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Abstract. Developmental studies indicate that children initially possess a compressed intuition of numerical distances, in which larger numbers
are less discriminable than small ones. Education then ‘‘linearizes’’ this responding until by about age eight, children become able to map
symbolic numerals onto a linear spatial scale. However, this illusion of compression of symbolic numerals may still exist in a dormant form in
human adults and may be observed in appropriate experimental contexts. To investigate this issue, we asked adult participants to rate whether a
random sequence of numbers contained too many small numbers or too many large ones. Participants exhibited a large bias, judging as random a
geometric series that actually oversampled small numbers, consistent with a compression of large numbers. This illusion resisted training on
a number-space mapping task, even though performance was linear on this task. While the illusion was moderately reduced by explicit exposure
to linear sequences, responding was still significantly compressed. Thus, the illusion of compression is robust in this task, but linear and
compressed responding can be exhibited in the same participants depending on the experimental context.
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One of the fundamental issues in numerical cognition is the
representational scale of the numerical continuum (Dehaene,
2001; Gallistel & Gelman, 1992). The linear model argues
that numbers are represented on a linear scale with increas-
ing variability as numerical quantity increases (Gallistel &
Gelman, 1992), while the logarithmic model suggests that
numbers are represented on a compressed scale (notably log-
arithmic) with constant variability. Studies of numerical
capacities in infants (Xu & Spelke, 2000) and adults who
lack exact number words (Pica, Lemer, Izard, & Dehaene,
2004) and single-unit neuronal responses (Nieder & Miller,
2003) suggest that numerosity is more likely to be coded on
a compressive scale. In fact, both models are equally able to
account for behavioral data in human and nonhuman partic-
ipants (Dehaene, 2001; Gallistel & Gelman, 1992; Jordan &
Brannon, 2006), in which judgments of similarity between
numbers show a compressed mental number line.

While a compressed mental number line is usually
inferred from reaction times obtained in tasks where partic-
ipants are required to perform speeded judgments on pairs of
numbers (Dehaene, Dupoux, & Mehler, 1990; Moyer &
Landauer, 1967), some experimental contexts have directly
revealed compressed responding when participants’ intu-
itions concerning the distances between numbers are inves-

tigated in a more holistic way. For example, Siegler and
Opfer (2003) found that when they asked children to map
numbers onto positions on a line segment (number to posi-
tion or N-P task) the children’s responses were better fit by a
logarithmically compressed curve that exaggerated the dis-
tances between smaller numbers, and underrepresented the
distances between large numbers. However, this illusion of
compression seems to give way to linear responding in par-
ticipants older than 8 years, probably because the older chil-
dren were more accustomed to manipulating numbers in the
range used for these tasks. Opfer and Siegler (2007) subse-
quently showed that feedback could also quickly lead to a
recalibration of the mental number line, so that after training
children’s performance was better fit by a linear function
than by a compressed function. This recalibration occurred
even after providing children with feedback on only a single
trial (i.e., by indicating the correct location of one number
on the number line) and was greatest for numbers for which
there was the greatest difference between the linear and log-
arithmic predictions. Similarly, a recent study with
Mundurucu adults who lack exact number words showed
that they performed the N-P task in a way that was consis-
tent with a compressed understanding of numerical distance
(Dehaene, Izard, Spelke, & Pica, 2008). However, in
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Western adults, this kind of compressed responding is not
found using the N-P task (Dehaene et al., 2008; Siegler &
Opfer, 2003), perhaps, as Siegler and Opfer assume, because
of the spontaneous use of mathematical strategies to evenly
divide the numerical interval used in the experiments.

The current experiments explored twoquestions. First, can
the continued presence of compressed responding be demon-
strated in adults in the same kind of task investigating the par-
ticipants’ intuitions about numerical distance, despite their
linear behavior on the N-P task? Second, can this responding
be recalibrated in the same way that visual feedback recali-
brates children’s performance on the N-P task? To explore
these questions, we adapted a method first introduced by
Banks and Coleman (1981). Banks and Coleman (1981)
askedparticipants to rate ‘‘how randomly and evenly’’ various
prerecorded auditory series of numbers sampled a numerical
interval. The series thatwere rated asmost randomwere those
generated from a power function1 with an exponent greater
than 1.0. In their most quantitative experiment, the authors
generated seven series of 15 numbers in the interval [1,
2,000] using seven different fixed exponents (0.91, 1.11,
1.43, 2, 2.77, 3.33, and 10; we here report the inverse of
the values reported by Banks and Coleman to make them
comparable with the values reported in our study). On aver-
age, participants rated the series generated with an exponent
of approximately 2.8 (oversampling small numbers) as most
random. However, due to limited computational power, par-
ticipants were tested only with a few prespecified exponents
and gave ratings on a 1–10 scale for only one example of
each exponent. This may limit the precision and reliability
of the estimates obtained for each participant as such
methods may sample the appropriate range too coarsely
and will therefore fail to detect subtle changes in threshold.

