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Inverse inference has recently become a popular approach for analyzing neuroimaging data, by quantifying the amount of
information contained in brain images on perceptual, cognitive, and behavioral parameters. As it outlines brain regions that convey
information for an accurate prediction of the parameter of interest, it allows to understand how the corresponding information
is encoded in the brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, as there are far
more features (voxels) than samples (images), and dimension reduction is thus a mandatory step. We introduce in this paper a new
model, called Multiclass Sparse Bayesian Regression (MCBR), that, unlike classical alternatives, automatically adapts the amount
of regularization to the available data. MCBR consists in grouping features into several classes and then regularizing each class
differently in order to apply an adaptive and efficient regularization. We detail these framework and validate our algorithm on
simulated and real neuroimaging data sets, showing that it performs better than reference methods while yielding interpretable
clusters of features.

1. Introduction

In the context of neuroimaging, machine learning approach-
es have been used so far to address diagnostic problems,
where patients were classified into different groups based
on anatomical or functional data. By contrast, in cognitive
studies, the standard framework for functional or anatomical
brain mapping was based on mass univariate inference
procedures [1]. Recently, a new way of analyzing functional
neuroimaging data has emerged [2, 3], and it consists in
assessing how well behavioral information or cognitive states
can be predicted from brain activation images such as
those obtained with functional magnetic resonance imaging
(fMRI). This approach opens new ways for understanding
the mental representation of various perceptual and cogni-
tive parameters, which can be regarded as the study of the
corresponding neural code, albeit at a relatively low spatial
resolution. The accuracy of the prediction of the behavioral
or cognitive target variable, as well as the spatial layout of
predictive regions, can provide valuable information about

functional brain organization; in short, it helps to decode the
brain system [4].

Many different pattern recognition and machine leaning
methods have been used to extract information from brain
images and compare it to the corresponding target. Among
them, Linear Discriminant Analysis (LDA) [3, 5], Support
Vector Machine (SVM) [6–9], or regularized prediction [10,
11] has been particularly used. The major bottleneck in
this kind of analytical framework is that there are far more
features than samples, so that the problem is plagued by the
curse of dimensionality, leading to overfitting. Dimension
reduction can be used to extract relevant information from
the data, the standard approach in functional neuroimaging
being feature selection (e.g., Anova) [3, 6, 11, 12]. However,
by performing feature selection and parameter estimation
separately, such approach is not optimal. Thus, a popular
combined selection/estimation scheme, Recursive Feature
Elimination [13], may be used. However, this approach
relies on a specific heuristic, which does not guarantee
the optimality of the solution and is particularly costly.
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By contrast, there is great interest in sparsity-inducing
regularizations, which optimize both simultaneously.

In this paper, we assume that the code under investiga-
tion is about some scalar parameter that characterizes the
stimuli, such as a scale/shape parameters but possibly also
position, speed (assuming a 1-D space), or cardinality. Thus,
we focus on regression problems and defer the generalization
to classification to future work. Let us introduce the follow-
ing predictive linear model:

y = Xw + b, (1)

where y represents the behavioral variable and (w, b) are
the parameters to be estimated on a training set. A vector
w ∈ Rp can be seen as an image; p is the number of features
(or voxels), and b ∈ R is called the intercept. The matrix
X ∈ Rn×p is the design matrix. Each row is a p-dimensional
sample, that is, an activation map related to the observation.
With n� p, the estimation of w is ill posed.

To cope with the high dimensionality of the data, one
can penalize the estimation of w, for example, based on
the �2 norm of the weights. Classical regularization schemes
have been used in functional neuroimaging, such as the
Ridge regression [14], Lasso [15], or Elastic Net regression
[16]. However, these approaches require the amount of
penalization to be fixed beforehand and possibly optimized
by cross-validation. To deal with the choice of the amount of
penalization, one can use the Bayesian regression techniques,
which include the estimation of regularization parameters in
the whole estimation procedure. Standard Bayesian regular-
ization schemes are based on the fact that a penalization by
weighted �2 norm is equivalent to setting the Gaussian priors
on the weights w:

w ∼ N
(
0,A−1), A = diag

(
α1, . . . ,αp

)
,

∀i ∈ [1, . . . , p
]
, αi ∈ R+,

(2)

where N is the Gaussian distribution and αi the precision
of the ith feature. The model in (2) defines two classical
Bayesian regression schemes. The first one is Bayesian Ridge
Regression (BRR) [17], which corresponds to the particular
case α1 = · · · = αm. By regularizing all the features
identically, BRR is not well suited when only few features are
relevant. The second classical scheme is Automatic Relevance
Determination (ARD) [18], which corresponds to the case
αi /=αj if i /= j. The regularization performed by ARD is
very adaptive, as all the weights are regularized differently.
However, by regularizing each feature separately, ARD is
prone to underfitting when the model contains too many
regressors [19] and also suffers from convergence issues [20].

