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A B S T R A C T

Background: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dy-
namics. While the functional relevance of neural oscillations has been largely investigated, both the nature and
the role of scale-free dynamics in brain processing have been disputed.
New method: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity
using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain
activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual
motion discrimination task.
Results: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and
multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity
reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical
gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality
during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality
from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured
global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task.
Comparison with existing method(s): We showed that the wavelet leader based multifractal approach extends
power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics.
Conclusions: Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in
human brain activity.

1. Introduction

1.1. Scale-free brain activity

Macroscopic brain activity consists of a mixture of synchronized and
desynchronized activity (He et al., 2010; Breakspear, 2017). The syn-
chronization of neural oscillations has been hypothesized to mediate
neural communication (Engel et al., 2001; da Silva, 2013; Buzsáki,
2010; Wang, 2010), and their coupling, to be involved in information
processing (Fries, 2005; Lakatos et al., 2005; Jensen and Colgin, 2007;

da Silva, 2013; Buzsáki et al., 2012). However, the existence, the
properties and the functional relevance of scale-free dynamics in brain
processing remain an open debate. Scale-free dynamics have been re-
ported in spontaneous brain activity (He et al., 2010) and in data col-
lected with various neuroimaging techniques including fMRI, magne-
toencephalography (MEG), electroencephalography (EEG) and local-
field-potentials (LFP) (He et al., 2010; Foster et al., 2016). The presence
of scale-free dynamics was demonstrated in the infra-slow frequency
range (from 0.01 Hz to 1 Hz, He et al., 2010; Buzsáki and Mizuseki,
2014; He, 2014; Becker et al., 2018) and in the slow fluctuations of
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power of narrow-band neuronal oscillations (Freeman, 2000;
Linkenkaer-Hansen et al., 2001; Monto et al., 2008; Palva et al., 2013).
The empirical work in both humans and animals has revealed that
scale-free dynamics of brain activity were modulated by the levels of
wakefulness (vs. sleep) (Weiss et al., 2009; He et al., 2010; Tagliazucchi
et al., 2013; Dehghani et al., 2012), consciousness (vs. anesthesia) (He
and Raichle, 2009; Barttfeld et al., 2015), aging and neurodegenerative
diseases (Suckling et al., 2008) as well as task performance (Buiatti
et al., 2007; He et al., 2010; He, 2011; Ciuciu et al., 2012; Monto et al.,
2008; Palva et al., 2013; Lin et al., 2016).

The intuition behind the scale-free concept is that the relevant in-
formation in the temporal dynamics of a given signal is coded within
the relations that tie together temporal scales, rather than in the power
of neuronal oscillations in specific bands. Its origin remains however
poorly understood. Brain activity recorded with MEG or EEG is most
comparable to LFP, and slow dynamic fluctuations likely reflect the up
and down states of cortical networks as opposed to spiking activity per
se (Baranauskas et al., 2012). Hence, although fast neuronal activity or
avalanches could endogenously produce scale-free infra-slow brain
dynamics, a careful statistical assessment remains necessary to draw
conclusions on the nature of observed scale-free dynamics (Bedard
et al., 2006; Touboul and Destexhe, 2010; Dehghani, 2012). A temporal
hierarchy of neural oscillators has been considered a possible source of
scale-free brain dynamics (Penttonen and Buzsáki, 2003; He et al.,
2010) as well as the spatial repartition of neural sources. Dendritic
filtering (Destexhe et al., 1999; Werner, 2010; Buzsáki et al., 2012) or
the resistive brain milieu constitute other tentative origins for scale-free
dynamics (Dehghani et al., 2010). That the structural configuration of
neural networks and their dynamics may be arguably topologically
intertwined (Arenas et al., 2008; Werner, 2010; Chaudhuri et al., 2017)
is also important to keep in mind. To better understand the origins and
nature of scale-free brain dynamics, we thus propose to use a rich and
robust statistical framework.

1.2. Scale-free dynamics modeling and assessment

Scale-free dynamics recorded with neuroimaging techniques have
generally been quantified using a 1/fβ power spectrum model over a
large continuum of frequencies. As a result, the empirical assessment
has often used Fourier-based spectrum estimation. As an alternative,
self-similarity provides a well accepted model for scale-free dynamics
that encompasses, formalizes, and enriches the traditional Fourier 1/fβ

spectrum modeling, with models such as fractional Brownian motion
(fBm) or fractional Gaussian noise (fGn) (Novikov et al., 1997; He et al.,
2010; Ciuciu et al., 2012, 2014). The self-similarity, or Hurst, para-
meter H matches the spectral exponent β, as β=2H− 1 for fGn, and as
β=2H+1 for fBm. In the context of brain activity, H indexes how well
neural activity is temporally structured (via its autocorrelation). Ad-
ditionally, although H has been estimated using Detrended Fluctuation
Analysis (DFA) (Linkenkaer-Hansen et al., 2001; Buiatti et al., 2007; He,
2011; Hardstone et al., 2012; Palva et al., 2013; Barttfeld et al., 2015),
it is now well-documented that wavelet-based estimators provide sig-
nificant theoretical improvements and practical robustness over DFA,
notably by disentangling true scale-free dynamics from non-stationary
smooth trends (Veitch and Abry, 1999; Torres and Abry, 2003; Baykut
et al., 2005; Ciuciu et al., 2012, 2014). This is further detailed in Sec-
tion 2.2.2. For a review on statistically relevant estimation of the self-
similarity parameter, interested readers are also referred to (Bardet
et al., 2003).

Often associated with Gaussianity, self-similarity alone does not
fully account for scale-free dynamics. The main reason is that self-si-
milarity restricts the description of neural activity to second-order
statistics (autocorrelation and Fourier spectrum) and, hence, to additive
processes. Yet, it has been proposed that multiplicative processes may
provide more appropriate descriptions of neural activity (Buzsáki and
Mizuseki, 2014). Independently of, and in addition to self-similarity,

multifractality provides a framework to model these non-additive pro-
cesses (Shimizu et al., 2004; Suckling et al., 2008; Van de Ville et al.,
2010). Multifractality can be conceived as the signature of multi-
plicative mechanisms, or as the intricate combination of locally self-
similar processes. For instance, if a patch of cortex (i.e. the anatomical
resolution of MEG recordings) is composed of several small-networks
each characterized by a single self-similar parameter H, the multi-
fractality parameterM constitutes an index capturing the diversity of Hs
and their interactions within the patch. Qualitatively, the multi-
fractality parameter M quantifies the occurrence of transient local
burstiness or non Gaussian temporal structures, not accounted for by
the autocorrelation function or by the Fourier spectrum (hence, neither
by H nor β). To meaningfully and reliably estimate M, it has been
theoretically shown that the wavelet-based analysis must be extended
to wavelet-leaders (Wendt et al., 2007).

