+(sparse) PLS f(s)PLS
Filtering+(regularised) KCCA f(r)KCCA
subjects. In order to have “training” sets of about the same size on
the simulated dataset, we used “training” sets of 100 subjects and
“test” sets of 400 subjects.

For each method, at each fold of the CV, the estimation of the
model (weight vectors) was done on the training sample and tested
on the hold-out sample (Fig. 1 for filter-based methods and Fig. 2
for PC-based methods). Indeed, at each fold, the weights thus
obtained were used to build the factorial scores of the “test” samples
(the set of left out subjects) and the correlation coefficient between
those factorial scores was computed. This yielded an average “test”
correlation coefficient over folds, called the out-of-sample correlation
coefficient, which reflects the link between the two blocks estimated
on unseen subjects. Please note that at each fold, while the correlation
coefficient obtained on the training samples is forced to be positive,
the out-of-sample correlation coefficient may happen to be negative.

We performed a CV for MULM as well, where at each fold the two
most significantly associated SNP/phenotype pairs on the training
sample were extracted and tested by computing their correlation
coefficient on the hold-out sample.

Finally, in the case of simulated data, ground truth was known and
we could also compare the performances of the different methods by
computing the Positive Predictive Value (PPV) when 50 SNPs are se-
lected by each method. This is almost equivalent in our case to the
specificity of each method when 50 SNPs are selected, since there
are 56 causal SNPs in our simulated dataset. PPV curves were
separately computed on 5 non-overlapping subsamples of 100
Fig. 1. Illustration of the cross-validation scheme for filter-basedmethods. At each fold i, a
univariate selection of k SNPs is performed on the data of “training” subjects X−i and Y−i;
the weight vectors, u−i and v−i, are then estimated by sPLS or rKCCA on the “training”
subjects and finally the scores of the left out subjects corresponding to this ith fold are
computed using their observed responses ˜X i and Yi and these weight vectors.
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observations and averaged over these 5 subsamples. It should be
noted that the informative SNPs that are not considered as causal
are only slightly correlated to causal SNPs. Therefore they were re-
moved to compute the PPV, since they could not really be identified
as true or false effects.

4. Results

4.1. Performance assessment on simulated data

4.1.1. Influence of regularisation
We were first interested in comparing the performances of PLS

and CCA when the number of SNPs p increases, from 200 (mostly
made of the 198 informative features) up to 85,772 SNPs (mostly
made of noise), and investigating the influence of L1 regularisation
on PLS and of L2 regularisation on CCA.

Fig. 3, on the left panel, shows the out-of-sample correlation coef-
ficients obtained with the different methods for the two first compo-
nent pairs, and it shows that in the lower dimensional space (p=
200) mostly made of informative features, the pure CCA, rKCCA with-
out regularisation (λ2=0), has overfitted the “training” data on the
first component pair (“training” corr. ≈1 and “test” corr. ≈0.2).
Such a result highlights the limits of pure CCA to deal with situations
where the number of training samples (100) is smaller than the di-
mension (p=200). However, with a suitable regularisation in such
a low-dimensional setting, rKCCA(λ2=100) performed better than
Fig. 2. Illustration of the cross-validation scheme for PC-based methods. At each fold i, two
PCAs are performed on SNPs and on phenotypes of “training” subjects X−i and Y−i; the
weight vectors, u−i and v−i, are then estimated by PLS or KCCA on the “training” subjects,
and finally the scores of the left out subjects corresponding to this ith fold are computed
using the projection of their observed responses on the principal components, ˜X i and
˜Y i , and these weight vectors.
all other methods, notably all (sparse) PLS. These results were
expected since the evaluation criterion (correlation between factorial
scores) is exactly the one which is maximised by CCA.

Nevertheless, the increase of space dimensionality (with irrele-
vant features) clearly highlights the superiority of PLS and more nota-
bly sPLS over rKCCA in high-dimensional settings: the performance of
rKCCA rapidly decreases while sPLS (sλ1X

=0.1) tolerates an increase
of the dimensionality up to 1000 features before its performance
starts to decrease. One may note that as expected theoretically,
along with the increase of penalisation (λ2), rKCCA curves smoothly
converge toward PLS.

On the second component pair, the results are less clearly inter-
pretable. However (s)PLS curves are above the rKCCA ones.