Taking advantage of the much greater computational
power available with modern computers, we were able to
improve on these methods to develop a psychophysical
staircase procedure that would allow us to test a whole range
of exponents more finely, and obtain a more precise estimate
of the subjective rate of compression of numerical distances.
Participants listened to a series of randomly ordered num-
bers, sampled from distributions which were either flat
across the range of numbers tested, oversampled small num-
bers (as if sampling randomly from a compressed contin-
uum), or undersampled small numbers. They judged
whether each sequence contained too many small or large
numbers (distribution judgment task), and a staircase proce-
dure was used to modify the amount of compression on the
next trial. The procedure converged to the point of subjec-
tive equality, enabling us to measure each participant’s sub-
jective compression. Across five experiments, we found that
adults possess a compressed intuition of numerical distance
which was remarkably stable, even after participants
received feedback about what constitutes a true random
sequence.

General Methods

We tested a total of 74 participants (16 per experiment in
Experiments 1, 2, 4, and 5; 10 in Experiment 3; 19 males,
55 females). Participants were 18–34 years old (mean
23.1, the ages from four participants were lost) and were
naı̈ve to the study hypotheses. All participants gave
informed consent and received 7 euros (approximately
$10) for their participation. They were all right-handed
(Oldfield, 1971) native French speakers. Our participants
were a representative sample of university students, who
had a basic mathematical background in line with the French
high-school curriculum, including some understanding of
basic probability theory, algebra, and geometry, up to and
including, in most cases, introductory calculus. Preliminary
analyses suggested that the compression did not differ be-
tween students pursuing scientific or literary majors, so we
stopped collecting detailed information on the participant’s
course of study.

On each trial, participants were presented with a series of
randomly ordered spoken number words separated by
500 ms blanks. The sound files were compressed (using
Praat; Boersma & Weenink, 2005) so that they were
matched on overall length as much as possible while still
remaining understandable to naı̈ve participants (see below
for details). The numbers xn in each series were generated
using the equation xn = anE + b, n = 1–10, with a and b
chosen so that x1 = a and x10 = b.2 This equation generated
10 numbers in the interval [a, b]. Depending on the experi-
ment, the last number b was or was not presented. In order
to minimize strategic influences, participants were not told
what the interval used in the task was, nor the number of
items in the sequences. A random jitter (�2 to 2) was added
to each number to prevent the exact same sequence from
being heard repeatedly. Each sequence had a mean duration
of 13 s (SD = 658 ms), and total task duration was approx-
imately 13 min. By varying the exponent E, we presented
sequences with varying degrees of compression, such that
some sequences oversampled small numbers (E > 1), and
others oversampled large numbers (E < 1). Participants
were asked to judge whether the sequence seemed to contain
too many small or large numbers by using the left- or right-
arrow keys to choose between two fixed distributions, repre-
sented by a graph with a sequence of nine tick marks
generated by an exponential function with two different
exponents (E < 1 and E > 1, see Appendix). The meaning
of these graphs was explained to the participants, who were
then asked to generate an example of each kind of sequence.
To be sure that the instructions were correctly understood,
they also judged an example of each kind of sequence (with
exponents of 4.0 and 0.3) before beginning the task. The
exponent for the next sequence was adapted according
to the participant’s response. Two randomly interleaved
staircases were used, one with an initial exponent of 4.0

1 Of the form xn = anE, with xn being the nth number of the series, a chosen so that the first and last numbers of the series approximately
corresponded to the lower and upper bounds of the numerical interval tested, respectively, and E varying according to the series tested.

2 We followed Banks and Coleman (1981) in adopting this function because it allows for an easy manipulation of the rate of compression and
includes linearity as a special case (E = 1). Although the internal continuum is believed to be logarithmic, the log function cannot be easily
parametrized, and a power function, as used here, provides a close approximation when used on a relatively small numerical interval.
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(oversampling small numbers) and the other with an initial
exponent of 0.3 (oversampling large numbers). We chose
these initial exponents to balance the compression of the ini-
tial sequences. An initial exponent of 4.0 (close to the in-
verse of 0.3) yields a compression of the first sequence
which is comparable, in the opposite direction, to the one
obtained for the sequence generated from the initial expo-
nent 0.3. For each trial, one of the two staircases was ran-
domly chosen. The exponent was increased or decreased
for the next trial in the corresponding staircase depending
on whether the participant indicated that the sequence over-
sampled large or small numbers, respectively. The initial
step size was 0.4, and was divided by two at each reversal,
until it reached a minimum of 0.1. The program stopped
when each staircase contained eight reversals.

