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Abstract 5 

Detecting and learning temporal regularities is essential to accurately predict the future. 6 

Past research indicates that humans are sensitive to two types of sequential regularities: 7 

deterministic rules, which afford sure predictions, and statistical biases, which govern the 8 

probabilities of individual items and their transitions. How does the human brain arbitrate 9 

between those two types? We used finger tracking to continuously monitor the online 10 

build-up of evidence, confidence, false alarms and changes-of-mind during sequence 11 

learning. All these aspects of behaviour conformed tightly to a hierarchical Bayesian 12 

inference model with distinct hypothesis spaces for statistics and rules, yet linked by a 13 

single probabilistic currency. Alternative models based either on a single statistical 14 

mechanism or on two non-commensurable systems were rejected. Our results indicate 15 

that a hierarchical Bayesian inference mechanism, capable of operating over several 16 

distinct hypothesis spaces, underlies the human capability to learn both statistics and 17 

rules. 18 
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From weather to traffic lights, many real-life processes unfold across time, forming sequences of 1 

events that are characterised by some inner structure. The ability to learn such sequential regularities 2 

is essential to agents navigating real-life environments because it enables them to make predictions 3 

about the future 1–3. Past research indicates that the brain constantly entertains predictions about the 4 

future 4–6 and leverages those predictions to promote a more efficient processing of incoming 5 

information as well as improve decision-making and behavioural control 7–9. 6 

In order to make accurate predictions, human observers must solve two difficult problems. 7 

First, they should detect when a regularity appears 10–14. Second, because various types of 8 

regularities exist, observers must also identify the kind of process generating the regularity in order 9 

to ensure accurate predictions. In theory, the number of hidden generative processes is infinite. Here, 10 

we study a simple distinction between statistical biases and deterministic rules, which relates to the 11 

strength of predictions they afford (Fig. 1a). Statistical biases allow uncertain, yet better-than-12 

chance, predictions. For instance, looming dark clouds are generally followed by rain, but sun may 13 

also appear in rarer occasions. Deterministic rules, on the other hand, allow sure predictions. For 14 

instance, at a French traffic light, only the red light (stop signal) can follow the amber one (warning 15 

signal). 16 

In our taxonomy, deterministic rules are an extreme case of statistical biases, in which the 17 

probability of the next event is 0 or 1 (Fig. 1b). We hypothesize that humans treat statistics and rules 18 

as fundamentally different, corresponding to two distinct hypothesis spaces. Those two types of 19 

regularity allow predictions of a different nature (uncertain vs. certain), they enable computations 20 

of different kinds (which we detail later), and in practice, they have been explored in mostly distinct 21 

lines of research. On the one hand, detecting, estimating or leveraging statistical biases is at the heart 22 

of studies on probability learning 14–21 and reinforcement learning 22–28. On the other hand, 23 

deterministic rules were embedded in sequence learning and artificial grammar paradigms, in which 24 

repeated patterns have to be detected or reproduced 10,13,29–37. Studies that combine or compare both 25 

kinds of regularities appear as exceptions 38–43. 26 
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In this article, we propose a new paradigm in order to jointly study the problems of detecting 1 

when a regularity emerges, and of identifying its type. This approach offers opportunities to bridge 2 

gaps between previous studies which investigated those aspects one at a time. Notably, this approach 3 

enables to test a new normative theory of rational inference, which assumes that the detection and 4 

identification of regularities should rely on a hierarchical Bayesian inference over a minimum of 5 

three distinct hypothesis spaces: fully random, statistical bias, and deterministic rule. This new 6 

proposal makes several predictions, in terms of subjects’ performance in detecting regularities and 7 

discriminating between types of regularities, the strength of their beliefs, the specific dynamics 8 

associated with the detection, and even the type of errors people make, which we test in our task. 9 

Some of those predictions are unique to this proposal and support the idea that statistics and rules 10 

pertain to different hypothesis spaces, rather than a gradation along a continuum. 11 

 12 

 

Fig. 1 | A taxonomy of regularities and a normative model of 
how those regularities can be inferred from a sequence of 
observations. a, A taxonomy of regularities. A first distinction 
separates random (i.e. unpredictable) from non-random (i.e. 
predictable) processes. A second distinction, with non-random 
processes, separates statistical biases (i.e. affording only 
uncertain predictions) from deterministic rules (i.e. affording 
certain predictions). Shannon entropy quantifies the 
unpredictability of a process and therefore differs between those 
different types of processes. b, Rational inference from an 
example sequence. An example sequence of binary observations 
is presented to the model which arbitrates between different 
hypothesis by means of probabilistic inference. For simplicity, we 
supposed here that there is no volatility: the full binary sequence 
corresponds to a single generative process, which can be either 
random, or exhibit a statistical bias (here, in the frequency of 
items) or follow a deterministic rule (here, the repetition of a fixed 
pattern of at most five items). Following the first 8 observations, 
the statistical bias hypothesis estimates than As are overall more 
likely than Bs. By contrast, the deterministic rule hypothesis 
estimates that the sequence can be described as the repetition 
of the AAB pattern. Computing the posterior probability of each 
hypothesis reveals that, at this point, the deterministic rule 
hypothesis is the most likely hypothesis. Note, however, that a 
single new observation (here, the final A) suffices to discard the 
deterministic rule hypothesis. 

 13 
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Results 1 

Experimental design. To test our theoretical proposal, we designed a novel behavioural experiment 2 

in which we presented human subjects with binary auditory sequences (200 observations, for 3 

1 minute each; Fig. 2a). All sequences started with a random process (i.e. like tossing a fair coin). 4 

In about two thirds of the cases, after a delay of variable length, we introduced either a statistical 5 

bias (in the first-order transition probabilities) or a deterministic rule (the repetition of a particular 6 

pattern of length-4 to 10). In the remaining cases, the sequences remained fully random until the 7 

end. Subjects were fully instructed about this task structure and were asked to slide their finger 8 

towards one of three locations, corresponding to the generative process underlying a given sequence. 9 

In order to monitor the dynamics of inference, we used a continuous finger tracking system. Subjects 10 

also provided a detailed subjective report after each sequence (Fig. 2b,c). Our design therefore 11 

combines two aspects: detecting when a regularity emerges and identifying its type (i.e. statistic or 12 

rule). 13 

 14 

Fig. 2 | Behavioural task. a, Example sequences. Sequences 
were of three different types: random from the beginning to the 
end or composed of an initial random part and a second non-
random part that could either be produced by a statistical bias 
(here, a bias toward alternation) or a deterministic rule (here, the 
repetition of the AABB pattern). These sequences were 
composed of 200 low- and high-pitch tones (interval of 300 ms) 
that were randomly assigned to observations A and B at the 
beginning of each sequence. b, Timecourse of a trial. Each trial 
was self-initiated. During sequence presentation, subjects were 
asked to move their finger within a triangular arena whose vertices 
correspond to the three possible generative processes: random 
(Hrand), statistical bias (Hstat) or deterministic rule (Hrule). The 
mapping between left/right sides and statistics/rules was 
counterbalanced between subjects. Moreover, subjects 
answered several offline questions, notably about the moment 
when a regularity was detected. c, Triangular arena. The triangular 
arena provides a coordinate system where each location 
corresponds to a triplet of posterior probabilities of the three 
different hypotheses. 
 

 

 15 

Normative two-system model. We formalized our theoretical proposal as an ideal observer model 16 

of the task. This normative model combines the sequence of observations with prior knowledge 17 
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about the task structure in order to constantly estimate, through Bayesian inference, the posterior 1 

probability of the three possible generative processes (i.e. random, random-to-statistical and 2 

random-to-rule). Under the random hypothesis, the model considers that observations are drawn 3 

randomly without bias. For the non-random hypotheses, the model considers that there is a single 4 

change-point that separates an initial random part from a second non-random part. For the random-5 

to-statistical hypothesis, the model considers that the second part is characterised by a bias in the 6 

transition probabilities between successive observations. For the random-to-rule hypothesis, the 7 

observer considers that the second part corresponds to the repetition of a particular pattern. The 8 

position of the change-point, the bias in transition probabilities, and the repeated pattern are 9 

unknowns that must be inferred from the sequence itself. Bayesian inference is used in all cases, 10 

providing a unified account of regularity detection independently of the type of regularity. We 11 

simulated this model with the same sequences that were presented to subjects in order to derive 12 

quantitative predictions, and compare them to subjects’ behaviour. 13 

 14 

Offline, post-sequence, reports. Generative process. At the end of each sequence, in order to assess 15 

subjects’ sensitivity in detecting either type of regularity, we asked them to retrospectively judge 16 

whether or not a regularity was present (detection) and, if so, to report its type (discrimination). 17 

Subjects were able to both detect the presence of a regularity and to discriminate its type (Fig. 3a). 18 

They performed above-chance in identifying each of the three generative processes (on average 19 

61.7%, 71.9%, and 90.4%; chance = 33.3%, dCohen > 1.21, t22 > 5.80, p < 7.76 · 10–6). However, 20 

accuracy differed across sequence types (w2 = 0.022, F2,22 = 20.6, p = 4.86 · 10–7): subjects were 21 

better at detecting deterministic rules than statistical biases (difference in accuracy = 18.5%, 22 

CI = [11.4, 25.6], dCohen = 1.12, t22 = 5.38, p = 2.12 · 10–5). 23 

To confirm that these results were not due to response biases, we relied on a (2D) signal 24 

detection theory analysis and quantified subjects’ sensitivities (Fig. 3b). As suggested by the 25 

previous analysis, the detection of a statistical bias was accompanied by a lower sensitivity than the 26 
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detection of a deterministic rule (difference in d’ = 0.76, CI = [0.55, 0.96], dCohen = 1.59, t22 = 7.62, 1 

p = 1.32 · 10–7). We applied the same signal detection theory analysis to the model, and the 2 

generative hypothesis that it estimates as most likely at the end of each sequence. As in subjects, the 3 

model’s sensitivity was lower for statistical biases compared to deterministic rules (difference in 4 

d’ = 0.39, CI = [0.20, 0.59], dCohen = 0.89, t22 = 4.25, p = 3.31 · 10–4). 5 

 6 

 

Fig. 3 | Offline (post-sequence) identification of the generative 
process and change-point position. a, Subjects’ post-
sequence reports of sequence type. Reported generative process 
is plotted as a function of the true generative process. b, Signal 
detection theory analysis of sequence identification. 
Multidimensional signal detection theory is applied on subjects 
reports in order to compare sensitivity to different regularities 
independently of possibly existing response biases. Sensitivity 
measures (d’, in z-units) are represented as edges of a triangle 
whose vertices represent the three possible generative 
processes. Similar to the model, the subjects are worse at 
distinguishing statistical biases from a random process than they 
are for the deterministic rules. c, Model beliefs about change-
point position. The posterior distribution over change-point 
position (here, centred on true change-point position and 
averaged) reveals that the model accurately infers the position of 
the change-point but also that it is more precise at detecting the 
onset of a deterministic rule than it is at detecting the onset of a 
statistical bias. d, Correlation between subjects’ estimates of 
change-point positions and true positions. Post-sequence 
subjects’ estimates of change-point position as a function of true 
change-point position (in 7 equally spaced bins). Correlation is 
stronger in the case of deterministic rules compared to statistical 
biases. The shaded area corresponds to the 95% confidence 
interval of the regression coefficients. e, Subjects’ confidence in 
their estimates of change-point position. Subjects use the lower 
part of the confidence scale (presented in Fig. 2b) more often in 
the case of statistical biases compared to deterministic rules, and 
the upper part of the confidence scale more often for 
deterministic rules than for statistical biases, leading to 
differences in average confidence. Distributions reflect kernel 
densities with bandwidth of 5%. In c to e, the analyses are 
restricted to non-random sequences that were correctly identified 
by subjects. In a, d, and c, error bars correspond to the standard 
error of the mean computed over subjects. Stars denote 
significance: *** p < 0.005, ** p < 0.01, * p < 0.05. 
 