1.3. Goals and contributions

The goal of the present work is to produce a rich and reliable
characterization of scale-free temporal dynamics in human brain ac-
tivity, and to provide the field with a robust and reliable procedure to
do so. This is made possible (i) by the combined use of self-similarity
and multifractality as independent and complementary modeling
paradigms, and (ii) by the recourse to the wavelet and wavelet-leader
based assessment framework yielding improved performance and ro-
bustness to nonstationary trend procedures (Veitch and Abry, 1999;
Torres and Abry, 2003; Baykut et al., 2005; Ciuciu et al., 2012, 2014).
The present work investigates the existence and characterization of
scale-free dynamics in human cortical activity recorded with MEG, and
investigates the modulation of H and M by resting-state and task.

2. Material and methods

2.1. Material

2.1.1. Participants
Twenty-four right-handed participants (10 females; mean age of

22.1 ± 1.9 y.o.) took part in the study. All had normal or corrected-to-
normal vision and normal hearing and provided a written informed
consent prior to the experiment in accordance with the Declaration of
Helsinki (2008) and the local Ethics Committee on Human Research at
NeuroSpin (Gif-sur-Yvette, France).

2.1.2. Experimental design
The resting-state block lasted 5min during which participants kept

their eyes open while staring at a black screen. Participants could mind-
wander freely. 5 min were selected to be sufficient for an accurate es-
timation of scale-free properties but not long enough for participants’
cognitive state to drastically change. Resting-state activity was recorded
prior to any exposure to task or stimuli. The task block lasted 12min
during which participants performed a visual motion coherence dis-
crimination task (Zilber et al., 2014). In each trial (2.5 s), participants
decided which of two intermixed (green and red) clouds of dots was
most coherent. Responses were delivered by button press. The experi-
ment was conducted in a darkened soundproof magnetic-shielded
room. Participants were seated in upright position under the MEG
dewar facing a projection screen placed 90 cm away. The refresh rate of
the projector (model PT-D7700E-K, Panasonic Inc, Kadoma, Japan) was
60 Hz. Participants were explained the task and were in contact at all
times with the experimenter via a microphone and a video camera.
Stimuli were designed using Matlab (R2010a, Mathworks Inc.) with
Psychtoolbox-3 (Pelli, 1997) on a PC (Windows XP).

2.1.3. MEG data acquisition
Brain activity was recorded in a magnetically shielded room using a

306 MEG system (Neuromag Elekta LTD, Helsinki). MEG recordings
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were sampled at 2 kHz and band-pass filtered between 0.03 and 600 Hz.
Four head position coils (HPI) measured participants’ head position
before each block; three fiducial markers (nasion and pre-auricular
points) were used for digitization and for alignment with the anato-
mical MRI (aMRI) acquired immediately after MEG acquisition.
Electrooculograms (EOG, horizontal and vertical eye movements) and
electrocardiogram (ECG) were simultaneously recorded. Before each
experiment, 5 min of empty room recordings were acquired for the
computation of the noise covariance matrix used in solving the MEG
inverse problem.

2.1.4. Anatomical MRI acquisition and segmentation
The T1 weighted anatomical MRI (aMRI) was recorded using a 3-T

Trio MRI scanner (Siemens Erlangen, Germany). Parameters of the se-
quence were: FOV=256×240×176mm3, voxel size:
1.0× 1.0×1.1mm3; acquisition time: 7min46 s; repetition time
TR=2300ms; inversion time TI= 900ms; flip angle= 9°; transversal
orientation, echo time TE=2.98ms and partial Fourier 7/8. Cortical
reconstruction and volumetric segmentation of participants’ T1
weighted aMRI was performed with Freesurfer1 (RRID: nif-0000-00304).
This included: motion correction, average of multiple volumetric T1
weighted images, removal of non-brain tissue, automated Talairach
transformation, intensity normalization, tessellation of the gray-white
matter boundary, automated topology correction, and surface de-
formation following intensity gradients (Dale et al., 1999). Once cor-
tical models were complete, deformable procedures could be performed
including surface inflation (Fischl et al., 1999a) and registration to a
spherical atlas (Fischl et al., 1999b). These procedures were adopted
using MNE (Gramfort et al., 2014, RRID: scires_000118) to morph in-
dividuals’ current source estimates onto the Freesurfer average brain for
group analysis.

2.1.5. MEG data preprocessing
Data preprocessing was done in accordance with accepted guide-

lines for MEG research (Gross et al., 2013). Signal Space Separation
(SSS) was performed using MaxFilter to remove external magnetic in-
terferences and discard noisy sensors (Taulu and Simola, 2006). Ocular
and cardiac artifacts (eye blinks and heart beats) were removed using
Independent Component Analysis (ICA) on raw signals. ICA was fitted
to raw MEG signals, and sources matching the ECG and EOG signals
recorded by dedicated channels were automatically found and re-
moved.2 Then, for the sake of computational efficiency, we down-
sampled the preprocessed MEG time series at fs=400Hz before ap-
plying signal reconstruction as described in Section 2.1.6, since scale-
free analysis was focused on the low frequency content.

2.1.6. Coregistration and MEG source reconstruction
The co-registration of MEG data with the individual's aMRI was

carried out by realigning the digitized fiducial points with the multi-
modal markers visible in MRI slices. We used a two-step procedure to
ensure reliable MEG-aMRI coregistration: using MRILAB (Neuromag-
Elekta LTD, Helsinki), fiducials were aligned manually with the mul-
timodal markers on the MRI slice; an iterative procedure realigned all
digitized points (about 30 more supplementary points distributed on
the scalp of the subject were digitized) with the scalp of the participant
and the MEG coordinates using the mne_analyze tools within MNE
(Gramfort et al., 2014, RRID:nlx_151346). Individual forward solutions
were computed using a 3-layer boundary element model (Hämäläinen
and Sarvas, 1989) constrained by the individual's aMRI. Cortical sur-
faces were extracted with Freesurfer (RRID: nif-0000-00304) and deci-
mated to about 5120 vertices per hemisphere with 4.9mm spacing. The

forward solution, noise and source covariance matrices were used to
compute the noise-normalized dynamic statistical parametric mapping
(dSPM) (Dale et al., 1999) inverse operator (depth= 0.8).3 The unitless
inverse operator was applied using a loose orientation constraint on
individuals’ brain data (Lin et al., 2006) by setting the transverse
components of the source covariance matrix to 0.4. Importantly, con-
sidering that taking the norm of source dipoles is a nonlinear trans-
formation that may modify scale-free properties (Zilber et al., 2012), we
only kept the radial components. Using the individual cortical parcel-
lation based on the Destrieux atlas (138 labels in total) provided by
Freesurfer, reconstructed time series in vertices belonging to the same
cortical label were grouped and averaged to obtain a unique time series.
In this procedure, the signs of time series within labels were flipped
according to anatomical orientation of vertices in such a way that
signed activations did not cancel out after averaging (this is a standard
label averaging used by the MNE software).