To estimate the compression of each participant’s mental
number line, we identified the last five reversals for each
staircase and averaged the exponents obtained for each trial
in the relevant staircase. This represents the compression at
which participants could no longer determine whether the
sequences contained more small or large numbers (the point
of subjective equality), or the sequence judged as ‘‘most ran-
dom’’ by the participants.

Experiments 1 and 2

Experiment 1 tested whether the compression of numerical
distance is influenced by the range of numbers tested, while
Experiment 2 tested whether the presence of the upper
boundary of the interval affected this compression. Banks
and Coleman (1981) have previously argued that the pres-
ence of the upper boundary leads to the use of a more linear
representation of numbers, or at the very least, more linear
responding. Crucially, however, Banks and Coleman did
not test the exact same range in both the bounded and un-
bounded conditions. Thus the effect of interval and the pres-
ence of the boundaries cannot be disentangled in their
experiments. In order to more systematically explore the
effects of interval size and boundedness, we independently
varied interval size and the presence or absence of the
upper bound, yielding two different intervals of the same
size: Interval 1 = [3, 750] and Interval 2 = [153, 900],
both in an unbounded (Experiment 1) and bounded
(Experiment 2) condition. We chose these nonstandard inter-
vals (i.e., avoiding intervals like [1, 1,000]) in order to min-
imize the possibility that participants would base their
responses on simple arithmetic procedures like mentally
dividing the range into 10 equal parts, and chose a range that
was large enough to decrease the possibility that the tested
sequences would be too similar when the exponents were
close. Despite the compression of the sounds files (see
General Methods, above), the one- and two-digit number
words were significantly shorter (mean = 346 ms,
SD = 130 ms) than the three-digit number words (mean =
566 ms, 139 ms; t = 15.72, p = 2.2e � 16). However,
since the interval [153, 900] contains only three-digit
numbers, the auditory stimuli are equivalent in length in this

condition. Indeed in this interval, we were able to success-
fully match the length of the words for smaller numbers
(i.e., 150–525, mean = 574 ms, SD = 145 ms) so that they
did not differ significantly from the length for larger num-
bers (526–900, mean = 585 ms, SD = 114 ms; t = 1.12,
p = .26).

Method

Each participant completed one session for each of the two
intervals with order counterbalanced between participants.
In Experiment 1, the upper boundary was removed from
the sequence so that participants heard nine numbers. In
Experiment 2, the upper boundary was presented as part
of the sequence, so participants heard 10 numbers.

Results

The mean exponent for each interval was significantly
greater than 1.0 in both experiments, clearly indicating a
compression of the mental number line (Figure 1). Experi-
ment 1: E = 1.98, t(15) = 7.63, p < .001 and E = 1.44,
t(15) = 5.01, p < .001, for Intervals 1 and 2, respectively.
Experiment 2: E = 2.23, t(15) = 11.85, p < .001 and

Figure 1. Results of Experiments 1 and 2. The figure
shows the mean exponents calculated for both interval [3,
750] and interval [153, 900], in the case of auditory
sequences without and with the upper boundary. We see
that the mean exponent is greater than 1.0 in all
conditions. The mean exponent is lower with interval
[153, 900] in both unbounded and bounded conditions,
whereas the bounded condition leads to a greater overall
mean exponent than the unbounded condition.
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E = 1.76, t(15) = 6.14, p < .001. The corresponding best
fitting equations are shown in Table 1.

Interestingly, while the exponents for Interval 2
were significantly greater than 1.0, they were signifi-
cantly smaller than for Interval 1, F(1, 15) = 22.48,
p < .001 (Experiment 1) and F(1, 15) = 9.02, p < .01
(Experiment 2). This outcome is consistent with participants
relying on a logarithmically compressed mental number
line. Indeed, one property of the logarithm function is that
its curvature decreases as number increases. Thus, when fit-
ted locally by a geometric series, the recovered exponent
should be smaller over the second interval [153, 900] than
over the first one [3, 750], consistent with our observations.
Figure 2 illustrates the shape of the geometric series gener-
ated with the participant’s mean exponent (x axis), plotted
against a linear spacing of numbers in the same interval (y
axis). On this graph, the smaller curvature associated with

