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Opinion
Parsing a cognitive task into a sequence of operations is
a central problem in cognitive neuroscience. We argue
that a major advance is now possible owing to the
application of pattern classifiers to time-resolved record-
ings of brain activity [electroencephalography (EEG),
magnetoencephalography (MEG), or intracranial record-
ings]. By testing at which moment a specific mental
content becomes decodable in brain activity, we can
characterize the time course of cognitive codes. Most
importantly, the manner in which the trained classifiers
generalize across time, and from one experimental con-
dition to another, sheds light on the temporal organiza-
tion of information-processing stages. A repertoire of
canonical dynamical patterns is observed across various
experiments and brain regions. This method thus pro-
vides a novel way to understand how mental represen-
tations are manipulated and transformed.

Understanding the organization of processing stages:
from behavior to neuroimaging
Understanding how mental representations unfold in time
during the performance of a task is a central goal for
cognitive psychology. Donders [1] first suggested that men-
tal operations could be dissected by comparing the subjects’
response times in different experimental conditions. This
‘mental chronometry’ was later enriched with several
methodological inventions, including the additive-factors
method [2] and the psychological refractory period method
[3]. Although these behavioral techniques can provide
considerable information on the temporal organization of
cognitive computations, they remain fraught with ambi-
guities. For instance, they cannot fully separate serial from
parallel processes [4] or processes organized into a discrete
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series of steps from those operating as a continuous flow or
‘cascade’ of overlapping stages [5].

More recently, the advent of brain-imaging techniques
has provided unprecedented access into the content and
the dynamics of mental representations. EEG, MEG, local
field potentials, and neuronal recordings can provide a
fine-grained dissection of the sequence of brain activations
(e.g., see [6,7]). Here we show how the analysis of these
time-resolved signals can be enhanced through the use of
multivariate pattern analysis (MVPA), also known infor-
mally as ‘decoding’. We argue that temporal decoding
methods offer a vast and largely untapped potential for
the determination of how mental representations unfold
over time.

Decoding fMRI data identifies the localization and
structure of mental representations.
MVPA was first introduced to brain imaging in order to
refine the analysis of functional MRI (fMRI). Temporal
resolution aside, fMRI is an efficient tool to isolate and
localize the brain mechanisms underlying specific mental
representations. Initially, fMRI was primarily used with
binary contrasts that revealed major differences in regio-
nal brain activity (e.g., faces versus non-faces in the fusi-
form cortex [8]). MVPA, however, led to a considerable
refinement of such inferences because it proved able to
resolve, inside an area, the fine-grained patterns of brain
activity that contain detailed information about the sti-
mulus or the ongoing behavior (for reviews, see [9–11]).

Using MVPA, subtle details of mental representations
can be decoded from fMRI activity patterns. It is now
possible to decode low-level visual features such as orien-
tation [12–15] or color [16] and determine how their cor-
tical representation is changed, tuned, or suppressed
according to subjects’ goals [13] and prior knowledge
[14]. Using distributed activity over the ventral visual
pathway, it is possible to reconstruct which static images
[17–21], moving objects [22], or movies [23] that the subject
is watching. The identification of these mental contents is
not limited to sensory information; in the absence of any
stimulus, mental objects can still be decoded, for instance
during mental imagery [24,25], working memory [25,26],
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or even dreams [27]. More recently, MPVA has also been
used to decode non-visual representations, including audi-
tory [28,29], mnemonic [30], numerical [31], and executive
information [32,33]. Although this approach has provided
unprecedented details about the structure and brain cor-
relates of various mental representations [11], its temporal
resolution remains largely inadequate to describe the way
they are dynamically constructed, transformed, and
manipulated (although some slow processes can be tracked
with fMRI; e.g., [12,13,25]).

Decoding time-resolved signals identifies when mental
representations are activated
MVPA applied to fMRI signals does not reveal much about
the dynamics with which mental representations are acti-
vated. Here we focus specifically on the less explored
question of what MVPA may bring to our understanding
of the dynamics of information processing in the brain.