2.2. Methods

2.2.1. Scale-free modeling: From Fourier spectrum to selfsimilarity and
multifractality

Scale-free dynamics are classically modeled by a power-law de-
crease of the Fourier power spectrum Γ(f) with respect to frequencies f:
Γ(f)≃ C|f|−β. Such power laws can be understood as the signatures of
the more general and better theoretically framed concept of self-simi-
larity (Samorodnitsky and Taqqu, 1994). In essence, self-similarity
amounts to modeling scale-free dynamics in data as fractional Gaussian
noise (fGn), a Gaussian stationary stochastic process, consisting of the
fractional integration (with parameter H− 1/2) of a white (i.e., delta-
correlated) Gaussian process. The sole parameter H, theoretically re-
lated to β as β=2H− 1, governs the entire covariance structure and
thus, together with Gaussianity, completely defines temporal dynamics.
More precisely, the self-similar parameter H quantifies the algebraic
decrease of the autocorrelation function: H=1/2 indicates the absence
of correlation, H < 1/2 corresponds to negative correlation and
H > 1/2 marks long range positive correlation. While the classical
definition of fGn implies 0 < H < 1, it can be theoretically extended
to H > 1 (with the recourse to the notion of generalized processes and
tempered distributions; Samorodnitsky and Taqqu, 1994), while pre-
serving the original intuition beyond fGn: the larger |H− 1/2|, the
more structured the temporal dynamics of data (as illustrated in Sup-
plementary Movie 1). Beyond the global control of temporal dynamics
via the covariance function, Gaussian self-similarity also implies the
absence of fluctuations in the regularity of local temporal dynamics.
Such local regularity is often quantified via the Hölder exponent h
(t) > 0 (Wendt et al., 2007). For Gaussian self-similar processes, such
as fGn, ∀t, h(t)≡H.

The multifractal paradigm extends self-similarity by preserving a
control of the global temporal dynamics via the covariance function,
driven by H, while enriching it with possible fluctuations along time of
the local regularity h(t) (Wendt et al., 2007). Multifractal models, such
as multifractal random walk (MRW), are thus essentially stationary non
Gaussian processes, defined as the fractional integration (of parameter
H− 1/2) of a white (i.e., delta-correlated) Gaussian process, whose
amplitude is modulated by another independent process, whose cov-
ariance decreases logarithmically slowly, with an amplitude controlled
by the multifractality parameter M⩾ 0 (Bacry et al., 2001). Self-simi-
larity parameter H preserves the intuitive interpretation of global and
overall dependence and structure in the temporal dynamics of data,
while the additional multifractal parameter M allows local and tran-
sient departures from Gaussianity, hence burstiness in temporal dy-
namics, via fluctuations along time of the local regularity (as illustrated

1 http://surfer.nmr.mgh.harvard.edu
2 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_

artifacts_correction_ica.py

3 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_
mne_dspm_source_localization.py
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in Supplementary Movie 2).
More technically, multifractal temporal dynamics imply that the

fluctuations along time of local regularity are erratic, i.e., the function h
(t) is itself a very irregular function. Therefore, temporal dynamics are
not well-described by the local function h(t), but rather by a global
function, the so-called multifractal spectrum 0⩽D(h) < 1. The multi-
fractal spectrum, which consists of the fractal dimension of the set of
points on the real line sharing the same regularity h(t)= h (cf. Wendt
et al., 2007 for a technical definition), thus conveys a global informa-
tion on the geometrical structure of h(t), hence on temporal dynamics
beyond the mere covariance function. These notions are pedagogically,
hence qualitatively, illustrated on synthetic data in Fig. 1.

While the multifractal spectrum D(h) can theoretically consist of any
shape, it is often efficiently approximated, for practical use, as a para-
bola controlled by H andM: D(h)≃ 1− (h−H)2/2M. For Gaussian self-
similar processes, M≡ 0 and D(h)= δ(h−H), with δ the Dirac-delta
function. Parameters H and M thus provide independent and com-
plementary characterization of scale-free dynamics in data (Wendt
et al., 2007), with M adding the possibility to model burstiness in
temporal dynamics by local departures from Gaussianity, while the
global structure of temporal dynamics remains controlled by H.

2.2.2. Scale-free analysis: From spectral estimation to wavelet and wavelet-
leader analysis

The scaling exponent β has classically been evaluated by means of
spectrum estimation, i.e., by linear regressions in a log-log plot of es-
timated power spectrum versus frequency (as sketched in Fig. 2). In the
present work, all Fourier spectra are estimated using the Welch peri-
odogram procedure. Alternatively, time domain approaches such as
detrended fluctuation analysis (DFA) (Linkenkaer-Hansen et al., 2001),
also based on linear regressions, rely on quantifying the power of
fluctuations in data increments computed at different lags (acting as
scales). It is however now well-documented that multiscale re-
presentations, such as wavelet transforms, are well-suited for the

analysis of scale-free dynamics and achieve optimal and robust esti-
mation performance cf. e.g., Abry and Veitch (1998), Torres and Abry
(2003), Veitch and Abry (1999), and Bardet et al. (2003). Let ψ0(t)
denote a reference pattern, referred to as the mother wavelet, the dis-
crete wavelet coefficients dX(j, k) are defined on a dyadic grid (scale
a=2j and time t= k2j) as: dX(j, k)= ∫ X(t)2−jψ0(2−jt− k)dt. Under
mild conditions on the choice of ψ0(t), it has been shown that for self-
similar processes (Abry and Veitch, 1998):

∑≡ ≃ ∀ = > ∀ >
=

S j q
n

d j k K a q( , ) 1 | ( , )| 2 , 2 0, 0X
d

j k

n

X
q

q
jζ q j

1

( )
j

(1)

with ζ(q)= qH, thus permitting a robust and efficient estimation of H
by linear regressions (Abry and Veitch, 1998). It can further be shown
that, with the particular choice q=2, =S j q( , 2)X

d , referred to as the
wavelet spectrum, can be read as an estimator of the Fourier spectrum
Γ(f) (Veitch and Abry, 1999). Therefore, under elementary transfor-
mations, the Fourier and wavelet spectra can be mapped one onto the
other, as ≃ = =f S j f f qΓ( ) ( log 2( / ), 2)X

d
0 , with f0 a constant that de-

pends on the choice of ψ0 (and that can be well approximated for a large
class of wavelets as f0≃ 3/4× fs, with fs the sampling frequency) (Abry
and Veitch, 1998; Veitch and Abry, 1999). This is quantitatively illu-
strated in Fig. 2. While both spectra yield equivalent information on the
global temporal dynamics, it has been documented that the wavelet
spectrum yields a more robust and more reliable estimate of H than
Fourier spectrum does for β (Veitch and Abry, 1999). Notably, it was
shown that the wavelet spectrum is less prone to bias induced by
smooth trends or smooth non stationarity effects, than the classical
Fourier spectrum, hence yielding robust estimates of the scale-free ex-
ponents.

