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Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromag-
netic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals re-
corded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are
used in brain–computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening
as well as for data covariance estimation in beamformers. The rationale for suchmodels is that the signals can be
modeled by a zeromeanGaussian distribution.While maximizing the Gaussian likelihood seems natural, it leads
to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true
covariancewhen thenumber of samples is small. To address this issue the estimation needs to be regularized. The
most common approach downweights off-diagonal coefficients, while more advanced regularization methods
are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA)
and factor analysis (FA). Using cross-validation all of thesemodels can be tuned and comparedbased onGaussian
likelihood computed on unseen data.
We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoen-
cephalography (MEG) datasets from themost commonMEGsystems. First, our results demonstrate that different
models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties.
Second, we show that the models tuned by cross-validation are superior to models with hand-selected regular-
ization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of
M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization
of MEG signals.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Magnetoencephalography and electroencephalography (M/EEG)
measure non-invasively the weak electromagnetic fields induced by
post-synaptic neural currents (Hämäläinen et al., 1993). At the current
state-of-the-art, the use of magnetoencephalography and electroen-
cephalography M/EEG data for neural engineering and neuroscience
poses inherentmathematical and statistical signal processing challenges.
A brain–computer interfaces (BCI) system uses M/EEG data to classify
brain states and control a device (Lotte et al., 2007). It involves tedious
preprocessing, extraction of predictive features and the design of dedi-
cated classifiers. A modern M/EEG analysis workflow for brain imaging
involves segmentation of anatomical MRI data, the computation of an
, Bat. 145, 91191 Gif-sur-Yvette

nn).
electromagnetic forward model, multiple data-coregistration steps, ex-
traction of signals of interest from the raw measurements and finally a
numerical solution to the ill-posed biomagnetic inverse problem
(Gramfort et al., 2014; Hämäläinen et al., 2010). In this work, we focus
on one problem of such analysis pipelines which is the estimation of
between-sensor covariance, also referred to as spatial covariance. The in-
terest for such covariance estimates is motivated by the physics of the
forward problem and Gaussian assumptions, which are commonly
made by M/EEG methods. Due to the linearity of Maxwell's equations,
M/EEG data are obtained by linear mixing of brain sources. The signals
are then corrupted by some additive noise. Assuming the source ampli-
tudes are Gaussian, the measured data are also Gaussian due to linear
mixing. Assuming the additive noise to be also Gaussian, brain signals
and noise can be fully characterizedwith amean vector and a covariance
matrix. In practice signals are high pass filtered or “baseline corrected”,
which allows us to assume the data to be zeromean. The only quantities
to be estimated from the data are therefore the spatial covariances.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.12.040&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.12.040
mailto:denis.engemann@cea.fr
http://dx.doi.org/10.1016/j.neuroimage.2014.12.040
http://www.sciencedirect.com/science/journal/10538119
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Data recorded with M/EEG can be used to localize the neural gen-
erators underlying the measurements. This procedure is known as the
M/EEG inverse problem. Methods addressing this challenge are re-
ferred to as inverse solvers or inverse methods. While dipole models
typically estimate the location of a few sources in the brain, so-called
distributed source models consist of thousands of candidate dipolar
sources which are positioned based on anatomical information.
Methods from the minimum-norm estimates (MNE) family (weighted
MNE (Lin et al., 2006), low resolution brain electromagnetic tomogra-
phy (sLORETA) (Pascual-Marqui, 2002), dynamical statistical paramet-
ric mapping (dSPM) (Dale et al., 2000), mixed-norm estimates (MxNE)
(Gramfort et al., 2012), time-frequency mixed-norm estimates (TF-
MxNE) (Gramfort et al., 2013a)), aswell as beamformers in the timedo-
main, e.g. linear constrained minimum-variance (LCMV) (Veen et al.,
1997), or the frequency domain, e.g. dynamic imaging of coherent
sources (DICS) (Gross et al., 2001), all require the definition of a distrib-
uted source model and necessitate the estimation of spatial covariance
matrices. Some of these solvers are non-linear: MxNE and TF-MxNE
cannot be expressed as a single matrix multiplication applied to the
data. Some are known as adaptive spatial filters: LCMV andDICS require
the estimation of the covariance of the data. Yet, all these methods in-
volve Euclidean ‘2 constraints which inherently assume Gaussian
noise with zero mean and equal variances across sensors. To improve
data with regard to these requirements a spatial whitening step is com-
monly implemented that allows to suppress between-sensor correla-
tions related to noise. More specifically, a spatial covariance of the
additive noise is estimated from data and subsequently used for whit-
ening. This transforms data into independent white noise vectors char-
acterized by an identical variance across channels.

The problemof estimating the covariance frommultivariate samples
is a problem that has beenwidely studied in statistics and forwhich var-
ious models have been proposed. In one such approach (Chen et al.,
2010; Ledoit and Wolf, 2004) optimal coefficients are computed for
the shrinkage of off-diagonal terms while other contributions propose
structured models with reduced rank assumptions (Barber, 2012;
Tipping and Bishop, 1999). In the context ofM/EEG, noise can be biolog-
ical (heart beat, eye blinks, muscle activity), environmental (line noise)
and sensor-related. Purely sensor-related noise can be assumed to be in-
dependent across sensors. It can hence be modeled with a diagonal co-
variance matrix. In contrast, most sources of noise are structured and
induce strong correlations between sensors. When estimating the spa-
tial covariance from signal of interest as done for beamformers (Veen
et al., 1997) or BCI for common spatial patterns (CSP) (Ramoser et al.,
1998), strong between-sensor correlation occurs and can be explained
by the following fact. If we assume one active source in the brain with-
out the presence of noise, the linearity of the forward problem guaran-
tees that the measured data span a subspace of dimension one. If we
now assume that the source rotates, for a spherical head model, the
subspace dimension is two in the case of MEG and three in the case of
EEG (see for example (Mosher and Leahy, 1998) for discussions on
this matter). Low rank hypotheses are also relevant for some MEG sys-
tems where the data are projected to a low rank signal subspace for
denoising. This technique is known as signal space separation (SSS)
(Taulu et al., 2005). Another peculiarity of modern MEG systems is the
different sensor types used during recordings, e.g. magnetometers and
planar gradiometers on Neuromag VectorView systems. These impose
additional difficulties to the estimation because values differ by orders
ofmagnitude between sensorswhile the sources captured only partially
overlap.

We will therefore evaluate various strategies for the estimation of
the spatial covariance of M/EEG data under Gaussian assumptions and
develop a systematic approach of deciding between these alternatives.
The study will focus on two particular kinds of approaches, shrinkage
covariance estimators (Chen et al., 2010; Ledoit and Wolf, 2004) and
on generative low rank models, also commonly referred to as latent
variable models: probabilistic principal component analysis (PPCA)
and factor analysis (FA) (Barber, 2012; Tipping and Bishop, 1999). In a
first step, relevant statistical models and inference methods will be in-
troduced and discussed in the context of M/EEG. Subsequently, imple-
mentation strategies will be detailed. Finally, we will present a
comprehensive quantified evaluation of six approaches. This evaluation
will be based on simulations and three M/EEG datasets. Impact of the
proposed method on source localization results will be illustrated on a
publicly available cognitive neuroscience dataset (Henson and Rugg,
2003).

