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Abstract  

Children’s sense of numbers before formal education is thought to rely on an 

approximate number system based on logarithmically compressed analog magnitudes that 

increases in resolution throughout childhood. School age children performing a numerical 

estimation task have been shown to increasingly rely on a formally appropriate, linear 

representation and decrease their use of an intuitive, logarithmic one. We investigated the 

development of numerical estimation in a younger population (3.5-6.5 y.o.) using 0-to-100 

and two novel sets of 1-to-10 and 1-to-20 number lines. Children’s estimates shifted from 

logarithmic to linear in the small number range, whereas they became more accurate but 

increasingly logarithmic on the larger interval. Estimation accuracy was correlated with 

knowledge of Arabic numerals and numerical order. These results suggest that the 

development of numerical estimation is built on a logarithmic coding of numbers – the 

hallmark of the approximate number system – and is subsequently shaped by the acquisition 

of cultural practices with numbers. 
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It is widely believed that numeracy is founded upon an early non-symbolic system of 

numerical representation (for reviews see Feigenson, Dehaene, & Spelke, 2004; Carey, 2001). 

Indeed, children show numerical abilities long before language acquisition and formal 

education. The ability to discriminate between two numerosities improves from a ratio of 1:2 

to 2:3 before the first year of life (Lipton & Spelke, 2003; Xu, Spelke, & Goddard, 2005). For 

example, 6-month-olds can discriminate between 16 and 8 dots but not between 16 and 12 

dots, whereas 9-month-olds discriminate both ratios. Numerical acuity is progressively 

refined throughout childhood, attaining adult’s ability in early adolescence (Halberda & 

Feigenson, 2008). With language acquisition, children understand how number words map 

onto distinct numerosities (Wynn, 1996), first in their counting range and then also outside of 

it (Lipton & Spelke, 2006).  

It has been proposed that the infant’s sense of numbers is based on two “core systems” 

(Feigenson et al., 2004): (i) a small number system accurate for numerosities up to 3, 

essentially a perceptual system for tracking objects; (ii) an approximate number system for 

representing larger numerosities. The latter encodes numerosities as analog magnitudes, 

usually thought of as overlapping distributions of activations on a logarithmically compressed 

mental number line (Dehaene, Piazza, Pinel, & Cohen, 2003, for review). Its precision 

increases throughout childhood (Halberda & Feigenson, 2008) and is correlated to math 

achievement at different ages (Halberda, Mazzocco, & Feigenson, 2008). 

Children in our culture achieve a mental representation of number that goes beyond 

these core number systems in at least two different ways. First, numerate children and adults 

are able to go beyond approximate numerosities and can distinguish and represent exact 

numerosities greater than 3. Second, the concept of number in mathematically educated adults 

implies a linear (rather than logarithmic) mapping between numbers and space (Siegler & 

Opfer, 2003; Zorzi, Priftis, & Umiltà, 2002), such that numbers can be used for measurement. 
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It is a controversial matter as to how both advances are achieved, although it is clear that the 

child’s experience with counting and number words plays a major role (e.g., Le Corre & 

Carey, 2007). A developmental transition from logarithmic to linear numerical estimation has 

been documented in the seminal studies of Siegler and collaborators suggesting that children’s 

representation of numbers changes over time with increasing formal knowledge (Siegler & 

Booth, 2004; Siegler & Opfer, 2003). 

Siegler and Opfer (2003) investigated estimation abilities of primary school pupils and 

adults with the number-to-position task where numbers had to be placed on “number lines” 

with 0 at one end and 100 or 1000 at the other. This task requires translation between 

numerical and spatial representations without assuming knowledge of specific measurement 

units. Children’s estimates changed with age and shifted from a logarithmic to a linear 

representation. At grade two and four they overestimated small numbers and compressed 

large numbers to the end of the scale (logarithmic positioning) when the context was 

unfamiliar (0-to-1000), but positioned numbers linearly in a familiar context (0-to-100). In 

contrast, grade six children positioned numbers linearly on both small and large scales, just 

like adults. Interestingly, younger children treated the same numbers differently – identical 

numbers being placed linearly or logarithmically according to the interval of reference – 

indicating how the context influenced the numerical representation deployed in the task and 

how the choice among these multiple representations is dependent of age and experience.  