 7 

Interestingly, statistical biases that were missed by the subjects were not characterised by a 8 

late occurrence of the change-point (non-significant difference in change-point position = –2.84, 9 

CI = [–9.03, 3.35], dCohen = –0.20, t22 = –0.95, p = 0.35, BFnull = 3.05) but instead by a lower 10 

posterior probability (i.e. closer to chance level) estimated by the model, relative to regularities that 11 

were detected (difference in p(Hstat|seq) = 0.15, CI = [0.06, 0.25], dCohen = 0.68, t22 = 3.27, 12 
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p = 0.004). Thus, subjects missed regularities when the evidence was less strong. Although subjects 1 

were overall less sensitive than the model, those results indicate that the offline detection and 2 

identification of regularities is well accounted for by the model. We restrict the forthcoming 3 

analyses to regularities that were accurately detected in order to ensure that the effects we report are 4 

not due to a miscategorisation of sequences (Table 1). 5 

 6 

 

Condition Type of regularity Length p(A|B) p(B|A) p(A) p(alt.) H 
Subjects 
DR 

Model 
DR 

Random — (x 10) 0 — 1/2 1/2 1/2 1/2 2.00 14.2/23** 21.9/23*** 
Statistical bias Repetition (low) 1 — 1/3 1/3 1/2 1/3 1.92 16/23*** 18/23*** 
Statistical bias Repetition (medium) 2 — 1/4 1/4 1/2 1/4 1.81 20/23*** 23/23*** 
Statistical bias Repetition (high) 3 — 1/5 1/5 1/2 1/5 1.72 19/23*** 23/23*** 
Statistical bias Alternation (low) 4 — 2/3 2/3 1/2 2/3 1.92 13/23* 19/23*** 
Statistical bias Alternation (medium) 5 — 3/4 3/4 1/2 3/4 1.81 15/23*** 23/23*** 
Statistical bias Alternation (high) 6 — 4/5 4/5 1/2 4/5 1.72 14/23** 23/23*** 
Statistical bias Frequency (low) — 2/3 1/3 2/3 4/9 1.84 14/23** 17/23*** 
Statistical bias Frequency (medium) — 3/4 1/4 3/4 3/8 1.62 21/23*** 23/23*** 
Statistical bias Frequency (high) — 4/5 1/5 4/5 8/25 1.44 19/23*** 23/23*** 
Statistical bias Frequency & repetition — 1/2 1/4 2/3 1/3 1.79 20/23*** 21/23*** 
Statistical bias Frequency & alternation 7 — 3/4 1/2 3/5 3/5 1.90 11/23(ns) 13/23* 
Deterministic rule AABB 0 4 1/2 1/2 1/2 1/2 2.00 23/23*** 23/23*** 
Deterministic rule AAABBB 1 6 1/3 1/3 1/2 1/3 1.92 23/23*** 23/23*** 
Deterministic rule AABABB 4 6 2/3 2/3 1/2 2/3 1.92 22/23*** 23/23*** 
Deterministic rule AAABAB 6 1 1/2 2/3 2/3 1.59 21/23*** 23/23*** 
Deterministic rule AAAABBBB 2 8 1/4 1/4 1/2 1/4 1.81 23/23*** 23/23*** 
Deterministic rule AABABABB 5 8 3/4 3/4 1/2 3/4 1.81 23/23*** 23/23*** 
Deterministic rule AABBBABB 0 8 1/2 1/2 1/2 1/2 2.00 20/23*** 23/23*** 
Deterministic rule AAAAABBBBB 3 10 1/5 1/5 1/2 1/5 1.72 22/23*** 23/23*** 
Deterministic rule AABABABABB 6 10 4/5 4/5 1/2 4/5 1.72 21/23*** 23/23*** 
Deterministic rule AAABAABBAB 7 10 3/4 1/2 3/5 3/5 1.90 10/23(ns) 23/23*** 

 

Table 1 | Experimental 
conditions and detection 
rates. Superscripts indicate 
matched conditions. H 
corresponds to the Shannon 
entropy of transition 
probabilities (in bits). 
Detection rates (DR) denote 
the number of subjects who 
reported the correct 
generative process. The 
model identifies the generative 
process based on the 
maximum a posteriori 
probability over hypotheses at 
the end of the sequence. Stars 
denote significance of an 
exact binomial two-tailed test 
against ⅓: *** p < 0.005, 
** p < 0.01, * p < 0.05; ns 
stands for non-significant. 

 7 

Change-point position. Because of its hierarchical and rational nature, the model entertains a 8 

posterior distribution over possible change-point positions (Supplementary Fig. 1). Its maximum a 9 

posteriori estimate was highly correlated with the true change-point position across sequences 10 

(Fig. 3c), but less so in the case of statistical biases than for deterministic rules 11 

(difference in correlation = 0.53, CI = [0.38, 0.69], dCohen = 1.47, t22 = 7.05, p = 4.46 · 10–7), 12 

indicating that, even for a normative model, the detection of a change-point is more accurate for an 13 

emerging deterministic rule than for an emerging statistical bias. In order to test those predictions, 14 

at the end of each sequence for which they reported the presence of regularity, we asked subjects to 15 

report the most likely position of the change-point, on a scale spanning the sequence length. As for 16 

the model, their estimates of change-point positions were correlated with the true positions for 17 
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statistics (correlation = 0.21, CI = [0.04, 0.38], dCohen = 0.53, t22 = 2.55, p = 0.018) and rules 1 

(correlation = 0.43, CI = [0.28, 0.57], dCohen = 1.24, t22 = 5.96, p = 5.34 · 10–6), but significantly less 2 

for statistics (difference in correlation = 0.22, CI = [0.02, 0.41], dCohen = 0.49, t22 = 2.33, p = 0.029; 3 

Fig. 3d). In order to probe whether subjects were aware that their estimates of the change-point 4 

position were less accurate for statistical biases than for deterministic rules, we asked them to report 5 

their confidence in their estimates. Reported confidence was indeed lower for statistics compared 6 

to rules (difference in confidence = 14.4%, CI = [11.0, 17.8], dCohen = 0.53, t22 = 8.76, p = 1.26 · 10–7 

8). In the model too, the confidence about the change-point location, which can be formalized as the 8 

log-precision of the posterior distribution 19,44,45 over change-point positions, is also markedly lower 9 

for statistical regularities (difference in log-precision = 5.02, CI = [4.83, 5.20], dCohen = 11.7, 10 

t22 = 55.9, p = 3.30 · 10–25; Fig. 3e). 11 

 12 

Online report with finger tracking. We now turn to finger tracking recordings in order to explore 13 

whether subjects can faithfully track, in real time, the dynamics of their inference. Throughout the 14 

sequence, subjects continuously reported their current beliefs about the generative process of the 15 

observed sequence by moving their finger on a touch screen, within a triangular arena whose vertices 16 

correspond to each possible generative hypothesis: random, random-to-statistical, and random-to-17 

rule (Fig. 2c). Importantly, each position in the triangle corresponds to a unique given set of 18 

posterior probability in the 3 possible hypotheses Hrand, Hstat, and Hrule (e.g. the bottom corresponds 19 

to (1, 0, 0), which is also the starting point, the centre to (⅓, ⅓, ⅓), etc.). Subjects’ finger trajectories 20 

are thus directly converted into a timeseries of posterior probabilities ascribed to each hypothesis, 21 

which can be compared to the timeseries of posterior probabilities estimated by the normative two-22 

system model (Fig. 4a,b). 23 

 24 
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Fig. 4 | Different detection dynamics for statistical biases and deterministic rules. a, b, Single-trial dynamics of hypothesis 
posterior probability from an example subject and the model presented with the same random-to-statistical/rule sequence. c, e, 
Triangular histograms (smoothed and log-scaled) from the subjects and the model during parts of sequences with a statistical 
bias/deterministic rule. Different parts of the triangular arena are used in the different types of non-random parts of sequences. d, f, 
Single-trial dynamics of the posterior probability in the statistical bias/deterministic rule hypothesis. Sequences are grouped by 
detection (from subjects’ post-sequence reports) and sorted by change-point position. Note the progressive/abrupt detection of 
statistical bias/deterministic rule. g, h, Averaged dynamics of posterior probability locked on change, detection and end points of parts 
of sequences with a statistical bias/deterministic rule. The average increase in the probability of the statistical bias/deterministic rule 
hypothesis also shows the progressive/abrupt difference, in subjects and the model alike. This difference is even clearer when the 
curves are time-locked to the detection-point defined as the moment when p(Hcorrect|seq) > ½. Here, analyses were further restricted 
to non-random sequences that were correctly identified by subjects and for which detection-points were found for both the subjects 
and the model. Distributions reflect kernel densities of change/detection-points with a bandwidth of 8 observations. The shaded area 
corresponds to the standard error of the mean computed over subjects. 

 1 

Dynamics of regularity detection. Under the hypothesis that subjects approximate the normative 2 

two-system model, we expect the dynamics of regularity detection to be different in the case of 3 
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statistical biases vs. deterministic rules. Below, we list those normative differences, illustrate them 1 

with the model and test them in subjects’ finger trajectories. 2 

 3 

Overall distribution of beliefs. We created 2D triangular histograms of finger position across all 4 

sequences in order to quantify belief distributions. Subjects, like the model, used the bottom part of 5 

the triangle, corresponding to the random hypothesis, as well as the parts of the triangle close to the 6 

statistical bias hypothesis vertex during random-to-statistical sequences and, similarly, the parts of 7 

the triangle close to the deterministic rule hypothesis vertex in the random-to-rule sequences 8 

(Fig. 4c,e); thereby demonstrating a correct identification of the generative process in the course of 9 

the sequence. 10 

 11 

Build-up of beliefs. In order to explore the differences in belief update for statistical biases and 12 

deterministic rules, we now turn to the analysis of time-resolved trajectories. From now on, we 13 

further restrict analyses of non-random sequences to those for which we were able to find a 14 

detection-point (i.e. when the correct hypothesis becomes more likely than any others). In the model, 15 

the posterior probability of the correct hypothesis increased much more steeply in the case of rules 16 

than for statistics, resulting in step-like vs. gradual trajectories respectively. Subjects behave 17 

similarly, as can be seen on the trajectories locked on the true change-point position. However, 18 

locking on the true change-point underestimates the step-like nature of belief update in the case of 19 

deterministic rules due to variability in the onset of the step with respect to the change-point. We 20 

therefore also locked the trajectories onto the moment when the probability of the correct hypothesis 21 

crosses the detection threshold, which we refer to as the detection-point. This analysis revealed that 22 

in subjects, just as in the model, the increase in the posterior probability of the deterministic rule 23 

hypothesis is quite abrupt whereas the increase in the posterior probability of the statistical bias 24 

hypothesis is quite gradual. This difference is readily seen when inspecting individual trials 25 

(Fig. 4d,f). We quantified this difference by fitting sigmoid functions to trajectories in individual 26 
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trials and averaged the fitted slope parameter across sequences (Supplementary Fig. 2): it was 1 

significantly higher for rules compared to statistics in the model (difference in slope = 0.39, 2 

CI = [0.32, 0.46], dCohen = 2.56, t22 = 12.3, p = 2.49 ⋅ 10−11) and in subjects (difference in 3 

slope = 0.28, CI = [0.19, 0.37], dCohen = 1.37, t22 = 6.55, p = 1.38 ⋅ 10−6). 4 

 5 

Regularity-specific modulations of detection dynamics. The normative two-system model 6 

predicts specific differences in detection dynamics within each type of regularity. More specifically, 7 

the strength of the statistical bias should modulate the amount of belief update, thus changing the 8 

slope of the gradual detection dynamics characteristic of statistical biases (Fig. 5a). By contrast, the 9 

length of the deterministic rule should change the moment of the detection-point, while maintaining 10 

the abrupt detection dynamics typical of deterministic rules (Fig. 5b). 11 

 12 

Statistical biases. We sorted statistical biases according to the type and amount of bias they induce: 13 

one item could be more frequent than the other, or repetition could be more (or less) frequent than 14 

alternation, or both of these two biases could be present. We quantified the strength of this bias by 15 

the Shannon entropy of the corresponding generative transition probabilities, which ranged from 16 

1.44 to 1.92 bit (Fig. 5c). All statistical biases were detected gradually, but the amount of belief 17 

update varied across regularities (Fig. 5d): with a significant effect of entropy for the model 18 

(correlation = –0.28, CI = [–0.41, 0.14], dCohen = –0.90, t22 = –4.33, p = 0.0003) and the subjects 19 

(correlation = –0.32, CI = [–0.49, 0.15], dCohen = –0.82, t22 = –3.91, p = 0.0008). 20 

 21 

Deterministic rules. We distinguished among deterministic rules according to their lengths (4, 6, 8 22 

or 10 observations; Fig. 5e). Furthermore, some of the patterns purposely comprised a bias in the 23 

apparent transition probabilities between items (Fig. 5g). For instance, the repetition of the 24 

AAAABBBB pattern results in many more repetitions (75%) than expected by a random process 25 