For multifractal processes, when M > 0, the scaling exponents ζ(q)
no longer follow the linear form qH, but rather consist of a concave
function, which in first approximation and for practical purposes can be
written as ζ(q)= qH−Mq2/2. The scaling exponents ζ(q) are further
related to the multifractal spectrum D(h) via a Legendre transform

Fig. 1. Schematic introduction to multifractality. (A) Multifractal
signals observed at three different time scales from coarse (top) to
fine (bottom). Local temporal dynamics can be quantified by the
Hölder exponent h(t), a local regularity index. In this pedagogical
example, h(t) can only take three values: red, green and yellow.
For multifractal signals, h(t) is per se a very irregular function
along time, with all possible h existing in any small subpart of the
data. (B) For monofractal signals (with the same covariance
function as the multifractal signals, hence same H), no fluctuations
of local regularity are observed and the local h and the global H
are everywhere identical. In these three examples of monofractal
signals, the global regularity H of each signal increases from top to
bottom. (C) The multifractality illustrated in (A) can be captured
by a multifractal spectrum D(h), quantifying by means of fractal
(Hausdorff) dimension of the geometrical structure of time points
that share the same local regularity h(t)= h. The most frequent
Hölder exponent h, indicated in red, is closely related to the global
self-similarity index H whereas multifractality M encompasses all
local regularities h by reflecting the width of D(h). Importantly, D
(h) remains the same for the whole signal and any subpart, it is
hence scale invariant. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of
the article.)
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(Wendt et al., 2007).
For more than one decade (Jaffard et al., 1998) it has been proved

that a relevant estimate of parameter M requires to replace the wavelet
coefficients with wavelet-leaders, defined as local suprema of the wa-
velet coefficients dX(j′, k′), across a local neighborhood λj,k=[(k− 2)
2j+1, (k+1)2j], for all finer scales ⩽′2 2j j (Wendt et al., 2007):

= ′ ′
′ ⩽ ′∈′

L j k d j k( , ) sup | ( , )|.X
j j k λ

X
, 2 j

j k, (2)

Under mild restrictions, it has been shown that (Wendt et al., 2007):
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These two fundamental relations show that parameters H and M can be
estimated as linear regressions in diagrams C1(j) vs. j and C2(j) vs. j,
respectively. This is illustrated in Fig. 3. To ease exposition, the func-
tions C1(j) and C2(j) will hereafter be referred to as the wavelet-leader
spectra.

2.2.3. Estimation set-up
In practice, in the following data analysis, spectral estimation was

conducted using a standard Welch periodogram estimation procedure,
with a classical Hamming windowing (window size of 8192 samples,
roughly corresponding to 20 s, and 50% overlap in adjacent windows).
Wavelet analysis was conducted using a fast pyramidal discrete wavelet
transform algorithm, using Daubechies least asymmetric orthonormal
wavelets with Nψ=2 vanishing moments (Mallat, 1998). Scale-free and
multifractal analyses were performed using the state-of-the-art wavelet
leader toolbox made publicly available4 and fully detailed in Wendt

et al. (2007), and now available as well in Python.5 It has been carefully
checked that varying details in data analysis set-up leads to similar
conclusions. For the sake of reproducibility, the Python scripts corre-
sponding to the whole MEG data analysis we performed are made
publicly available.6

3. Results: self-similarity and multifractality in human brain
activity recorded with MEG

3.1. Assessing self-similarity in MEG data: range of frequencies, Fourier vs.
wavelet power spectra

Fig. 2 reports the group-average Fourier and wavelet spectra in
sensors and in cortical source estimations of the entire MEG data time
series. As theoretically expected (cf. Section 2.2.2), the Fourier (thin
lines) and the wavelet spectra (thick lines) superimposed very well,
yielding consistent patterns across methods. Fig. 2 also shows that both
spectra displayed power law behaviors over a broad range of fre-
quencies ranging from roughly 0.1 Hz to 1.5 Hz. Importantly, Fig. 2A
compares Fourier and wavelet spectra of human brain MEG data to
those of empty-room MEG recordings. This formal comparison un-
ambiguously showed that the spectra differed both in amplitude and in
shape: the spectral exponent of human brain recordings was in the so-
called pink noise regime (1⩽ β⩽ 2) while empty-room recordings ra-
ther displayed brown noise temporal dynamics (β⩾ 2). Thus, scale-free
dynamics observed in MEG recordings through power spectrum ana-
lysis (both Fourier and wavelet) was not caused by instrumental or
sensor noise, but rather resulted from macroscopic human brain ac-
tivity.

Thus, and overall, Fig. 2A–C thus revealed that power law behaviors
could be consistently observed during resting-state and during task, in

Fig. 2. Scale-free brain dynamics: Fourier vs. wavelet-based power
spectra at rest and during task. (A) Group-average Fourier (thin
lines) and wavelet (thick lines) power spectra computed in an
occipital sensor (inset) for empty room (grey), resting-state
(brown) and task (green) recordings. In both Fourier and wavelet
log-power spectra, the linear fit indicates scale-free dynamics, and
delineates the implicated range of scales (j∈ (8, 12)) corre-
sponding roughly from 0.1 Hz (i.e. j=12) to 1.5 Hz (i.e. j=8).
The slopes quantify the scaling exponents β (of power spectra 1/fβ)
and the self-similarity index H. Human brain activity is char-
acterized by a pink noise (β≃ 1) regime whereas empty room re-
cordings correspond to brown noise (β≃ 2): hence, and im-
portantly, this graph clearly shows that instrumental noise is a not
a spurious cause for observing scale-free dynamics in brain ac-
tivity. (B and C) Group-average Fourier (thin lines) and wavelet-
based (thick lines) power spectra computed in two frontal (red)
and occipital (blue) cortical labels at rest (B) and during task (C).
Larger β values correspond to steeper slopes, as shown in the
frontal region (front, red label) compared to the occipital (occ,
blue label). All plots clearly show that wavelet and Fourier spectra
can be formally mapped one onto the other. (For interpretation of
the references to color in this figure legend, the reader is referred
to the web version of the article.)

4 http://www.ens-lyon.fr/PHYSIQUE/Equipe3/Multifractal/software.html

5 https://github.com/neurospin/mfanalysis
6 https://github.com/neurospin/dynacomp_mf_analysis
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the range of octaves (j1, j2)= (8, 12). This range is associated with
frequencies ≃(0.1, 1.5) Hz or, equivalently, with time scales (2j1=8/fs,
2j2=12/fs)≃ (0.66, 10) s.