These classical Bayesian regularization schemes have
been used in fMRI inverse inference studies [10, 14, 21].
However, these studies used only sparsity as built-in feature
selection and do not consider neuroscientific assumptions
for improving the regularization (i.e., within the design of
the matrix A). Indeed, due to the intrinsic smoothness of
functional neuroimaging data [22], predictive information
is rather encoded in different groups of features sharing
similar information. A potentially more adapted approach

is the Bayesian regression scheme presented in [23], which
regularizes patterns of voxels differently. The weights of the
model are defined by w = Uη, where U is a matrix defined as
set of spatial patterns (one pattern by column) and η are the
parameters of the decomposition of w in the basis defined by
U . The regularization is controlled through the covariance
of η, which is assumed to be diagonal with only m possible
different values cov(η) = exp(λ1)I(1) + · · · + exp(λm)I(m).

The matrices I(i) are diagonal and defined subsets of
columns of U sharing similar variance exp(λi). Due to
its class-based model, this approach is similar to the one
proposed in this paper, but the construction of I relies
on ad hoc voxel selection steps, so that there is no proof
that the solution is correct. A contrario, the proposed
approach jointly optimizes, within the same framework, the
construction of the pattern of voxels and the regularization
parameter of each pattern.

In this paper, we detail a model for the Bayesian
regression in which features are grouped into K different
classes that are subject to different regularization penalties.
The estimation of the penalty is performed in each class sep-
arately, leading to a stable and adaptive regularization. The
construction of the group of features and the estimation of
the predictive function are performed jointly. This approach,
called Multiclass Sparse Bayesian Regression (MCBR), is thus
an intermediate solution between BRR and ARD. It requires
less parameters to estimate than ARD and is far more
adaptive than BRR. Another asset of the proposed approach
in fMRI inverse inference is that it creates a clustering of
the features and thus yields useful maps for brain mapping.
After introducing our model and giving some details on
the parameter estimation algorithms (the variational Bayes
or Gibbs sampling procedures), we show that the proposed
algorithm yields better accuracy than reference methods,
while providing more interpretable models.

2. Multiclass Sparse Bayesian Regression

We first detail the notations of the problem and describe the
priors and parameters of the model. Then, we detail the two
different algorithms used for model inference.

2.1. Model and Priors. We recall the linear model for
regression:

y = f (X, w, b) = Xw + b. (3)

We denote by y ∈ Rn the targets to be predicted and X ∈
Rn×p the set of activation images related to the presentation
of different stimuli. The integer p is the number of voxels and
n the number of samples (images). Typically, p ∼ 103 to 105

(for a whole volume), while n ∼ 10 to 102.

Priors on the Noise. We use classical priors for regression, and
we model the noise on y as an i.i.d. Gaussian variable:

ε ∼ N
(
0,α−1In

)
,

α ∼ Γ(α;α1,α2),
(4)
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where α is the precision parameter and Γ stands for the
gamma density with two hyperparameters α1,α2:

Γ(x;α1,α2) = αα1
2 xα1−1 exp−xα2

Γ(α1)
. (5)

Priors on the Class Assignment. In order to combine the
sparsity of ARD with the stability of BRR, we introduce an
intermediate representation, in which each feature j belongs
to one class among K indexed by a discrete variable zj (z =
{z1, . . . , zp}). All the features within a class k ∈ {1, . . . ,K}
share the same precision parameter λk, and we use the
following prior on z:

z ∼
p∏
j=1

K∏

k=1

π
δjk
k , (6)

where δ is Kronecker’s δ, defined as

δjk =
⎧⎨
⎩

0 if zj /= k,

1 if zj = k.
(7)

We finally introduce an additional Dirichlet prior [24] on
π:

π ∼ Dir
(
η
)

(8)

with a hyperparameter η. By updating at each step the
probability πk of each class, it is possible to prune classes.
This model has no spatial constraints and thus is not spatially
regularized.

Priors on the Weights. As in ARD, we make use of an
independent Gaussian prior for the weights:

w ∼ N
(
0, A−1) with diag(A) =

{
λz1 , . . . , λzp

}
, (9)

where λzj is the precision parameter of the jth feature, with
zj ∈ {1, . . . ,K}. We introduce the following prior on λk:

λk ∼ Γ
(
λk; λ1,k, λ2,k

)
(10)

with hyperparameters λ1,k, λ2,k. The complete generative
model is summarized in Figure 1.

2.1.1. Link with Other Bayesian Regularization Schemes.
The link between the proposed MCBR model and the
other regularization methods, Bayesian Ridge Regression and
Automatic Relevance Determination, is obvious.

(i) With K = 1, that is, λz1 = · · · = λzp , we retrieve the
BRR model,

(ii) With K = p, that is, λzi /= λzj if i /= j, and assigning
each feature to a singleton class (i.e., zj = j), we
retrieve the ARD model.

Moreover, the proposed approach is related to the one
developed in [25]. In this paper, the authors proposed, for
the distribution of weights of the features, a binary mixture of
Gaussians with small and large precisions. This model is used
for variable selection and estimated by the Gibbs sampling.
Our work can be viewed as a generalization of this model to
a number of classes K ≥ 2.

y

X

α1 α2

α

w

λ1,k λ2,k

λk

z

π

η

ε

y = Xw + ε + b

ε ∼ N (0,α−1In)

π ∼ Dir(η)

w ∼ N (0, A−1)
with diag (A) = {λz1 , . . . , λzp}α ∼ Γ(α;α1,α2)

λk ∼ Γ(λk ; λ1,k , λ2,k)

k ∈ [1, . . . ,K]

z ∼∏p
j=1
∏K

k=1 π
δjk
k

Figure 1: Graphical model of Multiclass Sparse Bayesian Regression
(MCBR). We denote by y ∈ Rn the targets to be predicted and by
X ∈ Rn×p the set of activation images. both the weights of the model
w depend on a discrete variable z that assigns each feature to a class
k among K . Both the noise ε and the weights w have a Gamma prior
on their precisions. The variable z follows a Dirichlet prior π.