The four graphs on the right panel of Fig. 3 demonstrate the supe-
riority of sPLS methods to identify causal SNPs on the two first genetic
components. Indeed, for each method and for different values of p, we
computed the PPV for the two first genetic components and for each
simulated pattern. PPV curves show a smooth increase of the perfor-
mance, when moving from unregularised CCA (rKCCA(λ2=0)) to
strongly regularised PLS (sPLS(sλ1X

=0.1)). Moreover, while the
out-of-sample correlation coefficient was not an appropriate measure
to distinguish between the two causal patterns, PPV curves were
computed for each pattern separately. One may note that the PPV
on the first genetic component appears to be much higher for the
first pattern than for the second pattern, especially in low dimen-
sions, while the opposite trend is observed on the second genetic
component. This observation tends to show that the first causal pat-
tern is captured by the first component pair, while the second pattern
is captured by the second pair. It should be noted that the PPV even
reaches one when p=200 for the first pattern on the first component,
meaning that only true positives from the first pattern are detected
on this component. Similarly, the PPV reaches one when p=200 for
the second pattern on the second component.

4.1.2. Influence of the dimension reduction step
Then we investigated the influence of a first step of dimension

reduction. Fig. 4 presents different dimension reduction strategies: Prin-
cipal Component (PC), filter (f), sparse (s) and combined filter+sparse
(fs)methods. Here the parameter setting, 50 selected SNPs,was derived
from the known ground truth (56 true causal SNPs). The 50 SNPs were
either the 50 best ranked SNPs for (f) methods, the 50 non-null weights
for sparse PLS or a combination of both: either 10% of the 500 best
ranked SNPs or 50% of 100 for fsPLS.

Fig. 4, on the left panel, shows that all PC-based methods (green
curves) failed to identify generalisable covariations when the number
of irrelevant features increases.

Dimension reduction based on filtering slightly improved the per-
formance of CCA and greatly improved the performance of PLS:
fPLS(k=50) is the second best approach in our comparative study.

Moreover, as previously observed in Fig. 3, L1 regularisation limits
the overfitting phenomenon (see sPLS(sλ1X

∗p=50) in Fig. 4) and de-
lays the decrease of PLS performance when the dimensionality in-
creases. Finally the best performance is obtained by combining
filtering and L1 regularisation: fsPLS(k=100, sλ1X

=0.5), which
keeps 100 SNPs after filtering and selects 50% of those SNPs by sPLS.
Please note that the performance of fsPLS (k=500, sda1X=0.1) is
lower and similar to that of sPLS(50) in low dimensions, but becomes
more robust than sPLS and equivalent to fsPLS(k=100, sλ1X

=0.5) in
higher dimensions. However, the purely univariate strategy based
on MULM shows poor generalisability, which suggests that even
though filtering appears necessary to remove irrelevant features, it
is not able to capture the imaging/genetics link by itself and needs to
be combined with a multivariate step which will take advantage of
the cumulative effects of several SNPs. Nevertheless, it should be
noted that the way we assessed the generalisability of MULMwas arbi-
trary, sincewe only looked at the two best SNP/phenotype associations.
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Fig. 3. Comparison of regularisation methods to deal with genetic datasets containing an increasing number of irrelevant features. The total number of features varies along the
x-axis between 200 and 85,772 SNPs. We compared: (i) in blue, regularised kernel CCA (rKCCA) with various L2 regularisation values (λ2) ranging from 0 (pure CCA) to 10,000;
(ii) in black, PLS; (iii) in red, sparse PLS (sPLS) with various L1 regularisation values (sλ1X

) ranging from 0.75 (75% of input features have a non null weight) to 0.1. The y‐axis of
the two left panels shows the (5‐fold CV) average out‐of‐sample correlation coefficients between the two first component pairs. The four right panels present the power of the
methods to identify causal SNPs implied in the two causal patterns. The y‐axis depicts the Positive Predictive Values when 50 SNPs are selected, for each of the two first genetic
components: (u1, u2).
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Again, on the second component pair, the results are less clearly
interpretable. However the curves of the strategies that combine fil-
tering and sparsity are above the other ones.