Methodologically, MVPA readily applies to EEG, MEG,
or intracranial recording data (e.g., multiunit neuronal
Box 1. Methodological issues in decoding from time-resolved br

The ability of MVPA to extract information from a complex multi-

dimensional dataset has rendered this statistical technique indis-

pensable to the neuroimaging community [11]. By concentrating the

information distributed in several data points, MVPA increases the

signal-to-noise ratio and facilitates single-trial decoding. These

advantages are particularly useful when signals present a high

interindividual variability that prevents spatial averaging. MVPA

simplifies such complex datasets by presenting the results in an

information space of direct relevance [11,70] in which data from

multiple subjects can readily be averaged.

Here we specifically emphasize the usefulness of MVPA applied to

time-resolved intracranial, MEG, and EEG recordings. MVPA projects

such multidimensional data into a smaller-dimensionality space

whose axes are the cognitive codes of interest (e.g., stimulus features,

subject response). The output axes are shared across individuals, but

the projection is optimized for each subject and each time point. In

MEG, for example, this approach allows maximizing the spatial

resolution of the signals without necessarily addressing the difficult

issue of source localization.

In fMRI, MVPA is often used in combination with a searchlight

method [71,72], which comprises sliding a small spatial window over

the data to detect which segments contain decodable information. By

analogy, with time-resolved signals, a sliding time window can be used

to detect periods of optimal decodability. Furthermore, this approach

can be extended by testing whether a classifier is able to generalize to

other moments in time. Not only can decoding determine when and for

how long a given piece of information is explicitly present in brain

activity, but with generalization it becomes able to characterize whether

this information recurs in time, and when.

When applied systematically, the method yields a full temporal

generalization matrix where classifiers are trained and tested at all

available time points (Figure I.). Various methods can be used to build

such a matrix, including support vector machines (SVMs) (e.g.,

[57,61]), linear discriminant analyses (e.g., [35,43]), or even simple

linear regression (e.g., [58,59,73]) (see [36] for empirical compar-

isons). To avoid data over-fitting, MVPA must be nested inside a

cross-validation loop, such that performance is measured only on

novel left-out data samples (for both diagonal and off-diagonal time

points). To evaluate classifier performance, ‘criterion-free’ estimates

should be preferred over mean accuracy, because the latter may lead

to systematic biases during generalization (i.e., all trials may be

classified in the same category). When dealing with a two-class

problem, we favor using the area under the curve (AUC), a sensitive,

nonparametric criterion-free measure of generalization.
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recordings, local field potentials) where time can be con-
sidered as an additional dimension besides the spatial
information provided by the multiple sensors. To obtain
time-course information, a series of classifiers can be
trained, each using as an input a specific time slice of
the original data (Box 1). The output is a curve represent-
ing decoding performance as a function of time that spe-
cifies when a certain piece of information becomes
explicitly encoded in brain activity. Multiple such classi-
fiers can be trained to decode distinct features of the trial,
thus dissecting a trial into a series of overlapping stages.
Recently, for instance, in a simple response-time task, we
decoded successively the location of the stimulus, the sub-
ject’s required response, his actual motor response (which
differed on error trials), and whether the brain detected
whether the response was correct or erroneous [34].

Even scalp EEG recordings contain a lot of information
sufficient to discriminate various processing stages. Low-
level attributes such as the position [35,36] and the size
[36] of a visual stimulus, as well as the orientation of large
ain-imaging data
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Figure I. The principles underlying temporal decoding and temporal

generalization. Multivariate pattern analysis (MVPA) applied to time-resolved

signals allows tracking mental representations across time by detecting and

comparing the patterns of neural activity recorded across time. Specifically, at

each time point t, a multivariate pattern classifier w(t) is trained to identify the

linear combination of measurements [e.g., weights of electroencephalography

(EEG) electrodes, magnetoencephalography (MEG) sensors, individual

neurons] that best discriminates two or more experimental conditions (e.g.,

A and B). This combination may vary with time as the underlying pattern of

activity changes. Classifier performance is assessed not only at the time used

for training [e.g., classifier w(t1) is tested at t1, w(t2) is tested at t2,. . ., hereafter

referred to as ‘diagonal decoding’], but also on data from other time samples

[e.g., classifier w(t1) is tested at all times t1, t2, t3,. . ., hereafter referred to as ‘off-

diagonal decoding’]. The outcome is a ‘temporal generalization matrix’

representing the decoding performance of each classifier at each time point.