To further provide an intuitive understanding of scale-free dy-
namics, we compared the Fourier and wavelet spectra of normalized
MEG time courses (Fig. 3). We selected two different pairs of sensors for
one participant at rest (Fig. 3A–C) and during task (Fig. 3D–F) in order
to illustrate two extreme case examples. In Fig. 3A, the occipital sensor
time series (red) appeared visually less structured over time (i.e., closer
to white noise behavior) than the frontal sensor time series (black). This
visual appreciation was quantified using a classic Fourier analysis
showing a power law behavior at low frequencies (P(f)≃ 1/fβ), with a
scaling exponent β that was smaller for the occipital sensor (red trace)
(Fig. 3B). Conversely, we found that the frontal sensor (black) showed a
larger scaling exponent, hence a steeper slope, or equivalently, a
stronger temporal autocorrelation, and was quantified by a stronger
long-range dependency (Fig. 3B). The same analysis held when con-
ducted from the wavelet spectrum (Fig. 3C), with very satisfactory
matches for the estimated scaling exponents H and β according to
β=2H− 1.

3.2. Beyond self-similarity in MEG data by assessing multifractality

To demonstrate the interest of a multifractal description in brain
activity, we first report the analysis of the same MEG time series re-
corded at rest already used in the previous Section (Fig. 3A). Multi-
fractal analysis yielded negative estimates of the multifractality para-
meter (Fig. 3C): M⩽ 0 indicating no multifractality at rest. This can be
vizualized by the δ-shape of the multifractal spectra D(h), which only
differed by their location on the h-axis, reflecting different self-simi-
larity exponents H. In other words, for these time series, there was no
additional information provided by using multifractal analysis.

We then repeated the same analysis on two MEG time-series col-
lected during task (Fig. 3D). These case study time-series where chosen
on purpose because they showed very similar Fourier spectra (Fig. 3E),
hence displaying the same βs, and predictably, the same held true for
the wavelet spectra (Fig. 3F) showing the same Hs. Interestingly how-
ever, the frontal signal (red) appeared far more irregular and locally
bursty than the central one (black). This was again quantified using
multifractal analysis (Fig. 3F), which revealed that although H (top left)
was identical in both frontal and central time series, the frontal time
series was characterized by a positive M=0.045 > 0 (hence,

Fig. 3. Self-similarity and multifractality in spontaneous infraslow brain activity at rest. Normalized time series representing an individual's brain activity recorded in
two different pairs of MEG sensors at rest (A–C) and during task (D–F). The pairs of sensors in rest and task conditions were selected in order to show two extreme
examples where different self-similarity (but no multifractality) or different multifractality (but same self-similarity) can be observed, respectively. In (A–C), the
black and red traces characterize frontal and occipital MEG sensors (magnetometers) at rest, respectively, as depicted in the topographies. In (D–F), the same colors
are used to refer to central and right frontal MEG sensors (magnetometers) during task. In (A–C), the two signals show a difference in self-similarity. In (D–F), the two
signals show differences in multifractality but no differences in self-similarity. Plots (B,E) correspond to periodogram based spectral estimation (cf. Section 2.2.3).
Plots (C,F) correspond to wavelet-leader analysis (as detailed in Section 2.2.2). In particular, on top of panels (C,F), the quantities C1(j) and C2(j) defined in Eqs. (3)
and (4) are computed as a function of time scale j. The H andM indexes are derived from these quantities using a regression analysis performed over the scaling range
(j1, j2)= (8, 12) which matched the (0.1, 1.5) Hz frequency range (j=8 corresponds to 1.5 Hz and j=12 corresponds to 0.1 Hz). The latter was used in panels (B,E)
for estimating the β values. The multifractal spectra D(h) are reported at the bottom of panels (C,F). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

D. La Rocca et al. Journal of Neuroscience Methods 309 (2018) 175–187

180



displayed multifractality), while the central sensor did not (M < 0).
The multifractal spectra for both time series thus summarized the two
case study observations: whereas the location of their peaks coincided
(same H), only one spectrum (red) showed a large parabola shape
(M > 0).

These examples were chosen as pedagogical illustrations of the
potential richness of scale-free temporal dynamics found in brain time
series. Specifically, while the typical power spectrum analysis would
conclude that these different time series share the same scale-free
characteristics, multifractal analysis clearly showed differences in their
temporal dynamics by quantifying the existence of transient and local
irregularities observed in the frontal sensor (red) that did not exist in
the central sensor data (black). Multifractality thus complements self-
similarity in the characterization of scale-free dynamics in time series
by quantifying local transient dynamics that are not well accounted for
by the autocorrelation or by the Fourier spectrum.

3.3. Group-level analysis of scale-free brain dynamics

Having extended the framework for the assessment of scale-free
brain dynamics to self-similarity H and multifractality M, we then
proceeded with a comprehensive analysis of scale-free brain activity
across all individuals (n=24). For this, we assessed scale free activity
in source reconstructed time series averaged within each cortical re-
gions (see Section 2.1.6). The estimation of parameters H and M relied
on the wavelet-leader multifractal formalism described in Section 2.2.2:
i.e., MEG wavelet-leader spectra C1(j) and C2(j) were systematically
computed on resting-state and task recordings separately for each cor-
tical label and on a per individual basis. Results were then averaged
across individuals to form C j( )1 and C j( )2 , respectively. Importantly,
since linear regression and group-level averaging were both linear after
taking log in Eqs. (3) and (4), we could interchange them without im-
pacting the results. For this reason, in what follows, we illustrated
group-level values of C j( )1 and C j( )2 in log-scale diagrams from which
we deduced the respective group-level H and M. The latter actually
matched the group-level averages of subject-specific values of H and M,
shown in the cortical maps of Figs. 4 and 5 .

3.4. A fronto-occipital gradient of self-similarity

Fig. 4A reports the grand average C j( )1 for resting-state obtained in
two cortical labels (one frontal in red, one occipital in blue). The self-
similarity exponent H was found to be larger in the frontal label as
compared to the occipital label. To systematically quantify this effect,
the calculation of C j( )1 was conducted over the whole cortical surface.
Using T-statistics, the null hypothesis H=0.5 was tested at the group
level. To account for multiple comparisons across the 138 labels cov-
ering the whole cortical surface, a correction was implemented using
the false discovery rate (FDR) detection at α=0.05: pcorrected < 0.05.
Fig. 4C reports the spatial distribution of statistically significant mean
values of H (H > 0.5), yielding a key finding: the spatial distribution of
estimated Hs during rest revealed a fronto-occipital gradient, in which
H significantly decreased from frontal (H≃ 1.2) to occipital regions
(H≃ 0.8–0.9). This gradient was consistent with prior observations of
scale-free activity observed in MEG and EEG recordings (Dehghani
et al., 2010): larger H in frontal regions (i.e., steeper slopes for the
spectra) would indicate stronger and longer temporal correlations,i.e.
more-structured temporal dynamics, compared to occipital regions.