The four graphs on the right panel of Fig. 4 show that the results in
terms of PPV performance are similar to cross-validation results.
Fig. 4. Comparison of dimension reduction methods to deal with genetic datasets containing a
x-axis between 200 and 85,772 SNPs. We compared: (i) in green, Principal Component (PC) ba
filter (f) based methods: f+KCCA (fKCCA), f+PLS (fPLS). We selected only the 50 best SNPs, w
yellow, sparse PLS (sPLS)where sλ1X

is such that 50 features have a non null weight. (v) in red, fi
sλ1X

=0.1) (resp. fsPLS(k=100, sλ1X
=0.5) keeps the 500 (resp. 100) best ranked features and t

two left panels shows the (5‐fold CV) average out‐of‐sample correlation coefficients between
identify causal SNPs implied in the two causal patterns. The y‐axis depicts the Positive Predictiv
However, it should be noted that the PPV does not take into account
the weights/ranks assigned by the different methods to the selected
SNPs. Therefore, the PPV curves of fKCCA(k=50) and fPLS(k=50)
are superimposed on the MULM curve in our case, since the 50
SNPs selected by the filter are the 50 best SNPs obtained with MULM.
n increasing number of irrelevant features. The total number of features varies along the
sedmethods: PC regression (PCR), PCA+KCCA (PCKCCA), PCA+PLS (PCPLS). (ii) in blue,
hile according to ground truth 56 SNPs were identified as causal. (iii) in black, PLS. (iv) in
lter+sparse PLS (fsPLS) with settings both leading to 50 selected features: fsPLS(k=500,
hen 10% (50%) get a non null weight. (vi) finally in pink, we add MULM. The y‐axis of the
the two first component pairs. The four right panels present the power of the methods to
e Valueswhen 50 SNPs are selected, for each of the two first genetic components: (u1, u2).
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Table 2
The two first average correlation coefficients found on left-out “test” samples and
on “training” samples.

ρtest1 ρtest2 ρtraining1 ρtraining2

MULM 0.036 −0.104 −0.458 −0.451
PLS −0.092 0.218 0.990 0.984
sPLS (sλ1X

=0.1%) 0.008 0.201 0.938 0.922
PCKCCA 0.010 0.008 1.000 1.000
PCPLS −0.088 0.217 0.990 0.984
frKCCA (k=1000, λ2=1,000,000) 0.245 0.324 0.963 0.954
fPLS (k=1000) 0.236 0.268 0.962 0.953
fsPLS (k=1000, sλ1X

=5%) 0.432 0.210 0.772 0.788
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4.2. Performance assessment on real data

4.2.1. Comparative analysis
Table 2 summarises the two first average correlation coefficients

obtained on “test” samples (ρtest1 and ρtest2 ) for the different methods
tested, as well as the two first average correlation coefficients obtained
on “training” samples (ρtraining1 and ρtraining2 ). The “optimal” parameters
for regularisation and filtering chosen here are those that gave the
best average cross-validated correlation coefficients, among all param-
eters tested.

Table 2 shows that, for thefirst pair of components, L1 regularisation
of PLS cannot solve the overfitting issue by itself. Indeed, like PLS, sparse
PLS (sλ1X

=0.1%) completely failed to extract a generalisable link in such
high dimensions and captured only noise. In such high dimensions,
KCCA requires such an extreme L2 regularisation that it is equivalent
to PLS in terms of correlation between latent variables (with a propor-
tionality factor of 1

1þλ2
on weight vectors).

Therefore a first step of dimension reduction appears to be neces-
sary in order to overcome the overfitting issue. Indeed, even though
PC-based methods do not succeed either, filtering-based methods
perform much better. Among filtering-based methods, fsPLS yields
the highest out-of-sample correlation coefficient of 0.43 when 1000
SNPs are left after the univariate filter and respectively 5% of the
remaining SNPs are kept by sparse PLS. The second best performance
on the first pair of components is obtained with frKCCA with an
out-of-sample correlation coefficient of 0.24 (k=1000 and λ2=
1,000,000). However, with such an extreme L2 regularisation, it is al-
most equivalent to fPLS (with a proportionality factor of 1

1þλ2
on

weight vectors), as can be seen in Table 2.
As for the second component pair, the out-of-sample correlation

coefficient obtained by fsPLS is lower than on the first component
pair. However for all the other PLS-based methods, the correlation ap-
pears to be slightly higher on the second component pair than on the
first one. This may be explained by the fact that once the noise leading
to overfitting on the first component pair has been removed, some
real effects may be observed on further components, while on the op-
posite, fsPLS prevents from overfitting and can capture some effects
on both pairs of components. Finally, MULM and PCA+KCCA do not
seem able to capture any generalisable effects on any of the compo-
nent pairs.
Table 3
Out-of-sample correlation coefficient on the first component pair as a function of k and
sλ1X