2.2. Model Inference. For models with latent variables, such
as MCBR, some singularities can exist. For instance in a
mixture of components, a singularity is a component with
one single sample and thus zero variance. In such cases,
maximizing the log likelihood yields flawed solutions, and
one can use the posterior distribution of the latent variables
p(z | X, y) for this maximization. However, the posterior
distribution of the latent variables given the data does not
have a closed-form expression, and some specific estimation
methods, such as variational Bayes or Gibbs sampling, have to
be used.

We propose two different algorithms for inferring the
parameters of the MCBR model. We first estimate the model
by the variational Bayes, and the resulting algorithm is thus
called VB-MCBR. We also detail an algorithm, called Gibbs-
MCBR, based on a Gibbs sampling procedure.

2.2.1. Estimation by Variational Bayes: VB-MCBR. The vari-
ational Bayes (or VB) approach provides an approximation
q(Θ) of p(Θ | y), where q(Θ) is taken in a given family
of distributions and Θ = [w, λ,α, z,π]. Additionally, the
variational Bayes approach often uses the following mean
field approximation, which allows the factorization between
the approximate distribution of the latent variables and the
approximate distributions of the parameters:

q(Θ) = q(w)q(λ)q(α)q(z)q(π). (11)

We introduce the Kullback-Leibler divergence D(q(Θ))
that measures the similarity between the true posterior
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p(Θ | y) and the variational approximation q(Θ). One can
decompose the marginal log-likelihood log p(y) as

log p
(

y | Θ) = F
(
q(Θ)

)
+ D

(
q(Θ)

)
(12)

with

F
(
q(Θ)

) =
∫
dΘq(Θ) log

p
(

y,Θ
)

q(Θ)
,

D
(
q(Θ)

) =
∫
dΘq(Θ) log

q(Θ)
p
(
Θ | y

) ,

(13)

where F (q(Θ)) is called free energy and can be seen as the
measure of the quality of the model. As D(q(Θ)) ≥ 0, the
free energy is a lower bound on log p(y) with equality if and
only if q(Θ) = p(Θ | y). So, inferring the density q(Θ) of
the parameters corresponds to maximizing F with respect
to the free distribution q(Θ). In practice, the VB approach
consists in maximizing the free energy F iteratively with
respect to the approximate distribution q(z) of the latent
variables and with respect to the approximate distributions
of the parameters of the model q(w), q(λ), q(α), and q(π).

The variational distributions and the pseudocode of the
VB-MCBR algorithm are provided in Appendix A. This algo-
rithm maximizes the free energy F . In practice, iterations are
performed until convergence to a local maximum of F . With
an ARD prior (i.e., K = p and fixing zj = j), we retrieve the
same formulas as the ones found for Variational ARD [18].

2.2.2. Estimation by Gibbs Sampling: Gibbs-MCBR. We de-
velop here an estimation of the MCBR model using Gibbs
sampling [26]. The resulting algorithm is called Gibbs-
MCBR; the pseudocode of the algorithm and the candi-
date distributions are provided in Appendix B. The Gibbs
sampling algorithm is used for generating a sequence of
samples from the joint distribution to approximate marginal
distributions. The main idea is to use conditional distribu-
tions that should be known and possibly easy to sample
from, instead of directly computing the marginals from the
joint law by integration (the joint law may not be known
or hard to sample from). The sampling is done iteratively
among the different parameters, and the final estimation
of parameters is obtained by averaging the values of the
different parameters across the different iterations (one may
not consider the first iterations, this is called the burn in).

2.2.3. Initialization and Priors on the Model Parameters.
Our model needs few hyperparameters; we choose here to
use slightly informative and class-specific hyperparameters
in order to reflect a wide range of possible behaviors for
the weight distribution. This choice of priors is equivalent
to setting heavy-tailed centered Student’s t-distributions
with variance at different scales, as priors on the weight
parameters. We set K = 9, with weakly informative priors
λ1,k = 10k−4, k ∈ [1, . . . ,K] and λ2,k = 10−2, k ∈ [1, . . . ,K].
Moreover, we set α1 = α2 = 1. Starting with a given
number of classes and letting the model automatically prune
the classes can be seen as a means of avoiding costly model

selection procedures. The choice of class-specific priors is
also useful to avoid label switching issues and thus speeds
up convergence. Crucially, the priors used here can be used
in any regression problem, provided that the target data
is approximately scaled to the range of values used in our
experiments. In that sense, the present choice of priors can
be considered as universal. We also randomly initialize q(z)
for VB-MCBR (or z for Gibbs-MCBR).