3.5. During task, an overall decrease of self-similarity accentuates the
fronto-occipital gradient

In Fig. 4D, the spatial distribution of H significantly departed away
from 0.5 during task yielding, by comparison to rest, another key
finding: the decrease of H during task appeared to be global and almost
significant everywhere over the cortical surface. Interestingly, the

anatomical fronto-occipital gradient at rest appeared to be further
strengthened during perceptual task completion (cf. lateral views in
Fig. 4D). We contrasted the H parameter estimates between rest and
task using paired t-tests. FDR was applied to correct for multiple com-
parisons across cortical labels at α=0.05. In Fig. 4E, the statistical
assessment of changes in H between rest and task confirmed our qua-
litative appreciation. Specifically, H was significantly diminished
during task in numerous cortical regions including occipital, parietal,
and primary motor cortices as well as right supplementary area (SMA)
and ventrolateral prefrontal cortex (vlPFC) bilaterally. All these regions
were previously shown to be essential in the perceptual task partici-
pants were engaged in Zilber et al. (2014).

3.6. Weak multifractality in resting-state

The group-average C j( )2 at rest for two cortical labels is illustrated
in Fig. 5A. We found no multifractality (M < 0) in the frontal label
(red) but found multifractality (M=0.017) in the occipital label (blue).
As previously done for estimates of H, we performed the analysis of
multifractality at rest over the whole cortical surface. Using T-statistics,
the null hypothesis M=0 was tested at the group-level. The same FDR
correction at α=0.05 was applied to correct for multiple comparisons
across labels. Fig. 5C reports the spatial distribution of statistically
significant mean values of M (M > 0). At rest, the presence of multi-
fractality was confined to a few regions: the posterior superior temporal
sulci, the occipital cortex, the right temporo-parietal junction and the
frontal cortices, bilaterally. The observed values of M mostly ranged
between 0.01 and 0.02, with the exception of the frontal poles which
reached M=0.03.

3.7. Multifractality: localized increase in regions engaged in the task

During task, the group-level wavelet-leader spectra C j( )2 (Fig. 5B)
suggested an absence of multifractality in frontal regions (M=0) but
an increase of multifractality in occipital regions. M was increased by
about 60% in occipital cortices, hence showing steeper slopes for C j( )2 .
A statistical assessment of multifractality over the whole cortical sur-
face during task revealed a spatially extended set of cortical regions
showing significant multifractality (Fig. 5D; mean values of M
(M > 0)). Additionally, the multifractal parameter M took overall
larger values compared to the distribution we had observed during
resting-state. We notably found larger M values in cortical regions in-
volved in the perceptual task participants were engaged in Zilber et al.
(2014), namely: visual cortices (primary, secondary and visual motion
region (hMT+)) as well as parietal cortices and the posterior superior
temporal sulci.

When statistically contrasting the M parameter estimates between
rest and task (paired t-tests, FDR correction for multiple comparisons
across cortical labels at α=0.05), we found significant changes in M in
brain regions including the right occipital cortices, SMA, the left tem-
poro-parietal junction and posterior cingulate cortex (Fig. 5E). These
changes corresponded to an increase in multifractality, though they
remained limited in magnitude to a maximal increase of 0.01 (to be
compared to an average value of the order of 0.02). This was a re-
markable observation considering that the analysis was conducted over
the whole cortical surface with no a priori restriction on the timing of
the stimuli or cognitive operations implicated in the decision-making;
rather, our analysis was performed over the whole time series.

A supplementary analysis of high-pass filtered data (cut-off fre-
quency of 0.1 Hz) was performed to exclude any effect of artifacts
overlapping on the infraslow frequency range (see Fig. S1).
Furthermore, the passive Localizer recording, which was implemented
to localize the hMT+ visual motion area in each individual (see (Zilber
et al., 2014) for details), was analyzed to exclude the impact of a mere
motor response in the modulation of scale-free parameters (see Figure
S1B). Both analyses showed similar cortical distributions of parameters
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H and M to those shown in Figs. 4 and 5 . Altogether, these results
suggest that multifractal characterization of brain activity may capture
relevant signatures of brain processing that are associated with task-
relevant brain regions.

3.8. Covariation of self-similarity and multifractality from rest to task

So far, we reported significant differences for both H and M when
contrasting rest and task, namely: while self-similarity H significantly
decreased in task as compared to rest (Fig. 4E), multifractality M

Fig. 4. Fronto-occipital gradient of self-similarity. For comparison with Fig. 2, we show group-average wavelet-leader structure functions C j( )1 in the same frontal
(red) and occipital (blue) cortical labels during rest (A) and task (B) blocks. The linear fits were computed over the scaling range 8⩽ j⩽ 12 and matched the (0.1, 1.5)
Hz frequency range used before for linear regression in the power spectra. The associated slopes provides estimates of group-level Hurst exponents H. (C and D)
Group-average cortical maps (lateral and medial views on top and bottom, respectively, left hemisphere on the left) of Hurst exponents H at rest and during task,
respectively. In both rest and task, a fronto-occipital gradient of self-similarity could be observed going from higher H in frontal regions to lower H in parieto-occipital
regions). (E) Cortical maps contrasting H in task and resting-state testing the null hypothesis that HTASK=HREST. The statistical significance was assessed on a per
label basis by computing a paired Student t-test and correcting for multiple comparisons with FDR at α=0.05. Estimates of H were smaller in task than in rest as
shown by negative differences (ΔH=HTASK−HREST < 0). This contrast indicated that, globally, self-similarity significantly decreased when participants performed
a task as compared to when they rested. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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significantly increased in task as compared to rest (Fig. 5E). Ad-
ditionally, the changes in M were confined to a limited number of brain
regions whereas the changes observed in H were more global, thereby
yielding a global accentuation of the fronto-occipital gradient. Con-
sidering the possible overlap of cortical regions displaying both
changes, we then asked to which extent the two characteristics of scale-

free dynamics may be related. We correlated the changes in H and M
from rest to task on a label-by-label basis (Fig. 6). This analysis revealed
that in some of the cortical regions showing task-related multifractality
(Fig. 6A), there was a significant negative correlation between in-
dividual changes from rest to task of H (ΔH=HTASK−HREST) and M
(ΔM=MTASK−MREST) (Fig. 6B).