Siegler and Booth (2004) replicated the study with a population of preschoolers, first 

graders and second graders (mean ages: 5.8, 6.9 and 7.8 years respectively) and observed the 

same developmental sequence for the 0-to-100 number line. Mathematical achievement was 

found to correlate with the linearity of the estimates highlighting how formal knowledge 

modulates the number-space mapping. Booth and Siegler (2006) found a correlation between 

performance in the number-to-position task and other numerical estimation tasks such as 
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approximate addition, numerosity and measurement estimation, suggesting that all these 

numerical approximation tasks tap onto a common internal representation.  

The aim of the present study was to assess children’s ability to provide reliable 

estimates (whether logarithmic or linear) as early as 3.5 years old and to further characterize 

the developmental trend that leads to the emergence of a linear and formal representation of 

numbers. The shift from logarithmic to linear positioning is firmly established in the context 

of 0-to-100 or 0-to-1000 number lines, but not when the number range is restricted to units or 

teens. Indeed, contrary to the hypothesis that logarithmic positioning is mandatory prior to a 

linear one even in the small number range, Whyte and Bull (2008) observed linear positioning 

on a 0-to-10 number line (also used by Petitto, 1990) in their intervention study on a group of 

young preschoolers (mean age 3.8), both at the group level and in about 75% of individual 

children.  

In Experiment 1 we administered the 0-to-100 interval used by Siegler and Booth (2004) as 

well as a smaller 1-to-10 interval. Numbers in the small interval should be familiar to the 

youngest children. Zero was excluded (cf. Petitto, 1990; Whyte & Bull, 2008) because 

children learn the counting sequence from one and its concept is usually introduced later 

(Butterworth, 1999). The use of the 0-to-100 interval allowed us to confirm that the oldest 

children in our study had comparable performance to the youngest group tested by Siegler and 

Booth (2004). In Experiment 2 we tested a much larger sample of children and we replaced 

the larger interval with a new 1-to-20 interval to further investigate the developmental pattern 

within a smaller range of numbers. Observing a shift from logarithmic to linear with 1-to-10 

or 1-to-20 intervals would demonstrate the deployment of logarithmic representations even 

within the small number range. Children were also tested on basic numerical knowledge to 

investigate its relation to their ability to estimate. This was done with a simple digit naming 

task in Experiment 1, which, for very young children, has been found to be a strong predictor 
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of other numerical tasks (Huntley-Fenner & Cannon, 2000; Ho & Fuson, 1998). In 

Experiment 2, children had to order by magnitude collections of dots and Arabic numbers and 

had to recite the counting sequence up to 10 on their fingers. 

We predicted that the youngest children, considering the absence of formal education 

[footnote 1], would reveal a purely logarithmic representation even in the small number 

range, and that the developmental pattern would show a shift from logarithmic to linear 

positioning, but only for the smaller intervals. At around 4 ½ years children start 

understanding how number words beyond 4 map onto sets of items and start to understand the 

counting principles (i.e., one-to-one correspondence and cardinality; Gelman, 1978; Le Corre 

& Carey, 2007) which might play a role in the transition between representations. Thus, the 

hypothesis that children possess multiple ways of representing numbers (Sigler & Opfer, 

2003) leads to the prediction that performance might become linear on the smaller interval but 

remain logarithmic on the larger interval.  

 

Experiment 1 

 

Method 

Participants 

Forty-six children (21 females), recruited in two different kindergarten schools from 

north-eastern Italy, were divided in three groups according to age: the youngest group (n=11) 

had a mean age of 48 months (range: 42-53), the middle group (n=16) had a mean age of 60 

months (range: 54-64) and the oldest group (n=19) had a mean age of 71 months (range: 65-

75). 

