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DBy adulthood, literate humans have been exposed to millions of visual scenes and pages of text. Does the human

visual systembecome attuned to the statistics of its inputs? Using functionalmagnetic resonance imaging,we ex-
amined whether the brain responses to line configurations are proportional to their natural-scene frequency. To
further distinguish prior cortical competence from adaptation induced by learning to read, we manipulated
whether the selected configurations formed letters andwhether theywere presented on the horizontalmeridian,
the familiar location where words usually appear, or on the vertical meridian. While no natural-scene frequency
effectwas observed,weobserved letter-status and letter frequency effects on bilateral occipital activation,mainly
for horizontal stimuli. The findings suggest a reorganization of the visual pathway resulting from reading acqui-
sition under genetic and connectional constraints. Even early retinotopic areas showed a stronger response to
letters than to rotated versions of the same shapes, suggesting an early visual tuning to large visual features
such as letters.

© 2015 Published by Elsevier Inc.
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Many neuroscientists and theorists have proposed the idea that the
visual system has internalized the statistical properties of the environ-
ment (Berkes et al., 2011; Geisler, 2008; Girshick et al., 2011; Long
and Purves, 2003; Shepard, 2002; Simoncelli and Olshausen, 2001).
For example, environmental statistics have been proposed to be the
basis of the Gestalt rules of proximity (Brunswik, 1956) and the princi-
ple of good continuation (Gilbert et al., 2001b). The adaptation of the
visual system to environmental regularities could occur both at the evo-
lutionary scale (Shepard, 2002) and during ontogenetic development
(Berkes et al., 2011; Blakemore and Cooper, 1970; Held and Hein,
1963). In the Bayesian perspective, environmental statistics get inter-
nalized and later enter as a prior which is used to help disambiguate fu-
ture inputs (Kersten et al., 2004; Knill and Pouget, 2004). Classical visual
illusions such as the horizontal-vertical illusion (greater apparent size of
a vertical bar compared to a horizontal bar) may be explained by scene
statistics (Howe and Purves, 2002). This and other illusions may be
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76

77

78

mation, and Research Building,
eet, Taipei, 112 Taiwan ROC.
.

al., Adaptation of the huma
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accounted for by supposing that early visual neuronal circuits are mod-
ified by experience, such that greater populations of cells are assigned to
more frequent features of the environment (Girshick et al., 2011) and
that their horizontal connections internalize the statistics of feature
co-occurrence (Hess et al., 2003).

In the present study, we examined whether the frequency distribu-
tion of line configurations in the environment is reflected in the human
visual system. Changizi et al. (2006) discovered an interesting statistical
regularity in the frequency with which the topological configurations
formed by image contours, such as T, L, or X configurations, occur in
the visual environment. They counted the frequency of each topological
configuration of two or three contour lines in pictures of the natural or
artificial human environment, and observed a systematic ordering
(Fig. 1a). For instance, amongst the two-line configurations, the “L” con-
figuration was always more frequent than “T”, which in turn was more
frequent than “X”. Crucially, this is not the case in simple random ar-
rangements of lines. Furthermore, human visual signs, as taken from al-
phabets, logographic writing systems and other symbol systems,
followed the same statistical distribution, such that the frequency
ranks of the configurations in these two domains were positively corre-
lated (Fig. 1a). In other words, the frequency distribution of line config-
urations in human cultural signsmimicked that found in natural scenes.
n visual system to the statistics of letters and line configurations,
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Fig. 1. Stimulus design for experiment 1. A: Correlation between the frequency of simple line configurations in natural scenes and in writing systems (redraw from Changizi et al., 2006).
The x and y axes indicate the rank of each configuration according to the corresponding frequency. Configurations drawn in dark gray have the lowest ranking in both domains and their
coordinates were shifted slightly to allow the display of the whole configurations. B: Examples of stimuli using in fMRI. 15 line configuration types were selected. 20 stimuli of the same
type (flashed for 200ms, separated by 200ms blanks) were presented in short blocks of 8 seconds, separated by 6–8 s resting periods. The subject’s task was to respond to the single-line
configuration (top left) which appeared occasionally inside the blocks.
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Such a strong link between environmental statistics and cultural inven-
tions is in agreementwith the "neuronal recycling hypothesis"whereby
novel cultural acquisition such as writing maps onto pre-existing corti-
cal systems, thus constraining the range of cross-cultural variations
(Dehaene and Cohen, 2011). According to this hypothesis, Changizi
et al.’s (2006) finding implies that configurations that are frequently ob-
served in the natural environment aremore likely to be selected as visu-
al signs, because they are better encoded in the visual system (Dehaene,
2009).

The above argument is based solely on statistical evidence, and lacks
direct evidence that line configuration statistics are encoded in the visu-
al system.Neurophysiological evidence does suggest that neurons in the
primate infero-temporal cortex can be sensitive to specific line configu-
rations that form non-accidental topological properties (Brincat and
Connor, 2004, 2006; Tanaka, 2003). However, these studies have not
yet investigated whether the cortical representation of these features
mimics their distribution in natural scenes. Here, we used fMRI in
humans to investigate this issue. Our hypothesis was that visual activa-
tion in response to line configurations should be directly proportional to
their natural-scene frequency.

Where in the visual pathway might this effect occur? A prediction
for the locus of the natural-scene frequency effect could be made
based on hierarchical models of visual recognition (Dehaene et al.,
2005; DiCarlo et al., 2012; Rolls and Stringer, 2006; Serre et al., 2007;
Ullman, 2007). All of these models assume that the ventral occipito-
temporal pathway comprises a hierarchy of neural detectors with
progressively larger receptivefields, each tuned to increasingly complex
and abstract combinations of visual features. In humans, the Local Com-
bination Detectors model (Dehaene et al., 2005) assumes that written
word recognition rests on a reorientation of this architecture towards
the detection of letters and their combinations. Based on several prior
fMRI experiments (Dehaene et al., 2004; Vinckier et al., 2007), the
model proposes specific cortical areas for each step: line configurations
and letter fragments in area V2 and V4, abstract letter identities and
their combinations in the more anterior visual word form area (VWFA)
(Cohen et al., 2002). Under the neuronal recycling hypothesis, even
prior to reading acquisition, these areas may already exhibit a bias for
recognizing line configurations, which would make it particularly suit-
able for recognition of written words (Dehaene et al., 2005; Dehaene,
2009; Szwed et al., 2011).