. Empirical p-values still significant (pb .05) after correction are shown here as: *.

sλ1X

1% 5% 10% 25% 50% 75% 100%

k

10 0.041 0.041 0.041 0.041 0.144 0.112 0.112
100 0.182 0.074 0.085 0.057 0.069 0.188 0.243

1000 0.151 0.432 * 0.414 * 0.400 0.317 0.285 0.236
10000 0.004 0.120 0.130 0.027 −0.006 −0.031 −0.061
4.2.2. Sensitivity analysis of fsPLS and significance assessment
We now detail the sensitivity analysis we performed in order to

assess howmuch the performance of fsPLS is influenced by the sparse
PLS penalisation parameter sλ1X

and by the number k of SNPs kept by
the filter, and to select the best pair of parameters. Indeed, we tested
different values for the number k of SNPs to be kept by the univariate
filter: the 10, 100, 1000 and 10000 “best” ranked SNPs. Seven differ-
ent sPLS selection rates sλ1X

were also tested on SNPs Xð Þ: 1, 5, 10,
25, 50, 75 and 100%. For instance, when considering 1000 SNPs kept
after univariate filtering, the 75% condition means that only 750
SNPs will have non-zero PLS weights. The 10-fold cross-validation
procedure presented in 3.7 was repeated for each pair of parameters
(k, sλ1X

).
Moreover, we calibrated the degree of significance of the out-of-

sample correlation coefficients thus obtained using a randomisation
procedure where, at each permutation, the rows of Y were permuted
and the cross-validation procedure was repeated on the permuted
dataset for each pair of parameters. We performed 1000 permuta-
tions in order to get a good estimation of the empirical p-values. We
then corrected our empirical p-values for multiple comparisons, be-
cause of the different pairs of parameters tested, using a maxT proce-
dure which derives corrected p-values from the empirical distribution
of the maximal statistic over tests (Westfall and Young, 1993). Table 3
summarises the out-of-sample correlation coefficient obtained for the
first pair of components using fsPLS, together with its statistical sig-
nificance, as a function of k and sλ1X

. One can see in Table 3 that the
best out-of-sample correlation coefficient of 0.43, obtained with k=
1000 and sλ1X

=5%, happens to be significant after correction (p=
0.034). The second best out-of-sample correlation coefficient of 0.41
with k=1000 and sλ1X

=10% is significant as well (p=0.043).
Out-of-sample correlation coefficients were not significant for the
second component pair.

4.3. Imaging genetics findings

In order to obtain the SNPs and the brain phenotypes involved in
the link between the two blocks, we then applied fsPLS on all the sub-
jects simultaneously for the pair of parameters giving the most signif-
icant results on the first component pair: 1000 SNPs selected with the
univariate filter and a sPLS selection rate of 5% (k=1000, sλ1X

=0.05).
It should noted at this point that the significance of the multivariate
model has to be considered as a whole and not SNP by SNP, thus we
have to be very careful with the interpretation of the results.

After the univariate step, onemay observe that each phenotype is as-
sociated with at least one of the 1000 best ranked SNPs, if one refers to
the univariate p-values (Fig. 5). This reinforces the idea that the problem
ismultivariate on both the imaging and genetic sides and that theremay
exist interactions both between SNPs and between phenotypes, which
suggests that the second step of multivariate analysis is useful.

Figs. 6 and 7 provide an illustration of the sPLS weights of SNPs
and phenotypes in the genetic and imaging components respectively,
after this second step. The two intra-block correlation matrices are
shown below the graphs. One may notice that all phenotypes do not
contribute to the same extent to the first component and that there
seems to be to a stronger involvement of the phenotypes obtained
from the “reading” contrast.