Procedure 
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Two trained female teachers, one from each school, met individually with the children 

during school hours in a quiet classroom. Children were first tested on a digit naming task. 

Arabic digits from 0 to 9, randomly presented on separate cardboards (5 cm²), had to be 

named aloud without receiving feedback (score: 1 point for each correct item).  

In the number-to-position task, children were presented with 25-cm long lines in the 

centre of white A4 sheets. Two different intervals were administered: 1-to-10 and 0-to-100. 

The ends of the lines were labeled on the left by either 1 or 0 and on the right by either 10 or 

100. The number to be positioned was shown in the upper left corner of the sheet. All 

numbers except for 1, 5 and 10 had to be positioned on the smaller interval, whereas for the 

larger interval numbers were 2, 3, 4, 6, 18, 25, 48, 67, 71, 86 (corresponding to sets A and B 

for the same interval used in Siegler & Opfer, 2003). 

The order of presentation of the two intervals and order of items within each interval 

were randomized. Each line was seen separately from the others. The instructions were: “We 

will now play a game with number lines. Look at this page, you see there is a line drawn here. 

I want you to tell me where some numbers are on this line. When you have decided where the 

number I will tell you has to be, I want you to make a mark with your pencil on this line.” To 

ensure that the child was well aware of the interval size, the experimenter would point to each 

item on the sheet while repeating for each item: “This line goes from 1(0) to 10 (100). If here 

is 1 (0) and here is 10 (100), where would you position 5 (50)? The experimenter always 

named the numbers to place. Numbers 5 and 50 were used as practice trials for the small and 

large interval, respectively. No feedback was given. Experimenters were allowed to rephrase 

the instructions as many times as needed without making suggestions about where to place the 

mark. 

 

Results 
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Children’s estimation accuracy was computed as percentage of absolute error (PE). 

This was calculated with the following equation (Siegler & Booth, 2004):  

 PE= (estimate – target number) / scale of estimates * 100 

For example, if the estimated position of 45 on the 0-to-100 interval corresponds to 60, the PE 

would be 15% (i.e., (60 – 45)/100*100.  

A one-way ANOVA on mean PE was computed for each interval with age as between-

subjects factor. For both intervals, results indicated that the three groups were significantly 

different and the accuracy of estimation increased with age (1-10 interval: F(2,43)=6.14, 

p<.01, η2=.22; 0-100 interval: F(2,43)=4.22, p<.05, η2=.16). The youngest and the middle 

groups significantly differed from the oldest group on post hoc comparisons for the interval 1-

10 (ps<.05). PEs for the youngest, middle and oldest group were 28%, 24% and 15% 

respectively. For interval 0-to-100, PEs were 32%, 30% and 23% (from youngest to oldest) 

and only the youngest group significantly differed from the oldest group on post hoc 

comparisons (p<.05). It is worth noting that for the 0-to-100 interval the accuracy of 

estimation for our oldest group is slightly better than the accuracy of the comparable age 

group (5.8 y.o.) studied by Siegler and Booth (2004; 27% in their study). 

Fits of linear and logarithmic functions were computed to analyze the pattern of 

estimates. Following Siegler and Opfer (2003), these fits were first computed on group 

medians and then for each individual child. 

Group analysis 

For group medians (Figure 1), the difference between models was tested with a paired-

sample t-test on the absolute distances between children’s median estimate for each number 

and a) the predicted values according to the best linear model and b) the predicted values 

according to the best logarithmic model. If the t-test indicated a significant difference between 

the two distances, the best fitting model was attributed to the group. For the 1-to-10 interval, 
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the model with the highest r-square was logarithmic for the youngest group (R2 log=87%, 

p<.01) but it did not significantly differ from the linear fit (R2 lin=84%, p<.01; t(6)=-1.17, 

p>.05). For the two older groups, the fit of the linear model was significantly better than the 

fit of the logarithmic model (intermediate group: R2 lin=95%, p<.001 vs. R2 log=89%, p<.01; 

t(6)=2.82, p<.05; oldest group: R2 lin=97% p<.001 vs. R2 log=88%, p<.01; t(6)=4.05, p<.01). 