(50%). By contrast, the repetition of AABB produces as many As and Bs (50%) and as many 26 
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repetitions as alternations (50%), which is equal to what is expected on average from a random 1 

process. The results showed that the detection-point (Fig. 5f) increased with the length of the pattern 2 

for both the model (correlation = 0.87, CI = [0.79, 0.95], dCohen = 4.48, t22 = 21.5, p = 2.99 · 10–16) 3 

and the subjects (correlation = 0.51, CI = [0.43, 0.59], dCohen = 2.76, t22 = 13.3, p = 5.80 · 10–12). 4 

Importantly, even though the detection-point varied according to the length of the patterns, the 5 

detection dynamics always remained similarly abrupt (Fig. 5h); in particular belief update was not 6 

modulated by the strength of the statistical bias induced by the pattern (quantified by Shannon 7 

entropy), neither in the model (non-significant correlation = 0.10, CI = [–0.068, 0.27], dCohen = 0.26, 8 

t22 = 1.23, p = 0.23, BFnull = 2.35) nor in subjects (non-significant correlation = 0.078, CI = [–9 

0.071, 0.23], dCohen = 0.23, t22 = 1.08, p = 0.29, BFnull = 2.72). 10 

 11 

Fig. 5 | Regularity-specific rational modulation of detection 
dynamics. a, Examples belief updates from the model. The 
amount of belief update, that is the difference in belief between 
the change-point and the end of the sequence, is expected to 
vary depending on the statistical bias considered. b, Example 
detection-points from the model. The amount of belief update is 
not expected to vary depending on the deterministic rule 
considered, only the detection-point, that is the number of 
observations between change- and detection-points (i.e. when 
the deterministic rule hypothesis is more likely than any other 
hypothesis). c, Types of statistical biases. Statistical biases are 
defined by first order transition probabilities, which have different 
subtypes of bias (item frequency, repetition-alternation 
frequency) and strength (measured by Shannon entropy). d, 
Modulation of belief update for statistical biases. Change-points, 
if detected, should lead to belief update. In random-to-statistical 
sequences, the amount of belief update decreased with Shannon 
entropy of generative first order transition probabilities. e, Types 
of deterministic rules. Deterministic rules are defined by the 
pattern that is repeated, which has a specific length, and which 
induces a specific statistical bias. f, Modulation of detection-point 
for deterministic rules. Change-points, if detected, should led to 
crossing of the detection threshold. In random-to-rule 
sequences, the detection-point increased with pattern length. g, 
Apparent statistical biases of deterministic rules. Repeating 
patterns induce, on purpose, different types of statistical biases, 
of different strength (measured as Shannon entropy). Most of 
them are matched with biases induced by pure statistical biases. 
h, No modulation of belief update for deterministic rules. Contrary 
to pure statistical biases, belief update of deterministic rules does 
not decrease with Shannon entropy of apparent first order 
transition probabilities. In d, f and h, each dot is a regularity; and 
the analyses were restricted to regularities correctly classified by 
subjects and for which detection-points were found for both the 
subjects and the model. Error bars correspond to the standard 
error of the mean computed over subjects. Stars denote 
significance: *** p < 0.005, ** p < 0.01, * p < 0.05. 

 
 12 
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False alarms in random sequences. Throughout random sequences, the normative two-system 1 

model predicts that observers keep track of all hypotheses. Thus, they should entertain high 2 

probabilities in the random hypothesis, as indeed observed, but because random contains transient 3 

periods of apparent regularity, their beliefs in non-random hypotheses should also occasionally 4 

increase (Fig. 6a). The results indicate that such false alarms do occur in subjects. Furthermore, in 5 

both the model and the subjects, they much more often concerned a transient preference for the 6 

statistical bias hypothesis than for the deterministic rule hypothesis (Fig. 6b). This is because local 7 

trends, even weak, constantly impact the statistical hypothesis by slightly shifting the estimated 8 

probabilities away from chance. By contrast, transient trends impact the deterministic hypothesis 9 

only when they license strong (erroneous) predictions, which rarely occur by chance. Below, we 10 

explore the dynamics and rationality of subjects’ false alarms during random sequences (i.e. the 11 

initial part of random-to-non-random sequences and the entire length of random sequences). 12 

We first tested whether subjects’ false alarms increase with the number of observations 13 

received (Fig. 6c). This is a prediction of the model: the posterior probability of the random 14 

hypothesis steadily decreases with the number of observations in the sequence (correlation = –0.32, 15 

CI = [–0.34, –0.29], dCohen = –5.53, t22 = –26.5, p = 3.45 · 10–18). This is a cornerstone of 16 

hierarchical inference in our task: the model assumes that a change-point occurs in about two thirds 17 

of sequences, which translates into a slowly increasing probability that a change-point has occurred 18 

as the sequence unfolds in time. Subjects show the same effect (correlation = –0.60, CI = [–0.67, –19 

0.54], dCohen = –4.18, t22 = –20.1, p = 1.24 · 10–15). 20 

We then tested whether false alarms occurred precisely when the model predicted them, that 21 

is when the random sequences exhibited, by chance, a transient regularity. To do so, posterior 22 

probabilities in the random hypothesis reported by subjects were regressed against the model’s 23 

posterior probabilities in the random hypothesis (Fig. 6d). We found a significant positive effect 24 

(coefficient = 0.58, CI = [0.50, 0.65], dCohen = 3.34, t22 = 16.0, p = 1.27 · 10–16) that also survived 25 

when the number of observations received was included as covariate (coefficient = 0.23, 26 
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CI = [0.16, 0.30], dCohen = 1.41, t22 = 6.77, p = 8.41 · 10–7). This result confirms that subjects’ false 1 

alarms reflect a rational inference due to transient deviations from randomness, over and above the 2 

simple effect of elapsed time since the beginning of the sequence. 3 

 4 

 

Fig. 6 | False alarms reflect transient periods of regularity. a, 
Example random sequence and resulting inferences. Transient 
periods of regularity can appear, by chance, in random 
sequences (i.e. the initial part of random-to-non-random 
sequences, or the entire length of the random sequences). They 
can lead observers to make false alarms, that is, decrease the 
posterior probability of the random hypothesis in favour of a non-
random hypothesis. b, Triangular histograms (smoothed and log-
scaled) for the subjects (top panel) and the (bottom panel) during 
random sequences. c, Effect of observation position within the 
sequence on false alarms. Reported probabilities from the 
subjects and the model are averaged in groups of 20 consecutive 
observations in the sequence. The false alarm rate increased as 
more observations were received within a sequence, in subjects 
(top panel) and the model (bottom panel). d, Correlation between 
subjects’ and model’s posterior probability in the random 
hypothesis. A linear relationship between subjects and the 
model’s probability of the random hypothesis (in 10 bins defined 
using deciles) remains even after regressing-out the confounding 
effect of time elapsed in the sequence from subjects’ data 
(dashed line: without regressing-out). The shaded area 
corresponds to the 95% confidence interval of the regression 
coefficients. In c to f, error bars correspond to the standard error 
of the mean computed over subjects. Stars denote significance: 
*** p < 0.005, ** p < 0.01, * p < 0.05. 

 5 

Rational comparison between non-random hypotheses. A crucial assumption of the normative 6 

two-system model is that subjects perform a Bayesian inference over two distinct hypothesis spaces 7 

in order to detect and identify statistical biases and deterministic rules. The normative nature of this 8 

inference enables to compute the posterior probability of the different non-random hypotheses in 9 

the same probabilistic currency and, therefore, to compare them. To study this prediction, we now 10 

explore situations of conflict, when both non-random hypotheses compete without a clear winner. 11 
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Those situations appear frequently just before the detection of a deterministic rule as well as during 1 

random sequences. We used the belief difference between non-random hypotheses (the difference 2 

between their posterior probability normalized by their sum) as an index of conflict between 3 

statistics and rules in those periods. 4 

 5 

Before the detection of deterministic rules, the model often shows a period of indecision during 6 

which non-random hypotheses have intermediate posterior probabilities. Those intermediate levels 7 

temporarily favour the statistical bias hypothesis before a change-of-mind 46 leads to an accurate 8 

identification of the deterministic rule, and does so all the more that the repeated pattern has a strong 9 

bias in its apparent transition probabilities (Fig. 7a). To assess this effect, we correlated the strength 10 

of this bias (quantified by Shannon entropy) with the belief difference averaged during the period 11 

going from the true change-point to the detection-point in the model (correlation = 0.50, 12 

CI = [0.38, 0.62], dCohen = 1.81, t22 = 8.69, p = 1.46 · 10–8) and in the subjects (correlation = 0.19, 13 

CI = [0.0035, 0.38], dCohen = 0.44, t22 = 2.11, p = 0.046). Importantly, the belief difference assessed 14 

in the model and in subjects’ data during this indecision period correlated with each other across 15 

patterns (correlation = 0.22, CI = [0.070, 0.37], dCohen = 3.04, t22 = 3.04, p = 0.006; Fig. 7b). 16 

 17 

During random sequences, while the model generally assigns a low probability to both statistics and 18 

rule hypotheses, their relative posterior probability fluctuates depending on the exact observations 19 

received. We reasoned that if subjects used a rational arbitration between non-random hypotheses, 20 

the relative credence they assign to both hypotheses should show fluctuations similar to the model. 21 

We therefore regressed subjects’ difference in beliefs between non-random hypotheses against the 22 

model’s difference in beliefs (Fig. 7c). We found a significant positive effect (coefficient = 0.28, 23 

CI = [0.21, 0.35], dCohen = 1.71, t22 = 8.18, p = 4.08 · 10–8) that also survived when confounding 24 

variables were included in the regression model: the posterior probability of the random hypothesis 25 

alone (coefficient for belief difference = 0.24, CI = [0.18, 0.31], dCohen = 1.55, t22 = 7.41, 26 
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p = 2.04 · 10–7) or together with its interaction with the belief difference 1 

(coefficient for belief difference = 0.17, CI = [0.02, 0.33], dCohen = 0.49, t22 = 2.33, p = 0.029). 2 

 3 

 
Fig. 7 | Rational competition between non-random hypotheses. a, Interim preference for the statistical bias hypothesis before the 
detection of deterministic rules depends upon the entropy of the apparent transition probabilities characterising the pattern. 
Trajectories during random-to-rule sequences were centred on the detection-point and binned according to the entropy of the 
repeated pattern. Each dot corresponds to one observation in the sequence. The belief difference is the difference between the 
posterior probability of the two non-random hypotheses normalized by their sum (it evolves between –1 and 1 independently of the 
probability of the random hypothesis), which is shown here as a heatmap. b, Belief difference from subjects as a function of the belief 
difference from the model across patterns. The belief difference between non-random hypotheses was averaged from the change-
point to the detection-point, in both subjects and the model. Each dot corresponds to one pattern, whose entropy is color-coded. In 
a and b, analyses were restricted to random-to-rule sequences that were correctly classified by subjects and for which detection-
points were found. c, Belief difference from subjects as a function of the belief difference from the model in random sequences. In 
random sequences (i.e. the initial part of random-to-non-random sequences, or the entire length of the random sequences), the belief 
difference from subjects was regressed against the model belief difference. The linear relationship between subjects and the model’s 
belief difference is shown (in 10 bins defined using deciles) after regressing-out effect of confounding variables such as the posterior 
probability of the random hypothesis (dotted line: without regressing-out), and together with its interaction with the posterior difference 
in the regression (dashed line: without regressing-out). In b, and c, error bars correspond to the standard error of the mean computed 
over subjects and the shaded area to 95% confidence interval of the regression coefficients. Stars denote significance: *** p < 0.005, 
** p < 0.01, * p < 0.05. 