By convention, we depict this matrix with training time on the y-axis and

generalization time on the x-axis. With this convention, horizontal ‘slices’

through the matrix show the time course of activation of the brain systems

identified by a given classifier.
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visual gratings [37–39], can be reconstructed from EEG
and MEG signals. Higher processing stages of perceptual
decision making, related to either the objective stimulus or
its subjective report, can be similarly tracked [35,40–43].
EEG even permits decoding the covert production of ima-
gined syllables [44]. Motor [45], auditory [46], conceptual
and semantic information [47–49], and even music sam-
ples [50] have also been decoded from EEG and MEG
recordings.

These studies typically decode information from raw
sensor data in the time domain. The expansion of brain
signals through a time–frequency transform may reveal
additional information spread over both frequency and
time [44,51,52].

Contrary to what is generally assumed, these studies
suggest that the spatial resolution of EEG and MEG may
suffice to decode and track various different mental repre-
sentations. Furthermore, two approaches can be used to
provide a more accurate understanding of the spatial
origin of the decoded signals. First, source reconstruction
analyses may provide an approximate location of the
neural generators underlying scalp recordings [53]. Fol-
lowing source reconstruction, decoding may then be
restricted to specific regions of interest, thus clarifying
which brain regions contain decodable information. Sec-
ond, intracranial recordings can now be acquired from
dozens or even hundreds of different cortical and subcor-
tical sites. When applied to intracranial data, decoding can
reveal a rich temporal dynamics of fine-grained codes. For
example, in the olfactory bulb of the zebra fish, decoding
identified a sequence of neuronal responses to odors,
revealing that ambiguous mixtures of odors are initially
coded continuously and become categorically represented
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Figure 1. Example of generalization across time. In an auditory mismatch magnetoencep

followed by either the same sound or a different sound (thus generating a mismatch resp

was repeated or deviant. Decoding performance was assessed by the area under the cu

Between approximately 100 and 400 ms after sound onset, decoding was above chance 

only, as indicated by the diagonal generalization matrix and the fact that diagonal pe

generalization (six pink lines, each indicating a classifier trained at the indicated time). T

evolve over time. These findings suggest that the same stimulus (an unexpected sound
later in time [54]. In humans, decoding has been used to
show that perceived phonemes are categorically repre-
sented in the posterior superior temporal gyrus, with a
peak as early as 110 ms following sound onset [55]. Simi-
larly, the production of spoken syllables can be deciphered
from the sensorimotor somatotopic cortex, with sequential
activation of distinct codes for the initial consonant and the
subsequent vowel [56].

Overall, applying decoding techniques to successive
time points can identify when, and for how long, a specific
piece of information is represented in the brain. The next
question we may ask is: how does the underlying neural
code evolve in time?

Generalization across time reveals how mental
representations are dynamically transformed
The decoding approach detailed above can be extended to
ask whether the neural code that supports above-chance
decoding is stable or is dynamically evolving (see Figure I
in Box 1). The principle is simple: instead of applying a
different classifier at each time point, the classifier trained
at time t can be tested on its ability to generalize to time t’.
Generalization implies that the neural code that was
identified at time t recurred at time t’.