In addition to V2, V4 and VWFA, one should also consider the possi-
bility that the primary visual cortex itself may exhibit sensitivity, not
Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
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only to elementary contours, but also to their frequent combinations.
Recent electrophysiological (McManus et al., 2011) and imaging
(Sigman et al., 2005) studies have revealed that training in shape detec-
tion changes cortical responses even in the calcarine cortex, indicating
that experience could induce a sensitivity to complex visual features
in early retinotopic areas V1 and/or V2. fMRI studies of reading indicate
that even area V1 is more activated by letter strings than by scrambled
stimuli with matched visual features (Szwed et al., 2011, 2014). Indeed,
the calcarine cortex, at the location of area V1, shows a stronger
response to horizontal checkerboards in literate, who used to read
horizontally, than in illiterate subjects (Dehaene et al., 2010a). Those
findings suggest that reading acquisition may lead to perceptual learn-
ing for frequent letter shapes in area as early as V1. In this case, an effect
of the natural-scene frequencies of line configurations might also be
observed in early retinotopic cortex.

In summary, we aim to test whether the frequency distribution of
simple line configurations in natural scenes is reflected in the visual
cortex. In experiment 1, we study the fMRI responses to the line config-
urations studied by Changizi et al. (2006). Given that themost frequent
configurations in natural scenes are also those most frequently used in
human writing systems, the existence of such effect may support the
view that humanwriting systems have evolved fromprior cortical com-
petence. Furthermore, in literate adults, the adaptation to environmen-
tal statistics includes a novel cultural environment: written texts. Thus,
onemight expect the processing of simple line configurations to also be
under the influence of reading experience, a prediction which is further
investigated in Experiment 2.

Experiment 1

In Experiment 1, we collected fMRI data in 18 subjects while they
simply viewed arrays comprising 15 different types of line configura-
tions, selected to span a broad range of natural-scene frequencies, as
computed by Changizi et al. (2006)(Fig. 1). We used a correlation
approach to probe the whole brain for activations correlated with the
logarithm of natural scene frequencies.

Methods

Participants
Eighteen right-handed (9 female), 18–30 year-old native French

speakers, participated in the present fMRI experiment. They had no
n visual system to the statistics of letters and line configurations,

http://dx.doi.org/10.1016/j.neuroimage.2015.07.028
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history of neurological or psychiatric disease, and had normal or
corrected-to-normal vision. Written informed consents were given.
The project was approved by the local ethics committee.

Stimuli
Fifteen configurations were selected from the paper by Changizi

et al. (2006), which provides the frequencies of line configurations in
pictures of the human environment (landscapes, cities, etc.). In this
study, we use as a short-hand the expression ‘natural-scene frequency’
to refer to the logarithm of the average frequencies of line configura-
tions in such pictures.

For each type of line configuration, we used a matlab program to
generate 10 images, each comprising 35 randomly oriented items of
the same type (Fig. 1b). The itemwidth was 0.83-1.22 degrees of visual
angle. The images were 18.9 by 18.9 degrees of visual angle. Total
contour length and number of “on” pixels were matched (the standard
deviation of the numbers of “on” pixels was less than 0.1% across all
conditions).

Design and procedure
Each participant took part in six fMRI runs. The total scanning time

was around 42minutes. Each run lasted about 7 minutes and contained
30mini-blocks of 8 s separated by rest periods of 4–8 s. Eachmini-block
comprised 20 images of the same type of line configuration, each of
which was presented for 200 ms after a fixation interval of 200 ms.
Each run comprised two mini-blocks of each of the 15 distinct types of
line configuration. The 30 blocks were ordered randomly. To maintain
the participants’ attention on the visual stimuli with a minimally de-
manding task, participants were required to monitor the stimulus
stream for the presence of a target probe consisting of a picture with
single-line bars, also displayed for 200 ms. The target appeared in half
of the mini-blocks, and participants were instructed to press a button
as fast as possible upon seeing it. Blocks with a target were randomly
chosen. The target always occurred in the middle of blocks (replacing
one of the images 6–12 within the block of 20 images). In an effort to
maintain attention throughout each 8-second block, subjects were not
told that blocks could only contain at most one target.

MRI acquisition
The acquisition was performed with a 3-Tesla Siemens Tim Trio

system. One anatomical image (voxel = 1x1x1.1 mm) and a total of
1092 functional images were acquired using an Echo-Planar sequence
sensitized to the BOLD effect (TR = 2.4 secs, TE = 30 msecs, Matrix =
64x64; Voxel size = 3x3x3 mm; 40 slices in ascending order).

Data analysis
Data processing was performed with SPM8 (Wellcome Department

of Cognitive Neurology, software available at http://www.fil.ion.ucl.ac.
uk/spm). The anatomical scan was spatially normalized to the avg152
T1-weighted brain template defined by the Montreal Neurological
Institute using the default parameters (nonlinear transformation).
Functional volumes were realigned to correct for movements, spatially
normalized using the parameters obtained from the normalization
of the anatomy, and smoothed with an isotropic Gaussian kernel
(FWHM = 5 mm).

In a first SPM model, experimental effects at each voxel were esti-
mated using a multi-run design matrix modeling the 15 configurations,
the probe trials, and the 6 movement parameters computed at the re-
alignment stage. Each blockwasmodeled as an epoch lasting 8 seconds,
and each probe trial as a punctual event. The regressors were created by
convolving these epochs by the standard SPM hemodynamic response
function. Contrasts averaging the regression weights associated with
each configuration were computed.

These estimates of individual effect sizes were entered in a second-
level analysis with one regressor for each configuration and each partic-
ipant (one-way within-subject ANOVA model). To search for regions
Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
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showing an effect of natural-scene frequency, we used a contrast with
weights proportional to log natural-scene frequency, testing for increas-
ing activation across the configurations in the ANOVA model. We also
tested second-level regression models pitting two variables against
each other, as described further below. Unless otherwise stated, statis-
tics were thresholded at voxel wise p b 0.001 (uncorrected), with an
additional correction for multiple comparisons across the whole-brain
volume based on cluster extent (p b 0.05, FDR corrected). Regions
showing significant effects were labeled with an automated anatomical
labeling system (AAL; Tzourio-Mazoyer et al., 2002).