Material and methods

Before detailing the covariance estimationmodels,we provide amo-
tivating example: the problem of source reconstruction with ‘2 regular-
ization, also known as minimum-norm estimates (MNE).

Minimum-norm estimates (MNE)

Minimum-norm estimates employ a distributed source model that
consists of a large number of spatially fixed candidate dipoles whose
amplitudes are estimated from the data (Gramfort et al., 2014;
Hämäläinen et al., 2010). Let us denote by N the number of sensors, M
the number of candidate dipoles and T the number of time samples in
the data. Following the linearity of Maxwell's equation and the assump-
tion of additive noise, the data matrix Y of size N× T is obtained bymul-
tiplication of the forward gainmatrix G of sizeN×M by X, the unknown
sources amplitudes of sizeM× T, towhich is added a noise term E of size
N × T. The model reads:

Y ¼ GX þ E:

The model can then be further specified by assuming that X and E
have zero mean Gaussian distributions at each time sample t, i.e. Xt∼N
0;Rð Þ and Et∼N 0;Cð Þ. Thematrices R and C, of sizeM ×M and N × N re-
spectively, refer to the source covariance and the noise covariance. As-

suming C and R to be known, an estimate X̂ of the amplitudes of the
dipoles located on the cortical mantle is obtained by maximum a
posteriori (MAP):

X̂ ¼ arg min
X∈ℝM�T

Y−GXk k2C þ Xk k2R

where ‖A‖B
2 = Trace(AtB−1A). This leads to:

X̂ ¼ RGt GRGt þ C
� �−1

Y; ð1Þ

where Gt stands for the matrix transposition of G.
The noise is said to bewhite if thematrix C is the identity I. Let us de-

note byC
1
2 a square rootmatrix of C, such thatC

1
2C

1
2 ¼ C. Note that there is

nounique square root of amatrix. If C is invertible, so isC
1
2. If onedenotes

by eY ¼ C−1
2Y and eG ¼ C−1

2G then Eq. (1) is equivalent to:

X̂ ¼ ReGt eGReGt þ I
� �−1eY : ð2Þ

In other words, after introducing Ỹ and eG, the noise can be modeled
aswhite. One can observe that Eq. (2) resembles Eq. (1) after replacingC

by I. The process of computingC
1
2 and subsequently Ỹ and eG is called spa-

tial whitening. The matrix Ỹ contains the whitened data, and eG is re-
ferred to as the whitened gain matrix.

In practice the square rootC
1
2 is obtained from the eigenvalue decom-

position under symmetry constraints of the estimated covariance C =
UCΛC2UC

t where UC is an orthonormal matrix, UCUC
t = I, and ΛC is a diago-

nal matrix with non negative entries. Assuming C to be full rank, it is
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straightforward to verify thatC−1
2 ¼ Λ−1

C Ut
C is a valid inverse square root

of C. An alternative is the symmetric matrix C−1
2 ¼ UCΛ

−1
C Ut

C , which we
will use to visualize whitened data.

To reduce redundancy: Eq. (2) reveals thatminimum-norm estimates
(MNE) actually implements what is known as Tikhonov regularization
(Tikhonov and Arsenin, 1977) or Ridge regression in the field of statistical
learning (Hoerl and Kennard, 1970). As a consequence, if the gain matrix
and the data are appropriately whitened, general conditions of statistical
regression models apply to the magnetoencephalography and electroen-
cephalography (M/EEG) inverse problem. Minimum-norm estimates,
therefore, rely on the specification of the noise covariance matrix that
needs to be estimated from the data. Or in other words, the quality of
the inverse solution depends on the quality of the covariance estimate.
This holds true for most other source localization in particular
beamformers such as LCMV and DICS (Veen et al., 1997; Gross et al.,
2001). However, this also applies to MNE variants such as dynamical sta-
tistics parametric mapping (dSPM) (Dale et al., 2000) or low resolution
brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002),
as well as other distributed models such as minimum-current estimates
(MCE) (Uutela et al., 1999) or mixed-norm estimates (MxNE)
(Gramfort et al., 2012; Gramfort et al., 2013a). It therefore cannot be con-
sidered a local problem.

Covariance estimation

Model selection using cross-validation
The noise covariance estimator is typically applied to segments of

(M/EEG) data that were not used to estimate the noise covariance and
that typically include both, brain signals and noise. Its quality can
hence be assessed by investigating how well the model describes new
data. This idea of model quality assessment on unseen data is put into
practice by aggregating results over random partitions of the data, and
is referred to as cross-validation. Since data are assumed to follow a
multivariate Gaussian distribution, parameterized by a covariance ma-
trix C, the log-likelihood of some data Y reads:

L Y jCð Þ ¼ − 1
2T

Trace YYtC−1
� �

−1
2
log 2πð ÞNdet Cð Þ

� �
: ð3Þ

The higher this quantity on unseen data, the more appropriate the
estimated noise covariance C and the higher its success at spatially
whitening the data. The log-likelihood, hence, allows us to select the
best noise covariance estimators out of a given set of models using
cross-validation with left out data. In the following we will discuss po-
tentially relevant candidate strategies to estimate covariance matrices
on M/EEG data.

Empirical covariance and regularization
The empirical covariance matrix can be computed by C ¼ 1

T YY
t ,

where Y contains the data of size N × T. With a sufficient number of ob-
servations (T large), the sample covariance, which can be derived from
maximum likelihood, is a good estimator of the true covariance. Typi-
cally, a noise covariance is computed on baseline segments preceding
stimulation or for MEG on empty room measurements during which
no subject is present. The latter is however not possible for electroen-
cephalography (EEG) recordings for which the covariance estimation
relies on data segments considered not relevant for the task, typically
during baseline. Biological artifacts often contaminate the data leading
to outlier samples, and sometimes the data statistics change over
time, for example due to changes in environmental noise or changes
in head position. If in such situations only a limited number of samples
is available, the empirical covariance tends to to suffer from high vari-
ance. The estimate then is noisy and unreliable for further analysis.

One typical way to reduce the variance of the covariance estimator is
to apply diagonal loading. It consists of amplifying the diagonal with a
hand-selected constant which attenuates the off-diagonal elements
that correspond to inter-sensor covariance:

C0 ¼ C þ αI; α N 0: ð4Þ
The value α is the regularization parameter. This diagonal weighting

of the covariance stabilizes MNE-like estimates by reducing the vari-
ance. However, the introduced bias amounts to assuming a stronger un-
correlated noise level which leads to underestimated amplitudes in the
source estimates. This especially applies to dSPM and sLORETA where
the noise variance is used to rescale MNE estimates and convert
them to statistical quantities such as F or T statistics. When used in
beamformers, such a regularization of the data covariance matrices
tends to increase the point spread function of the spatial filters and
smear the estimates (Woolrich et al., 2011). In addition, hand-set regu-
larization raises a new problem, which is how to choose the value of α.