Interval 2’s smaller exponent fits with the hypothesis of an
overall fixed compression over the whole range of numbers.
Indeed, an overall compressed scale predicts that the illusion
of compression will be greater when the range tested covers
smaller numerosities. The fact that we observed different
exponents for different numerical intervals also suggests that
participants do not recalibrate their mental number line
according to the new range of numbers tested. Instead, the
smaller exponent obtained for larger numbers is consistent
with a single compressed scale in which 153 is subjectively
closer to 900 than 3 is to 750 (see also Shepard, Kilpatrick,
& Cunningham, 1975). Additionally, the fact that the com-
pression in the interval [153, 900], where the length of the
number words was equalized, was still significantly greater
than 1.0 argues against the possibility that the compression
observed in the interval [3, 750] was merely an artifact due
to a cognitive overrepresentation of the bigger numbers
compared to the smaller ones as a result of differences in
the sound file length.

More surprisingly, we find a stronger compression of the
mental number line (i.e., a greater mean exponent) when
participants listen to bounded intervals (where the upper-
bound number x10 is included in the series) than when they
listen to unbounded intervals (F(1, 30) = 5.11, p < .05).
This finding demonstrates that, contrary to the suggestion
by Banks and Coleman (1981), the presentation of the upper
boundary is not sufficient to elicit the use of a linear scale.
Other factors may affect the illusion of compression. For in-
stance, in Experiment 1 with unbounded sequences partici-
pants heard 9 numbers, while in Experiment 2 with bounded
sequences participants heard 10 numbers. Longer sequences
may be more difficult to keep in working memory, leading
to a greater reliance on an intuition of number size based on
the compressed number line, thus resulting in a larger devi-
ation from linearity. Conversely, Banks and Coleman’s stim-
uli (10 numbers in the range from 1 to 1,000) may have
made it particularly easy for participants to mentally divide
the range, thus allowing them to rely on calculation strate-
gies which masked the illusion of compression.

However, one possible concern about our results is that
participants may be basing their responses on some other
simpler strategy such as the magnitude of the last number
or the direction of the change between the last two numbers,
rather than judging the entire sequence. Because of the com-
pression of the series, it is not possible to test whether the
last number predicts the participants’ responses simply by
testing whether the mean varies between ‘‘more larger’’
and ‘‘more smaller’’ responses. Indeed, the more com-
pressed the series is, the more likely it is that the last number
of the corresponding series is large. As predicted, we found
that the mean of the last numbers was larger when partici-
pants responded ‘‘more large numbers’’ than when they

Table 1. Functions that best fit participants’ mean judgments in Experiments 1 and 2 for the two intervals used

Experiment 1 Experiment 2

[3, 750] x = 7.89 · n1.98 � 4.89 x = 4.37 · n2.23 � 1.37
[153, 900] x = 27.86 · n1.44 + 125.13 x = 13.16 · n1.76 + 139.84

Figure 2. Graphical representation of the numerical
sequences judged as ‘‘most random’’ according to Exper-
iment 1 (exponents taken from the unbounded condition).
The x axis shows the numbers that were presented to
participants, while the y axis shows a linear scale over the
same interval of numbers (either [3, 750] or [153, 900]). In
this representation, the compression for large numbers is
evident. The smaller exponent for the larger interval [153,
900] than for the smaller interval [3, 750] can readily be
interpreted as a smaller curvature of the internal compres-
sion function, compatible with this function being a
logarithm.
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responded ‘‘more small numbers’’ (280.95 vs. 242.67,
t(15) = 2.73, p = .015). The same statistical analysis on
the mean of the last three numbers of the series yielded a lar-
ger difference between the two response conditions (273.84
vs. 225.97, t(15) = 6.34, p = 1.34e�05), and an even larger
difference was found when all of the numbers of the series
were included (270.30 vs. 217.99, t(15) = 22.94,
p = 4.28e�13). These analyses confirm that participants
correctly performed the task, since the series for which the
participants should respond ‘‘more large numbers’’ did
indeed contain more large numbers.