Figs. 8 and 9 show the location of the selected SNPs and of the
phenotypes respectively. The distribution of the 1000 SNPs having
the lowest univariate p-values along the 22 autosomes is illustrated
in Fig. 8. The 5% of those SNPs that were selected by sPLS are
highlighted in red. As can be seen, they spread over all autosomal
chromosomes and some of them seem to be in linkage disequilibrium.
Among the 50 SNPs selected by fsPLS, some of them were located
within a gene (see Table 4). Eighteen genes were thus identified
(Table 5), such as PPP2R2B and RBFOX1, which have been reported
to be linked with ataxia and a poor coordination of speech and body



Fig. 5. Distribution of the p-values (− log(p)) for the 1000 best ranked SNPs after univariate filtering with each of the 34 phenotypes (MNI coordinates are reported in brackets for
the corresponding task, Reading or Speech comprehension).
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movements, or also PDE4B which has been associated with schizo-
phrenia and bipolar disorder.

Fig. 9 shows the location of the phenotypes where lateralisation in-
dexes were computed, for both contrast maps of interest “reading”
and “speech comprehension”. Theweights assigned by sPLS to the imag-
ing phenotypes are illustrated according to the colourbar. The pheno-
types that obtained the largest weights (in absolute value) mainly
come from the “reading” contrast, especially from the temporal lobe.

Taken altogether, our results show that fsPLS could establish a sig-
nificant link between a subset of SNPs distributed across the genome
and a functional brain network activated during a reading task, some
of these SNPs being probably indirectly linked to the neuroimaging
phenotypes due to linkage disequilibrium. This suggests that individ-
ual variability in the entire genome contains predictors of the
observed variability in brain activation during language tasks.

5. Discussion

5.1. Performance of the two-step method fsPLS

The originality of this work is to investigate a two-step approach
combining univariate filtering with sparse PLS and to show that it
performs much better than the other regularisation or dimension re-
duction strategies combined with PLS or KCCA on both simulated and
real high-dimensional imaging genetics data. Indeed even though
sparse PLS performs better than PLS and (regularised) KCCA, it does
not seem able to overcome the overfitting issue by itself, which sug-
gests that a first step of dimension reduction is also necessary. Uni-
variate filtering appears to be the best solution, especially when
combined with sPLS, while PC-based methods fail in that respect.
Moreover, our results on the experimental dataset show that fsPLS
was sensitive enough to uncover a generalisable and significant
multivariate link between genetic and neuroimaging data.

5.2. Influence of the parameters of univariate filtering and L1 regularisation

We performed a sensitivity analysis in order to assess the influ-
ence of the parameters of univariate filtering and sPLS selection on
the generalisability of the link found by fsPLS between the two blocks
of data, which explains why we repeated the cross-validation proce-
dure for all pairs of parameters. We also tried to add a nested CV
loop in order to select, at each fold of our external 10-fold CV, the
best pair of model parameters (filtering and sPLS selection rate)
corresponding to that fold. The role of the external 10-fold CV then
became the assessment of the generalisability of the whole proce-
dure: fsPLS and parameter selection. But because of the computation-
al load of such a procedure, we could not assess by permutations the
significance of the out-of-sample correlation coefficient of the
external CV.

Our main results on the experimental dataset show that fsPLS
extracted themost generalisable and significant neuroimaging/genetics
link when considering 1000 SNPs after univariate filtering and 5% of
these SNPs selected by sPLS. The intersection between the 50 best
SNPs after the univariate ranking step and of the 50 SNPsfinally selected
by fsPLS is of 6 SNPs. Those results as well as those obtained on simulat-
ed data raise the question of the relative contribution of the univariate
filtering and the sparsity constraint to select relevant features. A rela-
tively large number of SNPs kept after filtering seems to be required,
up to a trade-off between the numbers of true and false positives, to
allow sPLS to extract a robust association between a multivariate
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Fig. 6. sPLS weights for SNPs, when considering k=1000 SNPs ordered here according to their position along the genome, with sλ1X
=5% of selected SNPs. Here we zoom only on the

first 150 SNPs for visualisation purposes. The matrix of squared pairwise correlations is shown below.
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pattern of SNPs and a multivariate neuroimaging pattern. However,
univariate filtering appears to be a mandatory step to filter out the
vast majority of irrelevant features. Indeed, the results on both
simulated and experimental datasets demonstrated that a looser
threshold on filtering (more than 1000 SNPs) always leads to an
overfitting behaviour of PLS regardless of sparsity. Another reason to
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Fig. 7. sPLS weights for phenotypes, when considering k=1000 SNPs with sλ1X
=5% of selected SNPs. The matrix of squared pairwise correlations is shown below.
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perform univariate filtering is that PLS and even sparse PLS are too sen-
sitive to a large number of irrelevant features, as they try to explain the
variance of each block while they try to find some link between the
blocks. Indeed, let us remind the criterion that is maximised by PLS