Systematically adopting this approach leads to a tem-
poral generalization matrix in which each row corresponds
to the time at which the classifier was trained and each
column to the time at which it was tested. For instance,
when we applied this method to the decoding of novel
versus habitual sounds [57], we found that mismatch
signals, classically assigned to a single ‘mismatch
response’, actually correspond to an extended sequence
of distinct brain activation patterns (Figure 1). Although
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halography (MEG) experiment, subjects were presented with four identical sounds

onse). Classifiers were trained to determine, at each time point, whether the sound

rve, a nonparametric measure of effect size derived from signal-detection theory.
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Figure 2. Generalization across time: principles and possibilities. The temporal generalization matrix (see Figure I in Box 1) contains detailed information about the

underlying brain processes. For illustration, we simulated seven different temporal structures. For each one, the generators (neural generators A, B, C, and so on), their time

course, the diagonal decoding performance summarized with the area under the curve (AUC), and the full temporal generalization matrix are displayed. Isolated: Three

simulated brain regions are differentially activated at three distinct times, leading to three isolated patterns of above-chance decoding performance. Sustained: Analysis of

a single process maintained over time leads to a square-shaped decoding performance. Chain: Decoding a chain of distinct generators leads to a diagonal-shaped decoding

performance, because each component generalizes over a brief amount of time only. Reactivated: A given generator reactivates at a later time, leading to transient off-

diagonal generalization. Note that the maintained, chain, and reactivated conditions are indistinguishable from their diagonal performance, but are easily separated by their

temporal generalization matrices. Oscillating: An oscillatory or reversing component leads to transient below-change performance. Ramping: Slowly increasing activity

leads to a subtle asymmetry; temporal generalization is higher when the classifier is trained with high signal-to-noise data and tested with noisier signals than in the

converse condition. Jittered: Temporal jitter in activation onset smoothes the generalization matrix both horizontally and vertically.
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sound novelty can be decoded over a long time window,
each of the classifiers is time specific and does not general-
ize over a long time period. All of this information is
apparent in the temporal generalization matrix, which
takes a diagonal form.

The simulations presented in Figure 2 exemplify how the
temporal generalization method may distinguish fundamen-
tally different dynamics of brain activity to which traditional
sliding-window classifiers can be blind. So far, this method
has been used only sporadically in the literature. The few
available examples suggest that the diagonal pattern, indi-
cative of a series of processing stages, is only one of several
canonical dynamics modes of brain activity (Figure 3). For
instance, when we analyze a slightly different response to
auditory novelty – the late brain response to frequent versus
rare auditory melodies [57] – we find that it obeys a strikingly
different dynamics from the mismatch response, with a
square generalization matrix indicating a stable neural code
(compare Figure 3A and B). A similar square matrix was
observed for categories of visual pictures in the inferotem-
poral cortex during a simple attention task [58]. Interest-
ingly, other experiments [59,60] find that the same area, as
well as the prefrontal cortex, may switch to a diagonal pattern
during a delayed match-to-sample task (Figure 3F–I). These
examples suggest that, in different contexts, either a stable
activity pattern or a time-changing code is used by the brain
to bridge across a long temporal delay.

Other types of dynamics undoubtedly exist. For instance,
the neural code may oscillate as a function of time. Fuente-
milla and collaborators [52] trained a multivariate pattern
classifier during the presentation of indoor or outdoor sti-
muli. When testing during the delay period of a working-
memory task, they obtained above-chance performance that,
interestingly, oscillated at the theta rhythm (4–8 Hz), indi-
cating that a working-memory code recurred cyclically.

Other temporal generalization data suggest that neural
codes may reverse over time. For example, Carlson et al.
206
trained a classifier to decode the position of a visual
stimulus [35]. They showed that, after training a classifier
at the onset of the image, the classifier led to below-chance
predictions at the time of stimulus offset, suggesting that
the neural activity pattern recurred with a reversed polar-
ity. Similar off-diagonal below-chance generalization has
been observed by others [35,43,57,61]. Understanding
when and why such reversals occur is an interesting
question for future research.

Generalization across conditions reveals how
information processing is changed
We just showed that the temporal generalization matrix
provides detailed information about the sequence of proces-
sing stages engaged in a particular task. If we change the
experimental conditions, however, some of these processing
stages may remain unaffected whereas others may be accel-
erated, slowed, deleted, or inserted. Can decoding also
illuminate such reorganizations? If a classifier is trained
in one condition and tested on its ability to generalize to
another, the resulting temporal generalization matrix may
indicate how information processing has changed (see simu-
lations in Figure 4). For instance, an acceleration of some
stages would be perceptible as a displacement of the general-
ization window outside the diagonal. The method can iden-
tify at what time, and for how long, the acceleration
occurred. Other changes, such as the deletion or insertion
of processing stages or their temporal reordering, can be
similarly characterized (Figure 4).