 4 

Alternative models. The normative two-system model accounts for many important aspects of the 5 

human detection and identification of temporal regularities observed in the current experiment. To 6 

test the necessity of the model’s assumptions, we now explore alternative models lacking one or the 7 

other of its fundamental properties (Fig. 8a). We test, first, a model with a single common system 8 

for deterministic rules and statistical biases (instead of two hypothesis spaces); and, second, a model 9 

with distinct but non-commensurable systems (instead of the shared probabilistic currency). 10 

 11 

Normative single-system model. A first alternative to the normative two-system model is that 12 

subjects use a continuum rather than two distinct hypothesis spaces (hence single-system instead of 13 

two-system): because deterministic rules are a limit case of statistical biases (with p = 0 or 1), 14 

subjects could employ statistical learning in all cases. 15 
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For completeness, we tested several versions of this normative single-system model. A first 1 

version monitors order 1 transition probabilities and distinguishes between statistics vs. rules based 2 

on the strength of the inferred probability bias (intermediate vs. strong, respectively). However, this 3 

model has obvious peculiarities that discard it; for instance, unlike subjects (Table 1), it cannot 4 

detect the AABB pattern, whose repetition causes no bias in the apparent first-order transition 5 

probabilities. 6 

A second version of the normative single-system model monitors transition probabilities of 7 

order 1 vs. higher-order (up to 9 corresponding to the longest patterns used) for statistical biases vs. 8 

deterministic rules respectively. This is plausible a priori because the repetition of a pattern 9 

necessarily induces a bias in the apparent higher-order transition probabilities (e.g. for the pattern 10 

AABB, the order 2 transition probabilities are p(B|AA) = p(A|BA) = p(B|AB) = p(A|BB) = 1). For 11 

every order considered, this model predicted that the detection of deterministic rules should be 12 

characterized by gradual rather than abrupt detection dynamics (Fig. 8b), unlike subjects (this effect 13 

is explained in detail in Supplementary Note 1). This model thus provided a worse account of human 14 

data compared to the normative two-system model (difference in MSE > 2.21 · 10–5, dCohen > 0.88, 15 

t22 > 4.22, p < 3.55 · 10–4; Fig. 8c). In addition, low-order versions simply missed patterns that 16 

induce weak (if any) biases in transition probabilities of the corresponding order; while higher-order 17 

versions showed too many false alarms in favour of the deterministic rule hypothesis. 18 

We also tried to rescue the normative single-system model that monitors transition 19 

probabilities of different orders using a prior distribution biased towards extreme values of 0 or 1 20 

specifically for higher-order transition probabilities (H’rule) 47, so as to capture the fact that 21 

deterministic rules afford more certain predictions than statistical biases. However, this version 22 

further aggravated the problem of excessive false alarms even for very weak biases of prior 23 

distributions (see Supplementary Note 2) and it could not mimic the observed abrupt detection of 24 

deterministic rules. 25 

 26 
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Non-commensurable two-system model. The normative two-system model considers the three 1 

hypotheses together (i.e. Hrule, Hstat, and Hrand) and assigns to each of them a posterior probability 2 

that takes into account the other two hypotheses (through normalization in Bayes’ rule). A second 3 

alternative to this normative two-system model is that subjects use distinct hypothesis spaces (i.e. 4 

Hrule, Hstat, and Hrand as before) but estimate the posterior probabilities of each non-random 5 

hypothesis only relatively to the random hypothesis, while ignoring the third hypothesis (i.e. 6 

Hrule vs. Hrand and Hstat vs. Hrand). In this case, owing to a lack of normalization across the three 7 

hypotheses, their probabilities do not sum to 1 and cannot be directly compared (hence non-8 

commensurable instead of normative), we will thus term those probabilities pseudo posteriors. The 9 

non-commensurable two-system model must resort to a non-normative way of comparing 10 

hypotheses in order to report a belief in the triangular arena. We explored several ways. 11 

A first version of this non-commensurable two-system model obeys a max rule: (1) it selects 12 

among the two putative regularities based on the maximum pseudo posteriors, and (2) it selects 13 

between the selected regularity and the random hypothesis according to what the corresponding 14 

pseudo posterior supports. The average detection dynamics of this model resembles those of the 15 

normative two-system model (Fig. 8d), but comparison with single-trial dynamics shows that the 16 

normative two-system model provides a better account of the subjects’ trajectories 17 

(difference in MSE = 0.014, CI = [0.003, 0.025], dCohen = 0.53, t22 = 2.55, p = 0.018; “maximum” in 18 

Fig. 8e). This difference arises because the max rule generates sudden jumps between the left and 19 

right edges of the triangle and never occupies the centre, which is a landmark signature of the 20 

relative weighing between non-random hypotheses. 21 

A second version of this non-commensurable two-system model weighs the two non-random 22 

hypotheses according to the (linear, i.e. exact) difference in their pseudo posterior probabilities, 23 

rather than selecting one in an all-or-none manner. The problem with this version is that it will often 24 

remain undecided, converging to a conclusion only if one of the two pseudo posterior probabilities 25 

vanishes (becomes 0), which does not happen whenever deterministic rules have a bias in their 26 
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apparent transition probabilities (e.g. AAAAABBBBB; see purple curve in Fig. 8d). Such 1 

indecision does not occur in the normative two-system model because it correctly compares the two 2 

non-random hypotheses based on their true posteriors (rather than pseudo posteriors). Again, the 3 

non-commensurable two-system model resulted in a worse account of human data compared to the 4 

normative two-system model (difference in MSE = 0.25, CI = [0.22, 0.28], dCohen = 3.59, 5 

t22 = 17.23, p =  2.92 · 10–14; “linear” in Fig. 8e). 6 

 7 

Fig. 8 | Rejecting alternative models on the basis of 
deterministic detection dynamics. a, Different models. The 
normative two-system model is sketched side-by-side with two 
alternative models that either use a single common system for 
deterministic rules and statistical biases (instead of two distinct 
hypothesis spaces), or use distinct but non-commensurable 
systems (instead of the shared probabilistic currency). In the first 
case the α parameter defines the order of transition probabilities 
that are used to detect the deterministic patterns; it induces an 
exponential growth of the number of patterns to monitor. In the 
latter case, the β parameter controls how the non-
commensurable systems are combined such that they can be 
reported in the triangular arena. b, Detection dynamics of the 
AAAAABBBBB pattern by different versions of the normative 
single-system model. Posterior probability in the deterministic 
rule hypothesis for different versions of the normative single-
system model learning transition probabilities of different orders 
(from 2 to 9) is displayed after the change-point initiating the 
repetition of the AAAAABBBBB pattern. c, Error of the different 
versions of the normative single-system model. The mean 
squared error (MSE) between subjects’ and models’ abruptness 
(averaged over patterns) measures how well each model 
accounts for human data. A larger error indicates a worst account 
of human detection dynamics of deterministic rules. d, Detection 
dynamics of the AAAAABBBBB pattern by versions of the non-
commensurable two-system model. Same as in b but in the case 
of different versions of the non-commensurable two-system 
model that combine the independently-computed posterior 
probabilities in the non-random hypotheses differently: a linear 
function of the difference, by selecting the best hypothesis and 
discarding the other, or a sigmoid function (here with an example 
using β = 10) of the difference or of the log-ratio. e, Error of the 
different versions of the non-commensurable two-system model. 
Same as in c but with the different versions of the non-
commensurable two-system model. The dashed line corresponds 
to versions with a sigmoid-based combination but using the log-
ratio between posterior probabilities of the non-random 
hypotheses (instead of the difference). In a to e, analyses were 
restricted to random-to-rule sequences that were correctly 
classified by subjects and for which detection-points were found. 
Error bars and shaded areas correspond to the standard error of 
the mean computed over subjects. Stars denote significance: 
*** p < 0.005, ** p < 0.01, * p < 0.05. 

 

 8 

As an attempt to overcome the indecision problem, we tested a third version of the non-9 

commensurable two-system model that can exaggerate the difference in pseudo posterior 10 

probabilities of the non-random hypotheses. We used a sigmoid function to formalize such 11 
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exaggeration, because it allows a significant impact of even subtle differences in pseudo posterior 1 

probabilities. Varying the slope of this sigmoid actually moves the model along a continuum whose 2 

ends correspond to the “max rule” and the “linear difference” versions tested above. However, this 3 

version suffered from the same problems as these previous versions (Fig. 8d) and no matter its 4 

parameterization, it always provided a worse account of subjects’ behaviour compared to the 5 

normative two-system model (Fig. 8e). Note finally that resorting on a sigmoid that uses the log-6 

ratio of (instead of the difference in) the pseudo posterior probabilities of the non-random 7 

hypotheses leads to the same conclusions (see dashed line in Fig. 8e). 8 

 9 

Summary. The normative two-system model provided a better account of human behaviour than the 10 

many different alternative models we considered (additional arguments against these alternative 11 

models are presented in Supplementary Note 2 and Supplementary Fig. 4 to 7), in spite of the fact 12 

that some of those alternative models had free parameters giving them more flexibility than the 13 

(parameter-free) normative two-system model.  14 

Discussion 15 

We proposed here that a simple taxonomy may help to organise the theoretically infinite 16 

number of temporal regularities that exist in the environment. This taxonomy distinguishes 17 

deterministic rules, for which certainty can be attained, from statistical biases, for which a degree 18 

of uncertainty remains. We asked human subjects to detect and identify regularities of either 19 

category that could suddenly appear within a random sequence of binary observations. We measured 20 

the dynamics of their inference by continuously tracking subjects’ finger movement 46,48 and 21 

compared them to normative models 49,50. We found that subjects assigned probabilistic credence to 22 

each of three distinct hypotheses, and that they treated statistics and rules as distinct hypothesis 23 

spaces rather than as a continuum, following our taxonomy. 24 
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Many previous studies focused on how participants use previous observations to make 1 

predictions about the future. Those predictions can leverage, often in different studies, either the 2 

estimation of a particular statistics (e.g. item frequency and transition probabilities) or the 3 

identification of a rule (e.g. a repeating pattern). We would like to stress that in the context of 4 

predictions the characterization of a specific generative process (estimation of a statistical bias or 5 

the identification of a rule) is a different computational problem than the identification of the most 6 

relevant process (rule or statistics ?) for predictions. The latter has received much less attention than 7 

the former, and it is the problem we tackled here. 8 

A few previous studies approached this arbitration problem. For instance, some studies on 9 

the perception of randomness asked human subjects to categorize sequences as random versus non-10 

random. Interestingly, such studies have shown that humans are prone to seeing regularity even in 11 

fully random sequences 51,52, which is similar to the false alarms we observed here during random 12 

sequences. We proposed that such false alarms may actually result from an optimal inference 13 

process. In another line of research, rule learning paradigms also prompted subjects to categorize 14 

random vs. non-random sequences 10. In particular, a recent study 31 found that this categorisation 15 

relies on the computation of a posterior distribution over possible patterns (of different lengths), a 16 

finding we replicated here, while also extending it to other generative processes.  17 

Another innovation of our work is to study the advent of regularity. Real-world 18 

environments are usually volatile, causing frequent changes in the process generating the 19 

observations. As a consequence, in addition to categorising among regularities, observers trying to 20 

predict future observations must also detect when regularity appears. We found that both statistics 21 

and rules could be promptly detected, but with different detection dynamics. Deterministic rules 22 

were quite abruptly detected, reflecting “aha moments” 53; a computational consequence to the all-23 

or-none predictions they afford. The onset of the detection varied as a function of pattern length. 24 

Both findings replicate previous studies in which repeating patterns appeared suddenly in otherwise 25 

random sequences 10,11. By contrast, statistical biases were detected more progressively, reflecting 26 
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evidence accumulation 23,46; a computational consequence of their inherent uncertainty. The slope 1 

of the detection varied as a function of the strength of the bias (quantified in terms of Shannon 2 

entropy). Again, both findings replicate previous studies 12,14. 3 

Importantly, detecting the onset of a regularity, be it deterministic or statistical, requires 4 

observers to explicitly monitor change-points separating random from non-random observations. 5 

Because change-point positions are a priori unknown, they must be inferred from the sequence, and 6 

the uncertainty associated with this inference of position should be factored into the evaluation of 7 

the non-random hypotheses, which is a form of hierarchical inference. Knowing that change-point 8 

occurs in ⅔ of sequences here, the a priori probability of having encountered a change-point 9 

increases as the sequence unfolds in time. Accordingly, in random sequences, subjects’ false alarms 10 

increased with sequence duration, as also observed in a recent study 12. A model lacking such an 11 

explicit representation of change-points would, by contrast, have a stable false alarm rate throughout 12 

the sequence 54. 13 

Subjects were also able to explicitly report change-point positions after sequence 14 

presentation, and rate their confidence in that estimation, both in a manner conforming to a 15 

hierarchical inference. This replicates the findings of recent studies on statistical learning with 16 

change points 15,17,19,20,55, but here we extended those findings to the case of deterministic rules. 17 

Our results indicate that the human detection and categorisation of regularities rely on three 18 

different hypothesis spaces: a fully random hypothesis, a statistical bias hypothesis, and a 19 

deterministic rule hypothesis, which we formalized as the normative two-system model. We wish to 20 

dissipate a potential misunderstanding. By design, our task is to categorise sequences, using these 21 

three categories. The overall accurate categorisation that we observed is not diagnostic of an 22 

inference relying on different hypothesis spaces, since each category could correspond to different 23 

parameters within the same space (i.e. the same generative model of observations). We explored 24 

such a possibility with the normative single-system model in which statistics and rules both 25 

correspond to biases in transition probabilities, of low and high orders respectively. However, the 26 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.06.937706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 23 of 66 

normative two-system and normative single-system models make different predictions regarding the 1 

pattern of categorisation errors, the rate of false alarms, and the dynamics of regularity detection. 2 