In order to test whether participants based their decision
on the last number in the series, rather than overall compres-
sion, it was thus necessary to perform an analysis using a
parameter that was independent of the exponent of the com-
pression. We tested the correlation between the rank of the
last number in the series (independent of compression)
and the percentage of ‘‘more large numbers’’ responses in
each case. By computing a Spearman rho correlation coeffi-
cient we found no significant correlation between the rank of
the last number presented and the response (q = .4,
p = .29). Finally, we also tested whether the direction of
the difference between the last two numbers (increasing or
decreasing) could predict participant’s responses. We found
no significant difference between the percentage of
‘‘more large numbers’’ responses for increasing (53.7%,
SD = 13%) and decreasing (46.3%) final pairs
(t(15) = .85, p = .40), indicating that this feature of the
stimuli also could not explain the results we see here. These
additional analyses, combined with the fact that we find sim-
ilar compression for the interval [153, 900], suggest that par-
ticipants are not relying on a simple memory strategy, and
our findings of an illusion of compression cannot be
explained by a simple cognitive overrepresentation of the
stimuli due to difference in length, or other memory limited
strategies.

Experiment 3

In Experiments 1 and 2, we chose initial exponents that bal-
anced the compression of the initial sequences (0.3 and 4.0,
where the exponents 0.3 and 3.33 (1/0.3) lead to symmetric
compression). However, given that we also used an additive
staircase to update these values more trials were required to
reach an exponent of 1.0 from the upper starting point than
from the lower starting point. Thus, participants initially
made more ‘‘more small numbers’’ responses, which could
conceivably have biased the results. Although randomly
interleaved staircases are robust to biases in the initial start-
ing positions of the two staircases (Cornsweet, 1962;
Nachmias & Steinman, 1965), to probe whether this asym-
metry in the number of steps required to reach an exponent
of 1.0 influenced our results, we conducted a control
experiment in which the initial exponents required the same
number of linear steps to reach 1.0 (0.3 and 1.7). Note that
with these equidistant starting values on a linear scale, the
compression of the two sequences was asymmetric, with

the sequence generated by the upper starting point (1.7)
being more similar to a linear sequence than that generated
by the lower starting point (0.3).

Method

Ten participants took part in this experiment. They per-
formed the same task as in Experiments 1 and 2. The
sequences sampled the range [3, 750], with the upper
boundary removed.

Results

Despite the fact that these new starting points yield compres-
sions that are initially biased toward a linear sequence, this
experiment still yielded a mean final exponent greater than
1.0 (1.54, t(9) = 5.89, p < .001), revealing that the illusion
of compression of the mental number line is robust and
not due to any artifactual influence of the starting points.

Experiment 4

In Experiment 4, we explored whether we could reduce, or
even eliminate, the illusion of number compression uncov-
ered in Experiments 1–3 by providing participants with
visual feedback, consisting in a conversion task, which
has been shown to elicit a shift from a compressed to a linear
number-space mapping in children (Opfer & Siegler, 2007).
We wanted to directly compare the results of Siegler and
Opfer’s task with our distribution judgment task. Since adult
participants generally show linear behavior on this N-P task,
we hypothesized that, if our distribution judgment task and
the N-P task both tap into the same representation of num-
ber, then asking participants to perform the N-P task may
lead to a corresponding shift in participants’ behavior on
our distribution judgment task. In addition, we hypothesized
that several presentations of the N-P task would more pow-
erfully elicit a shift from logarithmic to linear responding.

Method

Sixteen participants took part in this experiment. We used an
A-B-A0 design in which A and A0 represent our distribution
judgment task, and B represents the feedback task, in
this case, Siegler and Opfer’s (2003) number to position
(N-P) conversion task. In the N-P task, a black line
(L · H = 492 · 2 pixels = 159.5 · 0.65 mm) appeared in
the center of the computer screen, with the endpoints (black
vertical bars, L · W = 20 · 2 pixels) labeled with the
boundaries of the interval used in the randomness judgment
Blocks A and A0. A red mark (L · W = 30 · 2 pixels)
appeared at a randomly chosen position on the line, and a
number was presented approximately 5 cm below the line
(in ‘‘FreeSansBold,’’ a sans serif font similar to Arial, used
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by default in Pygame, with a height of 32 pixels).
Participants moved the red mark using the left-and right-
arrow keys (each key press shifted the marker 6 pixels or
about 1.2% of the total length of the line) to indicate the po-
sition which subjectively corresponded to the number indi-
cated. After they pressed the enter key on the keyboard,
the participant’s response remained visible on the screen
and the actual (linear) position of the number, labeled with
the original number, appeared on the line. This feedback
helped participants to calibrate their N-P task performance.

We used the interval [3, 750] without the upper bound-
ary, as in Experiment 1, both before and after the feedback
block. In the N-P task, participants were asked to indicate
the position of eight numbers each corresponding to one
ninth of the interval. We repeated the N-P task five times
for each number (40 trials total), in random order. For each
number, we plotted the mean response for the nth presenta-
tion (n = 1–5).