Although the proposed method has rarely been used
empirically, it offers great potential for revealing the chan-
ging dynamics of processing stages. Indeed, neurophysiolo-
gical studies indicate that complex temporal reorganization
of brain activity may occur. A striking example is provided
by the decoding of an animal’s spatial location from multi-
unit neuronal recordings. Capitalizing on the earlier demon-
stration that rat location could be accurately decoded from
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Figure 3. Examples of empirical findings. Temporal generalization has been empirically tested on both noninvasive magnetoencephalography (MEG) data [35,36,43,57] and

invasive multiunit neuronal recordings [58–60] using different decoding categories [e.g., decoding auditory regularities (A,B), decoding the position of a visual stimulus (C)],

different types of classifier (e.g., support vector machine, linear discriminant analysis), different decoding performance metric [e.g., accuracy, area under the curve (AUC)],

and different chance levels. The temporal generalization matrices are reproduced from each of these nine studies (A–I). The results illustrate some of the major dynamic

structures postulated in Figure 2: diagonal chain (e.g., A,C,D,E,G), reactivation at the time of a second stimulus (F,G) or at stimulus offset (C), sustained activity (B,H), or

transition from diagonal to sustained (I). Reversing brain patterns are visible as below-chance generalization performance (below-chance patches in panels A, C, and D).

Interestingly, across studies the same brain region (e.g., the inferotemporal cortex) seems capable of generating very distinct dynamics (compare panels F and H).

Furthermore, similar types of stimulus can lead to very different types of dynamics (compare panels A and B).
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hippocampal place-cell activity [62], Louie and Wilson [63]
identified a sequence of place-cell firing that reproducibly
tagged the animal’s movement through a circular track.
They then showed that the same sequence was replayed
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the same speed or slower (also see [64]). Subsequently, Lee
and Wilson [65] showed that place-cell activity, which could
be used to detect the location and direction of animal
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Box 2. Does the brain operate as a decoder of its own

signals?

MVPA is a powerful method. Could it also be considered a useful

metaphor for some brain operations? Consider the problem of

identifying a face from retinal inputs. The primary visual area

contains all the information needed to identify a flashed face, yet

this information is ‘entangled’ in a complex manifold of firing rates

[74,75]. A central goal of cognitive neuroscience is thus to under-

stand how the hierarchy of brain areas in the ventral visual stream

‘disentangles’ visual information to make it explicitly coded in the

firing rate of a neuronal population – that is, easily decodable by

other regions.

For inferotemporal neurons, learning to become sensitive to a

specific face may comprise learning a classification function that,

given the input firing rates, separates instances of this face from any

other stimulus. Similarly, training on a psychophysical experiment

may imply that the prefrontal and parietal areas learn to weigh

evidence from the relevant sensory neurons and disregard unin-

formative cells. Each brain area may thus be confronted with a

multivariate classification problem similar to that of the neuroscien-

tist attempting to sift through a pile of recorded data.

Asking whether a brain area acts as a decoder of its afferent inputs

begs the question of what type of decoding algorithm it uses. First,

is the brain confronted with issues of over-fitting and, if so, does it

use regularization or penalization schemes, as some pattern-

classification algorithms do (e.g., SVM [76])? Does it reject outlier

data? Does it suffer from a ‘curse of dimensionality’ and, if so, does

the pyramidal neuron’s limited dendritic span provide a solution by

drastically reducing the data under consideration?