For the 0-to-100 interval, the best fitting model for the three groups was logarithmic, but the 

r-square value increased with age (youngest: R2 log=59%, p<.01 vs. R2 lin=46%, p<.05, t(9)=-

1.2, p>.05; intermediate: R2 log=85%, p<.001 vs. R2 lin=57%, p<.05, t(9)=-3.15, p<.05; and 

oldest: R2 log=94%, p<.001 vs. R2 lin=70%, p<.01, t(9)=-3.62, p<.01).  

________________________ 

Figure 1 about here 

_________________________ 

Individual analysis 

Regression analyses were performed on the data of individual children. The best 

fitting model between linear and logarithmic was attributed to each child, whenever 

significant (e.g., the child was attributed a logarithmic representation for a given interval if 

the highest r-square was logarithmic). If both failed to reach significance the child was 

classified as not having a representation for the interval considered [footnote 2]. For each 

interval, children were therefore classified as having a linear, logarithmic, or no representation 

(Table 1).  

Spearman rank correlations were calculated between group (ordered by age: 1= 

youngest, 2= intermediate and 3= oldest) and type of representation (ordered by 

developmental phase: 1= no representation, 2= logarithmic and 3= linear) [footnote 3]. For 

the small interval the estimation tended to become linear with age (rs=.43, p<.005, one-tailed 

test), whereas for the bigger interval the correlation reflected an increase of logarithmic 
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representation (rs=.31, p<.05, one-tailed test). Overall, children show more accurate 

positioning of numbers with increasing age. When the numerical context is difficult, or 

unfamiliar, they rely on an intuitive, logarithmic representation, whereas when the numerical 

context is familiar, they use a linear representation. However, irrespective of the best fitting 

model attributed to each child, we observed that linearity, indexed by the linear r-square, 

increased with age group on both intervals (ANOVAs: 1-10 interval, F(2,43)=4.47, p<.05, 

η2=.04; 0-100 interval, F(2,43)=4.83, p<.05, η2=.07). The linear r-square for the two intervals 

was also correlated with age in months (1-10 interval: r=.35, p<.05; 0-100 interval: r=.45, 

p<.01, both one-tailed). 

________________________ 

Table 1 about here 

________________________ 

This pattern is also supported by the analyses conducted on both intervals according to 

the type of representation (Table 2). The ability to position numbers on one interval was 

significantly correlated with the ability to position numbers on the other interval when age 

group was partialled out (rs=.27, p<.005, one-tailed). In other words, children with a more 

precise representation on the 1-to-10 interval also had a better representation on the 0-to-100 

interval. This result supports the developmental trend of a logarithmic representation prior to 

a linear one and an improvement first on a familiar smaller context and then on a less familiar 

or harder context. 

________________________ 

Table 2 about here 

________________________ 

Naming scores, from youngest to oldest group, were on average 4 (standard deviation 

3.6), 6.3 (3.6) and 9.1 (1.2), respectively. Correlations with type of representation on the two 
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intervals were significant when age group was partialled out (interval 0-10: rs=.30, p<.002, 

one-tailed; interval 0-100: rs=.36, p<.001, one-tailed). These results suggest that a better 

knowledge of Arabic numerals goes together with the use of more precise numerical 

representations – linear for the smaller interval and predominantly logarithmic for the larger 

interval – in the number to position task. 

 

Experiment 2 

 

Participants  

A new population of 373 children (200 females) recruited in several kindergarten 

schools from north-eastern Italy took part in the study. They were divided into three groups as 

in Experiment 1. The youngest group (n=74) had a mean age of 48 months (range: 43-53), the 

middle group (n=128) had a mean age of 59 months (range: 54-64) and the oldest group 

(n=168) had a mean age of 70 months (range: 65-75).  