Results

In the N-P conversion task, participants’ responses were
close to linear from the first presentation of each value.
On the first presentation, there was a small tendency to
underestimate the actual position of the two largest values,
586: t(15) = �3.17, p < .01, 670: t(15) = �2.52, p < .05
and to overestimate the position of the smallest value, 86:
t(15) = 3.15, p < .01, consistent with a slight compression
of the mental number line. Oddly, 503 was overestimated,
t(15) = 5.20, p < .001. These deviations were corrected
for subsequent presentations, and even somewhat overcor-

rected for the fifth presentation, 170: t(15) = �2.33,
p < .05, 336: t(15) = �3.16, p < .01 (Figure 3). A regres-
sion analysis performed on the median estimates confirms
that the participants’ responses were close to linear
from the first presentation, with the best fitting equation
being y = 0.94 · x � 20.6, r2 = .97 for the first and
y = 1.03 · x � 17.04, r2 = .99 for the fifth presentation.

As in Experiments 1–3, the mean exponent was signifi-
cantly greater than 1.0, both before (E = 2.21, t(15) = 8.60,
p < .001) and, most importantly, after performing the N-P
task (E = 2.16, t(15) = 9.06, p < .001) (Figure 4). There
was not even a significant effect of block (F(1, 15) =
0.25, p = .625). Thus, feedback from the N-P task failed
to modify the compression of the mental number line. This
null effect was not due to experimental noise, but rather re-
flects stable differences in individual participants’ compres-
sion. To demonstrate the stability of the observed
compression, we calculated the Pearson correlation between
the exponent obtained for each participant in Block A and
that obtained in Block A0. We found that the exponents of
the second session were highly correlated with those of
the first session (r2 = .55, t = 4.18, p < .001), indicating
that our method provides a precise estimate of each partici-
pant’s preferred compression, and that these did not differ
after performing the N-P task.

Figure 3. The results of the N-P conversion task. The
figure shows the mean response indicated by the partic-
ipants at the five ranks of presentation and for each of the
eight values asked. We see that the responses are quite
close to the actual position (dashed lines) from the first
rank on.

Figure 4. Results of Experiments 4 and 5. The figure
shows the mean exponents calculated for Blocks A (prior
to intervention) and A0 (after intervention). The interven-
tion consisted either in an N-P conversion task (Experi-
ment 4) or in explicit auditory feedback (Experiment 5).
We see that only the auditory feedback led to a significant
decrease of the mean exponent, indicating a reduced
subjective compression of the mental number line, yet
without canceling it (the exponent remains significantly
greater than 1).
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Experiment 5

In Experiment 5, we explicitly presented participants with
linear sequences of auditory numbers to test whether explicit
feedback on the task of interest could modify the illusion of
compression.

Method

Sixteen participants took part in this experiment. The stimuli
and design were the same as in Experiment 4with the training
task now being to listen to sequences of numbers generated
with a linear function. Participants were presentedwith 10 lin-
ear auditory sequences, again with added jitter. In order to
maximize the potential impact of the presentation of the linear
sequences, participants were told that the sequences were lin-
ear and were asked to visualize the numbers and to attend to
their equal spacing. Additionally, by training and testing on
the same numerical range, we maximized the possibility of
transfer from the training set to the test set.

Results

As in the four first experiments, the mean exponent was sig-
nificantly greater than 1.0 both before (E = 2.24, t(15) =
9.04, p < .001) and after the feedback task (E = 1.82,
t(15) = 5.03, p < .001). Thus, even with direct training on
the task of interest the illusion of compression was not elim-
inated, demonstrating its robustness. Using the same corre-
lation measure as in Experiment 4, we found that the
exponents for Block A0 were correlated with those for Block
A, suggesting that individual differences in compression
were robust across the two sessions (r2 = .34, t = 2.70,
p < .05). Unlike with the N-P task, we found a significant
effect of block, with a lower mean exponent after the audi-
tory feedback task, which indicates that training with linear
sequences modified the illusion of compression,
F(1, 15) = 9.47, p < .01, even if it did not eliminate it.
Experiments 4 and 5 differed as shown by a significant
Block · Feedback task interaction in a joint ANOVA
(F(1, 30) = 5.01, p < .05; see Figure 4 and Table 2). Thus,
direct auditory feedback, unlike the N-P conversion task,
leads to a change in performance on the distribution judg-
ment task. However, this change could either be due to sub-
tle changes in the underlying representation, or to learning
of additional cues or strategies, such as anchoring. Although
it is possible that even more intensive training would elicit a
shift from a logarithmic to a linear responding in our distri-
bution judgment task, we note that the presentation of a sin-
gle trial of feedback has been shown to modify performance
on the N-P task (Opfer & Siegler, 2007), while in our exper-

iment as many as 10 repetitions of the auditory sequences
failed to eliminate the compressed responding observed in
our auditory distribution judgment task.