regression: max∥u∥2¼∥v∥2¼1 corr Xu;Yvð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Inter−block corr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xuð Þ

p
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Intra−block stdev

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Yvð Þ

p
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Intra−block stdev

,

where the first term is the inter-block correlation between the two
latent variables of each block and the two last terms the intra-block
standard deviations of the latent variable of each block. In the case of
very large blocks, the two terms of intra-block standard deviations
Fig. 8. Distribution of the 1000 most significant SNPs (univariate tests) acr
weigh too much compared to the term of inter-block correlation, as
discussed by Tenenhaus and Tenenhaus (2011). Univariate filtering
helps to solve this problem by reducing the number of SNPs and
selecting the ones that are more correlated to the imaging phenotypes.

5.3. Potential limitations of fsPLS

However, although common practice in genome wide association
studies, univariate tests may not be the best filter and it could
be interesting to consider multivariate filters that account for
specific interactions between potential predictors (e.g., for a review
oss the genome. The 50 SNPs selected by sPLS are highlighted in red.
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Fig. 9. Location of the 19 phenotypes extracted from the “reading” contrast map and
the 15 phenotypes extracted from the “speech comprehension” contrast map. The
weights assigned by sPLS to the phenotypes are illustrated according to the colourbar.
(The signal that appears outside of the cortical surface belongs to the cerebellum.)

Table 4
SNPs selected by fsPLS.

Reference SNP ID Ensembl
Gene ID

Location within gene Chrom. Position

rs13047077 C21orf34 Within Non Coding Gene 21 17794297
rs2070477 C22orf36 Upstream 22 24990916
rs5751901 C22orf36 Upstream 22 24992266
rs5760489 C22orf36 Upstream 22 24990646
rs6519519 C22orf36 Upstream 22 24991863
rs874852 C22orf36 Intronic 22 24987964
rs1894702 F5 Intronic 1 169530837
rs3934552 FBXL22 Downstream 15 63894400
rs12891349 GALNTL1 Intronic 14 69790389
rs4902713 GALNTL1 Intronic 14 69770939
rs8017671 GALNTL1 Intronic 14 69771213
rs2070477 GGT1 Intronic 22 24990916
rs5751901 GGT1 Intronic 22 24992266
rs5760489 GGT1 Intronic 22 24990646
rs5760492 GGT1 Intronic 22 24995202
rs6519519 GGT1 Intronic 22 24991863
rs874852 GGT1 Intronic 22 24987964
rs10519223 HERC1 Intronic or Splice Site 15 63935149
rs11630720 HERC1 Intronic or Splice Site 15 63984772
rs11635117 HERC1 Intronic 15 64112732
rs2228510 HERC1 Non Synonymous Coding 15 63970456
rs3764186 HERC1 Intronic 15 64056437
rs8034342 HERC1 Intronic 15 64038870
rs8034675 HERC1 Intronic 15 64039050
rs9972527 HERC1 Upstream 15 64127531
rs564249 HPCAL4 Intronic 1 40155623
rs2187522 NELL1 Intronic 11 21357112
rs4257797 ODZ2 Intronic 5 166869195
rs7688580 PAPSS1 Intronic 4 108518005
rs12081185 PDE4B Intronic 1 66321193
rs4609402 PDE4B Intronic 1 66318628
rs6684621 PDE4B Intronic 1 66315450
rs1480149 PPP2R2B Intronic 5 146448551
rs1480150 PPP2R2B Intronic 5 146454825
rs6580448 PPP2R2B Intronic 5 146438035
rs6872842 PPP2R2B Upstream 5 146462839
rs1871394 PTPRG Intronic 3 61931534
rs12598550 RBFOX1 Intronic 16 7683677
rs3785228 RBFOX1 Intronic 16 7679580
rs999566 RP11-343J18.2 Within Non Coding Gene 9 128835802
rs439339 SLC13A3 Intronic 20 45238334
rs7178762 USP3 Intronic 15 63871292
rs10834273 11 24091682
rs11043662 12 17928813
rs13086717 3 46139499
rs1480162 5 146471808
rs1534101 7 125149625
rs17680472 13 71273644
rs2120252 15 64136472
rs4241767 4 184353138
rs4341595 12 18033101
rs4477486 12 17939279
rs4820001 22 17827684
rs4865243 4 58421116
rs7044535 9 81969574
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Díaz-Uriarte and Alvarez de Andrés, 2006). For instance a limitation
of univariate filtering may be that it filters out suppressor variables.
Indeed such variables are useful to remove the non-specific variability
of the relevant SNPs, improving their predictive power, while being
themselves not correlated (and thus not detectable) with imaging
phenotypes.