2.3. Validation and Model Evaluation

2.3.1. Performance Evaluation. Our method is evaluated with
a cross-validation procedure that splits the available data into
training and validation sets. In the following, (Xl, yl) are a
learning set (Xt, yt) is a test set, and ŷt = F(Xtŵ) refers to the
predicted target, where ŵ is estimated from the training set.
The performance of the different models is evaluated using
ζ , the ratio of explained variance:

ζ
(

yt, ŷt
) = var

(
yt
)− var

(
yt − ŷt

)

var
(

yt
) . (14)

This is the amount of variability in the response that can
be explained by the model (perfect prediction yields ζ = 1,
while ζ < 0 if prediction is worse than chance).

2.3.2. Competing Methods. In our experiments, the proposed
algorithms are compared to different state-of-the-art regular-
ization methods.

(i) Elastic Net Regression [27], which requires setting
two parameters λ1 and λ2. In our analyzes, a cross-
validation procedure within the training set is used
to optimize these parameters. Here, we use λ1 ∈
{0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃}, where λ̃ = ‖XTy‖∞, and
λ2 ∈ {0.1, 0.5, 1., 10., 100.}. Note that λ1 and λ2 para-
metrize heterogeneous norms.

(ii) Support Vector Regression (SVR) with a linear kernel
[28], which is the reference method in neuroimaging.
The C parameter is optimized by cross-validation in
the range of 10−3 to 101 in multiplicative steps of 10.

(iii) Bayesian Ridge Regression (BRR), which is equivalent
to MCBR with K = 1 and λ1 = λ2 = α1 = α2 = 10−6,
that is, weakly informative priors.

(iv) Automatic Relevance Determination (ARD), which is
equivalent to MCBR with K = p and λ1 = λ2 = α1 =
α2 = 10−6, that is, weakly informative priors.

All these methods are used after an Anova-based feature
selection as this maximizes their performance. Indeed,
irrelevant features and redundant information can decrease
the accuracy of a predictor [29]. The optimal number of
voxels is selected within the range {50, 100, 250, 500}, using
a nested cross-validation within the training set. We do not
directly select a threshold on P value or cluster size, but
rather a predefined number of features. The estimation of the
parameters of the learning function is also performed using
a nested cross-validation within the training set, to ensure
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Table 1: Simulated regression data. Explained variance ζ for
different methods (average of 15 different trials). The P-values are
computed using a paired t-test.

Methods Mean ζ Std ζ P-value to Gibbs-MCBR

SVR 0.11 0.1 .0∗∗

Elastic net 0.77 0.11 .0004∗∗

BRR 0.19 0.14 .0∗∗

ARD 0.79 0.06 .0∗∗

Gibbs-MCBR 0.89 0.04 —

VB-MCBR 0.04 0.05 .0∗∗
∗∗

Level of significance of the P-values between 0.01 and 0.05.

a correct validation and an unbiased comparison of the
methods. All methods are developed in C and used in Python.
The implementation of elastic net is based on coordinate
descent [30], while SVR is based on LibSVM [31]. Methods
are used from Python via the Scikit-learn open source package
[32].

For VB-MCBR and Gibbs-MCBR, in order to avoid a
costly internal cross-validation, we select 500 voxels, and this
selection is performed on the training set. The number of
iterations used is fixed to 5000 (burn in of 4000 iterations)
for Gibbs-MCBR and 500 for VB-MCBR. Preliminary results
on both simulated and real data showed that these values are
sufficient enough for an accurate inference of the model. As
explained previously, we set K = 9, with weakly informative
priors λ1,k = 10k−4, k ∈ [1, . . . ,K] and λ2,k = 10−2, k ∈
[1, . . . ,K]. Moreover, we set α1 = α2 = 1, and we randomly
initialize q(z) for VB-MCBR (or z for Gibbs-MCBR).

3. Experiments and Results

3.1. Experiments on Simulated Data. We now evaluate and
illustrate MCBR on two different sets of simulated data.

3.1.1. Details on Simulated Regression Data. We first test
MCBR on a simulated data set, designed for the study of ill-
posed regression problem, that is, n� p. Data are simulated
as follows:

X ∼ N (0, 1) with ε ∼ N (0, 1),

y = 2(X1 + X2 −X3 −X4) + 0.5(X5 + X6 −X7 −X8) + ε.
(15)

We have p = 200 features, nl = 50 images for the training
set, and nt = 50 images for the test set. We compare MCBR
to the reference methods, but we do not use feature selection,
as the number of features is not very high.

3.1.2. Results on Simulated Regression Data. We average the
results of 15 different trials, and the average explained
variance is shown in Table 1. Gibbs-MCBR outperforms the
other approaches, yielding higher prediction accuracy than
the reference elastic net and ARD methods. The prediction
accuracy is also more stable than the other methods. VB-
MCBR falls into the local maximum of F and does not yield

an accurate prediction. BBR has a low prediction accuracy
compared to other methods such as ARD. Indeed, it cannot
finely adapt the weights of the relevant features, as these
features are regularized similarly as the irrelevant ones. SVR
has also low accuracy, due to the fact that we do not perform
any feature selection. Thus, SVR suffers from the curse of
dimensionality, unlike other methods such as ARD or elastic
net, which performs feature selection and model estimation
jointly.