Fig. 5. Multifractal brain activity. Group-average wavelet-leader structure functions C j( )2 in the same frontal (red) and occipital (blue) labels at rest (A) and during
task (B). The linear fits were computed over the scaling range 8⩽ j⩽ 12 and matched the (0.1, 1.5) Hz frequency range used before. The associated slopes provided
estimates of the multifractal exponents M. (C and D) Statistically significant (H0 :M=0) grand-average cortical maps of multifractal exponents M at rest and during
task, showing sparser topographies than for self-similarity H, especially at rest. (E) Cortical maps contrasting M in task and resting-state testing the null hypothesis
that MTASK=MREST. The statistical significance was assessed on a per label basis by computing a paired Student t-test and correcting for multiple comparisons with
FDR at α=0.05. Estimates of M were bigger in task than in rest as shown by positive differences (ΔM=MTASK−MREST < 0) in several regions involved in the task,
notably visual, parietal and motor cortices. This contrast indicated that, locally, multifractality significantly increased when participants performed a task as
compared to when they rested. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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These results constituted a particularly important finding: theore-
tically, H and M are independent parameters, which model very dif-
ferent aspects of scale-free dynamics. While self-similarity H provides
insights on the temporal autocorrelation of brain activity, M informs on
the burstiness of the signals. The observed negative covariation be-
tween self-similarity and multifractality is non-trivial and crucially
suggests a potential coupling in the covariation of both indices. We
discussed these findings further below.

4. Discussion

To briefly sum up, our key findings are: the existence of a fronto-
occipital gradient of self-similarity in the human brain which increases
during task as compared to rest. Second, and to the best of our
knowledge, we observed for the first time multifractality on MEG data
collected in a healthy human population and describe an anatomical
distribution of multifractality during resting-state and task. Local
changes in multifractality in task as compared to rest indicate a possible
functional relevance of multifractal infra-slow dynamics in brain pro-
cessing. Our empirical results raise several points of discussions and
conclusions regarding the assessment of scale-free temporal brain dy-
namics. We discuss the main ones below.

4.1. Robust description of infraslow, scale-free dynamics, in human brain
activity

Overall, our results support the notion that scale-free temporal dy-
namics constitute a signature of human brain activity as recorded with
MEG. We showed that scale-free properties were neither induced by,
nor to be confused with, instrumental or sensor noise considering that
empty-room recordings did not display the same characteristics. Scale-
free dynamics were observed in a range of frequencies corresponding to
0.1⩽ f⩽ 1.5 Hz. Such time scales are consistent with currently available
data in the literature for the estimations of H or β (Monto et al., 2008;
He et al., 2010; He, 2014; Becker et al., 2018), and typically char-
acterize infra-slow neural dynamics (Wang, 2010; Buzsáki and
Mizuseki, 2014; He, 2014). Scale-free temporal dynamics conceptually
implies that, within the scaling range, no frequency plays a particular
role. Conversely, all frequencies in that range contribute jointly and in a
related manner to the described dynamics. Such relation is quantified
by β, or in a richer framework which we propose here, by the joint

description of H and M parameters. Scale-free temporal dynamics thus
correspond to arrhythmic signatures confined to infra-slow brain dy-
namics, which complement oscillatory activity typically seen at higher
frequencies (> 2Hz) (Wang, 2010; Buzsáki and Mizuseki, 2014; He,
2014). It is also noteworthy that while the concept of scale-free tem-
poral dynamics theoretically implies the absence of any specific time
scale, in practice, scale-free analyses have covered a finite range of
frequencies, 0.1⩽ f⩽ 1.5 Hz.

We thus propose that the classical parameter β used to model scale-
free dynamics as a power-law decay of the Fourier spectrum can be
efficiently replaced by the self-similarity parameter H, which models
the decay of the wavelet spectrum. While both exponents are theore-
tically equivalent and related (β=2H− 1), it has been well docu-
mented in the scientific literature that H and wavelet analysis benefit
from improved estimation performance (robustness to smooth non-
stationarities) (Abry and Veitch, 1998; Veitch and Abry, 1999; Ciuciu
et al., 2012, 2014). The larger H (or β) – i.e., the steeper the decay of
power laws –, the more structured the temporal dynamics of the time
series – i.e., the stronger the long range dependency quantified by the
temporal correlations.

4.2. Multifractality: going beyond self-similarity

In addition to self-similarity, our results demonstrated the existence
of multifractality while participants performed a task and, to a lesser
extent, during resting-state. This specific result underline the richness of
infraslow brain dynamics and of the usefulness of the framework we
propose to characterize scale-free brain activity. Specifically, we
showed that multifractality allows distinguishing time series that share
the same global correlation structure (i.e., the same self-similarity) but
different local transient structures and burstiness over time (i.e., mul-
tifractality). In other words, multifractality quantifies local scale-free
temporal dynamics as transient departures from Gaussianity and sup-
port the recent mention that multiplicative processes should be taken
into account in the assessment of macroscopic brain activity (Buzsáki
and Mizuseki, 2014). Hence, our approach is key to proper scale-free
modeling although it remains seldom discussed in the neuroscience
literature (Shimizu et al., 2004; Suckling et al., 2008; Ciuciu et al.,
2012). Additionally, and from a signal processing perspective, our re-
sults suggest that the multifractal random walk, which consists of a
multifractal extension of fractional Gaussian noise (cf. Section 2.2.1 for

Fig. 6. Covariations of self-similarity and multifractality. Significant negative correlation between changes of H (ΔH=HTASK−HREST) and M
(ΔM=MTASK−MREST). (A) Cortical source estimates associated with significant correlations (color-coded Pearson's r values) observed between ΔH and ΔM. The null
hypothesis reads r=0 in each cortical label. Statistical significance was assessed on a per individual and per label basis by computing a paired Student t-test.
Corrections for multiple comparisons were performed using FDR at α=0.05. (B) Scatter plot of ΔH versus ΔM, averaged over all brain regions reported in (A). The
significant negative correlation indicated concomitant local decreases of H (negative ΔH) and increase of M (positive ΔM). Each dots is an individual and crosses are
outliers (n=24). The outliers were automatically excluded as their distance to the mean was>2.5σ to the model.
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details), is a likely more accurate model to describe spontaneous brain
activity in the infraslow regime (< 2Hz).

4.3. Anatomical distribution of self-similarity and multifractality in resting-
state activity

The spatial distributions of self-similarity and multifractality quan-
tified at rest and during task were obtained using the theoretically ro-
bust and practically efficient wavelet-leader multifractal framework
(Wendt et al., 2007). With this approach, we observed a fronto-occipital
gradient of the self-similarity parameter H in resting-state. This ob-
servation was congruent with previous findings in the literature
(Dehghani et al., 2010; Becker et al., 2018), but also extended them
from scalp level to cortical source estimates. The fronto-occipital gra-
dient corresponded to larger values of self-similarity in frontal regions
and lower values in posterior regions. This pattern converges with the
known distribution of temporal scales at which neural processing op-
erate: a recent meta-analysis has notably showed a hierarchy of in-
trinsic time-scales going from slower dynamics in frontal to faster dy-
namics in sensory cortices (Murray et al., 2014). Comparable temporal
hierarchies have been functionally described in the human visual
system (Gauthier et al., 2012) and across brain systems (Hasson et al.,
2015). These temporal hierarchies are functionally compatible with
finer time scales needed for sensory sampling, and integrative processes
over longer time scales occurring in frontal cortices for higher cognitive
operations (Fuster, 2001; Miller and Cohen, 2001; Wood and Grafman,
2003). By indexing the anatomical distribution of temporal auto-
correlation functions, the fronto-occipital gradient in H provides an
alternative means to characterize the hierarchy of temporal scales in
cortex.