Shrinkage models
An improvement of the hand-selected regularization or shrinkage

approach introduced in the section called Covariance estimation is pro-
vided by the Ledoit–Wolf (LW) shrinkage model (Ledoit and Wolf,
2004). This covariance model constitutes an optimal weighted average
of the invariant identity matrix and the empirical covariance matrix
(Eq. (5)). The LW covariance estimates CLW takes the form of:

CLW ¼ 1−αð ÞC þ αμI; ð5Þ

where I stands for the identity matrix, μ is the mean of the diagonal el-
ements of C, andα is called the shrinkage parameter. The contribution of
Ledoit and Wolf (2004) is to provide a formula to compute the optimal
value for α. The solution is derived from the values of N, the number of
dimensions, and T, the number of samples. It is provided in closed form
and minimizes the mean squared error between the estimator and the
population covariance. The underlying assumptions of the LWestimator
are that the data are i.i.d. (independent identically distributed) which,
as we will see below, is not a valid assumption for M/EEG data. Howev-
er, Ledoit and Wolf (2004) have shown that the optimal shrinkage pa-
rameter guarantees CLW to be well conditioned: matrix inversion is
numerically stable, andmore stable than with the empirical covariance.

A data-driven extension to the Ledoit–Wolf estimator can be moti-
vated by Eq. (5). Instead of using the Ledoit–Wolf formula to compute
α, cross-validation and likelihood estimation on unseen data can be
compared over a range of α values to select the optimal regularization
parameter. The optimal α can then be determined as the one yielding
a covariance estimator with the maximum likelihood on unseen data.
Throughout the manuscript, models with data-driven shrinkage coeffi-
cient as in Eq. (5) will be referred to as SC.

Probabilistic principal component analysis (PPCA)
M/EEG measurements are obtained by sensor recordings at various

locations in space. They include signals from the brain but also artifacts.
Such signals and artifacts yield spatially structured patterns on the sen-
sor array. For example, a source in the brain thatwould bewellmodeled
by an equivalent current dipole ECD produces a dipolar pattern on the
sensors. If this dipole does not rotate, due to the physics of the forward
problem, the signal space spanned by this ECD is of dimension one. The
signal space is thus said to be of rank one. Both sources in the brain and
artifacts share this property of generating low rank signals on the sen-
sors. This is for example what justifies the use of signal space projection
SSP (Uusitalo and Ilmoniemi, 1997). The idea behind SSP is that the
noise subspace includes artifact-related sources of low dimensionality
and that it is approximately orthogonal with the subspace spanned by
the brain signals of interest. Therefore, projecting the data on the or-
thogonal of the noise subspace will remove artifacts and therefore
denoise the data.

Principal component analysis (PCA) is a statistical method that is
built on this idea of low rank signal space. When using classical PCA
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oneneeds to pre-specify thenumber of components, whichmatches the
rank of the subspace. While PCA was historically introduced as a meth-
od to reduce the dimension of data, or to approximate amatrixwith one
of lower rank, Tipping and Bishop (1999) have explained how it can be
reframed as a generative probabilistic model and coined the term prob-
abilistic PCA (PPCA). According to this perspective, PPCA corresponds to
amultivariate Gaussianmodel where a randomvector can be expressed
as a random weighted linear combination of components added to
some independent noise. The covariance can be decomposed as the
sum of a low rank matrix and a scaled identity matrix. With this statis-
tical model standard PCA is transformed into a latent variable model
such as (FA).

To give amore formal description of the PPCAmodel, let K represent
the number of components and y a sample generated by themodel. The
N-dimensional vector y is then obtained from a K-dimensional random
vectorwwhich is linearly transformed by K latent factors forming ama-
trix H of size N × K, to which is added a fixed N-dimensional vector m
and a random noise vector e:

y ¼ Hwþmþ e: ð6Þ

Both w and e are independent random vectors obtained from
spherical1 multivariate Gaussian distributions, respectively of size K
and N. Without loss of generality, the covariance of w is the identity IK
and the covariance of e is σ2IN:

e∼N 0;σ 2IN
� �

and w∼N 0; IKð Þ: ð7Þ

It naturally follows that given H, m and σ, the vector y is Gaussian:

yjH;m;σ ∼N m;HHt þ σ 2IN
� �

: ð8Þ

As a result, the covariance derived from the PPCAmodel is given by:

CPPCA ¼ HHt þ σ 2IN : ð9Þ

The natural question is then how to estimate m, H and σ from the
data, and why the standard PCA method provides estimates of these
quantities. Let us denote by Y={y1,…, yT} the observed data. According
to the PPCA model the likelihood of the data is expressed by:

p YjH;m;σð Þ ¼ 2πð Þ−TM
2 det HHt þ σ 2IN

� �−T
2exp −1

2
Trace HHt þ σ2IN

� �−1
S

� �� �
;

ð10Þ

where

S ¼
X
i

yi−mð Þ yi−mð Þt : ð11Þ

The maximum-likelihood estimates of each parameter are given by
Eq. (12) (Minka, 2000).

m̂ ¼ 1
T

XT
i¼1

yi σ̂2 ¼
XM

j¼Kþ1
λ j

M−K
Ĥ ¼ U Λ−σ̂2IK

� �1
2Q ; ð12Þ

where U is the matrix formed by the K top eigenvectors of S, the diago-
nal matrix Λ contains the corresponding eigenvalues λ1 to λN while Q is
a random orthogonal matrix. Importantly, to recover the principal com-
ponents given by standard PCA, this matrix Q needs to be an identity
matrix. From this it naturally follows how CPPCA can be derived from
standard PCA estimates.
1 With identity covariance matrix.
The latter results are obtained assuming the number of components
K to be known. In order to estimate this number from the data, various
strategies have been developed. In Bishop (1999) Bayesian PCA has
been proposed as an extension of PCA in which hyperparameters con-
trol the number of dimensions. This technique was used in Woolrich
et al. (2011) in the context of linear constrained minimum-variance
(LCMV) beamformers to estimate the spatial covariance of the data
and its rank. In contrast, Minka (2000) proposed a Bayesian rank esti-
mation technique based on Laplace approximation where inference is
obtained from a variational Bayes approach. The resulting rank estimate
will be referred to in the following as PCA Bayes. Finally, as detailed in
Minka (2000), cross-validation can be used to obtain rank estimates
based on PPCA without introducing additional hyperparameters as
used in Bayesian PCA. With this approach, PPCA models are estimated
on a fraction of the data over all possible numbers of components
while the Gaussian likelihood of left out data is used as a principled
quantitative measure to evaluate how well the model fits the data.
The estimated number of components, K, is the value that maximizes
the Gaussian likelihood of the left out data. In the course of the manu-
script we will be focusing on the two latter approaches, Bayesian esti-
mation with Laplace approximation and cross-validation.