Discussion

Our results demonstrate that the sequences judged to sample
the numerical continuum most randomly are, in fact,
sequences generated from a power function with an expo-
nent significantly greater than 1.0. These results add addi-
tional support to the hypothesis that adult human beings
possess a compressed sense of numerical distances and that
it is necessary to present sequences that oversample small
numbers in order to compensate for this compression.

Siegler and Opfer’s studies highlighted the coexistence
of both compressed and linear representational scales in
young children (see also Lourenco & Longo, 2009, where
the coexistence is found in adults), but their N-P conversion
task suggested a shift to a linear responding around age
eight. Our results indicate that, using the same kind of task
investigating the number-space mapping in the proper con-
text, an illusion of compression of numbers can be observed
even in adults with spoken number words. That is, in the
specific experimental context we used, we observe com-
pressed responding on a task where participants were
required to report their subjective judgment of numerical
distance over the entire range of numbers tested. Previous
work mostly focused on the mental representation of con-
crete numerosities such as sets of dots, in which case
Weber’s law is ubiquitous and readily lends itself to an
explanation in terms of an internal compressive scale (Izard
& Dehaene, 2007; Van Oeffelen & Vos, 1982; although see
Cordes, Gelman, Gallistel, & Whalen, 2001; Whalen,
Gallistel, & Gelman, 1999 for a different explanation). For
symbolic numerals, prior evidence is scarce (for review
and discussion, see Dehaene, 1992, 2007; Krueger, 1989).
It has been shown that intuitions of prices conveyed as
Arabic numerals follow Weber’s law and can be interpreted
as showing Gaussian variability on a logarithmic scale
(Dehaene & Marques, 2002). Similarly, multidimensional
scaling of number similarity judgments hints at a compres-
sive mental number line (Buckley & Gillman, 1974;
Shepard et al., 1975). Finally, and most relevant to the pres-
ent work, judgments of randomness are biased toward com-
pressed sequences (Banks & Coleman, 1981; Banks & Hill,
1974). Our results go beyond this prior work by showing
that (1) a staircase procedure can be used to quickly and pre-
cisely quantify the amount of numerical compression within
each participant; (2) the intuition of compression is a strong
illusion that resists training (our N-P training task lasted
5–10 min, while our auditory feedback lasted approximately

Table 2. Functions that best fit participants’ mean judgments in Experiments 4 and 5 before and after training

Experiment 4 Experiment 5

Before training x = 4.66 · n2.21 � 1.66 x = 4.29 · n2.24 � 1.29
After training x = 5.21 · n2.16 � 2.21 x = 11.54 · n1.82 � 8.54
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3 min); and (3) the illusion can coexist with linear respond-
ing on Siegler and Opfer’s N-P task.

Why did adults behave nonlinearly in our task and line-
arly in the N-P task? Although linear responding may be
observed in the N-P task with speeded responses (see Pinhas
& Fischer, 2008), it is likely that the untimed version of the
N-P task typically used allows for the application of arith-
metic strategies (e.g., roughly dividing the target number
by the upper bound of the interval to estimate its position
on a linear scale). Education and training with number lines,
rulers, graphs, and other mathematical devices probably
strengthens and automatizes this strategic response mode
to the point where it may be observed in adults even in
speeded tasks. Siegler and Opfer themselves suggest that
these factors could be influential and that their finding that
the logarithmic function was a better fit to their data in youn-
ger children could be due to the fact that the task involved
large numbers in the hundreds and thousands that the chil-
dren were not used to manipulating on a physical line.