Crucially, a careful analysis of those aspects showed that subjects’ behaviour conformed specifically 3 

to the normative two-system model: subjects treated statistics and rules as pertaining to 4 

fundamentally different hypothesis spaces. 5 

The existence of distinct hypothesis spaces for statistics vs. rules seems to be supported by 6 

partly dissociable neural underpinnings. Studies on statistical learning and behavioural stochasticity 7 

typically report the involvement of a widespread network of brain regions including sensory cortices 8 

and the cingulate cortex 56,57, as well electrophysiological signatures with various (both early and 9 

late) latencies 18,58,59. By contrast, sequences generated using artificial grammars or pattern 10 

repetitions and their violation typically recruit a more restricted set of brain regions including the 11 

inferior frontal gyrus and the hippocampus 10,30,33,36,56,60, and often elicit exclusively late 12 

electrophysiological signatures such as the P300 58,59. The few studies that have directly contrasted 13 

both types of regularities, yet not fully orthogonally, confirm a dissociation in terms of 14 

anatomy 22,32,37–39 and timing of evoked responses 58,59 associated with rules and statistics. 15 

Using different hypothesis spaces for regularity detection, as opposed to using a continuum, 16 

has important computational advantages for biological agents. Firstly, it allows for a faster detection 17 

of deterministic rules. This is because the deterministic rule hypothesis considers only extreme 18 

probability values (essentially 0 vs. 1), such that evidence for or against it accumulates rapidly 23,46. 19 

By contrast, the biases in higher-order transition probabilities that the normative single-system 20 

model tracks in order to detect rules take much longer to be detected. 21 

Secondly, dividing the continuum of predictability into discrete hypotheses (as the 22 

normative two-system model) provides a tractable solution to the problem of regularity 23 

detection 61,62. By contrast, computing with the continuum (as the normative single-system model) 24 

is either very difficult, if not simply intractable. One implementation of this solution, currently 25 

explored in the general artificial intelligence literature 63, is the mixture of local expert 26 
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agents 18,54,55,64. This solution combines different algorithms (i.e. hypothesis spaces) that are 1 

specialized for different aspects of the inference process. When well-tuned, this solution can prove 2 

much faster and simpler than the full optimal solution 65,66. 3 

Thirdly, such a division of tasks leverages dedicated computations for each hypothesis 4 

space, which can also reduce the total computational cost 67. In our case, the distinction between 5 

statistics and rules enables both a simple, accurate estimation of low-order statistical biases and a 6 

sensitivity to long-distance dependencies, with pattern matching. Tracking higher-order statistics, 7 

as in the normative single-system model, also preserves a sensitivity to long-distance dependencies 8 

but at the cost of an exponential growth of the number of transitions to monitor with the length of 9 

the dependency. By contrast, the number of patterns that are monitored at a given moment by the 10 

normative two-system model remains small. This is because all patterns that are incompatible with 11 

the sequence are excluded, resulting in zero or one correct pattern per pattern length. Such a pruning 12 

strategy is very effective at reducing the cost of computations 25,61,62,68. 13 

When using multiple hypothesis spaces, one must identify the one that is best suited for 14 

prediction or behavioural control, which requires arbitrating among them 69–71. We used a 15 

behavioural apparatus and instructions that advantageously left subjects unconstrained in the way 16 

they would arbitrate between the different hypotheses and found that they weighed these hypotheses 17 

in a graded manner: (1) the random vs. statistical bias hypotheses graded comparison was 18 

demonstrated by the specific detection dynamics of statistical biases and the false alarms, (2) the 19 

random vs. deterministic rule hypotheses graded comparison by the specific detection dynamics of 20 

rules, (3) and the statistical biases vs. deterministic rule hypotheses graded comparison by an interim 21 

competition before the detection of rules and by the relative weighing between them during random 22 

sequences. 23 

These aspects of behaviour were well accounted for by the normative two-system model, 24 

thereby showing that subjects use a common probabilistic currency to arbitrate between the different 25 

hypotheses, in line with previous accounts of Bayesian inference applied to discrete states 22,31,68. 26 
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We also explored alternative possibilities in the form of the non-commensurable two-system model 1 

which computes pseudo posterior probabilities of the non-random hypotheses independently of each 2 

other and, hence, cannot normatively compare them. We showed that the normative and non-3 

commensurable models make different predictions regarding the detection dynamics of 4 

deterministic rules which rejected the latter. Worth noting, the only mathematical difference 5 

between the normative two-system model and the non-commensurable two-system model is the 6 

normalization term in Bayes’ rule which either includes the three hypotheses, or only two of them, 7 

respectively. 8 

This rational weighing of hypotheses is all the more useful that both types of regularities can 9 

coexist in the same input (Fig. 1b), including speech 72,73. Deterministic rules can induce apparent 10 

statistical biases (e.g. the repetition of the AAB pattern induces globally more As than Bs), while 11 

statistical biases can induce local apparent rule-like regularities (e.g. …ABABAB… in frequently 12 

alternating sequences). Many previous studies, by investigating statistics and rules separately, have 13 

neglected the possibility that one type of learning could interfere with the other, or foster regularity 14 

detection. Here, by manipulating the extent to which deterministic rules also induce apparent 15 

statistical biases, we found an interim competition between statistics and rules, even causing 16 

changes-of-mind 46, and characterized it (with Shannon entropy). 17 

We now acknowledge several limitations of our study. A first limitation is that we used a 18 

restricted set of regularities, due to experimental time constraints. This restricted set enabled us to 19 

study the estimation of first-order transition probabilities and detection of repeating patterns, but is 20 

not suited to study more complex types of regularity 2. Notably, humans can detect deterministic 21 

rules in the form of algebraic patterns (e.g. AB-AABB-AAABBB… = AnBn where n increases 22 

sequentially). A possibility, which has received some behavioural support, is that the human brain 23 

uses a “language of thought”, including such algebraic patterns, in order to compress deterministic 24 

sequences into a regular expression 29,35,74–76. For simplicity, we manipulated here only repeated 25 

patterns of various lengths, but found, in line with a possible role of compression, that the barely 26 
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compressible length-10 pattern AAABAABBAB was more often missed by subjects compared to 1 

the other two length-10 patterns, AABABABABB and AAAAABBBBB, which are more 2 

compressible ([A2, (BA)2, B2] and [A4, B4] respectively). Note, however, that this effect could also 3 

result from the difference in the patterns’ apparent statistical bias (which is respectively weak and 4 

strong), an alternative we have recently considered and discarded 76. 5 

This brings us to the more general question of what is psychologically general in our model 6 

and what is specific to the task. Although we can only speculate about the scope of statistical biases 7 

(i.e. which order(s) of transitions) or deterministic rules (i.e. which type(s) of rules) that is relevant 8 

for the brain, our model makes the general claim that there exist fundamentally two categories of 9 

regularity, statistics and rules, which afford respectively uncertain vs. sure predictions. The model 10 

also posits that the statistical bias and deterministic rule hypotheses are evaluated in parallel during 11 

sequence processing, leading to testable predictions 76. The model also posits that humans can 12 

rationally compare those different hypotheses using a common probabilistic currency. Future 13 

studies should thus investigate a more diverse and ecological set of regularities and inspect whether 14 

humans conform to our model’s predictions also when the variety of regularities is much wider but 15 

could still fall into our proposed taxonomy.  16 
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Methods 1 

Sequences’ generative process. Each sequence was composed of 200 binary observations, that we 2 

refer to as A or B, and generated by one of the following 3 generative processes: (1) they could be 3 

random from the beginning to the end, (2) with a statistical bias introduced after an initial random 4 

part, (3) with a deterministic rule introduced after an initial random part. 5 

 6 

Random parts. The random parts of sequences were generated by independent draws with equal 7 

probability for either binary outcome (i.e. as tosses of a fair coin). The resulting sequences contain 8 

on average as many As as Bs and as many repetitions (i.e. AA and BB) as alternations (i.e. AB and 9 

BA). 10 

 11 

Change-points. In sequences entailing a regularity, a change-point separates the initial, random, part 12 

from the second, non-random, part. Unbeknownst to the subjects, the position of the change-point 13 

was drawn from a Gaussian distribution centred on the middle of the sequence (i.e. observation 14 

#100) with a standard deviation of 15 observations, truncated from observations #55 to #145 such 15 

that the change would not appear neither too early nor too late in the sequence. The resulting 16 

empirical distribution of change-points is centred on observation #100.65 ± 15.55 SD. 17 

 18 

Statistical biases. Statistical regularities are obtained by drawing observations from a biased first-19 

order Markov chain. Each statistical bias is thus fully described by the values of two first-order 20 

transition probabilities: p(A|B) = 1 – p(B|B) and p(B|A) = 1 – p(A|A). Note that unless otherwise 21 

specified, all transition probabilities are first-order. Importantly, transition probabilities also fully 22 

determine lower-order statistics: the frequency of items, p(A) = 1 – p(B), and the frequency of 23 

alternation, p(alternation) = 1 – p(repetition) 18,52. We used the following statistical biases (the 24 

numbers indicate (p(A|B), p(B|A))): more repetitions than alternations with (1/3, 1/3), (1/4, 1/4), 25 

and (1/5, 1/5); more alternations than repetitions with (2/3, 2/3), (3/4, 3/4) and (4/5, 4/5); more of 26 
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one item than the other with (1/3, 2/3), (1/4, 1/2) and (1/5, 4/5), which also bias the alternation 1 

frequency; or biased both in terms of alternation and item frequencies with (1/2, 1/4) and (3/4, 1/2). 2 

For repetition biases and alternation biases, the corresponding frequency of items is at chance level. 3 

We quantified the strength of the statistical biases as the Shannon entropy (i.e. H) of the distribution 4 

of pairs of items 77: 5 

 
 

(1) 

where the subscripts denote the position of the observation within the pair. The probability of a 6 

given pair of items can be computed using the generative transition probabilities: 7 

  (2) 

 
 

(3) 

Where X is either A or B and Y is either B or A. The entropy of our chosen statistical biases ranged 8 

from H = 1.44 to 1.92 bit, which contrasts with the entropy characterising random sequences, which 9 

is maximal, that is H = 2 bits. We used the limit 0 · log2(0) = 0 when it applied. 10 

 11 

Deterministic rules. Deterministic rules were obtained by repeating a fixed pattern. Different pattern 12 

lengths were used: 4, 6, 8 and 10 observations. Moreover, patterns were chosen depending on the 13 

strength and type of bias in the apparent transition probabilities they induce. We term this bias 14 

“apparent”, in opposition to “generative” since the deterministic rules are not generated according 15 

to a statistical bias, but indeed by repeating a pattern. Nonetheless, depending on the pattern used, 16 

a statistical bias may emerge: no bias with AABB and AAABBABB; a repetition bias with 17 

AAABBB, AAAABBBB and AAAAABBBBB; an alternation bias with AABABB, AABABABB 18 

and AABABABABB; and a bias in the frequency of items with AAABAB and AAABAABBAB. 19 

We selected several of these patterns, both in terms of bias type and bias strength so as to match 20 

with most of the biases characterising the statistical regularities we used. Apparent transition 21 
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probabilities can be computed for each deterministic rule (supposing an infinite number of 1 

repetitions of that pattern) and then used to estimate Shannon entropy, quantifying the strength of 2 

their apparent statistical bias using equation 1. 3 

 4 

Experimental protocol. Subjects. A total of 28 subjects participated in the study. Data from 5 5 

subjects were rejected because of very poor data quality reflecting a lack of comprehension of the 6 

instructions. Note, however, that our conclusions hold when using data from all the subjects; the 7 

reader can rerun our analyses with the code we provide online together with the full dataset. The 8 

data presented here come from 23 subjects (16 females) aged between 20 and 29 years old (mean 9 

age 23.91 ± 2.59 SD) from various education backgrounds including history of arts, law, translation, 10 

biology, engineering, psychology, etc. All subjects were right-handed. The study was approved by 11 

an independent ethics committee (CPP 08-021 Ile-de-France VII), and subjects gave their informed 12 

written consent before participating. 13 

 14 

Stimulation. Stimuli consisted of two tones composed of three superimposed sine waves (350, 700, 15 

and 1400 Hz vs. 500, 1000, and 2000 Hz). The tones were 50 ms long, with 7 ms rise and fall times. 16 