Factor analysis (FA)
FA is another latent variablemodel that can be regarded as extension

of PPCA (Tipping and Bishop, 1999; Barber, 2012). The crucial difference
to PPCA is that instead of assuming a spherical noise, e∼N 0;σ2IN

� �
, it

assumes a diagonal covariance,w∼N 0;Ψð Þ, whereΨ is diagonalwithdi-
agonal positive entries denoted by ψ1, …, ψN. PPCA is said to assume a
homoscedastic noise: the noise variance is the same for all variables,
here all sensors. Contrastingly, FA assumes a heteroscedastic noise:
the noise variance differs between sensors.

The covariance as delivered by FA is given by:

C FA ¼ HHt þ diag ψ1;…;ψDð Þ: ð13Þ

Factor analysis therefore covers a richer class of models and can be
more suitable for data such as M/EEG where the noise varies between
sensors, for example, due to undetected bad channels, or when combin-
ing different sensor types, e.g. magnetometers and gradiometers. The
consequence of this difference between PPCA and FA models, is that
the component matrix in FA differs from the principal components,
also referred to as principal axes of the data (Tipping and Bishop,
1999). This implies in practice that the FA model parameters cannot
be inferred as easily as with PPCA. Indeed, no closed form solution is
available for FA. Inference for FA hence relies on an iterative algorithm.
Due to its diagonal noise term, FA can cope with more complex noise
structures in which noise variance varies across channels. It suggests
that FA can describe data with fewer dimensions than PPCA but also
that it can cope with more datasets. However, this flexibility has its
price: estimating more complex models requires more samples.

The estimation of the FA model parameters is performed using Ex-
pectation Maximization (EM) as described in Barber (2012). In practice
each iteration consists of a spatial whitening of the data using the
present estimate of the data covariance followed by an update of the
components. This later step is performed with a singular value decom-
position SVD, which is also used to compute the standard PCA solution.
Usually aminimumof 20 iterations is necessary to reach convergence of
the FA estimation onM/EEG data. FA is therefore significantly slower to
compute than a PCA. However, thanks to randomized numerical linear
algebra (Martinsson et al., 2011), FA computation can be significantly
sped up making covariance estimation based on FA and cross-
validation tractable, even when combining MEG and EEG. Such an effi-
cient implementation is provided in the scikit-learn machine learning
library (Abraham et al., 2014; Pedregosa et al., 2011).
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Evaluation metrics: whitened data and global field power

We now detail model quality evaluation metrics that we will use in
the experiments. The whitened evoked response is a sensor space met-
ric which is obtained by multiplying the array of sensor measurements
by the symmetric whitener:

C−1=2Y : ð14Þ

The resulting signals should follow a standard-normal distribution.
The amplitudes are expected to be situated between −1.96 and 1.96
for baseline segments from which the covariance was estimated. This
result follows from the 2.5% and 97.5% quantiles of the standard-
normal distribution. In other words, 95% of the data should be in that
range of values.

Thewhitened global field power GFP is a second sensor spacemetric
that quantifies variability over the full sensor array at a given time sam-
ple. We define this GFP, or more precisely the whitened rank-adjusted
GFP, as:

XN
i¼1

x2i

P
ð15Þ

where P is the rank of the data and N is the number of sensors. Should
the dimensionality of the data have been previously reduced then
P b N. This typically happenswhen an independent component analysis
(ICA), SSP or signal space separation (SSS) has been applied to the data.
If no rank reduction has been applied then P= N. When computing the
GFP on the whitened evoked data, it appears that the numerator in
Eq. (15) is a χ2 random variable with P degrees of freedom so that ex-
pected value of the GFP as defined here is 1. On actual whitened data,
deviation of the GFP from 1 will indicate an improper whitening.

General data analysis and software

All covariance estimators and the cross-validation were computed
using the Python machine learning package scikit-learn (Pedregosa
et al., 2011). The empirical covariance and the regularizationwere com-
puted using the MNE software (Gramfort et al., 2013b; Gramfort et al.,
2014). The FA implementation was based on algorithm 21.1 from
Barber (2012). Estimation of FA parameters is iterative with expensive
SVDs, one at each iteration. To improve suitability for cross-validation
and extensive rank estimation, we contributed amodified implementa-
tion of factor analysis to the scikit-learn package, based on the random-
ized SVD algorithm (Halko et al., 2011; Martinsson et al., 2011). While
producing results equivalent to a full SVD, the randomized SVD uses sig-
nificantly lessmemory and allowed to cut computation times by up to a
factor of seven.2

The MNE software (Gramfort et al., 2013b; Gramfort et al., 2014)
was used to process and analyze all magnetoencephalography (MEG)
and EEG data. For the source space analyses, the FreeSurfer3 software
was used to obtain cortical surface reconstructions.

Simulated data

To compare the behavior of the covariance estimators across a vary-
ing numbers of samples, four different data scenarios were simulated.
They can be represented on a 2 (homoscedastic VS heteroscedastic
noise) by 2 (low VS high rank) grid. For each scenario, covariance esti-
mates and rank estimates were computed for PPCA, the PCA (Bayes)
and FA with a continuously increasing number of samples. In addition,
model likelihoodwas computed for the Ledoit–Wolf and the shrunk co-
variance (SC) estimator as well as for PPCA and FA. To reduce data
2 cf. https://github.com/scikit-learn/scikit-learn/pull/2406.
3 http://surfer.nmr.mgh.harvard.edu/.
variability, results were averaged over 50 runs using different random
seeds. The data were simulated as follows: to obtain low rank data, a
random N × N square matrix was computed. Number of dimensions
was set to N=50. In a second step, the rank of thematrix was reduced
by applying a truncated SVD. The K singular vectors with highest singu-
lar values were kept to form amatrix H of sizeN × K as in Eq. (6). An ar-
bitrary orthogonal matrix of size K × T was then used to form T
independent samples thatwere projected usingH into theNdimension-
al space. The outcome is a N × T dataset living in a subspace of dimen-
sion K. Finally, either homoscedastic or heteroscedastic Gaussian noise
was added to the data. This was achieved by adding aN× T randomma-
trix formed by T samples drawn from Gaussian distributions with diag-
onal covariances. In the heteroscedastic case the entries on the diagonal
are all positive but different (each feature, sensor, is corrupted with a
different noise level), while in the homoscedastic case all the entries
on the diagonal are positive and equal. The rank was set to either K =
10 (low rank) or to K = 40 (high rank). T was varied between 200
and 2000 in steps of 50.