In Figure 2, we represent the probability density function
of the distributions of the weights obtained with BRR (a),
Gibbs-MCBR (b), and ARD (c). With BRR, the weights
are grouped in a monomodal density. ARD is far more
adaptive and sets lots of weights to zero. The Gibbs-
MCBR algorithm creates a multimodal distribution, lots of
weights being highly regularized (pink distributions), and
informative features are allowed to have higher weights (blue
distributions).

With MCBR, weights are clustered into different groups,
depending on their predictive power, which is interesting in
application such as fMRI inverse inference, as it can yield
more interpretable models. Indeed, the class to the features
with higher weights ({X1, X2, X3, X4}) belong which is small
(average size of 6 features) but has a high purity (percentage
of relevant features in the class) of 74%.

3.1.3. Comparison between VB-MCBR and Gibbs-MCBR. We
now look at the values of w1 and w2 for the different steps of
the two algorithms (see Figure 3). We can see that VB-MCBR
(b) quickly falls into a local maximum, while Gibbs-MCBR
(a) visits the space and reaches the region of the correct set of
parameters (red dot). VB-MCBR is not optimal in this case.

3.2. Simulated Neuroimaging Data

3.2.1. Details on Simulated Neuroimaging Data. The simu-
lated data set X consists of n = 100 images (size 12× 12× 12
voxels) with a set of four square regions of interest (ROI) (size
2 × 2 × 2). We call R the support of the ROI (i.e., the 32
resulting voxels of interest). Each of the four ROIs has a fixed
weight in {−0.5, 0.5,−0.5, 0.5}. We call wi, j,k the weight of
the (i, j, k) voxel. The resulting images are smoothed with
a Gaussian kernel with a standard deviation of 2 voxels,
to mimic the correlation structure observed in real fMRI
data. To simulate the spatial variability between images
(intersubject variability, movement artifacts in intrasubject
variability), we define a new support of the ROIs, called R̃
such that, for each image lth, 50% (randomly chosen) of the
weights w are set to zero. Thus, we have R̃ ⊂R. We simulate
the target y for the lth image as

yl =
∑

(i, j,k)∈R̃

wi, j,kXi, j,k,l + εl (16)

with the signal in the (i, j, k) voxel of the lth image simulated
as

Xi, j,k,l ∼ N (0, 1), (17)
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Figure 2: Results on simulated regression data. Probability density function of the weight distributions obtained with BRR (a), Gibbs-MCBR
(b), and ARD (c). Each color represents a different component of the mixture model.

and εl ∼ N (0, γ) is a Gaussian noise with standard deviation
γ > 0. We choose γ in order to have a signal-to-noise ratio of
5 dB.

3.2.2. Results on Simulated Neuroimaging Data. We compare
VB-MCBR and Gibbs-MCBR with the different competing
algorithms. The resulting images of weights are given in
Figure 4, with the true weights (a) and resulting Anova
F-scores (b). The reference methods can detect the truly
informative regions (ROIs), but elastic net (f) and ARD (h)
retrieve only part of the support of the weights. Moreover,
elastic net yields an overly sparse solution. BRR (g) also
retrieves the ROIs but does not yield a sparse solution, as all
the features are regularized in the same way. We note that the
weights in the feature space estimated by SVR (e) are nonzero
everywhere and do not outline the support of the ground
truth. VB-MCBR (c) converges to a local maximum similar
to the solution found by BRR (g); that is, it creates only one
nonempty class, and thus regularizes all the features similarly.
We can thus clearly see that, in this model, the variational

Bayes approach is very sensitive to the initialization and can
fall into nonoptimal local maxima, for very sparse support
of the weights. Finally, Gibbs-MCBR (d) retrieves most of
the true support of the weights by performing an adapted
regularization.

3.3. Experiments and Results on Real fMRI Data. In this sec-
tion, we assess the performance of MCBR in an experiment
on the mental representation of object size, where the aim is
to predict the size of an object seen by the subject during
the experiment, in both intrasubject and intersubject cases.
The size (or scale parameter) of the object will be the target
variable y.

3.3.1. Details on Real Data. We apply the different methods
on a real fMRI dataset related to an experiment studying
the representation of objects, on ten subjects, as detailed
in [33]. During this experiment, ten healthy volunteers
viewed objects of 4 shapes in 3 different sizes (yielding 12
different experimental conditions), with 4 repetitions of each
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Figure 4: Two-dimensional slices of the three-dimensional volume of simulated data. Weights found by different methods, the true target (a)
and F-score (b). The Gibbs-MCBR method (d) retrieves almost the whole spatial support for the weights. The sparsity-promoting reference
methods, elastic net (f) and ARD (h), find an overly sparse support of the weights. VB-MCBR (c) converges to a local maximum similar to
BRR (g) and thus does not yield a sparse solution. SVR (e) yields smooth maps that are not similar to the ground truth.
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Table 2: Intrasubject analysis. Explained variance ζ for the three
different methods. The P-values are computed using a paired t-test.
VB-MCBR yields the best prediction accuracy, while being more
stable than the reference methods.