As for penalisation, even though it is well known that it plays an
important role when trying to uncover specific relationships among
high-dimensional data, the choice of the penalisation is also impor-
tant. For instance, an L1, L2 or L1-L2 (elastic net) penalisation scheme
does not give rise to the same results when data are correlated. In-
deed in the case of correlated variables grouping into a few clusters,
L1 penalisation tends to select one “representative” variable of each
cluster, which facilitates the interpretation of the results but may
lead to an unstable solution, whereas L2 penalisation and the elastic
net criterion tend to emphasise the whole set of correlated predictors.
However, in our case, we observed that L1 penalisation could not off-
set the PLS tendency to select blocks of correlated variables, as PLS
tends to maximise at each step the variances of the latent variables
of each block while maximising the correlation between them. In-
deed, in Fig. 6 one may observe one part of the correlation matrix of
the 1000 best ranked SNPs ordered according to their position along
the genome and the weights of the 5% of these SNPs that are selected
by sPLS are shown in blue. It shows that sPLS still tends to select
several SNPs from the same block (dark red blocks) that are spatially
correlated due to linkage disequilibrium (LD). One could investigate
a more sophisticated penalisation that takes into account the correla-
tion structure of the data. Then, in Fig. 7, we plotted the correlation
matrix of the 34 phenotypes. We may notice that there exists a
structure of correlation between the variables obtained from the
“reading” contrast (the last 19 variables of the matrix) which happen
to be the variables that got the largest weights.

It should be noticed that suchmultivariate methods do not provide
any variable-wise degree of significance or any explicit control for
false positives. In further work, selection stability could be investigat-
ed instead, using bootstrapping techniques for instance. Another lim-
itation of ourmethodmay be that on the experimental dataset it could
not distinguish between different pairs of covarying sub-networks on
the first pair of PLS components. Even on further dimensions, subtle
sub-networks were not visible in such high-dimensional settings.

Moreover, it should be noted that some non-linear effects of the
number of minor alleles may also be missed by fsPLS, with the addi-
tive genetic coding that we used. A different genetic coding, such as
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Table 5
Genes selected by fsPLS.

Gene name Function

C21orf34 Non-coding
C22orf36 Unknown
F5 Central regulator of hemostasis. It serves as a critical cofactor for the prothrombinase activity of factor Xa that results in the activation of prothrombin to

thrombin
FBXL22 Recognises and binds to some phosphorylated proteins and promotes their ubiquitination and degradation
GALNTL1 May catalyse the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue

on the protein receptor (By similarity) GGT1 Initiates extracellular glutathione (GSH) breakdown, provides cells with a local cysteine supply and contributes to
maintain intracellular GSH level. It is part of the cell antioxidant defense mechanism. Catalyses the transfer of the glutamyl moiety of glutathione to amino acids
and dipeptide acceptors.

HERC1 This protein is thought to be involved in membrane transport processes.
HPCAL4 May be involved in the calcium-dependent regulation of rhodopsin phosphorylation
NELL1 Involved in the control of cell growth and differentiation
ODZ2 May function as a cellular signal transducer
PAPSS1 Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway
PDE4B Hydrolyses the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in mediating central nervous

system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents
PPP2R2B The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localisation of the catalytic enzyme to a particular

subcellular compartment. Defects in this gene cause autosoma dominant spinocerebellar ataxia 12 (SCA12), a disease caused by degeneration of the cerebel-
lum, sometimes involving the brainstem and spinal cord, and in resulting in poor coordination of speech and body movements.