To determine the optimal SC estimator with cross-validation, esti-
matorswere computedwithα varying on a logarithmic grid of 30 values
between 0.01 and 1. Each estimator was then evaluated with a three-
fold Monte Carlo cross-validation procedure. The optimal shrinkage
was then determined based on the highest likelihoods on left out data.
To determine the hyperparameter K of the low rank models, PPCA and
FA were computed on a grid of rank values. K varied between one to
49 in steps of three. For the sake of completeness, 50 (the number of ob-
served dimensions) was included in this range. Each value was used to
select the number of dimensions directly. At each step, the models ob-
tained were evaluated with the same cross-validation procedure. The
estimated rank was then determined by the K parameter of the model
with the highest log-likelihood.
M/EEG datasets

The covariance and rank estimation procedures were subsequently
tested using MEG data recorded by three commercial and widely used
meg systems: 1) a 4D-Neuroimaging whole-head magnetometer sys-
tem with 248 channels (MAGNES-3600WH MEG), 2) a VSM MedTech
Inc. whole-head axial gradiometer system with 275 channels (CTF/
VSM) using second-order axial gradiometers and synthetic third gradi-
ent for denoising and 3) a Neuromag VectorView whole-head system
with 306 channels (Elekta Neuromag, Finland), which are formed
from 102 sensor triplets, each comprising two orthogonal planar gradi-
ometers and one magnetometer.

The Neuromag dataset is shipped with the MNE software (Gramfort
et al., 2013b; Gramfort et al., 2014) and includes combined M/EEG re-
cordings conducted at the Martinos Center of Massachusetts General
Hospital. EEG was recorded simultaneously using an MEG-compatible
capwith 60 electrodes. Datawere sampled at 600Hz. In the experiment,
auditory stimuli (deliveredmonaurally to the left or right ear), and visu-
al stimuli (shown in the left or right visual hemifield) were presented in
a random sequence with a stimulus onset asynchrony (SOA) of 750 ms.

The CTF/VSM data-set includes MEG recordings conducted by the
Functional Imaging Laboratory, London. It is available on the SPM
webpage4 (Litvak et al., 2011) and can also be downloaded using the
MNE software.5 Data were sampled at 480 Hz. In this experiment,
faces and scrambled faces were presented to the participant. The para-
digm is detailed in Henson and Rugg (2003).

The 4D-Neuroimaging dataset was kindly provided by Breuer et al.
(2013). Recordings were conducted at the Institute of Neuroscience
and Medicine (INM-4), Forschungszentrum Jülich, Germany and sam-
pled at 1017.25 Hz. In the experiment, auditory stimuli (simple
4 http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/.
5 http://martinos.org/mne/auto_examples/datasets/plot_spm_faces_dataset.html.
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sinusoidal tones at 1000 Hz and 2000 Hz) were presented to the partic-
ipant in a random sequence with a SOA of 1000–2000 ms.

All data were bandpass filtered between 1 and 45 Hz using a zero-
phase 4th order Butterworth filter. The low pass at 45 Hz excluded the
power line frequencies at 50 Hz and 60 Hz for data recorded in Europe
and the USA. The high pass at 1 Hz removed low-frequency drifts as
well as baseline offsets from the data. To allow the comparison of the re-
sults obtained with the different datasets, all epochs were resampled at
150 Hz. Segments contaminated by biological artifacts were detected
based on peak-to-peak amplitude and ignored during estimation to
avoid distorted covariance estimates due to outliers. Note that this led
to slightly different sample sizes when comparing datasets.

MEG data expressed in T or T/m are very small, and close tomachine
precision. To improve numerical stability, data were scaled by the order
of magnitude corresponding to the measurement unit, for example by
in the case of magnetometers. For datasets combining gradiometers
and magnetometers, the latter were upweighted as recommended by
MaxFilter software (Elekta-Neuromag). A factor of 4 was chosen as
this value turned out to improve numerical stability. The estimated co-
variances were then rescaled to the squaredmeasurement unit. Epochs
were defined from −200 ms to 500 ms with respect to the stimulus
onset. To estimate the noise covariance, baseline segments (−200 to
0ms) were extracted and concatenated to form a two-dimensional ma-
trix comprising channels and time samples.

Sensor space validation

The same protocol was applied to theM/EEG datasets as for the sim-
ulation. For each dataset, covariances and their log-likelihoods were
computed based on each estimator. The PPCA and FA parameters were
evaluated using cross-validation over a range of different values for
rank parameter K from five and to the multiple of five that was closest
to the actual number of channels, advancing in steps of five. Subse-
quently, the log-likelihood, the whitened evoked response and the cor-
responding GFP were computed for each estimator. The log-likelihood
scores were then used to inform model selection. Graphical displays of
log-likelihood scores were computed to illustrate the data on which
model selection was based. The procedure was executed separately
for each channel type as well as for magnetometers and gradiometers
combined. For the combined-sensors runs, whitening effects related to
either gradiometers or magnetometers are presented separately. The
acronyms used to refer to the different datasets or to the views on
datasets are summarized in Table 1.

This procedure was conducted at two discrete sample sizes, one in-
cluding the first 15 epochs encompassing 465 samples, and a second
one including the first 50 epochs of 1550 samples. These values reflect
arbitrary choices. However, both levels approximate the lower and the
upper bounds for the number of samples used for the simulation.

For each dataset, whitened-evoked responses were then computed
based on the covariance estimator with the highest model likelihood.
The ensuing display is informative in twoways. First, assuming a correct
whitening, for baseline whitened evoked responses, 95% of the
Table 1
Overview on datasets used and corresponding legend keys.

Key Dataset and channel type Number of
channels used

bti 4D Magnes 3600 WH magnetometers 248
ctf CTF-275 axial gradiometers 274
vv-eeg VectorView EEG electrodes 59 (1 bad)
vv-grad VectorView planar gradiometers 203 (1 bad)
vv-mag VectorView magnetometers 102
vv-meg-grad VectorView planar gradiometers,

combined estimation
203 (1 bad)

vv-meg-mag VectorView magnetometers,
combined estimation

102
amplitudes are expected to have a value between −1.96 and 1.96 (cf.
Evaluation metrics: whitened data and global field power). Second,
the post-baseline segments are important to evaluate as appropriate
whitening should leave intact the ‘butterfly’ shape which is typical for
visualizations of evoked responses in which time courses frommultiple
channels are superimposed.