They were randomly associated to A or B before each sequence. The stimulus-onset asynchrony 17 

was 300 ms long, thus resulting in 3.33 sounds per second. Stimulation was delivered using 18 

MATLAB and Psychtoolbox 78. 19 

 20 

Triangular arena. The triangular arena is an equilateral triangle displayed on a touch screen and 21 

whose vertices correspond to the 3 possible generative hypotheses: the bottom vertex corresponds 22 

to a random process and the two upper vertices correspond to non-random processes (i.e. statistics 23 

and rules) whose respective side (i.e. left or right) was counterbalanced across subjects. For the sake 24 

of averaging and clarity of reporting, the trajectories of half of the subjects were thus vertically 25 

mirrored such that for all subjects the statistical bias hypothesis corresponds to the left upper vertex 26 
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and the deterministic rule hypothesis to the right upper vertex. A point in that triangular space can 1 

be converted into posterior probabilities for each generative hypothesis (by means of barycentric 2 

coordinates summing to 1, see below). The centre of the triangle corresponds to equal probabilities 3 

(i.e. (1/3, 1/3, 1/3)). Because all sequences start with a random part, observers started at the bottom 4 

vertex and updated their locations in the triangle as observations were delivered in a way that reflects 5 

their estimates of the probabilities for the three possible hypotheses given the received observations. 6 

Subjects were allowed to move freely inside the triangular arena: they could pause at a particular 7 

location of the triangle or change their mind for instance by returning near the random vertex after 8 

a suspected regularity was discarded. The triangular arena (9.7 cm wide × 8.4 cm high, 9 

800 pixels wide × 693 pixels high) was displayed using MATLAB and Psychtoolbox 78 on a 10 

14 inches touch screen (31 cm wide × 17.4 cm high, 2560 pixels wide × 1440 pixels high) 11 

computer (HP Pavilion x360) that was lying horizontally on a table. Finger position was collected 12 

using MATLAB immediately after each auditory stimulus was played, thereby resulting in a 13 

trajectory composed of 200 pairs of cartesian coordinates (ak and bk). When the recorded finger 14 

position was outside of the triangle (because of subject’s motor imprecision), the positions were 15 

projected back to the nearest point on the triangle border (through Euclidean distance minimization, 16 

average distance = 5.83 pixels ± 3.88 SD, [1.77, 16.01]). 17 

 18 

Training. Subjects were first given written instructions. They were then presented with several short 19 

example sequences (70 observations, no change-point) and told the underlying generative process 20 

in order for them to understand the differences between the two types of regularities and the random 21 

process. The experimenter provided examples of how to use the triangular arena to report 22 

probabilistic beliefs with 4 example sequences (1 random, 2 random-to-statistical and 1 random-to-23 

rule). Finally, subjects practiced on 7 example sequences (2 random, 3 random-to-statistical and 2 24 

random-to-rule). The experimenter then answered possible questions and launched the experiment. 25 

The regularities used during training were different from those used in the experiment. 26 
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 1 

Experiment. During the experiment, subjects were presented with 33 sequences (10 random, 13 2 

random-to-statistical and 10 random-to-rule) whose order was randomly defined for each subject. 3 

These sequences were allocated to 4 different sessions (each composed of 8 or 9 sequences) 4 

interspersed with pauses. Two of the random-to-statistical sequences were duplicates (of (1/2, 1/4) 5 

and (3/4, 1/2)) that were added in order to assess within-subject variability in stochastic conditions. 6 

They are simply discarded from the analyses presented here. All trials follow the same structure. 7 

Subjects initiated the trial by touching a button on the touch screen. The triangular arena was then 8 

displayed on the screen and a 3-second countdown was initiated. During the following minute, the 9 

sequence was played, and subjects moved their finger inside the triangular arena. Once the 10 

presentation of the sequence finished, subjects were asked several post-sequence questions. They 11 

were first asked whether they thought retrospectively that the sequence entailed a regularity or not 12 

(detection). In the absence of noticed regularities, the trial was terminated. Otherwise, they were 13 

asked several other questions. Firstly, which type of regularity (statistics vs. rule) occurred 14 

(discrimination)? Secondly, when the change-point occurred? In that case, they used a continuous 15 

horizontal scale from observation #1 to #200 and also rated their confidence in that estimate using 16 

a continuous vertical scale. Those two questions are in retrospect, which is in contrast with the third 17 

question in which they were asked to estimate when they had realized, during the sequence 18 

presentation, that a change-point had occurred. In that case, they also used a continuous horizontal 19 

scale from observation reported as change-point (at the second question) to observation #200 and 20 

also rated their confidence in that estimate using a continuous vertical scale. The data from the third 21 

question were not used here. 22 

 23 

Normative two-system model. We derive the ideal observer model for the task, which is the Bayes-24 

optimal solution using the actual task structure 79,80. Comparing subjects behaviour against this 25 

benchmark inference therefore allows the identification of signatures of a normative inference in 26 
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human behaviour 49,50. Practically speaking, the model is presented with a given sequence y, of 1 

length |y| = K, and returns the posterior probability of each possible hypothesis  (i.e. random, 2 

random-to-statistical and random-to-rule processes) using Bayes’ theorem, as the sequence unfolds 3 

in time: 4 

 
 

(4) 

The assumptions of the model closely correspond to the task structure, and they determine its prior 5 

and likelihood functions. The likelihood of the sequence under each hypothesis  is derived 6 

below. The prior probability over hypotheses was uniform, such that . Non-uniform prior 7 

distributions over hypotheses have been explored but fail to significantly better explain subjects’ 8 

behaviour compared to the simpler uniform prior distribution. 9 

 10 

Sequence likelihood under a random hypothesis. Under the random hypothesis , all 11 

observations are at chance level and independent. The likelihood of a sequence is thus the product 12 

of the chance-level likelihoods of each observation. Because the observations are binary, the process 13 

amounts to independent tosses of a fair coin, and the likelihood of each observation is ½: 14 

 
 

(5) 

Where NyX denotes the number of times X has been observed in the sequence y. 15 

 16 

Likelihood of a sequence under non-random hypotheses. For the remaining two hypotheses, a 17 

change-point delineates the initial, random, part of the sequence from the second, non-random, part. 18 

However, the location of the change-point is unknown and assumed random. In order to get rid of 19 

this unknown factor, one must therefore consider all possible jk positions of the change-point (i.e. 20 

after the 1st, 2nd, …, up to the (K – 1)th observation), and marginalize over these positions: 21 
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(6) 

The likelihood of the sequence is, for a given change-point location, the product of the likelihood 1 

of the random part and the non-random part of the sequence: 2 

  (7) 

The likelihood of the first part of the sequence (y1:k, noted below yrand for brevity) is the likelihood 3 

of a random sequence (equation 5), the likelihood of the second part (yk+1:K, noted below ystat or yrule 4 

for brevity, whose length is |ystat or rule| = K – jk) depends upon the type of regularity that is considered 5 

(either statistical bias or deterministic rule, see below). The prior distribution over change-point 6 

positions is set to be uniform, such that all positions are a priori equally likely . 7 

 8 

Sequence likelihood under a statistical bias hypothesis. The random-to-statistical hypothesis 9 

 considers that, after the change-point, the sequence likelihood depends on a matrix 10 

of transition probabilities between successive observations characterising a first-order Markov 11 

chain 52. The generative matrix of transition probabilities is unknown and random from one 12 

sequence to the next. In order to get rid of this unknown factor, one must therefore consider all 13 

possible values of transition probabilities θ and marginalize over them. The likelihood of the second, 14 

statistical, part of the sequence ystat is thus: 15 

 
 

(8) 

For a model that estimates transition probabilities between consecutive stimuli, the likelihood of a 16 

given observation depends only on the estimated transition probabilities and the previous stimulus. 17 

For simplicity, the first observation can be considered as arbitrary such that its likelihood equals 18 

chance level. This results in: 19 
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(9) 

Where θ is a vector of two transition probabilities θ = [θA|B, θB|A] and NX|Y denotes the number of 1 

YX pairs in the statistical part of the sequence. Equation 9 corresponds to the product of two Beta 2 

distributions, which parameters are the transition counts plus one: 3 

 
 

(10) 

The integral over such Beta distributions has analytical solutions that can be used to compute 4 

sequence likelihood in equation 8 when a uniform conjugate prior over θ is used 81. 5 

 6 

Sequence likelihood under a deterministic rule hypothesis. The random-to-rule hypothesis 7 

 considers that, after the change-point, the sequence can be described as the repetition 8 

of a particular pattern. However, this pattern is unknown. In order to get rid of this unknown factor, 9 

one must therefore consider all possible patterns, denoted , and marginalize over them. The 10 

likelihood of the second, deterministic, part of the sequences yrule is thus: 11 

 
 

(11) 

We consider that the set of all patterns  can be split in two disjoint subsets. The first one 12 

corresponds to all patterns whose length is equal or smaller than the length of the deterministic 13 

sequence: this is the set of patterns potentially entirely observed in the current sequence . The 14 

second subset corresponds to patterns whose length is larger than the length of the deterministic 15 

sequence: this is the set of partially observed patterns . The size of that latter set depends upon 16 

the maximum pattern length allowed, denoted l. We used l = 10 observations such that the model 17 

can detect all the patterns used in the experiment while remaining psychologically plausible given 18 

human memory limits. Conveniently, this parameter choice does not significantly impact the 19 
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predictions of the model for l > 10 as it allows the detection of all patterns used here 1 

(Supplementary Fig. 3). For both patterns’ sets, the likelihood of a particular pattern r given the 2 

observed sequence is all or none: 3 

 
 

(12) 

Among , there is at most one (and thus possibility zero) pattern of each given length that is 4 

compatible with the observed sequence (i.e. for which the sequence likelihood is not null). Possible 5 

extensions of this pattern found in  also result in a sequence likelihood equal to one, and all the 6 

others patterns are incompatible with the observed sequence (and thus result in a likelihood that is 7 

null).  8 

The prior probability of patterns reflects an incremental procedure used to generate the 9 

patterns: at each iteration, the current pattern is either selected, which terminates the procedure, or 10 

extended with observation A or B, with equal probability among those 3 possibilities. The process 11 

terminates when the maximum pattern length l is reached. With such a process, longer patterns are 12 

less probable than shorter ones, the prior therefore favours shorter patterns (see first ratio in 13 

equation 13), following the “size-principle” which has been widely used in the past 82. For a given 14 

pattern r of length |r|, the prior probability is: 15 

 

 
(13) 

Where the second ratio ensures, given that l is the maximum pattern length allowed, that 16 

. 17 

Posterior distribution of change-point position. Besides computing the posterior probability of the 18 

three different generative processes given an input sequence, it is also possible to compute the 19 

posterior probability of the change-point being at one particular position, for the two hypotheses 20 

that assume the existence of such a change-point: 21 
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(14) 

The likelihood of an observed sequence containing a change-point has been previously defined in 1 

equation 7. By contrast, if the change-point is in the yet unobserved part of the sequence, then the 2 

current sequence is still necessarily random: 3 

 
 

(15) 

Those hypothesis-specific posterior distributions over change-points can then be combined by 4 

means of Bayesian model averaging: 5 

 
 

(16) 

The most likely position of the change-point is therefore the maximum a posteriori of this 6 

distribution and the confidence related to that estimate can be assessed by measuring the log-7 

precision of the posterior distribution 19,44,45: 8 

 

 
(17) 

 9 

Normative single-system model. An alternative to the dichotomy between the statistical bias 10 

hypothesis (with order 1 transition probabilities) and the deterministic rule hypothesis (with 11 

patterns) is that subjects monitor order 1 vs. higher-order transition probabilities. To explore this 12 

possibility, we replaced the deterministic hypothesis  (with patterns) in the normative two-13 

system model (all other computations remain the same) with a higher-order statistical bias 14 

hypothesis , with Markov chains of various orders, also referred to as n-grams models in the 15 

linguistic literature 83. In those cases, the likelihood of the second part of the sequence becomes: 16 

 

 
(18) 
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Where α is the order of the chain, resulting in 2α transitions T. For instance, a Markov chain of order 1 

α = 1 corresponds to the transitions T = [X|A, X|B], a chain of order α = 2 considers the transitions 2 

T = [X|AA, X|AB, X|BA, X|BB], etc. In addition to varying the order of the Markov chain, we also 3 

varied a parameter d that controls the preference for predictability of the conjugate prior. For 4 

instance, d = 0 corresponds to a uniform prior: the next observation can have any likelihood, from 5 

0 to 1 with equal probability; while d > 0 favours extreme probabilities: in this case, the observer 6 

expects more extreme probabilities (toward p = 0 and 1) to be more likely than intermediate 7 

probabilities (around p = ½) 84. The likelihood function we used for the statistical bias hypothesis 8 