Procedure 

The procedure was identical to that of Experiment 1, but the 1-to-100 interval was 

replaced by a novel 1-to-20 interval (items: 2, 4, 6, 7, 13, 15, 16, 18, item 10 as practice). 

Children were first asked to count on their fingers up to 10 and to order by magnitude Arabic 

digits and dots ranging from 1 to 5 (presented on cards of ≈ 4 cm²); the three tasks were 

scored with 1 point for each correct item. Children had no time pressure and could stop at any 

time.  

 

Results 

 The data were analyzed as in Experiment 1. The ANOVA showed a significant effect 

of age for both intervals (1-10: F(2,367)=4.15, p<.05, η2=.02; 1-20: F(2,357)=37, p<.001, 
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η2=.17; respectively 3 and 13 children were excluded for not completing enough items), 

indicating that the PEs decreased with age (1-10 interval: 24%, 22%, 20%; 1-20 interval: 

28%, 20%, 15%, for the three age groups). The youngest group was significantly less accurate 

than the oldest (p<.01) on the 1-to-10 interval and all three age groups were significantly 

different on the 1-to-20 interval (ps<.001). 

  

 Group analysis 

On group medians (see Figure 2), the pattern of estimates for the 1-to-10 interval was 

fitted equally well by a logarithmic or linear function in the youngest group (R2 log=98%, 

p<.001, R2 lin=97%, p<.001, t(6)= 1.03, p=.34). For the two other groups, however, the linear 

model yielded a better fit (intermediate group: R2 log=92%, p<.001, R2 lin=98%, p<.001, 

t(6)= -3.17, p<.05; oldest group: R2 log=89%, p<.001, R2 lin=97%, p<.001, t(6)= -5.5, 

p<.005). This replicates the findings of Experiment 1. For the 1-to-20 interval, the estimates 

of the youngest group were best fitted by a logarithmic function (R2 log=94%, p<.001, R2 

lin=77%, p<.005, t(7)= 2.79, p<.05). The fits for the older groups did not significantly differ 

between logarithmic and linear models (intermediate group: R2 log=97%, p<.001, R2 

lin=98%, p<.001, t(7)=-.95, p=.38; oldest group: R2 log=96%, p<.001, R2 lin=99%, p<.001, 

t(7)=-1.86, p=.1). These results are in line with previous findings showing a mandatory 

logarithmic phase prior to linearity. 

________________________ 

Figure 2 about here 

_________________________ 

 Individual analysis 

As in Experiment 1, individual children were classified as having a linear, logarithmic, 

or no representation for each interval (Tables 3 and 4). The type of representation varied with 
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the children’s age for both intervals (χ2(4)=48, p<.001 and χ2(4)=58, p<.001, respectively). 

The correlations between type of representation on each interval and age group were 

significant, indicating an improvement of type of positioning with age (interval 1-10: rs=.37, 

p<.001, one-tailed test; interval 1-20: rs=.37, p<.001, one-tailed test). The correlation between 

representations on the two intervals, with age group partialled out, was also significant 

(rs=.51, p<.001, one-tailed test).  

One way ANOVAs on the linear r-square for both intervals showed that linearity 

significantly improved with age group (1-10 interval: F(2,367)= 24, p<.001, η2=.03; 1-20 

interval: F(2,367)= 41, p<.001, η2=.06). The correlation between linear r-square and age in 

months was significant for both intervals (1-10 interval: r=.33, p<.001; 1-20 interval: r=.39, 

p<.001, both one-tailed). 

________________________ 

Tables 3 and 4 about here 

_________________________ 

 Mean counting on finger scores were 7.3 (2.8), 8.98 (2.1), 9.45 (1.6) from youngest to 

oldest, respectively. Ordering scores (from youngest to oldest) were on average 2.3 (2), 3.8 

(1.9) and 4.7 (1) for Arabic digits and 2.2 (1.9), 3.8 (1.8) and 4.5 (1.2) for dots. Partial 

correlations were significant between type of representation and performance in the ordering 

tasks (1-10: rs=.30, p<.001 for dots and rs=.31, p<.001 for Arabic numbers; 1-20: rs=.35, 

p<.001 for dots and rs=.24, p<.001, for Arabic numbers), but not in the counting sequence 

task (1-10: rs=.02, p=.6; 1-20: rs=-.06, p= .28). The latter finding may not be attributed to a 

ceiling effect since a one-way ANOVA on counting scores showed a statistical difference 

between groups (F(2,364)=28, p<.001). 