A second graphicalmonitoring techniquewas implemented by com-
puting thewhitened GFP for each estimator and super-imposing the re-
sults separately for each estimator. The estimators tested onM/EEG data
are presented in Table 2 with their corresponding abbreviations. As-
suming correct whitening, the whitened GFP should produce baseline
scores around one (cf. Evaluation metrics: whitened data and global
field power). Importantly, post-baseline segments easily reveal incor-
rect scaling, i.e., if GFP scores do not return to the baseline where it
would be expected. Moreover, this approach allows to compare the im-
pact of different estimators more directly, as the sensor signals are re-
duced to a single time course. It is noteworthy that both techniques
allow to compare baseline and post-baseline segments to visually assess
the impact of a given estimator on the signal-to-noise ratio. For compar-
ison, the raw, non-whitened evoked responses are displayed in Fig. 1.
Source space validation

To demonstrate the practical impact of estimator quality on source
localization in applied contexts, the single subject SPM-faces dataset de-
scribed above was analyzed at the source level using the above covari-
ance estimation and selection procedure. This dataset was chosen
because it implicates experimental contrasts relevant to cognitive and
social–cognitive neuroscience. Data were not resampled and a cutoff
frequency of 30 Hz was used. Apart from this, data were preprocessed
as for the sensor space validation. MNE source estimates were then
computed separately for the faces and the scrambled faces condition.
Resulting maps of cortical activity maps were then subtracted to form
a paired contrast. Except for the covariance parameter, MNE estimates
were computed using the default parameters proposed by the MNE-
software. The regularization-parameter was set to 1.0/SNR2 where
SNR refers to the signal-to-noise ratio parameter which defaults to 3.
A depth-weighting of 0.8 was used in combination with a loose-
constraint of 0.2 and free orientation. The dSPM procedure was used
for noise normalization. This resulted in unsigned dSPM source esti-
mates reflecting normalized current magnitude. Positive values
resulting froma paired contrast of the form dSPMfaces− dSPMscrambled re-
flect activity specific to the faces condition.

To assess the differential impact of covariance estimation, this anal-
ysis was conducted over varying numbers of epochs using both best and
the worst noise covariance estimator (cf. MNE computation in Eq. (1)).
To quantify the different statistical properties of the resulting dSPMS,
means and standard deviations were computed across source locations
at any given time sample. This summarizes the spatial variability of the
dSPM maps.
Table 2
Overview on covariance estimators used in concert with M/EEG data.

Key Estimator

Raw Empirical covariance computed from restricted number of epochs
Reg Regularized covariance with α = 0.1 (default regularization parameter

in the MNE software)
LW Ledoit–Wolf estimator
SC Shrunk covariance with cross-validation
PPCA Probabilistic PCA with cross-validation to set K
FA Factor analysis with cross-validation to set K



Fig. 1. Non-whitened evoked responses of all datasets for 15 epochs (450 samples) and 50 epochs (1500 samples).
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Results

Simulated data

Rank estimation
Fig. 2 presents the rank estimation results based on PPCA, Minka's

Bayes PCA (Minka, 2000), and FA. All three estimators recovered
the true rank of the data when noise was homoscedastic. When
heteroscedastic noise was present, only FA was able to recover the
true rank, irrespective of the true rank (10 or 40). When the noise was
heteroscedastic, dramatic overestimations of the true rank occurred
for PPCA. Furthermore, it can be observed that PPCA and FA only pro-
duced stable results if the sample size exceeded a minimum of roughly
350 samples.

Model likelihood
This is further illustrated in Fig. 3which shows themodel likelihoods

of the covariance estimators. For all conditions, themodel likelihood in-
creased with the number of samples, and more steeply in the range
where the rank estimates exhibited high instability. In the low rank sce-
nario, the latent variable models were unequivocally more appropriate
than the “unstructured” shrunk covariance models. For homoscedastic
noise and a rank of 10, both PPCA and FA performed equal. When
noise was heteroscedastic, FA had the highest model likelihood across
the entire sample range, followed by the shrunk covariance models
and PPCA. However, differences between the other estimator's perfor-
mance disappeared with increasing number of samples. In contrast,
the high rank scenariowas governed by a different regime. Independent
of the noise structure, a clear performance pattern emerged where SC
exhibited the best results at a low number of samples while the proba-
bilistic latent variable models only gradually improved with increasing
numbers of samples, ultimately reaching comparablemodel likelihoods.

Sensor space validation

Rank estimation
The results on magnetoencephalography and electroencephalogra-

phy (M/EEG) data are presented in Fig. 4. Probabilistic PCA and FA
both indicated a low rank structure for the data, except for the EEG sce-
nario with the larger sample size where PPCA suggested full rank. On
average, the FA rank estimate (MK = 35.833, SDK = 14.410) was
lower than the PPCA rank estimate (MK = 42.083, SDK = 17.376).

Second, the estimated rank was generally higher for the high num-
ber of samples (MK = 26.667, SDK = 1.952) as compared to the low
number of samples scenario (MK = 51.250, SDK = 0.203).

Model likelihood
The model likelihoods of the covariance estimators are reported in

Fig. 5. Threemain observations can bemade. First, the automatically se-
lected covariance estimator were consistently more appropriate than
the empirical covariance. Second, FA and SC consistently delivered bet-
termodels than PCA and Ledoit–Wolf (LW) respectively. The SC estima-
tor prevailed where the number of samples was lower while FA
produces the most appropriate fit when applied to multi-sensor
datasets or when the number of samples was high.
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Fig. 4.Rank estimates for low and highnumbers of baseline samples computed on the different datasets. The estimated rankwas higherwhen increasing thenumber of samples. FA always
outperformed PCA suggesting that M/EEG noise is heteroscedastic, not homoscedastic. One also observes that PPCA rank estimates are almost always higher than equivalents estimated
with FA.
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Whitened global field power
In Fig. 6 whitened global field power (GFP) plots are presented for

each estimator. The GFP dynamics exemplify respective under- and
overestimation tendencies. The black dotted horizontal line indicates
the expected value for white Gaussian data. GFP values below and
above this line correspond to overestimation and underestimation of
the noise level, respectively. When the noise is underestimated, that is
when normalized GFPs are below one, the procedure is said to underfit.
In contrast, it is said to overfit if the noise is greater than one during the
baseline periods (between−200 and 0ms). The huge deflections in the
post-baseline window represent time-locked brain responses.

In four out of seven datasets the empirical covariance produced
clearly visible overfitting while the regularized covariance tended to
underfit the noise. However, in almost any other case, differences
seem hard to distinguish by mere visual inspection.
Whitened evoked response
Fig. 7 shows whitened evoked responses for each dataset where the

whitenerwas computed from the bestfitting covariance estimator deter-
mined by its log-likelihood onunseen data. Except one case,where hand-
set regularization was most-appropriate, either SC or FA performed best.

Source estimates

The impact of covariance estimation was practically examined by
computing signal contrasts that reflect cortical activity related to face
perception over a range of different numbers of epochs for both the
worst and the best estimators. Fig. 8 shows contrast-results for 20, 40,
and 60 input epochs, respectively. The empirical covariance and SC
were theworst and the best estimator across the entire range of epochs,
respectively.When comparing signal dynamics, i.e., the spatial standard