Results

Behavioral results
Reaction times (RT) outside the range of individual mean ± 3 sd

were excluded. Across participants, the mean RT was 445 ms (SE =
13 ms, range = 348–633 ms), and the mean accuracy was 97 %
(SE = 1 %, range = 82–100%). The RTs and accuracies of each configu-
ration were listed in Appendix Table 1. Repeated one-way ANOVAs re-
vealed small but significant differences between configurations in RT
(F (14, 238) = 2.73; p b .01) and accuracies (F(14, 238) = 2.15;
p b .05). However, natural-scene frequency was not significantly corre-
lated with either RT (r = 0.32, p = .24) or accuracy (r = −0.24, p =
.39). The behavioral results confirmed that the participants maintained
their attention on the visual presentation.

Imaging results
Whole-brain analysis revealed a bilateral occipital cluster with a sig-

nificant positive correlation indicating increasingly stronger activation
for configurations with increasingly higher natural-scene frequency in
early retinotopic areas (Fig. 2 and Table 1).

The scatter plots in Fig. 2 illustrate how occipital activation varies
across the 15 line configurations. Although there is a clear trend as a
function of natural-scene frequency, somedispersion in activation is ap-
parent. Furthermore, one may observe that configurations correspond-
ing to letters (shown in red), which are all of high natural-scene
frequency, yield stronger activations than other configurations with
nearly-equivalent frequency. To formally assess the effect of letter
status, we created a multiple regression model with one regressor per
participant and two regressors of interest: natural-scene frequency
and letter versus non-letter status (X, T, L, H, Y and F configurations
were counted as letters, although note that they often appeared as
rotated in the display; this factor will be controlled in Experiment 2).
In this model, the effect of natural-scene frequency ceased to reach
significance anywhere in the brain, and instead there was a significant
effect of letter status in bilateral occipital cortex, including bilateral V1,
V2, and left V3 (Fig. 3 and Table 2).We also tested the natural-scene fre-
quency effect within only the non-letters, again without any significant
results. Thus, the results suggest that letter status, rather than frequency,
drives occipital fMRI activation in educated human adults.

In an effort to confirm this conclusion while controlling for other vi-
sual variables thatmay be confoundedwith letter/non-letter status and/
or natural-scene frequency, wemeasured several parameters of the dis-
plays: convex area (the surface of the smallest convex polygon that con-
tains a single line configuration item), number of line junctions, number
of strokes (2 or 3), number of angles, and number of terminals (ending
points of a line). The values of the variables for each configuration type
are provided in Appendix Table 1. We also added as a potential con-
found the average response time for target detection in the correspond-
ing block. We created several regression models in which each of these
variables was pitted against natural-scene frequency, and observed that
in the models including letter status or convex area, the variable 'natu-
ral-scene frequency’ no longer yielded a significant effect. In a model
with letter status and convex area, we only found higher occipital acti-
vation for letters than non-letters (Fig. 3). We further tested this letter
status effect in models systematically including letter status and one
n visual system to the statistics of letters and line configurations,
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of the other variables as regressors of interest. Letter status always sur-
vived as the dominant determinant of occipital activation (Fig. 4).

We also tested for a reversed letter-status effect, namely, larger acti-
vations for non-letters than letters, as well as the negative correlation
between brain activations and natural-scene frequency. No such effects
were found in either the ANOVAmodel or the regression model includ-
ing letter status and natural-scene frequency.

Discussion

In Experiment 1,we tested the hypothesis that the natural-scene fre-
quencies of line configurations are reflected in the human visual system.
As predicted, a positive correlation between natural-scene frequency
and brain activation was found only in bilateral occipital visual areas,
at an anatomical location corresponding to area V1/V2 and a small
part of left V3. However, we also found that this effect could be driven
by a partially confounded variable, namely, whether or not a given
line configuration forms a letter of the Roman alphabet. As observed
by Changizi et al. (2006), in all cultures, the shapes that are used as
letters tend to be of high natural-scene frequency. Nevertheless, our
stimulus set included some non-letter line configurations with a
natural-scene frequency nearly as high as that of the letters. Multiple
regression analyses suggested that letter status, not natural-scene fre-
quency, was responsible for the changes in occipital activation.

Such an effect of letter status is compatible with prior observations
that early visual cortex is modified by literacy acquisition (Dehaene
et al., 2010b) and becomes sensitive to letters strings more than to
other stimuli of matched complexity (Szwed et al., 2011, 2014). Note
that this effect is not incompatible with the general hypothesis that
the visual system internalizes the statistics of environmental inputs. It
should be acknowledged that, for highly literate subjects, the environ-
ment most likely includes a high proportion of text, which may there-
fore bias the statistics away from those of natural scenes and towards
those of the subject’s writing system.

Experiment 1, however,wasnot specifically designed to test for a let-
ter effect, but solely to investigate the effect of natural-scene frequency,
and the letter effect was only seen in a post-hoc analysis. In Experiment
Table 1
Brain regions showing natural-scene frequency effect in Experiment 1.

Cluster Size T X Y Z

659 Occipital Calcarine R 6.32 15 −101 0
Cuneus R 6.06 18 −97 7
Inf. L 5.75 −12 100 −8

Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
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2, we therefore aimed to provide a replication in which the effects of
natural-scene frequency and letter status were manipulated indepen-
dently. To this aim, we capitalized on the fact that, in written texts,
letters appear at a specific angle. Beyond about 45 degrees of rotations,
the recognition of letters andwords becomes severely degraded, accom-
panied by a sudden onset of parietal lobe activations suggesting serial
Fig. 3.Disappearance of the effect of natural-scene frequency once other variables are con-
sidered. The results of two regressionmodels are shown, each containing two regressors of
interest: the line configuration frequency in natural scenes and either the letter status
(whether the configuration forms a letter of the Roman alphabet or not) or the convex
area (estimating the surface occupied by an individual line configuration item in the dis-
play). Images are SPMt maps (N= 18, thresholded at T N 3.12, voxelwise p b .001, uncor-
rected; clusterwise p b 0.05, FDR corrected).

n visual system to the statistics of letters and line configurations,
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t2:3 Cluster Size T X Y Z

t2:4 531 Occipital Mid. L 9.11 −18 −94 −5
t2:5 Mid. L 5.04 −27 −85 10
t2:6 Mid. L 4.80 −39 −91 4
t2:7 513 Occipital Mid. R 8.45 24 −91 7
t2:8 Calcrine R 8.05 18 −100 1
t2:9 Lingual R 4.58 6 −85 −11

5C.H.C. Chang et al. / NeuroImage xxx (2015) xxx–xxx
C

effortful deciphering (Cohen et al., 2008). In Experiment 2, we therefore
presented the very same topological line configuration at two different
angles, only one of which corresponded to a letter. We selected 8 letters
(AKYHXFTL) and created a fixed set of 8 corresponding non-letter stim-
uli by rotation or symmetry (Fig. 5). Although the range of variation in
natural-scene frequency was smaller than that in Experiment 1, the 8
configurations still spanned more than two orders of magnitude in the
Changizi et al. scale (Appendix Table 2), thus achieving an orthogonal
design with independent factors of letter status and natural-scene
frequency.