 

Conclusions 
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The present study shows that an understanding of how numbers map onto space 

develops long before formal education begins. In Experiment 1, preschoolers deployed a 

logarithmic positioning when confronted with the 0-to-100 number range and the youngest 

children showed a trend towards a logarithmic positioning even for the 1-to-10 interval. In 

contrast, older children deployed a linear strategy when confronted with the more familiar 

range of small numbers (1-10 interval) and the oldest group approximated very closely the 

ideal positioning. In Experiment 2, on the 1-to-20 interval the youngest children deployed a 

logarithmic positioning whereas the two other groups started to show some abilities to 

position numbers linearly. Thus, the use of a logarithmic strategy before a linear one seems 

mandatory even in the small number range.  

The dissociation between smaller and larger intervals is consistent with the results of 

Siegler and colleagues (Siegler & Opfer, 2003; Siegler & Booth, 2004) and reveals the 

coexistence of multiple spatial representations for numbers. The youngest age groups in their 

studies relied on a linear positioning for the 0-to-100 number line (our larger interval) 

whereas on the 0-to-1000 number line only the oldest group of children (grade six) was able 

to position numbers linearly like adults. Note that grade four children in Siegler and Opfer’s 

(2003) study used a logarithmic strategy for the 0-to-1000 interval although at this age 

children are already able to count as far as a thousand and are also familiar with simple 

divisions. Therefore, knowing the numerical sequence does not seem to be the only 

prerequisite to apply a linear strategy (indeed counting scores did not correlate with type of 

representation in Experiment 2). It rather implies a representational change either by a shift 

from a logarithmic to a linear representation or by creating a complementary representation of 

exact numbers (see Verguts, Fias, & Stevens, 2005, and Zorzi & Butterworth, 1999, for 

models of exact number representation).  
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In Whyte and Bull’s (2008) intervention study, only children who played with a linear 

numerical board-game (compared to non-linear numerical and linear color board-games) 

became more accurate and linear at post-test in positioning numbers on a 0-to-10 number line. 

Interestingly, Geary and colleagues (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; 

Geary, Hoard, Nugent & Byrd-Craven, 2008) found that children with mathematical learning 

disability were less accurate in numerical estimation (on a 0-to-100 number line) and more 

reliant on logarithmic representation than typically achieving peers. Moreover, Geary and 

colleagues observed trial-by-trial variation in the use of logarithmic or linear strategy. Note 

that the best fitting equations from our Experiment 2 could serve as reference measure of 

group performance to investigate trial-by-trial variation in future studies (see Geary et al., 

2007).  

Logarithmic coding of numbers (Dehaene et al., 2003) is a hallmark of the 

approximate number system subserving the nonsymbolic representation of numerosities 

(Feigenson et al., 2004; see Dehaene & Changeux, 1993, for a computational model). The 

finding that the logarithmic fit over the three groups and the accuracies of estimates increased 

with age suggests a developmental pattern even for the logarithmic representation. Indeed, 

increasing precision of the logarithmic representation is consistent with the finding that the 

ability to discriminate the numerosity of two sets increases with age (Lipton & Spelke, 2003; 

Halberda & Feigenson, 2008).  