(equation 10) is thus a spatial case of equation 18 where α = 1 and d = 0, that is a first-order Markov 9 

chain with a uniform prior. 10 

 11 

Non-commensurate two-system model. An alternative to the rational arbitration between the non-12 

random hypotheses by means of a common probabilistic currency is that subjects evaluate the 13 

posterior probability of each non-random hypothesis (against the random hypothesis) independently 14 

of one another. To explore this possibility, and contrary to the normative two-system model, we 15 

computed posterior probability of each non-random hypothesis separately, given the observed 16 

sequence: 17 

 
 

(19) 

Where the prior probabilities are set to chance level (i.e. ½ in that case). From equation 19, it follows 18 

that the probability of the random hypothesis depends upon the non-random hypothesis that is 19 

considered: 20 

  (20) 

In order to report the probabilities of the 3 hypotheses in the triangular arena (which requires they 21 

sum to 1), we used four different combination functions: (1) linear difference, (2) max rule (taking 22 

the best hypothesis and discarding the other), (3) a sigmoid based on the difference between the 23 
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posterior probability of non-random hypotheses, and (4) a sigmoid based on the log-ratio between 1 

the posterior probability of non-random hypotheses. For the two latter cases, one parameter (β) 2 

controls the slope of the sigmoid function (we explored 100 values equally spaced logarithmically 3 

between 100.5 and 109.5). 4 

Linear difference:  
 

(21) 

Max rule: 

 

(22) 

Sigmoid on the difference: 
 

(23) 

Sigmoid on the log-ratio: 
 

(24) 

The pseudo posterior probability of the random hypothesis is first obtained by a weighted 5 

combination of the probability of the random hypothesis under each non-random hypothesis: 6 

  (25) 

Then, the pseudo posterior probabilities of the non-random hypotheses are computed based on the 7 

weights from the previously mentioned combination functions which guarantees that the 8 

probabilities over the 3 hypotheses sum to 1: 9 

 
 

(26) 

 10 

From finger position to posterior probability. A given pair of cartesian coordinates (a, b) 11 

specifying the subject’s finger position can be turned into the posterior probability of each 12 

hypothesis  by performing a conversion to the barycentric coordinate system using the 13 

following equations: 14 
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(27) 

Where ah is the horizontal position of hypothesis h on the screen and bh its vertical position (both in 1 

pixels). Conversely, the posterior probability of the three hypotheses estimated by the model can be 2 

reported on the touch screen by applying a barycentric-to-cartesian transformation: 3 

 

 
(28) 

 4 

Triangular histograms of positions in the triangle. The histograms were obtained by segmenting 5 

the triangle into 87 vertical and 101 horizontal rectangular parcels (since the height of an equilateral 6 

triangle is 0.87 the size of its edge) and counting the frequency of occupancy of each of these parcels. 7 

Before counting, the subjects’ and model’s trajectories were linearly interpolated (resulting in 3 8 

times more data points). The resulting 2D histogram was then smoothed with a Gaussian kernel 9 

(σ = 4) and normalized such that the sum over parcels equals 1. 10 

 11 

Measures of dynamics. We used different measures to quantify different aspects of the inference 12 

dynamics. 13 

 14 

Detection-point. Detection-points are defined as the number of observations after the change-point 15 

for the posterior probability in the correct hypothesis to become likely than any of the others (i.e. 16 

larger than ½). 17 

 18 

Detection slope. A sigmoid function was used to approximate the slope of detection dynamics: 19 
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(29) 

Where s, k0, tu and tb are the 4 free parameters of the function (respectively the slope, the intercept 1 

and the upper and lower bounds) that transforms the position k of an observation in the sequence 2 

into a given probability estimate p*. They were fitted using a grid search technique that finds the set 3 

of 4 parameters that minimizes the MSE along the following parameter grid: for the slope parameter, 4 

31 values logarithmically equally spaced between decades 10–3 and 100; for the intercept parameter, 5 

any observation number between 0 (change-point) and 200; for the offset parameter, 11 values 6 

linearly spaced between 0 and 0.5 with a step of 0.05; for the scaling parameter, 11 value linearly 7 

spaced between 0.5 and 1 with a step of 0.05. 8 

 9 

Belief update. The amount of belief update quantifies the average increase in posterior probability 10 

each observation in the non-random part of the sequence provided to the correct non-random 11 

hypothesis. 12 

 
 

(30) 

 13 

Belief difference. An index reflecting the competition among the non-random hypotheses (statistical 14 

bias vs. deterministic rule) independently from the posterior probability of the random hypothesis 15 

was also computed: 16 

 
 

(31) 

This index ranges from –1 (statistical bias) to 1 (deterministic rule). 17 

 18 

Detection abruptness. The abruptness index quantifies how abrupt is the update of a given 19 

hypothesis by averaging the absolute value of its second order derivative over observations after the 20 

change-point: 21 
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(32) 

It is therefore higher for frequently interrupted dynamics compared to continuously updated ones. 1 

We computed this index for each pattern for both subjects and models and use it to compute the 2 

mean squared error (MSE, averaged over patterns) of each model. 3 

 4 

Signal detection theory. The detection sensitivity index d’detect. between random and non-random 5 

sequences is computed by comparing non-random sequences accurately labelled as non-random vs. 6 

random sequences erroneously reported as non-random using answers to the first post-sequence 7 

question (presence of regularity?): 8 

 
 

(33) 

Where Φ is the inverse cumulative function of the Gaussian distribution (with μ = 0 and σ = 1). By 9 

contrast, the discrimination sensitivity index d’discr. between the two random-to-non-random 10 

sequences is computed by comparing correct to incorrect categorisations of regularities at the second 11 

post-sequence question (type of regularity?): 12 

 

 

(34) 

The  factor guarantees that if both regularities were to lie on orthogonal dimensions at a given 13 

distance from the random hypothesis (the origin), then, according to Pythagora’s theorem, the 14 

distance between the non-random distributions should be separated by a distance larger than  the 15 

initial distance 85. In order to be able to compare detection and discrimination d’, the latter is 16 

therefore divided by that same amount. Note that we do not hypothesize such orthogonal 17 

arrangement; instead, the orthogonality between the two dimensions is estimated (using Al-Kashi’s 18 

theorem) from the 3 sensitivity indices that define the length of the triangles’ edges. The same 19 
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sensitivity measures are computed for the model which identifies the generative process based on 1 

the maximum a posteriori probability at the end of the sequence. 2 

 3 

Statistics. All dispersion metrics reported in the figures are standard errors of the mean (s.e.m., with 4 

n = 23 subjects), except shaded areas around regression lines which reflect 95% confidence intervals 5 

around estimated regression coefficients. Reported correlation coefficients (noted r) are Pearson 6 

coefficients. Parametric frequentist statistics with repeated measures are performed. For the t-tests, 7 

the mean value of the paired difference, 95% confidence intervals, an estimate of effect size 8 

(Cohen’s d), the t statistic, the corresponding degrees of freedom (noted tdf) and p-values (noted p) 9 

are reported. For the ANOVAs, an estimate of effect size (w2), the value of the F statistic, the 10 

corresponding degrees of freedom (noted Fdf) and p-values (noted p) are reported. All statistical 11 

tests were two-tailed at with a type I error risk of 0.05. Bayesian t-tests were used to quantify the 12 

evidence in favour of the null hypothesis using a scale factor of 0.707 86. 13 

 14 

Code availability. The MATLAB code used to run simulations of the different models, analyse the 15 

results and reproduce all the figures is available on GitHub 16 

(https://github.com/maheump/Emergence). 17 

 18 

Data availability. The dataset presented in the current study is available on GitHub 19 

(https://github.com/maheump/Emergence). 20 

 21 
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Supplementary information 1 

When not explicitly specify otherwise, “model” refers to the normative two-system model. 2 

Supplementary figures 3 

 4 

 
Supplementary Fig. 1 | Accurate inference of change-point 
position by the model. Posterior distribution over change-point 
positions marginalized over hypotheses from the model. 
Sequences are grouped by detection (from subjects’ post-
sequence reports) and sorted by change-point position (same 
order as Fig. 4d,f). 

  5 
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Supplementary Fig. 2 | Different detection slope for statistical 
biases and deterministic rules. a, Best-fitting sigmoid functions 
to detection dynamics. Sigmoid functions were fitted to single-
trial dynamics of posterior probability in the non-random 
hypotheses. Best-fitting parameters were averaged over 
sequences and subjects to create these regularity-specific 
average sigmoid functions. b, Mean-squared error over a grid of 
slope parameter values. The distribution of mean squared error 
(MSE) is plotted as a function of a grid of values of the sigmoid 
slope parameter (ater minimizing the MSE over the other 
parameters of the sigmoid functions). In a and b, analyses were 
restricted to non-random sequences that were correctly identified 
by subjects and shaded areas correspond to the standard error 
of the mean computed over subjects. Stars denote significance: 
*** p < 0.005, ** p < 0.01, * p < 0.05. 
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 1 

 
Supplementary Fig. 3 | Similarity of model inference for 
different maximum pattern lengths. a, Correlation across all 
types of sequences. Correlation between posterior probabilities 
(after conversion to cartesian coordinates to ensure an 
appropriate number of degrees of freedom) from different 
versions of the model considering different maximum lengths for 
pattern detection. Models that use a maximum pattern length 
larger than the longest patterns (i.e. 10 observations) used in the 
experiment make very similar inferences. b, Correlation across 
each type of sequence. Same as in a but separately for each type 
of sequence. The difference in inference between versions of the 
model using small maximum pattern lengths arise solely for 
sequences entailing deterministic rules, thereby suggesting that 
the difference originates from longest patterns remaining 
undetected. 