Second, does the brain use linear or nonlinear decoders? Some

theories suggest that once the information is properly encoded in

stochastic firing rates, a linear combination of spiking inputs suffices

to approximate complex Bayesian operations [77]. Furthermore, the

spontaneous fMRI activity in the extrastriate cortex has been modeled

as a linear combination of the signals from the primary visual cortex

(V1) and secondary visual cortex (V2) [78], thus revealing the structure

of corticocortical projections. Recently, the activity of single neurons

in the inferotemporal cortex [79,80] or medial–superior temporal

cortex [81] has also been modeled as a weighted sum of individual

responses to simple lines or local motion at predefined locations. In

this case, however, the addition of nonlinear terms improved the

model significantly for many neurons. An interesting suggestion is

that nonlinearities may enter at only the input and output stages, thus

leaving the learning problem itself essentially linear [81]. Such a

nonlinear input and output transformation may have the advantage of

providing increased selectivity for feature combinations by changing

the summation of inputs into a product [79–81].

Understanding which classification algorithm, if any, applies

inside the brain is an important goal for learning theory. Ultimately,

MVPA should aim to decipher precisely those signals that the brain

uses for its internal computations. MVPA should not use exceed-

ingly powerful nonlinear algorithms; otherwise, even abstract

information could be decoded from V1. Rather, MVPA should aim

to attain the same performance as subjects’ brain and behavior (e.g.,

[75,82]) and fail on exactly the same trials [83].

Box 3. Outstanding questions

� What factors make certain cerebral operations appear as ‘diag-

onal’ and others as ‘square’ in temporal generalization matrices?

� What other dynamical patterns may appear in brain activity? Does

the brain rely on a limited repertoire of canonical dynamical

patterns that recur in different types of computation?

� Does each brain region possess a characteristic repertoire of

dynamical patterns (e.g., serial flow in the ventral stream,

evidence accumulation in the parietal cortex, all-or-none main-

tenance in the prefrontal cortex)?

� Is there a systematic correspondence between dynamical patterns

at the single-neuron and macroscopic (ECOG, EEG, and MEG)

levels?

� Does sensory processing comprise a discrete series of stages (as

suggested by the labels of EEG components: e.g., P1, N1, P2) or

does it involve a continuous cascade of events?

� Why do we often see a reversal of generalization, leading

classifiers to perform below chance level when tested away from

their initial training time?

� How do experimental factors such as expectation, task relevance,

or task difficulty affect the dynamics of neuronal encoding and

decoding? Do they systematically modulate, delay, or reorganize

brain activity?
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movement, was also replayed at 20 times-faster speed dur-
ing slow-wave sleep, while the animal was, of course, immo-
bile. Accelerated replay was also observed in the awake state
[66]. Recently, Pfeiffer and Foster [67] found that fast replay
of place-cell activity also occurred when the animal was
searching for a goal. When decoded, the neuronal activity
unfolded into a goal-directed trajectory that anticipated, at
an accelerated pace, the subsequent movement of the rat on
the same trial. Place-cell firing may also recur in reverse
order [68], perhaps reflecting a form of goal-based problem
solved by means–ends analysis. Those examples prove that
temporal accelerations and reversals do occur in brain
activity and invite a search for their occurrence in other
208
cognitive domains (e.g., bird song [69]) using the temporal
generalization matrix as a telling signature.

Concluding remarks
Since Donders and Sternberg, brain algorithms have been
dissected by manipulating experimental factors such as
attention, expectation, or instructions that selectively
accelerate, slow, remove, insert, or reorder specific proces-
sing stages. Behavioral methods of mental chronometry,
however, provide only indirect information about such
reorganizations. Here we summarized several ideas and
empirical studies that suggest that MVPA can provide
considerable information about the fine temporal organi-
zation of information-processing stages. In the past decade,
MVPA has been primarily used to analyze brain-imaging
data at a fine spatial scale and to characterize the structure
of mental representations [11]. Here we suggest that
applying MPVA across space, time, and experimental con-
ditions can reveal not only the time at which information
becomes decodable, but also the dynamics with which the
underlying representations are processed. Characterizing
the building blocks of cognitive processes in time, rather
than solely in space, presents many challenges and open
issues (Boxes 2 and 3) for which we hope that the temporal
generalization method may prove useful.
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