Lipton and Spelke (2005) have shown that preschool children map the number words 

within their counting range onto nonsymbolic representations of numerosity, but that they 

show no such mapping for number words beyond that range. Moreover, according to the 

“enriched parallel individuation system” hypothesis of Le Corre and Carey (2007), children 

need to learn the counting principles before being able to map exact numerical symbols 

beyond 4 to analog magnitudes. Indeed, the youngest children in our study showed a poor and 
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inconsistent performance in the 0-to-100 interval, whereas they mastered the estimation task 

in the 1-to-10 interval and some started to master the 1-to-20 interval. This result is in line 

with Le Corre and Carey’s (2007) results, since their children were able to map numbers 

larger than 4 only around age 4 ½. Our children in the youngest group had a mean age of 4 

and over a half of them (54% and 60% for Experiments 1 and 2, respectively) where able to 

estimate numbers following either the logarithmic or linear positioning on the 1-to-10 

interval.  

Finally, the precision of numerical estimation across all children in our study was 

correlated with their ability to name single-digit Arabic numbers as well as ordering numbers 

from 1 to 5. This finding highlights the role of mastering numerical meaning and symbols - 

and hence of formal instruction - in structuring the child’s understanding of numbers, 

although the exact path that leads from a logarithmic to a linear representation remains to be 

understood (for theoretical suggestions, see Dehaene, 2007; Verguts & Fias, 2004). 
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Footnotes 

1. In the Italian Educational system a child may start preschool up to three years prior to 1st 

grade. Enrolment to preschool is still an optional choice for parents as well as the numbers of 

years of attendance. For this reason, the Ministry of Education does not give strict directives 

on the topics, goals and knowledge to reach by the end of preschool. Teachers are invited to 

introduce numerical concepts by creating numerical experiences usually by using games and 

songs. The most common practice is to use songs to enumerate sets and to teach children how 

to read digits 1 to 9. Moreover, classes are not always subdivided by age or number of years 

of preschool done giving the opportunity to more experienced children to help younger ones 

or newcomers. 

2. Among those children classified as not having a linear or a logarithmic representation some 

used evident non-numerical strategies such as alternating between left and right marks on the 

lines. 

3. The small observed frequencies in some cells prevented us from running a Chi-square 

analysis in Experiment 1. 
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Figure Caption 

Figure 1. Best logarithmic or linear fit as a function of interval and age group in Experiment 

1.  

 

Figure 2. Best logarithmic or linear fit as a function of interval and age group in Experiment 

2.  
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Table 1 

 

Type of Representation as a Function of Group and Task in Experiment 1  

  Type of representation 

Task  None Logarithmic Linear 

1-10 Interval    

Youngest (n=11) 46 36 18 

Intermediate (n=16) 31 19 50 

Oldest (n=19) 5 16 79 

0-100 Interval    

Youngest (n=11) 64 27 9 

Intermediate (n=16) 56 38 6 

Oldest (n=19) 21 68 11 

 
Note. Cell values represent percentages (per row) of children.  
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Table 2 

 

Relation between Types of Representation across Tasks in Experiment 1 

   0-100 Interval  

1-10 Interval None Logarithmic Linear 

None 19.6 2.2 2.2 

Logarithmic 8.7 13 0 

Linear 15.2 32.6 6.5 

 
 
Note. Cell values represent percentages of children (n=46) that adopt a given combination of 

representations across tasks.  
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Table 3 

 

Type of Representation as a Function of Group and Task in Experiment 2  

  Type of representation 

Task  None Logarithmic Linear 

1-10 Interval    

Youngest (n=75) 52 21 27 

Intermediate (n=130) 38 17 45 

Oldest (n=168) 15 14 71 

1-20 Interval    

Youngest (n=75) 66 15 19 

Intermediate (n=130) 38 28 34 

Oldest (n=168) 16 31 53 

 
Note. Cell values represent percentages (per row) of children.  
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Table 4 

 

Relation between Types of Representation across Tasks in Experiment 2 

   1-20 Interval  

1-10 Interval None Logarithmic Linear 

None 24.1 2.7 3.5 

Logarithmic 4 7.8 4.8 

Linear 5.9 16.4 30.8 

 
 
Note. Cell values represent percentages of children (n=373) that adopt a given combination of 

representations across tasks. 



 26

 

 

 

Figure 1 

 



 27

 

 

 

Figure 2 

 