Experiment 2 also included another manipulation of the retinotopic
location of the items. In Experiment 1, we attempted to maximize the
effect by covering the available visual field with many items. In Experi-
ment 2, the stimuliwere presented in amore restricted part of the visual
field, either along the horizontal or the vertical meridian (Fig. 5). Be-
cause the Roman alphabetic system is based on horizontal lines read
from left to right, expert readers get considerablymore training in letter
decoding along the horizontal meridian. Although a page of textmay fill
a large part of the visual field, the reader’s attention is typically focused
on the letters left and right of fixation, and this is likely to have a deter-
minant effect on the acquisition of visual expertise. Indeed, behavioral
and brain-imaging evidence suggests an enhanced representation of
stimuli presented at or near the horizontal meridian in expert readers
(Dehaene et al., 2010b; Nazir et al., 2004). Accordingly, onemay predict
a larger effect of letter status in retinotopic cortical regions coding for
the horizontal meridian, than in those coding for the vertical meridian.
U
N
C
O

R
R
E

L

Fig. 4.Occipital activation is primarily determined by letter status, evenwhen other confounded
two regressors: letter status and one of the other variables (N = 18, thresholded at T N 3.12, v
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Conversely, one may hope to find a purer effect of natural-scene
frequency, less strongly affected by reading experience, for stimuli
presented along the vertical meridian.

Experiment 2

Methods

Participants
After exclusion of one subject (see below), 18 right-handed, 18–30

year-old native French speakers (10 female, 8 male) were retained in
this fMRI experiment. They had no history of neurological or psychiatric
disease and normal or corrected to normal vision. Written informed
consents were given. The project was approved by the local ethics
committee.

Stimuli
Eight letters were selected: AKYHXFTL. Wewrote a matlab program

to display them in simple line form. For each letter, we selected a trans-
formation (flipping and/or rotation ranging from 55 to 180 degrees) to
create a corresponding non-letter. We endeavored to match letters and
non-letters for the number of vertical and horizontal lines, with the
single exception of configuration “X”. Thiswas done to avoid a confound
between letter/non-letter status and line orientation, since it is known
that cellswhose receptive fields fall near the vertical and horizontalme-
ridians exhibit a preference for vertical and horizontal lines, respectively
(Furmanski and Engel, 2000).

Pictures corresponding to thirty-two conditions (8 configurations x
2 letter status x 2 presentation orientation) were created (Fig. 5). Each
picture contained 10 items of the same line configuration, either
horizontally or vertically aligned, with a small spatial jitter (Fig. 5).
The size of each item was proportional to the distance from fixation,
in order to compensate for the increase in receptive field size and the
corresponding loss in spatial resolution. The formula we used for item
size (item size in degrees = 0.15 x distance from the fixation in
degrees + 0.48) was derived from Harvey and Dumoulin (2011). The
pictures were 19.7 by 19.7 degrees of visual angle.
variables are taken into account. Each image is a SPMtmap from a regressionmodel with
oxelwise p b .001, uncorrected; clusterwise p b 0.05, FDR corrected).

n visual system to the statistics of letters and line configurations,
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Design and procedure
The procedure was similar to Experiment 1, except the number of

blocks (32) and the task. In order to better equate task difficulty across
the different line configurations, the bar detection task used in Experi-
ment 1 was replaced by a color detection task: we asked the participant
to press a buttonwhenever they detected a colored item in the pictures.
The colored probe appeared 40 times in a pseudo-randomized order, so
that the probe never occurred as the first or last trial in a block, and that
any two probes were separated by at least three trials.

MRI acquisition
The acquisition was performed with a 3 Tesla Siemens Tim Trio sys-

tem. One anatomical image (voxel= 1×1×1.1mm) and a total of 1890
functional imageswere acquired using amultiband sequence developed
by the Center forMagnetic Resonance Research (CMRR) (Feinberg et al.,
2010; Moeller et al., 2010; Xu et al., 2013) and sensitized to the BOLD
effect (TR = 1.5 secs, TE = 32 msecs, Matrix = 128×128; Voxel
size = 1.5×1.5×1.5 mm; 54 axial slices covering the occipital and
most inferior part of the temporal lobe).

MRI analyses
The data was preprocessed with the same procedure as in Experi-

ment 1. In the first level SPM models, experimental effects at each
voxel were estimated using a multi-run design matrix modeling the
eight configurations, targets in the four position (right, left, upper,
lower), and the six movement parameters. Each block was modeled as
an epoch lasting 8 seconds, and each probe trial as event with zero
duration. The regressors were created by convolving these epochs by
the standard SPMhemodynamic response function. Contrasts averaging
the regression weights associated with each configuration were
computed.

These estimates of the individual effect sizes were entered in a
second-level analysis with one regressor for each configuration, as
well as each participant. The analysis was donewithin a mask including
the occipital regions, lingual gyrus, and fusiform gyrus from the Wake
Forest University (WFU) PickAtlas (Maldjian et al., 2003). Specific re-
gions of interest (ROIs) described in the next paragraph were also in-
cluded. For the voxel-based analysis, the activations were thresholded
at p b .005 and corrected at cluster level FDR p b 0.05.