Methods Mean ζ Std ζ P-val/Gibbs-MCBR

SVR 0.82 0.07 .0006∗∗∗

Elastic net 0.9 0.02 .001∗∗∗

BRR 0.92 0.02 .0358∗∗

ARD 0.89 0.03 .0015∗∗∗

Gibbs-MCBR 0.93 0.01 —

VB-MCBR 0.94 0.01 .99
∗∗

Level of significance of the P-values between 0.01 and 0.05.
∗∗∗Level of significance of the P-values below 0.01.

stimulus in each of the 6 sessions. We pooled data from
the 4 repetitions, resulting in a total of n = 72 images by
subject (one image of each stimulus by session). Functional
images were acquired on a 3-T MR system with an eight-
channel head coil (Siemens Trio, Erlangen, Germany) as
T2∗-weighted echo-planar image (EPI) volumes. Twenty
transverse slices were obtained with a repetition time of 2 s
(echo time: 30 ms; flip angle: 70◦; 2×2×2-mm voxels; 0.5 mm
gap). Realignment, normalization to MNI space, and general
linear model (GLM) fit were performed with the SPM5
software (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).
The normalization is the conventional method of SPM
(implying affine and nonlinear transformations) and not
the one using unified segmentation. The normalization
parameters are estimated on the basis of a whole-head EPI
acquired in addition and are then applied to the partial
EPI volumes. The data are not smoothed. In the GLM, the
effect of each of the 12 stimuli convolved with a standard
hemodynamic response function was modeled separately,
while accounting for serial autocorrelation with an AR(1)
model and removing low-frequency drift terms using a high-
pass filter with a cutoff of 128 s. The GLM is fitted separately
in each session for each subject, and we used in the present
work the resulting session-wise parameter estimate images
(the β-maps are used as rows of X). The four different shapes
of objects were pooled across for each one of the three sizes,
and we are interested in finding discriminative information
on sizes. This reduces to a regression problem, in which our
goal is to predict a simple scalar factor (size of an object).
All the analyzes are performed without any prior selection of
regions of interest and use the whole acquired volume.

Intrasubject Regression Analysis. First, we perform an intra-
subject regression analysis. Each subject is evaluated inde-
pendently, in a 12-fold cross-validation. The dimensions of
the real data set for one subject are p ∼ 7 × 104 and n = 72
(divided in 3 different sizes, 24 images per size). We evaluate
the performance of the method by a leave-one-condition-out
cross-validation (i.e., leave-6-image-out), and doing so the
GLM is performed separately for the training and test sets.
The parameters of the reference methods are optimized with
a nested leave-one-condition-out cross-validation within the
training set, in the ranges given before.

Table 3: Intersubject analysis. Explained variance ζ for the different
methods. The P-values are computed using a paired t-test. MCBR
yields highest prediction accuracy than the two other Bayesian
regularizations BRR and ARD.

Methods Mean ζ Std ζ P-val/Gibbs-MCBR

SVR 0.77 0.11 .14

Elastic net 0.78 0.1 .75

BRR 0.72 0.1 .01∗∗

ARD 0.52 0.33 .02∗

Gibbs-MCBR 0.79 0.1 —

VB-MCBR 0.78 0.1 0.4
∗

Level of significance of the P-values.
∗∗Level of significance of the P-values between 0.01 and 0.05.

Intersubject Regression Analysis. Additionally, we perform an
intersubject regression analysis on the sizes. The intersubject
analysis relies on subject-specific fixed-effect activations that
is, for each condition, the 6 activation maps corresponding to
the 6 sessions are averaged together. This yields a total of 12
images per subject, one for each experimental condition. The
dimensions of the real data set are p ∼ 7 × 104 and n = 120
(divided into 3 different sizes). We evaluate the performance
of the method by cross-validation (leave-one-subject-out).
The parameters of the reference methods are optimized with
a nested leave-one-subject-out cross-validation within the
training set, in the ranges given before.

3.3.2. Results on Real Data

Intrasubject Regression Analysis. The results obtained by the
different methods are given in Table 2. The P-values are
computed using a paired t-test across subjects. VB-MCBR
outperforms the other methods. Compared to the results
on simulated data, VB-MCBR still falls in a local maximum
similar to the Bayesian ridge regression which performs well
in this experiment. Moreover, both Gibbs-MCBR and VB-
MCBR are more stable than the reference methods.

Intersubject Regression Analysis. The results obtained with
the different methods are given in Table 3. As in the
intrasubject analysis, both MCBR approaches outperform
the reference methods, SVR, BRR, and ARD. However, the
prediction accuracy is similar to that of elastic net. In this
case, Gibbs-MCBR performs slightly better than VB-MCBR,
but the difference is not significant.

One major asset of MCBR (and more particularly Gibbs-
MCBR, as VB-MCBR often falls into a one-class local
maximum) is that it creates a clustering of the features,
based on the relevance of the features in the predictive
model. This clustering can be accessed using the variable
z, which is implied in the regularization performed on the
different features. In Figure 5, we give the histogram of the
weights of Gibbs-MCBR for the intersubject analysis. We
keep the weights and the values of z of the last iteration; the
different classes are represented as dots of different colors
and are superimposed on the histogram. We can notice
than the pink distribution represented at the bottom of the
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Figure 5: Intersubject analysis. Histogram of the weights found
by Gibbs-MCBR and corresponding z values (each color of dots
represents a different class), for the intersubject analyzes. We
can see that Gibbs-MCBR creates clusters of informative and
noninformative voxels and that the different classes are regularized
differently, according to the relevance of the features in each of
them.

histogram corresponds to relevant features. This cluster is
very small (19 voxels), compared to the two blue classes
represented at the top of the histogram that contain many
voxels (746 voxels) which are highly regularized, as they are
noninformative.