Fig. 5. Log-likelihoods of covariancemodels for low and high numbers of baseline samples obtained on the different datasets. Either cross-validated SC or FA turned out to the best model.
FA was always more appropriate than PCA. Except for the multi-sensor dataset, FA outperformed SC only when the number of samples was high. In most cases, standard regularization
either under- or overestimated the baseline noise.
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deviation, across epochs, the best covariance estimator showed virtually
no variabilitywhereas theworst estimator led to different source ampli-
tudes, depending on the number of epochs. This higher consistency for
source amplitudes based on the best estimator was also reflected in
more consistent spatial extents of the activity maps at a fixed threshold.
With only 20 epochs of input data, the activationmaps based on the best
estimator suggest a pronounced ventral–temporal center of activity in
the mid-fusiform gyrus, a brain region commonly associated with pro-
cessing faces (Haxby et al., 2002; Yovel and Freiwald, 2013). In contrast,
the worst estimator produced activation maps that emphasize nearly
the entire ventral part of the temporal lobe. Importantly, for the best es-
timator, spatial maps look visually identical when varying numbers of
epochs. This is consistent with the spatial standard deviation depicted
in the second row of the figure.While the red area shrinks with increas-
ing numbers of epochs, the blue area remains constant across epochs.
Taken together, with the worst estimator, source amplitudes more
strongly depended on the number of samples whereas differential dy-
namics in spatial standard deviation also indicated a more variable spa-
tial extent of cortical activation. In general, differences between the best
and the worst estimator decreased with increasing numbers of epochs.
Discussion

The present study addressed the problem of data-driven regulariza-
tion of spatial covariance estimates computed on magnetoencephalog-
raphy and electroencephalography M/EEG data. Such covariance
estimates are a building block of most (M/EEG) data analysis pipelines.
They are particularly useful for spatial whitening of data which is re-
quired by most distributed source localization methods. This problem
was approached by employing model selection with cross-validation.
In detail, the log-likelihood of the covariance was proposed as a metric
to select the best model out of a set of alternative covariance estimators.
In addition to empirical and regularized covariance estimates which re-
flect common standard choices, covariance models with shrinkage esti-
mators and latent variable models were subjected to model selection.
Data were validated by simulations, sensor spacemetrics and, practical-
ly, by source localization of an experimental contrast from a face pro-
cessing (MEG) experiment.

Both, simulation and sensor space results unequivocally demon-
strated that there was not one single model that fitted all scenarios
and datasets. Different global parameters, such as sample size, the true



Fig. 6. Global field power (χ2 statistic) of whitened evoked data for low and high numbers of baseline samples and different datasets. The dotted vertical black represents the expected
baseline amplitude of one, given Gaussian baseline data.
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number of dimensions, the noise structure and the sensor type shaped
the log-likelihood of the covariance estimators. The simulation sug-
gested that covariance models based on latent variable models deliv-
ered a more appropriate covariance estimate if the true rank of the
data was low and the number of samples was sufficient. In detail,
given a sufficient sample size, factor analysis (FA) was the best model
when the structure of noise was heteroscedastic while probabilistic
principal component analysis (PCA) performed best with homoscedas-
tic noise. This stands in contrast to the M/EEG study were probabilistic
principal component analysis (PPCA) never achieved the highest
model probability on any of the M/EEG datasets. However, the sensor
space validation suggests that on M/EEG data two solutions are likely
to be selected, either favoring FA or shrunk covariance (SC) models. In
this context it is helpful to recapitulate differences between FA and
PCA. Due to its diagonal noise term, the former can cope with varying
noise levels across channels. FA can therefore describe the data with
fewer dimensions. This is because in such a model, variance that is not
captured by the components is captured in the diagonal noise term.
However, such complex models require more samples than simple
models to be properly estimated. Simulation and sensor space findings
are consistent with these characteristics suggesting that FA leads to a
lower rank estimates than PPCA but was only preferred when the num-
ber of sampleswas sufficiently high. Second, in themulti-sensor dataset
only FA produced appropriate noise estimates for combined sensor
types. Also, in other caseswhere FAwas selected the number of samples
was higher, not lower. In contrast, if analysis was constrained to one
sensor type, in most cases SC was selected irrespective of the sample
size.

Taken together, these findings indicate that the model likelihood
may depend on the system type and the recordings themselves in
ways which are not sufficiently understood. In this sense, M/EEG data
problems are subject to the “no free lunch theorem” (Wolpert, 1996)
which characterizes problems that do not permit finding short cuts. In
practice, these findings suggest evaluating at least FA, SC in addition to
the default regularization and to then choose the best model using
cross-validation with unseen data.



Fig. 7. Time-locked whitened evoked responses with the optimal covariance model for low and high numbers of baseline samples and different datasets. Selection based on results
depicted in Fig. 5.
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The simulation results on heteroscedastic noise are not surprising
per se, given themodel assumptions of FA. However, combining simula-
tion and sensor space results reveals a basicM/EEG signal-characteristic.
Sensor noise is heteroscedastic, and not homoscedastic. This is
reflected by the fact that on MEG data PPCA models never prevailed,
whereas such models were preferred under certain simulated condi-
tions. M/EEG methods should, therefore, focus onmodels that take into
account the variable sensor noise in M/EEG. This aspect seems only
partially covered by the literature. Examples are given by research on
independent component analysis (ICA) in neuroimaging (Beckmann
and Smith, 2004; Dammers et al., 2008; Hyvärinen et al., 2004) and
approaches which leverage FA for source imaging and artifact rejection
(Nagarajan et al., 2007; Zumer et al., 2007; Zumer et al., 2008).

The sensor space findings demonstrate another important implica-
tion of this study. In the context of model selection, mere visualization
is insufficient to assess the quality of the whitening step. Two visual in-
spection methods have been demonstrated, namely whitened global
field power (GFP) plots and whitened evoked plots. Both provide with
basic diagnostics for spatial whitening but only provide limited guid-
ance on how to rank the different models. To go beyond graphical
data exploration, the multivariate Gaussian log-likelihood score evalu-
ated on left out data can be regarded as an unbiased quantifiedmeasure
of estimator performance. Assuming that thewhitened noise covariance
is an identitymatrix, this quantitymeasures how close the covariance of
thewhitened data approximates the identity matrix. Or, put differently,
to which degree the data will be whitened by a whitening operator
computed from the covariance estimate. In other words, it is a quanti-
fied measure of the success of the spatial whitening procedure.