ROI analyses
To perform the analysis of regions of interest (ROIs), masks of left

and right V1/V2, V3/V4, and V5 based on a cytoarchitectonic maximum
probability map (Eickhoff, et al., 2005) were generated using SPM
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Anatomy Toolbox version 1.8 (http://www.fz-juelich.de/inm/inm-1/
spm_anatomy_toolbox). Masks of left and right FG1 and FG2 as de-
scribed in Caspers et al. (2013) were used. The mask of VWFA was a
10 mm sphere around the classical coordinates (MNI [−42, −57,
−12]) (Cohen et al., 2002). We flipped the mask of VWFA to get its
counter-part in right hemisphere (rVWFA). The masks of lateral occipi-
tal areas (LO) were based on the centroids of LO1 and LO2 provided by
Larson and Heeger (Larsson and Heeger, 2006) and generated with
Marsbar (Brett et al., 2002).

For the early retinotopic areas (V1/V2 and V3/V4), we localized re-
gions corresponding to the horizontal and vertical meridians by asking
the participants to go through a localizer run after themain experiment.
The localizer run included 25 blocks of flashing horizontal checkerboard
and 25 blocks of flashing vertical checkerboard. Within each hemi-
sphere, ROIs more sensitive to stimuli along the horizontal meridian
(H meridian) in V1/V2 and V3/V4 were determined by selecting the
30 voxels most responsive to horizontal than to vertical checkerboards.
These subject-specific ROIs were then used to extract response to hori-
zontally presented stimuli. Conversely, ROIs more sensitive to stimuli
along the vertical meridian (V meridian) were determined by selecting
the 30 most active voxels showing the opposite pattern. These subject-
specific ROIs were then used to extract responses to the vertically pre-
sented stimuli. For higher visual regions, fixed subject-independent
masks were used, because in those regions the meridian localizer no
longer provided systematic distinctions of horizontal and vertical me-
ridians within each subject, consistent with previous publications on
retinotopy (Engel, Glover, & Wandell, 1996; Wotawa, Thirion, Castet,
& Faugeras, 2005).

To test the effect of letter status in the ROI analysis, a paired T-test
was applied to each ROI under the horizontal and vertical presentation
conditions. To test the frequency effect and the interaction between let-
ter status and the other factors, we used a mixed model with partici-
pants as random effects and letter status, orientation of presentation,
natural-scene frequency, and letter frequency as fixed effects.
Results

Behavioral result
Across participants, the mean accuracy of the colored item detection

task was 98 % (SE = 0.7 %, range = 88-100%) and the mean RT was
468 ms (SE = 9.17 ms, range = 367–535 ms). The participant with
the lowest accuracy (85 %) also yielded the longest RT (624ms). Consid-
ering the difference in performance between this participant and the
group average, this participant was excluded from further analysis.
n visual system to the statistics of letters and line configurations,
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Imaging results

Letter status effect. In the early retinotopic areas, ROI analysis revealed
larger activation for letters than non-letters only in the horizontal pre-
sentation condition and only in the left V1/V2 area (t(17) = 2.7, p =
.016). In this region, letters induced 8% more activation than non-
letters (Fig. 6a).

The corresponding whole-brain SPM analysis revealed an interac-
tion between letter status and orientation, namely, larger activation
for letters than non-letters when presented in the horizontal meridian
than in the vertical meridian, at an occipital site corresponding to left
V1/V2 (94% of the whole volume of the cluster)(Fig. 6b and Table 3).

In the higher visual cortex, the ROI analysis revealed larger activa-
tion for non-letters in all ROIs except the left FG1 and FG2 (Fig. 7a).
This effect was found only for horizontal presented stimuli in left V5
U
N
C
O

R
R
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T

B

A

Horizontal(Letters 
Vertical(Letters - N

L

Fig. 6. fMRI responses to letter and non-letter stimuli in early retinotopic areas. A: ROI analysis
voxels were selected based on their stronger responses to horizontal than to vertical checkerb
these voxels to letter and non-letter stimuli presented in the same orientation (H or V) in the
and non-letters, p b .05). B: Whole-brain search for the predicted interaction between letter st
non-letters for horizontal than for vertical stimuli (N = 18, thresholded at T N 3.12, voxelwise
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(t(17) = −3.0, p = .008), LO1 (t(17) = −2.8, p = .014), LO2
(t(17) = −3.3, p = .004), VWFA (t(17) = −2.1 p = .046), right V5
(t(17) = −2.5, p = .023), LO1 (t(17) = −3.5, p = .002), LO2
(t(17) = −4.1, p = .0007), FG1 (t(17) = −3.3, p = .003), FG2
(t(17)=−2.9, p= .011), and rVWFA (t(17)=−2.6, p= .018). Larger
activation for letters than non-letters was found only in right V5
(t(17) = 2.1, p = .047).

A significant Interaction between orientation and letter status was
found in the left V5 (t(547) = −2.5, p = .01),VWFA (t(547) = −2.2,
p = .03), right V5 (t(547) = −2.7, p = .007), LO2 (t(547) = −2.6,
p = .009), FG1 (t(547) = −3.0, p = .003), FG2 (t(547) = −2.6, p =
.01), and rVWFA (t(547) = −3.0, p = .005).

Consistent with the ROI analyses, results of whole-brain SPM analy-
ses also revealed larger activation for non-letters than letters (Table 3,
non-letters vs. letters) and an interaction between letter status and
E
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F

- Non-letters)  >
on-letters)

within anatomically-defined probabilistic maps for V1/V2 and for V3/V4, subject-specific
oards (H) or vice-versa (V) in the localizer run. The graphs show the average response of
independent line configuration runs (* indicates significance difference between letters
atus and presentation orientation. SPMt map for a greater difference between letters and
p b .005, uncorrected; clusterwise p b 0.05, FDR corrected).

n visual system to the statistics of letters and line configurations,
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t3:1 Table 3
t3:2 Brain regions showing significant effects of letter status, orientation, natural-scene
t3:3 frequency, letter frequency, or the interactions between them in Experiment 2.