The maps of weights found by the different methods
are detailed in Figure 6. The methods are used combined
with an Anova-based univariate feature selection (2500 voxels
selected, in order to have a good support of the weights). As
elastic net, Gibbs-MCBR yields a sparse solution but extracts
a few more voxels. The map found by elastic net is not easy
to interpret, with very few informative voxels scattered in the
whole occipital cortex. The map found by SVR is not sparse
in the feature space and is thus difficult to interpret, as the
spatial layout of the neural code is not clearly extracted. VB-
MCBR does not yield a sparse map either, all the features
having nonnull weights

4. Discussion

It is well known that in high-dimensional problems, reg-
ularization of feature loadings significantly increases the
generalization ability of the predictive model. However,
this regularization has to be adapted to each particular
dataset. In place of costly cross-validation procedures, we
cast regularization in a Bayesian framework and treat the
regularization weights as hyperparameters. The proposed
approach yields an adaptive and efficient regularization and
can be seen as a compromise between a global regularization
(Bayesian Ridge Regression) that does not take into account
the sparse or focal distribution of the information and
automatic relevance determination. Additionally, MCBR

creates a clustering of the features based on their relevance
and thus explicitly extracts groups of informative features.

Moreover, MCBR can cope with the different issues of
ARD. ARD is subject to an underfitting in the hyperpa-
rameter space that corresponds to an underfitting in model
selection (i.e., on the features to be pruned) [19]. Indeed,
as ARD is estimated by maximizing evidence, models with
less selected features are preferred, as the integration is done
on less dimensions, and thus evidence is higher. ARD will
choose the sparsest model across models with similar accu-
racy. A contrario, MCBR requires far less hyperparameter
(2 × K , with K � p) and suffers less from this issue, as
the sparsity of the model is defined by groups. Moreover, a
full Bayesian framework for estimating ARD requires to set
some priors on the hyperparameters (e.g., α1 and α2), and it
may be sensitive to specific choice of these hyperparameters.
A solution is to use an internal cross-validation for optimizing
these parameters, but this approach can be computationally
expensive. In the case of MCBR, the distributions of the
hyperparameters are bound to a class and not to each feature.
Thus, the proposed approach is less sensitive to the choice of
the hyperparameters. Indeed, the choice of good hyperpa-
rameters for the features is dealt with at the class level.

On simulated data, our approach performs better than
other classical methods such as SVR, BRR, ARD, and elastic
net and yields a more stable prediction accuracy. Moreover,
by adapting the regularization to different groups of voxels,
MCBR retrieves the true support of the weights and recovers
a sparse solution. Results on real data show that MCBR
yields more accurate predictions than other regularization
methods. As it yields less sparse solution than elastic net,
it gives access to more plausible loading maps which are
necessary for understanding the spatial organization of brain
activity, that is, retrieving the spatial layout of the neural
coding. On real fMRI data, the explicit clustering of Gibbs-
MCBR is also an interesting aspect of the model, as it can
extract few groups of relevant features from many voxels.

In some experiments, the variational Bayes algorithm
yields less accurate predictions than the Gibbs sampling
approach, which can be explained by the difficulty of
initializing the different variables (especially z) when the
support of the weight is overly sparse. Moreover, the VB-
MCBR algorithm relies on a variational Bayes approach,
which may not be optimal, due to strong approximations
in model inference. A contrario Gibbs-MCBR is more time
consuming but yields a better model inference. Finally, the
variability in the results may be explained by the difficulty to
estimate the model (optimality is not ensured).

The question of model selection (i.e., the number of
classes K) has not been addressed in this paper. One can
use the free energy in order to select the best model, but
due to the instability of VB-MCBR, this approach does
not seem promising. A more interesting method is the one
detailed in [34], which can be used with the Gibbs sampling
algorithm. Here, model selection is performed implicitly by
emptying classes that do not fit the data well. In that respect,
the choice of heterogeneous priors for different classes is
crucial: replacing our priors with class-independent priors
(i.e., λ1,k = 10−2, k ∈ [1, . . . ,K]) in the intersubject analysis
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Figure 6: Intersubject analysis. Maps of weights found by the different methods on the 2500 most relevant features by Anova. The map found
by elastic net is difficult to interpret as the very few relevant features are scattered within the whole brain. SVR and VB-MCBR do not yield
a sparse solution. Gibbs-MCBR, by performing an adaptive regularization, draws a compromise between the other approaches and yields a
sparse solution, but also extracts small groups of relevant features.

on size prediction leads Gibbs-MCBR to a local maximum
similar to VB-MCBR.