PTPRG Possesses tyrosine phosphatase activity
RBFOX1 RNA-binding protein that regulates alternative splicing events by binding to 5′-UGCAUGU-3′ elements. Regulates alternative splicing of tissue‐specific exons

and of differentially spliced exons during erythropoiesis. This protein binds to the C-terminus of ataxin-2 and may contribute to the restricted pathology of
spinocerebellar ataxia type 2 (SCA2). Ataxin-2 is the gene product of the SCA2 gene which causes familial neurodegenerative diseases.

RP11-343J18.2 Non-coding
SLC13A3 High-affinity sodium-dicarboxylate cotransporter that accepts a range of substrates with 4–5 carbon atoms
USP3 Hydrolase that deubiquitinates monoubiquitinated target proteins such as histone H2A and H2B. Required for proper progression through S phase and sub-

sequent mitotic entry. May regulate the DNA damage response (DDR) checkpoint through deubiquitination of H2A at DNA damage sites. Associates with the
chromatin
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dominant/recessive or genotypic coding, could be investigated in
further work.

5.4. Conclusion

To conclude, in this study, we investigated a two-step method com-
bining univariate filtering and sparse PLS, called fsPLS, and we showed
that it performed much better than other regularisation or dimension
reduction strategies combined with PLS or KCCA, on both simulated
and real high-dimensional imaging genetics data. Moreover, on the ex-
perimental dataset, it allowed us to detect a significant link between a
set of SNPs and a functional brain network activated during a reading
task, in awhole genome analysis framework. This suggests that individ-
ual variability in the genome contains predictors of the observed vari-
ability in brain activation during language tasks. We showed that we
could generalise our model on left out subjects, and that this two-step
multivariate technique is useful to select associated SNPs that may not
be detected by a univariate screening only. However the interpretation
of the results is still a very difficult issue and the neuroscientific rele-
vance of these findings should be investigated in further research. As
for the fsPLSmethod itself, more elaborated filtering rules andmore so-
phisticated types of penalisation should also be investigated, which
could hopefully help for the interpretation of the results.

Acknowledgments

This work was supported by CEA and the Karametria grant for the
French National Agency for Research (ANR). Support was also partial-
ly provided by the IMAGEN project, which receives research funding
from the European Community's Sixth Framework Programme
(LSHM-CT-2007-037286). This manuscript reflects only the author's
views and the Community is not liable for any use that may be
made of the information contained therein.

Appendix A

Multivariate Reduced-Rank Regression (RRR) (Reinsel and Velu,
1998) consists in transforming the classical multivariate multiple
linear regression model of a n∗q response matrix Y on a n∗p design
matrix X, by imposing a rank R≤min(p, q) on regression coefficients
and taking into account the multivariate nature of the response
matrix. The criterion optimised by multivariate RRR is:

Û; V̂ ¼ arg min
U;V

Tr Y−XUVð ÞΓ Y−XUVð Þf g ð8Þ

where regression coefficients are decomposed into a matrix U with R
linearly independent columns and a matrixV with R linearly indepen-
dent rows. Γ is a weight matrix, commonly set to be the identity ma-
trix. The solutions for U and V are derived from the Singular Value
Decomposition (SVD) of the matrix X′X

� �−1
2X′YΓ

1
2.

In the implementation of sparse (multivariate) RRR by Vounou et
al. (2010), Γ is set to be the identity matrix and X′X is approximated
by the identity matrix because of its very high dimensionality, which
makes RRR equivalent to PLS–SVD. However, instead of performing
an SVD in high-dimensional settings, they recast the PLS–SVD prob-
lem into an iterative procedure using NIPALS algorithm and they
apply L1-penalisation on weight vectors u and v for each new rank,
using soft-thresholding within the NIPALS inner-loop. Indeed, for
the rank-one model, the criterion optimised becomes:

û; v̂ ¼ arg min
u;v

−2vY′Xuþ vv′u′uþ λ1∥u∥1 þ λ2∥v
′∥1 ð9Þ

Further ranks are obtained by optimising the same criterion on the
residuals of the matrices X and Y after regression on their own latent
variables, which departs from the PLS–SVD problem and becomes
equivalent to PLS regression in its canonical mode. In conclusion,
the sparse multivariate RRR approach, under some approximations
commonly made in high dimensional settings, becomes equivalent
to the sparse PLS approach. This suggests that such multivariate
methods may be appropriate to exploratory imaging genetics studies.
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