t3:4 Cluster Size T X Y Z

t3:5 horizontal(letters vs. non-letters) N vertical(letters vs. non-letters)
t3:6 543 Occipital Calcrine L 4.10 −9 −93 −8
t3:7 Lingual L 3.54 −9 −90 −16
t3:8 Mid. L 3.48 −15 −99 10
t3:9
t3:10 non-letters vs. letters
t3:11 952 Occipital Mid. L 4.29 −33 −85 3
t3:12 Inf. L 3.55 −47 −81 −8
t3:13
t3:14 horizontal(non-letters vs. letters) N vertical(non-letters vs. letters)
t3:15 577 Occipital Mid. R 3.96 42 −82 1
t3:16 Inf. R 3.27 35 −82 −5
t3:17 Temporal Mid. R 3.48 51 −69 −2
t3:18
t3:19 horizontal(letter frequency) N vertical (letter frequency)
t3:20 419 Occipital Cuneus R 3.74 21 −96 10
t3:21 Sup. R 3.51 26 −93 19
t3:22
t3:23 orientation × letter status × letter frequency
t3:24 1351 Occipital Inf. L 4.81 −21 −100 −7
t3:25 Mid. L 4.36 −42 −90 −5
t3:26 Inf. L 4.28313 −35 −93 −11
t3:27 825 Occipital Mid. R 4.26 33 −91 4
t3:28 Mid. R 4.13 38 −88 12
t3:29 Inf. R 3.83193 39 −91 −5
t3:30
t3:31 number of junctions
t3:32 1346 Occipital Fusiform L 6.88 −39 −77 −16
t3:33 Inf. L 4.90 −39 −87 −13
t3:34 885 Inf. R 5.65 38 −79 −17
t3:35 Inf. R 4.15 44 −75 −10
t3:36 Fusiform R 3.68 36 −69 −14
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orientation in higher visual cortex (Table 3, horizontal(non-letters vs.
letters) N vertical(non-letters vs. letters)). This interaction again
showed that the increased activations to non-letters than letters were
mainly found with the horizontal stimuli.

Natural-scene frequency and letter frequency effects. The fact that we
failed to observed increasing brain activation for configurationswith in-
creasingly higher natural-scene frequency, either in SPM analyses or in
ROI analyses, could result from the fact that after learning to read, the vi-
sual system is more sensitive to the frequencies of line configurations in
texts rather than in the natural environment. To further test this idea,
we examined the effect of the logarithm of letter frequency. Letter fre-
quency was extracted from French texts, the subject’s native language,
and was weighted by the frequencies of the carrier words, regardless
of case, as provided by www.LEXIQUE.org (New et al., 2001). Note
that the correlation coefficient between natural-scene frequency and
French letter frequency was positive but non-significant (r = 0.52,
p = .26).

When we included letter status, orientation, natural-scene frequen-
cy, and letter frequency in the model for the ROI analysis, a three-way
interaction among letter status, orientation, and letter frequency was
observed in higher visual cortical areas including left LO1 (t(547) =
2.1, p = .03), LO2 (t(547) = 2.4, p = .02), FG2 (t(547) = 2.3, p =
.02), VWFA (t(547) = 2.6, p = .008), right LO1 (t(547) = 2.7, p =
.008), LO2 (t(547) = 2.6, p = .01), FG2 (t(547) = 2.7, p = .007), and
rVWFA (t(547) = 2.7, p = .006). The profile of this triple-interaction
was consistent with an increase in activation with letter frequency,
but only for letters and only in the horizontal position (see Fig. 7b). It
also showed that non-letters only had larger activations compared to
letters with low letter frequencies, but did not differ from high-letter-
frequency ones. There was no effect in early retinotopic areas.

We further examined the letter frequency effect separately for hori-
zontally presented letters, horizontally presented non-letters, vertically
presented letters, and vertically presented non-letters. Significant letter
frequency effects were only found in horizontal meridian. For letters,
Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
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configurations with higher letter frequency elicited larger activation,
while non-letters showed the opposite pattern. The regions showing a
positive correlation between letter frequency and brain activation for
horizontally presented letters were left LO2 (t(125) = 3.04, p =
.003), left FG1 (t(125) = 3.04, p = .003, left FG2 (t(125) = 3.13, p =
.002), VWFA (t(125) = 3.50, p = .0006), right V5 (t(125) = 3.18,
p = .002, right LO1 (t(125) = 3.50, p = .0006), right LO2 (t(125) =
2.87, p = .005), right FG1 (t(125) = 2.44, p = .02, right FG2
(t(125) = 3.47, p = .0007), and rVWFA (t(125) = 3.80, p = .0002).
The regions showing negative correlation between letter frequency
and brain activation for horizontally presented non-letters were left
LO1 (t(125) = −2.45, p = .02), right LO1 (t(125) = −2.36, p = .02),
right LO2 (t(125) = −2.37, p = .02), rVWFA (t(125) = −2.00, p =
.05).

Consistent with the ROI analyses, voxel-based SPM analyses also
showed an interaction between letter frequency and orientation, as
well as a three-way interaction among letter frequency, letter status,
and presentation orientation (Table 3).

Negative effect of natural-scene frequency and the role of junction number.
As reported above, we did not observe any positive correlations be-
tween brain activations and natural-scene frequency. Although a nega-
tive correlation was found in the voxel-based analysis in bilateral
ventral occipito-temporal cortex (Appendix Table 2) and in the ROI
analysis in right LO2 (t(547) = −2.3, p = .02; t(547) = 2.3, p = .03),
given the small number of items used, it could be due to confounded
factors. One such confound could be the number of line junctions: the
correlation coefficient between natural-scene frequency and number
of junctionswas -.62 (p=0.10). Indeed, increased activation for config-
urationswithmore junctionswas observed in the same regions, at a site
plausibly corresponding with area V4 (V4 covered 61% and 30% of the
volume of the cluster in right and left hemisphere respectively) (Fig. 8
and Table 3), and in a model where both variables were included, the
negative correlation between natural-scene frequency and brain activa-
tion was no longer significant, while the number of junctions effect
remained.We thereforewent back to experiment 1 and tested the num-
ber of junction effect. The same regions showing an effect of the number
of junctions in Experiment 2 were also detected in Experiment 1 at a
lower uncorrected threshold (p b .005 voxelwise, uncorrected (Fig. 8).
We therefore conclude that the number of junctions drove this effect.
Indeed, the finding of a bilateral ventral occipito-temporal effect of the
presence of line junctions is congruent with prior findings by Szwed
et al. (2011).