Additionally, during resting-state, the presence of weak multi-
fractality, naturally one order smaller than values of H, is consistent
with well-behaved multifractal synthetic models (Wendt et al., 2007) or
values reported for brain data (Shimizu et al., 2004, 2007; Suckling
et al., 2008; Ciuciu et al., 2008, 2012, 2017; Weiss et al., 2009). The
presence of M, especially during task performance, suggested that
multifractality may be a relevant index for brain processing.

4.4. Global decrease of self-similarity from rest to task

By contrasting brain activity during engagement in a task against
resting-state, we observed a general decrease of H over the whole
cortex, suggesting an overall and global shortening of temporal auto-
correlation during task performance. Additionally, the decrease in self-
similarity was not uniform across brain regions, which contributed to
the strengthening of the fronto-occipital gradient. In other words, re-
latively less short-time dynamics were found in frontal regions and
more short-time dynamics were observed in posterior regions during
task than during rest. The accentuation of the fronto-occipital gradient
in H between rest and task is overall consistent with faster and richer
dynamics deployed for the analysis of sensory information in cortical
regions engaged in the task (Palva and Palva, 2012). This observation
also converges with previous fMRI studies showing a lower regional H
during task than during resting-state (He, 2011; Ciuciu et al., 2012) and
stronger decreases of H with higher cognitive loads (Chang et al.,
2012). The most salient differences of self-similarity were observed in
regions involved in the task (occipital cortex, motor cortex, SMA and
vlPFC), i.e. the decrease in H was the largest in these regions. This
observation is in line with the hypothesis that self-similarity may
quantify neural excitability, with smaller values of self-similarity in-
dexing higher levels of neuronal excitability in a given brain region (He
et al., 2010; He, 2011; Palva and Palva, 2012; Palva et al., 2013).

4.5. Local increase of multifractality from rest to task

Although we found a large number of cortical labels showing a

significant presence of multifractality during task, contrasting task
against rest revealed increases of M in only a small number of cortical
regions. The relatively small changes of M in magnitude, the limited
sample size (i.e. 24 individuals only) and the potentially large inter-
individual variability may explain why only a fraction of cortical re-
gions were reported as statistically significant in the paired t-test.
Nevertheless, the presence of the highest M values in regions (occipito-
parietal cortices, visual motion area, pSTS) involved in the visual mo-
tion discrimination task used here (Zilber et al., 2014) suggests that
multifractality might be functionally relevant to cortical processing.
The local changes of multifractality would be consistent with the notion
that multifractality may reflect the combination of multiplexed self-si-
milar processes, i.e. the superimposition of several self-similar processes
associated with different neural populations within the same cortical
patch (given the limits of the spatial resolution with MEG). As such, one
working hypothesis for multifractality in brain processes is that it may
index the number of neural processes within a cortical region employed
in a given task. This working hypothesis will be actively investigated.

4.6. Covariation of self-similarity and multifractality from rest to task

We evidence an interesting covariation pattern in self-similarity and
multifractality from rest to task: the MEG brain dynamics evolved from
well structured and long term correlated global temporal dynamics
(large H) with weak burstiness (M≃ 0, weak multifractality) at rest, to
less structured global temporal dynamics (lower H, lesser long range
dependence, or more power at the upper bound of the scaling range,
i.e., around 1Hz) during task performance, showing though much larger
transient irregular and non Gaussian behaviors (larger M, multi-
fractality). Let us emphasize that this covariation (decrease in H, in-
crease in M) was non trivial and was not induced by the modeling nor
by the analysis we undertook. This covariation thus constitutes a sig-
nature of the changes induced in brain dynamics when participants
engaged in a perceptual discrmination task.

Our tentative explanation for this covariation is the following: the
local decrease of temporal autocorrelation (H) suggests that neural
populations in a given cortical region and at a large temporal scale
(lower infra-slow i.e. ≃10 s) tend to operate more independently while,
at the same time, the increase of temporal burstiness (M) in the same
region suggests that the same neural populations may interact at finer
temporal scales (higher infra-slow, i.e. ≃1 s). Distinct dynamic modes
may thus take place as a function of task requirements: while neural
excitability may be sufficient to detect the presence/absence of a sti-
mulus in the environment (He et al., 2010; He, 2011; Monto et al.,
2008), temporal multiplexing may be required for thorough analysis of
sensory inputs. In other words, temporal multiplexing may occur when
a certain level of neural excitability has been reached. However, both a
multivariate approach and activity from specific neural populations
(e.g. recorded via intracranial elecrodes) should be explored to further
investigate this hypothesis in future work.

5. Conclusions

Relying on the robust and efficient wavelet and wavelet-leader
analysis framework, our present contribution showed that multi-
fractality provides a fruitful paradigm to complement self-similarity in
the modeling of scale-free temporal dynamics and infraslow macro-
scopic brain activity. We showed that spontaneous human brain activity
at rest is well characterized by a strong self-similarity and weak mul-
tifractality, indicating a significantly globally-structured activity, with
long range dependencies. The strength of this structured activity
showed a fronto-occipital gradient. We showed that performing a task
induced a non trivial (negatively correlated) local coupling of self-si-
milarity and multifractality with an overall decrease of self-similarity
(yet, strengthening of the fronto-occipital gradient) accompanied by a
local increase of multifractality in task-relevant brain regions. Overall,
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this pattern indicates less structured (or less correlated) temporal dy-
namics yet bursty occurrences of well-structured local scale-free pat-
terns (not accounted for by self-similarity but well quantified by mul-
tifractality). Altogether, these observations support the hypothesis that
(i) self-similarity, as indexed by parameter H, inversely reflects neural
excitability, with large H corresponding to lower excitability and vice
versa and that (ii) multifractality, indexed by M, might code for mul-
tiplexing of neural processes.

The present analysis of scale-free dynamics in brain temporal dy-
namics will be continued by exploring the benefits of using more re-
fined analysis tools based on p-leaders (Leonarduzzi et al., 2017) or on
multivariate models, rather than univariate, for self-similarity (Abry
et al., 2018) and multifractality (Jaffard et al., 2018; Ciuciu et al.,
2017).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jneumeth.2018.09.010.
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