Importantly, the log-likelihood procedure is closely linked to
commonly neglected aspect of M/EEG data analysis. Since the log-
likelihood was evaluated on data that were not used for parameter esti-
mation it measures what is called in machine learning the “out of sam-
ple performance” (Breiman and Spector, 1992). This is relevant, since, in
fact virtually allwhitening operations onM/EEGdata are applied to time
intervals which were not used for the estimation of the noise model,
i.e., post-baseline time-locked signals which reflect brain activity in
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Fig. 8.Worst and best covariance estimators for faces N scrambled contrast. The top row represents dSPMmaps around themaximum amplitude at 175milliseconds for theworst covari-
ance estimators. Themid-row represents average temporal dynamics forworst and best estimators superimposed. The lines refer to the average signal across vertices, the areas depict the
standard deviation across vertices. The bottom-row represents dSPMmaps around the maximum amplitude at 175 milliseconds for the best covariance estimators. The columns refer to
results for 20, 40 and60 epochs of input data. Statisticalmaps are thresholded at the 99th percentile of themaximumamplitude at 60 epochs. For comparability to other studies, results are
shown on the FreeSurfer average brain's inflated surface in ventral view. The curvature of the cortical surface is indicated by light and dark gray colors for gyri and sulci, respectively.
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addition to noise. Likewise, often the meg noise covariance is not even
computed from the dataset analyzed but from so called empty room re-
cordings, which correspond to measurements during which no subject
is present. Such empty room recordings are commonly used when run-
ning time frequency analyses and are regarded asmandatory for resting
state analyses (Gramfort et al., 2013b; Hämäläinen et al., 2010; Lin et al.,
2004). As a consequence, goodness of fit measures computed on unseen
data are generally desirable. Based on formula (3), the procedure that
was developed and evaluated in this study can be easily generalized
to any covariance estimate, even beyond the estimators that were in-
vestigated in the present context. Importantly, this new method can
be used with any kind of inverse solution, either of minimum-norm es-
timates (MNE) type or beamforming type. In this context it is important
to note that the impact of the method is expected to depend on the in-
verse solver and its exact use case. For non-normalizedminimum-norm
estimates, i.e. plain vanilla MNE, the covariance matrix only matters for
large regularization parameters, i.e. low SNRs. For perfect (noise-free)
data, the covariance matrix would not be required at all. For noise-
normalized estimates (dSPM and sLORETA), covariance matrices are
more essential. Beamformers are a different case, as their estimation
typically relies on two covariance estimates, one that aims to describe
the spatial structure of noise, and one that is concerned with the spatial
structure of the data. An accurate estimate of data covariance matrix is
particularly crucial in the context of beamformers (Hauk and Stenroos,
2014; Woolrich et al., 2011). Our findings are therefore expected to be
even more relevant for methods based on beamformers.

The practical impact assessment on a publicly available dataset dem-
onstrated at least two critical implications. Across varying amounts of
trials, the best estimator led to more stable source estimates. Around
20 epochs this effect was dramatic. The worst estimator led to massive
increase of cortical source amplitudes. The best estimator still estimated
the same contrast-amplitudeswith only 20 trials of exposure compared
to three times as many trials. These results demonstrate that small
datasets, where a covariance estimate from baseline segments is pre-
ferred and which only consist of few epochs (see, for example Lu
et al., 2014), are compatible with source analysis, should the noise co-
variance be carefully estimated. More importantly, this procedure can
be expected to reduce overall variability in source estimates across
subjects. The source localization results suggest an asymptotic trend to-
wards convergence between the worst and the best estimator. Consis-
tent with the simulation findings, with increasing numbers of epochs
their differences became increasingly smaller. But, practically, stability
differences are still visible when comparing results between 40 epochs
and 60 epochs exposure, which is a more common scenario than the
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previously mentioned analysis of sparse events. This implies that the
worst covariance estimator which, in this case, turned out to be the de-
fault empirical sample covariance, will lead to increased variance as a
function of different numbers of epochs. This case is practically relevant
if one assumes that, for a group of subjects different numbers of trials
will be selected, based on behavioral and artifact-related exclusion
criteria. It is then easily conceivable that different epoch counts can
lead to a ramping-upof variancewhichwill be prevented by a robust es-
timator that exerts a stabilizing impact on the amplitudes of source
estimates.

To the best of our knowledge, this is the first time that an automated
procedure based on cross-validation on unseen data has been employed
formodel selection in spatialwhitening ofM/EEGdata and has been val-
idated on source localization results which are relevant to the broader
cognitive neuroscience community. To avoid an unbalanced view, relat-
ed studies need to be mentioned though. One such approach has been
recently proposed by Woolrich et al. (2011) who employed Bayesian
PCA (Bishop, 1999) to estimate noise and data covariance matrices in
the context of beamforming. Bayesian PCA is an alternative approach
to infer the number of latent components in the PCA model. It solves
this problem using a Bayesian inference approach, what is achieved
here with PPCA and cross-validation (to avoid overfitting). Practically,
as with the PPCA and FA estimators, the amount of regularization and
the number of components are learned from the data. Also, the Bayesian
PCAmodel is not specific to oneM/EEG inverse problem. It can hence be
plugged into any M/EEG imaging technique that is formulated as a
constrained linear model. However, the method presented in the
current study goes beyond the Bayesian PCA (Woolrich et al., 2011), as
it quantifies the benefit of each modeling assumption and can select
the best estimator over a richer class ofmodels. This is an important con-
sideration since latent variable models can be outperformed by shrink-
age when few samples are available for estimation. Second, Bayesian
PCA is a PCA model and hence assumes a homoscedastic noise which
has been shown to be a suboptimal assumption forM/EEGdata.More ad-
vanced models have been proposed in which the baseline noise covari-
ance is estimated jointly with the post baseline data covariance
(Nagarajan et al., 2007; Zumer et al., 2007, 2008). However, these ap-
proaches are particularly tailored for beamformer methods and not for
MNE-type inverse solvers which do not rely a post-baseline data covari-
ance. Interestingly, spatiotemporal estimators of M/EEG covariance that
consider both the spatial correlations between sensors and the temporal
dependencies between time samples have been previously proposed
(Bijma et al., 2005). This approach is promising, nevertheless it is based
on pure maximum likelihood, hence, does not implement any type of
regularization to reduce estimation variance. This warrants future inves-
tigations which combine the automated regularization we propose here
and such spatiotemporal covariance models.

It is important to note that the proposed approach is subject to cer-
tain numerical constraints. The computation of the low rank estimators
can result in numerical errors if the data is rank-deficient. As a conse-
quence, at the current stage of development it is recommended to com-
pute the PPCA and FA models before applying processing steps such as
signal space separation (SSS), signal space projection (SSP) or ICA
(Hyvärinen et al., 2004; Taulu et al., 2005; Uusitalo and Ilmoniemi,
1997) and then apply dimensionality reducing operators to both the
data and the covariance estimators. Alternatively, when computing
the noise covariance after application of dimensionality reducing oper-
ators, the PPCA and FAmodels should be usedwith care. Second, outlier
samples may strongly distort model selection in certain estimators, es-
pecially FA. It is therefore recommended to remove heavily corrupted
time segments before estimation.

To conclude, this study has developed an automated procedure to
tune covariance estimates computed fromM/EEG data. This method es-
tablishes a quality-preserving function, since it will lead to estimates
that will not fall behind the default empirical covariance. Indeed the re-
sult of the automatic whitening performance was in almost all cases
more accurate than whitening based on hand-set regularization. But it
was always preferable to the empirical covariance. However, for the un-
likely case that all other options fail, the empirical covariance would be
selected as fall-back option. Automatic whitening, hence, constitutes a
solution to the regularization problem and helps avoiding ad-hoc pa-
rameterization andother heuristics that are difficult to generalize across
the variety of M/EEG data analysis pipelines. The impact demonstrated
on face-related signal contrasts suggest that this study contributes one
small but important element in a set of measures which help promote
laboratory- and data-independent analysis pipelines which are so ur-
gently needed to improve reproducibility of M/EEG research
(Gramfort et al., 2013b, 2014; Gross et al., 2013).
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