Discussion

In Experiment 1,we tested thehypothesis that thenatural-scene fre-
quency distribution of configurations is reflected in the human visual
system. We found a positive effect, with bilateral occipital activations
increasing with the frequencies of line configurations, but we also
found that this effect wasmost likely due to the fact that many frequent
configurations also depicted letters of the alphabet, and that the
frequency effect disappeared once letter statuswas controlled for. In Ex-
periment 2, we manipulated independently the effects of natural-scene
frequency and letter status. As in Experiment 1, in early retinotopic
areas, letters elicited more activation than non-letters. This effect was
reversed in the higher visual cortex. Furthermore, no positive natural-
scene frequency effect was found. Instead, a letter frequency effect
was observed in the higher visual cortex. For letters, letter frequency
was positively correlated with brain activations, while for non-letters,
a tendency for a negative correlation between letter frequency and
brain activations was found. Experiment 2 also included a novel factor,
the orientation of presentation of the stimuli, which were arrayed
along either the horizontal or the vertical meridian. We predicted that
letter status effect would be stronger in brain regions corresponding
to the horizontal meridian, which is the location where letter strings
n visual system to the statistics of letters and line configurations,
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are usually presented during reading Indeed, both the letter status effect
and the interaction between letter status and letter frequency were
mainly found in regions corresponding to the horizontal meridian. Fi-
nally, aside from those effects of interest, an increased activation for
configurationswithmore junctionswas observedmainly in bilateral V4.

Line junctions are thought to be useful visual features of medium
size and complexity along the hierarchy from simple line segments to
entire objects or words. In this respect, our finding that line junctions
cause an increased activation in area V4 is consistent with hierarchical
models of visual recognition (Dehaene et al., 2005; DiCarlo et al.,
2012; Rolls and Stringer, 2006; Serre et al., 2007; Ullman, 2007),
which assume that a hierarchy of feature detectors of increasing
Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.07.028
complexity underlies the ventral occipito-temporal “what” pathway. A
similar region was previously reported to respond more strongly to
line drawings where the line junctions were preserved than when they
were deleted (Szwed et al., 2011) (peak around y = −70). Behavioral
studies also demonstrate that the presence of diagnostic line junctions
facilitates the visual identification of objects and words (Biederman
and Cooper, 1991; Biederman, 1987; Szwed et al., 2011).

Our finding of larger activation to letters than to non-letters in early
retinotopic areas, however, suggests that physical properties such as
feature complexity and size are not the only factor determining the cor-
tical representation of visual features. Rather, the history of perceptual
experience, including literacy, must also be considered. This conclusion
n visual system to the statistics of letters and line configurations,

http://dx.doi.org/10.1016/j.neuroimage.2015.07.028
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fits with studies of perceptual learning, showing that extensive training
to detect a T shape yields increased activation in V1/V2when this shape
is presented in the trained orientation compared to untrained orienta-
tions (Sigman et al., 2005). In the reading domain, a similar early visual
effect was observed when contrasting words versus scrambled words,
particularly at an occipital cortical site corresponding to the horizontal
meridian in the left hemisphere (Szwed et al., 2011, 2013). Further,
this effect was absent for participants who were not native speakers of
the tested language (Szwed et al., 2013). These findings, together with
ours, support the hypothesis of an orientation- and location- specific
adaptation in the early retinotopic areas, which is experience depen-
dent and probably driven by the need for fast and parallel processing
(Gilbert et al., 2001b; Gilbert and Sigman, 2007).

It is worth noting that letter selectivity has been previously observed
in higher region of the ventral visual pathway, in tasks that required an
interaction between the perceptual system and higher-order regions
within the reading network. Using a semantic judgment task, Thesen
et al. (2012) compared brain responses to letters, non-letters (false
font), and real words. They found larger brain responses to letter than
non-letters in the lateral posterior fusiform gyrus. This increased neural
activity was sustained for an extended duration and was concomitant
with the activation of a broad lexico-semantic processing network.
Thus, Thesen et al. (2012) suggest that the selectivity to letters in this
area depends on top-down influences accompanying high level reading
tasks. The recent finding that this area’s response to letter depends not
only on previous experience but also on current context again suggests
a top-down influence (Grotheer & Kovács, 2014). Conversely, the
adoption of a low-level perceptual task may explain why our study,
like previous fMRI studies, did not show letter selectivity in lateral pos-
terior fusiform gyrus (Tagamets, Novick, Chalmers, & Friedman, 2000;
Vinckier et al., 2007).

Interestingly,we found that the letter status effect reversed in higher
visual areas, where there was more activation for non-letters than for
letters. Similarly, contrasts between T shapes at untrained orientation
versus trained orientation (Sigman et al., 2005), pseudo-letters versus
real letters (Vinckier et al., 2007), and rotated words versus words in a
normal orientation (Cohen et al., 2008) all yielded an increased activa-
tion in higher ventral occipito-temporal cortex. Those effects might
reflect an on-line top-down influence, such as additional attention
to unfamiliar configurations (Vinckier et al., 2007) or, conversely, de-
creased activation to familiar configurations, due to the possibility of
top-downpredictions (Price andDevlin, 2011). Since such top-down in-
fluences are known to be context-dependent (Gilbert et al., 2001a; Price
and Devlin, 2011), the horizontal presentation could have offered the
Please cite this article as: Chang, C.H.C., et al., Adaptation of the huma
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most appropriate context for letters and increased this top-down influ-
ence, thus providing a tentative explanation for why such an effect was
only found with the horizontal stimuli in Experiment 2.

We also found a letter frequency effect in higher visual cortex. Con-
sistent with this observation, previous studies found a larger activation
for frequent letters and their combinations than for infrequent ones, an
effect which grew from posterior to anterior occipital regions (Binder
et al., 2006; Vinckier et al., 2007). We also observed, more surprisingly,
a negative correlation between letter frequency and brain activations
for non-letters. Non-letters with low letter frequencies yielded larger
activations and accounted for the reversed letter status effect in higher
visual cortex. This might reflect the fact that high-frequency letters are
more resistant to rotations, thus facilitating their recognition under
rotated conditions. Such resistance to rotation could result from neural
representations generalized over broader angles (Ahissar and Hochstein,
2004; Folta, 2003).