Finally, this model is not restricted to the Bayesian
regularization and can be used for classification, within a
probit or logit model [35, 36]. The proposed model may thus
be used for diagnosis in medical imaging, for the prediction
of both continuous or discrete variables.

5. Conclusion

In this paper, we have proposed a model for adaptive regres-
sion, called MCBR. The proposed method integrates, in the
same Bayesian framework, BRR and ARD and performs a
different regularization for relevant and irrelevant features.
It can tune the regularization to the possible different
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Initialize a1 = α1, a2 = α2, l1 = λ1, l2 = λ2 and dk = ηk
Randomly initialize q(zj = k)
Set a number of iterations max steps
repeat

Compute A using (A.1), Σ using (A.2) and μ using (A.3).
Compute l1 using (A.4) and l2 using (A.5).
Compute a1 using (A.6) and a2 using (A.7).
Compute ρjk using (A.8).
Compute πk using (A.9) and dk using (A.10).

until max steps;
Return μ.

Algorithm 1: VB-MCBR algorithm.

Initialize α1, α2, λ1, λ2 and ηk
Randomly initialize z
Set a number of iterations burn number for burn-in
Set a number of iterations max steps
Repeat

Compute Σ using (B.1) and μ using (B.2).
Sample w in N (w | μ,Σ).
Compute l1 using (B.3) and l2 using (B.4).
Sample λ in

∏k=K
k=1 Γ(λk | l1,k , l2,k).

Compute a1 using (B.5) and a2 using (B.6).
Sample α in Γ(a1, a2).
Compute ρjk using (B.7).
Sample z in mult(exp ρj,1, . . . , exp ρj,K ).
Compute dk using (B.8).
Sample πk in Dir(dk).

until max steps;
return Average value of w after burn number iterations.

Algorithm 2: Gibbs-MCBR algorithm.

level of sparsity encountered in fMRI data analysis, and it
yields interpretable information for fMRI inverse inference,
namely, the z variable (latent class variable). Experiments
on both simulated and real data show that our approach is
well suited for neuroimaging, as it yields accurate and stable
predictions compared to the state-of-the-art methods.

Appendices

A. VB-MCBR Algorithm

The variational Bayes approach yields the following varia-
tional distributions:

(i) q(w) ∼ N (w | μ,Σ) with

A = diag
(
l1, . . . , lp

)
with

l j =
K∑

k=1

q
(
zj = k

) l1,k

l2,k
∀ j ∈ {1, . . . , p

}
,

(A.1)

Σ =
(
a1

a2
XTX + A

)−1

, (A.2)

μ = a1

a2
ΣXTy; (A.3)

(ii) q(λk) ∼ Γ(l1,k, l2,k) with

l1,k = λ1,k +
1
2

p∑
j=1

q
(
zj = k

)
, (A.4)

l2,k = λ2,k +
1
2

p∑
j=1

(
μ2
j j + Σ j j

)
q
(
zj = k

)
; (A.5)

(iii) q(α) ∼ Γ(a1, a2) with

a1 = α1 +
n

2
, (A.6)

a2 = α2 +
1
2

(
y −Xμ

)T(y −Xμ
)

+
1
2

Tr
(
ΣXTX

)
; (A.7)

(iv) q(zj = k) ∼ exp(ρjk) with

ρjk = −1
2

(
μ2
j + Σ j j

) l1,k

l2,k
+ ln(πk) +

1
2

(
Ψ
(
l1,k
)− log

(
l2,k
))

,

(A.8)

πk = exp{Ψ(dk)−Ψ(
∑k=K

k=1 dk)}, (A.9)

dk = ηk +
p∑
j=1

q
(
zj = k

)
, (A.10)

where Ψ is the digamma function Ψ(x) = Γ′(x)/Γ(x).
The VB-MCBR algorithm is provided in pseudo-code
in Algorithm 1.

B. Gibbs-MCBR Algorithm

With Θ = [w, λ,α, z,π], we have the following candidate
distributions (i.e., the distributions used for the sampling of
the different parameters):

(i) p(w | Θ− {w}) ∝ N (w | μ,Σ) with

Σ =
(

XTXα + A
)−1

with A = diag
(
λz1 , . . . , λzp

)
, (B.1)

μ = ΣαXTy; (B.2)

(ii) p(λ | Θ− {λ}) ∝∏K
k=1Γ(λk | l1,k, l2,k) with

l1,k = λ1,k +
1
2

p∑
j=1

δ
(
zj = k

)
, (B.3)

l2,k = λ2,k +
1
2

p∑
j=1

δ
(
zj = k

)
w2

j ; (B.4)
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(iii) p(α | Θ− {α}) ∝ Γ(a1, a2) with

a1 = α1 +
n

2
, (B.5)

a2 = α2 +
1
2

(
y −Xμ

)T(y −Xμ
)
; (B.6)

(iv) p(zj | Θ− {z}) ∝ mult(exp ρj,1, . . . , exp ρj,K ) with

ρjk = −1
2
w2

j λk + ln(πk) +
1
2

log λk; (B.7)

(v) p(πk | Θ− {π}) ∝ Dir(dk) with

dk = ηk +
p∑
j=1

δ
(
zj = k

)
. (B.8)

The algorithm is provided in pseudocode in Algorithm 2.
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