Several experimental factors may influence the manner in
which participants respond on this task. The presence of the
upper bound may make the participants more aware of the
numerical interval and allow for the use of a division strategy,
especially if the upper bound is a round number such as
1,000. However, our results do not confirm Banks’ hypothe-
sis that bounded intervals always lead participants to rely on
a linear mental number line, since the mean exponent we
obtained for bounded intervals was still significantly greater
than 1.0. The fact that many factors that we have considered
(the interval tested, the number of items in each series) were
not held constant in Banks’ studies may be responsible for
the differences between their experiments and ours. In addi-
tion, the standard interval [1, 1,000] used by Banks when
including the upper boundary (and the fact that the series
in this experiment contained 10 numbers) may explain their
results, since these experimental conditions tend to turn the
task into a simple division problem. On the other hand, larger
ranges may make it more difficult for the participants to
judge the series and explain why Banks and colleagues seem
to obtain slightly greater exponents (with intervals [1,
100,000] and [1, 2,000]) than we do here. However, bearing
in mind the coarse sampling of possible exponents in the
Banks’ studies, these slight differences may reflect the fact
that the fixed exponent chosen was not the exact value par-
ticipants would have preferred, had they been presented with
other similar exponents. Crucially, the use of a staircase pro-
cedure allowed us to detect differences (e.g., the exponent
changes by 0.42 before and after feedback in Experiment
5) that were smaller than the steps between tested exponents
used in Banks and Coleman’s study (the smallest step is .56
in the range of exponents from 1.43 to 3.33).

Our task encourages estimation without calculation – a
situation that may increase reliance on intuition of a com-
pressed continuum. We suggest that education and experi-
ence with manipulating linear scales in mathematics
encourages the strategic use of a linear scale, and that it is
therefore necessary to use a difficult task that prevents expli-
cit calculation in order to reveal an intuitive, logarithmic
understanding of numerical magnitudes and distances. In
our experiments, the speed with which the sequences were

presented, the random order, and the nonstandard range of
numbers, all made the application of mathematical rules dif-
ficult. The use of an auditory task, with all the numbers pre-
sented prior to the participants judging the sequences, is
likely to force the participants to rely on their intuitions of
numerical magnitude by taxing working memory. Further-
more, we explicitly required participants to try to respond
spontaneously and to rely on their spatial intuition.

The results of Experiments 4 and 5 clearly indicate that
training, even with explicit presentation of linear sequences,
does not suffice to eliminate the illusion of compression. In
previous studies of the N-P task (Opfer & Siegler, 2007), lin-
ear responses were obtained once participants were explic-
itly taught the spatial location of a target number. Perhaps
training provided participants with precise anchor points that
allowed them to adjust their subsequent evaluations to a lin-
ear scale (similar recalibration occurs in a dot estimation
task; Izard & Dehaene, 2007). In our case, listening to linear
sequences may have provided the same sort of anchor
points, but only allowed participants to slightly correct their
nonlinear responses. Furthermore, this strategy was ineffec-
tive when visual feedback was provided using the
N-P task in Experiment 4, suggesting that there may be dis-
tinct modality- or task-specific representational scales for the
mental number line.

Taken together, these experiments add further support to
the existence, in adult human beings, of a nonlinearly com-
pressed understanding of numerical magnitudes, which has
a strong influence on the intuitive perception of numbers,
and which is only partially overcome by education and train-
ing. These results are thus consistent with one proposed
explanation for the observed shift from a compressed
responding to a linear one, namely that with education, chil-
dren learn to use arithmetic strategies to ‘‘linearize’’ their
behavior on the N-P task. These findings thus suggest that
theremay be multiple understandings of numbers, both linear
and compressed, and that such representations are accessed
in a task- and/or modality-specific manner (see Cohen
Kadosh & Walsh, in press and commentaries therein).

In Dehaene et al.’s study (2008), the Mundurucu adults
with the most experience using Portuguese number words
showed a striking dissociation in their pattern of responding.
Whereas they continued to demonstrate a compressive map-
ping on the N-P task using Mundurucu number words, they
performed linearly with Portuguese number words. Indeed,
it was found that greater education significantly changed
the responses to Portuguese number words from logarithmic
to linear, yet left the responses to Mundurucu numerals and
dot patterns unchanged. These results with the Mundurucu
are consistent with our suggestion, based on results with
educated French-speaking participants, that both linear and
compressed ways of responding may coexist, and that they
may be observed in different experimental contexts, or in the
case of the Mundurucu, when using different languages.
Thus, the results of any one paradigm should not be consid-
ered as giving a unique characterization of numerical
representations, but rather as showing how a certain exper-
imental context leads participants to rely on one out of the
several representations that coexist in adult, literate
participants.
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Appendix

Verbatim Instructions
(Translated From French)

You are about to hear several sequences of random numbers.
For each of these sequences, you will have to judge the way
the numbers are distributed. Thus, if you think that there are
more numbers on the side of smaller numerosities (see
Example 1), press the left-arrow key on the keyboard.

If, on the contrary, there are more numbers on the side of
larger numerosities (Example 2), press the right-arrow key.

Example 1 (left-arrow key)

Example 2 (right-arrow key)
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