While the effects of letter status and letter frequencies were salient,
across two experiments, the current study did not provide any evidence
for a natural-scene frequency effect. We did find an effect of natural-
scene frequency in early retinotopic areas in Experiment 1, but it
seemed to be entirely imputable to the presence of letters amongst
the most frequent stimuli, and vanished once this factor was controlled
in Experiment 2. Why did reading experience have such a massive im-
pact on the visual processing of line configurations, while experience
with natural scenes seemed to have no impact? Since we scanned
students, one explanation is that letters have become themost frequent
line configuration stimuli in their cultural environment, overriding any
(putative) prior effect of natural scenes. Another explanation, not in-
compatible with the first one, is the distinction between active and pas-
sive perceptual learning. Attention and task requirements have been
shown to deeply influence perceptual learning (Crist et al., 2001; Li
et al., 2004, 2008; McManus et al., 2011). In their absence, perceptual
learning is very reduced and occurs only under restricted conditions,
e.g. when the unattended stimuli are paired up with attended stimuli
(Seitz and Watanabe, 2003) or rewards (Seitz and Watanabe, 2009).
Thus, letters might have benefited from the active and intensive experi-
ence of reading acquisition,while natural scenes are only perceived pas-
sively for the most part. The difference and interaction between the
neural mechanisms underlying active and passive perceptual learnings
are still unclear (Sasaki, Nanez, & Watanabe, 2010; Seitz & Dinse,
2007). Future studies on this subject will help to shed further light on
our findings.

It is worth noting that although extensive training plays an impor-
tant role in shaping early visual areas (Gilbert et al., 2001a; Sigman
et al., 2005), there is clearly a limit on early cortical plasticity. Perceptual
learning effect in early visual cortex has so far beenmostly observed for
relatively simple stimuli such as collinear segments (Zhang and Kourtzi,
2010), T shapes (Sigman et al., 2005), moving dots (Watanabe et al.,
2002), or gratings (Folta, 2003; Frenkel et al., 2006). Converging
evidence indicates that stimuli as complex as whole words, even after
extensive reading experience, continue to rely on higher visual areas
such as the VWFA (Dehaene and Cohen, 2011; Glezer et al., 2009;
Glezer and Riesenhuber, 2013). In the current study, in contrast to the
letter status effect in the early retinotopic areas, a bilateral letter fre-
quency effect was only found in higher visual cortex. This result is in ac-
cordance with the local combination detectors model (Dehaene et al.,
2005) and empirical data showing that case- and location-invariance
is only achieved in higher visual cortex (Dehaene et al., 2001, 2004).
The complexity of the shapes that can be recognized by neurons in a
given area is likely to be strongly constrained by the underlying neural
circuitry. For example, it is proposed that the horizontal connections be-
tween pyramidal cells in V1 (Gilbert and Wiesel, 1989; Stettler et al.,
2002) enable subsets of neurons to represent complex visual features
by integrating information beyond the classical receptive field (Gilbert
et al., 2001b; Li et al., 2006, 2008; McManus et al., 2011). As a conse-
quence, perceptual learning in V1 is likely to be constrained by the
n visual system to the statistics of letters and line configurations,
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spatial extent of these connections, which extends over about 4 degree
of visual space (Stettler et al., 2002), large enough to detect a simple con-
figuration such as a letter, but probably not an entire word.

In summary, our main finding, across two experiments, is that the
early visual cortex is highly attuned to literacy, to such an extent that
learned letters induce a stronger activation than matched line configura-
tions, especially when presented at the usual horizontal location where
letters usually appear in written texts. Those results reaffirm the impor-
tance of literacy acquisition in shaping the human visual system
(Dehaene et al., 2010b; Pegado and Nakamura, 2014; Szwed et al.,
2012). Nevertheless, the present study suffers from several limitations.
First, it would have been useful to obtain a complete subject-specific
delineation of visual areas and retinotopic maps. We did use a within-
subject localizer in experiment 2, but given the time available for scan-
ning, we were only able to define ROIs corresponding to horizontal and
vertical meridians in early visual areas. Replicating the present results
and testing their alignment with full retinotopic maps is an important
goal for future search. Second, this study is also limited by the fact that
only educated adults were recruited. Because the impact of letters is so
strong, fMRI studies of educated adults are not ideal to properly evaluate
the original hypothesis proposed by Changizi et al. (2006)), according to
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Appendix Table 1
Parameters for each configuration type in Experiment 1.

Configuration Log natural-scene
frequency

Log letter
frequency

Number of
junctions

Number of
terminals

Num
clos

−1.44 −2.38 1 4 0

−0.67 −1.16 1 3 0

−0.66 −1.25 1 2 0

−4.30 3 2 1

−4.30 3 2 1

−3.07 3 1 1
−2.71 3 2 1

−2.30 1 4 0

−1.77 2 5 0

−1.62 2 4 0

−1.59 2 6 0

−1.51 −2.54 1 3 0

−1.47 −2.05 2 4 0

−1.16 −1.98 2 3 0

−0.94 2 4 0

Appendix A

Appendix Table 2
Parameters for each configuration type in Experiment 2.

Configuration Log natural-scene
frequency

Log letter
frequency

Number of
junctions

Nu
ter

A −1.12 −2.71 3 2
F −1.98 −1.16 2 3
H −2.05 −1.47 2 4
K −3.52 −2.03 1 4
L −1.25 −0.66 1 2
T −1.16 −0.67 1 3
X −2.38 −1.44 1 4
Y −2.54 −1.51 1 3
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which the visual system should also be attuned to natural-scene statistics.
Future work should endeavor to replicate the present design, searching
for natural-scene frequency effects in illiterate subjects (Dehaene et al.,
2010b), in children prior to the acquisition of reading (Monzalvo et al.,
2012), or in monkeys without specific symbol training (Brincat and
Connor, 2004; Hung et al., 2012; Yau et al., 2012).
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ber of
ures

Number of
angles

Number of
strokes

Letter
status

Convex area
(pixel)

RT Accuracy

4 2 1 448 446 96%

2 2 1 475 460 94%

1 2 1 505 463 97%

5 3 0 256 446 99%

6 3 0 230 429 98%

4 3 0 228 452 94%
5 3 0 270 449 99%

4 3 0 357 453 96%

6 3 0 323 440 99%

4 3 0 398 442 99%

8 3 0 312 434 99%

3 3 1 523 447 95%

4 3 1 451 439 98%

3 3 1 379 438 98%

4 3 0 345 442 97%

mber of
minals

Number of
closures

Number of
angles

Number of
strokes

Convex area
(pixel)

1 5 3 361
0 2 3 388
0 4 3 338
0 3 3 347
0 1 2 520
0 2 2 503
0 4 2 398
0 3 3 550
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