  2 
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 1 

 
Supplementary Fig. 4 | Detection dynamics for all regularities by the normative single-system model. a, b, In the case of 
statistical biases/deterministic rules. The posterior probability of the statistical bias/deterministic rule hypothesis is displayed post 
change-point. Simulations are performed on sequences that were accurately identified by subjects. Error bars correspond to the 
standard error of the mean computed over subjects. 
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Supplementary Fig. 5 | Inflated false alarms in the normative 
single-system model. a, Inflated false alarms follow from long-
lasting counts imbalance. In random sequences (i.e. the initial part 
of random-to-non-random sequences, or the entire length of the 
random sequences), frequency counts (i.e. number of A vs. B 
given one particular transition) can transiently deviate from 
chance level. In particular, because observations are all-or-none, 
frequency counts often entail a N vs. N + 1 imbalance. The plot 
shows the probability that each newly received observation 
would correct this light imbalance, which is nothing but the 
product between observing the correcting item (e.g. observing A 
if NB = NA + 1) and the probability of observing the particular 
transition for which the counts are biased. Biased counts take 
more time to correct (i.e. have a low correcting probability) for 
higher-order transitions. The posterior probability of these 
alternatives, with their many long-lasting imbalanced counts, thus 
become overall more likely. b, Inflated false alarms follow from 
increased prior likelihood. The posterior probability of the 
deterministic rule hypothesis depends upon the likelihood of the 
sequence under that particular hypothesis. The a priori (i.e. before 
receiving any observation) sequence likelihood is plotted here as 
a function of the strength of the prior predictability bias (which 
shapes the conjugate prior distribution, shown as inset) and the 
order of the transitions to monitor. The posterior probability of 
alternatives with higher-order transitions and strong predictability 
bias alternatives are a priori more likely. c, Average position in 
random sequences. Upper 10% from the triangular histograms of 
posterior probabilities reported in random sequences (to 
compare with Fig. 6b) are displayed for the different versions of 
the normative single-system model that monitors transition 
probabilities of different orders using either a uniform or biased 
prior. d, Error of the different versions of the normative single-
system model. The mean squared error (MSE) between posterior 
probability in the deterministic rule hypothesis from subjects and 
models. A larger error indicates a worst account of human 
average deterministic false alarm. Error bars correspond to the 
standard error of the mean computed over subjects. Stars denote 
significance: *** p < 0.005, ** p < 0.01, * p < 0.05. 
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Supplementary Fig. 6 | Detection dynamics for all regularities by the non-commensurable two-system model. a, b, In the case 
of statistical biases/deterministic rules. The pseudo posterior probability of the statistical bias/deterministic rule hypothesis is 
displayed post change-point. Simulations are performed on sequences that were accurately identified by subjects. Error bars 
correspond to the standard error of the mean computed over subjects. 
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Supplementary Fig. 7 | Irrational competition between non-random hypotheses 
for the non-commensurable two-system model. a, Belief difference from subjects 
as a function of the belief difference from the different versions of the non-
commensurable two-system model in random sequences (compare with Fig. 7c). In 
random sequences (i.e. the initial part of random-to-non-random sequences, or the 
entire length of the random sequences), the belief difference from subjects was 
regressed against belief difference from the different versions of the non-
commensurable two-system model. The linear relationship between subjects and the 
model’s belief difference is shown (in 10 bins defined using deciles) after regressing-
out effect of confounding variables (i.e. the posterior probability of the random 
hypothesis together with its interaction with the belief difference). Error bars 
correspond to the standard error of the mean computed over subjects and shaded 
area to 95% confidence interval of the regression coefficients. b, Error of the different 
versions of the non-commensurable two-system model. The mean squared error 
(MSE) from the regression is displayed for the different versions of the non-
commensurable two-system model. The MSE is plotted relatively to a null regression 
with only an offset parameter. The dashed line corresponds to versions with a 
sigmoid-based combination but using the log-ratio between posterior probabilities of 
the non-random hypotheses (instead of the difference). Error bars and shaded area 
correspond to the standard error of the mean computed over subjects. Stars denote 
significance: *** p < 0.005, ** p < 0.01, * p < 0.05. 
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Supplementary Fig. 8 | Overall agreement between subjects 
and the model. The agreement map (left panel) depicts what was 
the hypothesis posterior probability reported by subjects (which 
is color-coded according to the triangular colormap) as a function 
of the corresponding hypothesis posterior probability from the 
model (averaged in 10 x 10 x 10 equally spaced bins). 
Transparency reflects the normalized log-number of observations 
in each bin. Right panel shows the same thing but for the model 
conditionally upon what the subjects reported. These maps are 
obtained by concatenating data from all subjects and all 
sequences together. The maps show strong agreement between 
subjects and the model both for extreme (corresponding colours 
at each summit) and intermediate (progressively changing 
colours in between pairs of summits) posterior probabilities. 
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Supplementary Fig. 9 | Delay between subjects’ and model’s 
reports. a, Response delay. Coefficients from a cross-correlation 
between all hypothesis posterior probabilities from subjects and 
the model (after conversion to cartesian coordinates to ensure an 
appropriate number of degrees of freedom) after shifting in time 
one with respect to the other. The average delay corresponds to 
~5 observations. Error bars correspond to the standard error of 
the mean computed over subjects. b, Inter-subject correlation 
between estimated delay and correlation strength with the model. 
Subjects with longer integration delay reported more accurate 
values. Error bars correspond to the standard error of the mean 
computed for each subject over sequences and the shaded area 
to 95% confidence interval of the regression coefficients. Stars 
denote significance: *** p < 0.005, ** p < 0.01, * p < 0.05. 
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Supplementary Fig. 10 | Non-linear mapping between 
subjects’ and model’s posterior probabilities. a, Probability 
weighting. All hypothesis posterior probabilities from the subjects 
are plotted against corresponding hypothesis posterior 
probabilities from the model (in 10 equally spaced bins). A 
nonlinear probability weighting function maps this relationship: 
small probabilities are overestimated by subjects and large ones 
are underestimated, leading to a γ slope parameter smaller than 
1. Error bars correspond to the standard error of the mean 
computed over subjects. b, Best parameter set. Parameters of 
the probability weighting function (i.e. the slope ɣ and the offset 
p0) were varied along a grid of values. Mean squared error (i.e. 
MSE) between transformed probabilities (with the probability 
weighting function) from the model and corresponding 
probabilities from the subjects was computed (after conversion 
to cartesian coordinates to ensure an appropriate number of 
degrees of freedom). Here, the MSE is plotted relative to the error 
obtained with a linear, non-weighted, mapping (i.e. γ = 1). The 
grey dot represents the average best parameter set (i.e. which 
induces the smallest error). Parameter sets for which the linear 
mapping provides a better account (i.e. relative MSE > 0) have 
been masked. Stars denote significance: *** p < 0.005, 
** p < 0.01, * p < 0.05. 

  2 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.06.937706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 61 of 66 

Supplementary note 1 1 

Reason for the non-abrupt detection dynamics of deterministic rules in 2 

the normative single-system model 3 

The normative single-system model predicts non-abrupt detection dynamics for deterministic rules 4 

with apparent biases in transition probabilities (Fig. 8b), which provided a poor account to human 5 

data (Fig. 8c). More specifically, detection dynamics were characterized by small steps, which occur 6 

at specific moments of pattern repetitions (Supplementary Fig. 4). For instance, for the 7 

AAAAABBBBB pattern, the posterior probability in the deterministic rule hypothesis (H’rule 8 

monitoring higher-order transitions) suddenly increases after the A|B and B|A transitions. This is 9 

because these rare first-order transitions are surprising from the viewpoint of the statistical bias 10 

hypothesis (Hstat monitoring first-order transitions) whose posterior probability consequently 11 

decreases, for the benefit of the deterministic rule hypothesis. This does not happen (or only 12 

marginally) in the normative two-system model because, in this case, the deterministic rule 13 

hypothesis monitors the repetition of fixed patterns which permits a much more rapid increase in 14 

posterior probability, and therefore less competition with the statistical bias hypothesis.  15 
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Supplementary note 2 1 

Additional aspects on which to reject alternative models 2 

 3 

In the main text, the different versions of the alternative normative single-system model and the non-4 

commensurable two-system model were rejected on the basis of peculiar detection dynamics for 5 

deterministic rules that were not observed in subjects. However, these models also fail to account 6 

for some other important aspects of human data that are observed during random sequences and 7 

which we detail below. 8 

 9 

Normative single-system model. This alternative model detects the deterministic rules on the basis 10 

of the apparent statistical bias they induce. We have considered statistical biases corresponding to 11 

transition probabilities ranging from order 2 to 9. As the order of the transitions to monitor increased, 12 

we observed an increase in the posterior probability of the deterministic rule hypothesis during 13 

random sequences (coefficient = 0.014, CI = [0.035, 0.037], dCohen = 8.92, t22 = 42.8, p = 1.12 · 10–14 

22; Supplementary Fig. 5c). This inflated deterministic false alarm rate provided a significantly 15 

worse account of human behaviour compared to the normative two-system model for orders larger 16 

than 5 (difference in MSE for p(Hrule|y) > 0.0040, dCohen > 0.60, t22 > 2.88, p < 0.009; 17 

Supplementary Fig. 5d). This is because local departures from randomness take more time to vanish 18 

(i.e. have a low correcting probability) when monitoring higher-order transitions 19 

(Supplementary Fig. 5a). In random sequences, the probability that each newly received observation 20 

will correct a simple NB = NA + 1 imbalance in the frequency counts is determined by: 21 

 22 

We also investigated a similar version of this model but which uses a prior distribution 23 

biased for predictability and found that, even with a very weak bias (d = 0.001 instead of d = 0), the 24 

resulting inflated false alarm level became even larger compared to versions with a uniform prior 25 
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(MSE regarding p(Hrule|y) compared to alternatives with uniform prior > 6.59 · 10–4, dCohen > 22.8, 1 

t22 > 109.3, p = 1.37 · 10–31; Supplementary Fig. 5c), and therefore also provided a significantly 2 

worse account of human behaviour compared to the normative two-system model for orders larger 3 

than 4 (difference in MSE for p(Hrule|y) > 0.0051, dCohen > 0.48, t22 > 2.30, p < 0.031; 4 

Supplementary Fig. 5d). This is mathematically caused by an increase in the prior likelihood of the 5 

sequence under the deterministic rule hypothesis, which depends upon both the order of the 6 

transitions to monitor and the strength of the prior predictability bias parameter 7 

(Supplementary Fig. 5b), as shown with the following mathematical rule (adapted from equation 10 8 

in the main text): 9 

 10 

 11 

Non-commensurable two-system model. This alternative model considers that the posterior 12 

probability of the statistical bias and deterministic rule hypotheses cannot be expressed in the same 13 

common probabilistic currency. As a result, this model cannot rationally weigh the two non-random 14 

hypotheses against each other during random sequences. To assess how well the relative credence 15 

assigned to the non-random hypotheses by subjects related to that of the different models, we 16 

regressed subjects’ difference in beliefs between non-random hypotheses against the difference in 17 

beliefs (after including confounding variables in the regression model: the posterior probability of 18 

the random hypothesis together with its interaction with the belief difference; as in the main text) 19 

from the different versions of the non-commensurable two-system model (Supplementary Fig. 7a). 20 

To compare these different versions of the model against the normative two-system model, we 21 

computed the mean squared error of this regression (relative to a null model with an offset predictor 22 

only). Results show that both the “linear difference” (difference in relative MSE = 4.31 · 10–4, 23 

CI = [1.02 · 10–4, 7.60 · 10–4], dCohen = 0.57, t22 = 2.71, p = 0.013) and “max rule” 24 

(difference in relative MSE = 0.0050, CI = [0.0029, 0.0071], dCohen = 1.02, t22 = 4.87, p = 7.18 · 10–25 
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5) versions of the non-commensurable two-system model provided a worse account of subjects’ 1 

behaviour (Supplementary Fig. 7b). Versions resorting to a sigmoid function (instead of the “linear 2 

difference” or “max rule”) to map the independently-computed hypothesis posterior probabilities 3 

(using either the difference or the log-ratio) moves the model along a continuum whose ends 4 

correspond to the “linear difference” and “max rule” versions tested above and provided a 5 

significantly worse account of subjects’ behaviour compared to the normative two-system model. In 6 

the case of a sigmoid mapping on the difference, only a small range of slope parameter (from 3.16 7 

to 11.10) induced statistically non-significant MSE relative to the normative two-system model but 8 

were associated with regression coefficients smaller than 0.  9 
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Supplementary note 3 1 

Examples of quantitative deviations from optimality 2 

 3 

Even though many aspects of human behaviour are well accounted for by the normative two-system 4 

model (see Supplementary Fig. 8 for a summary), we are not claiming here that human behaviour is 5 

fully optimal. Instead, we observed several quantitative deviations from optimality. 6 

 7 

Integration delay. Because of the presentation rate (one sound every 300 milliseconds), it seems a 8 

priori difficult for subjects to update immediately their reported likelihoods, thereby inducing a 9 

delay between the presentation of the observation and its effect on the reports. We estimated 10 

correlations between posterior probabilities reported by human subjects vs. the model (after 11 

conversion to cartesian coordinates to ensure an appropriate number of degrees of freedom), after 12 

shifting in time one with respect to the other, in order to estimate the most likely integration delay 13 

characterizing each subject. Integration delay was found to be significantly larger than zero 14 

(delay = 5.00 observations ≈ 1.5 second, CI = [3.49, 6.51], dCohen = 1.43, t22 = 6.87, p = 6.70 ⋅ 10−7; 15 

Supplementary Fig. 9a). Interestingly, we also found a positive correlation between the integration 16 

delay and the correlation with the model when taking into account the delay (r21 = 0.74, 17 

p = 4.96 ⋅ 10−5; Supplementary Fig. 9b), suggesting that more cautious subjects reported more 18 

accurate values. 19 

 20 

Probability weighting. The literature on probabilistic inference frequently report that humans 21 

overestimate small probabilities and underestimate large probabilities (Supplementary Fig. 10a), a 22 

phenomenon termed probability weighting and which is commonly described by the following 23 

function which maps objective (p) to subjective (p*) probabilities: 24 

 25 
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To assess and quantify the distortion (relative to optimality) of subjects’ reported posterior 1 

probability in the different hypotheses, we estimated the mean squared error (MSE, relative to a 2 

linear mapping) between posterior probabilities reported by human subjects vs. the model (using 3 

cartesian coordinates and not barycentric ones to use an appropriate number of degrees of freedom). 4 

More precisely, we used a grid from 0.01 and 1.99 for the slope parameter (γ) and from 0.01 to 0.99 5 

for the offset parameter (p0), with 0.01 steps in both cases, and found the set of parameters inducing 6 

the smallest MSE. We found the classic under-/overestimation effect in our data: the slope parameter 7 

was found to be significantly smaller than 1 (difference of γ slope parameter to 1 = –0.55, CI = [–8 

0.67, –0.43], dCohen = –2.01, t22 = –9.65, p = 2.29 ⋅ 10−9; Supplementary Fig. 10b) and induced a 9 

MSE significantly smaller that an unbiased linear mapping (difference in MSE = –0.078, CI = [–10 

0.031, –0.015], dCohen = –1.21, t22 = –5.82, p = 7.38 ⋅ 10−6). 11 
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