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EEDBACK MODULATES THE TEMPORAL SCALE-FREE DYNAMICS

F BRAIN ELECTRICAL ACTIVITY IN A HYPOTHESIS TESTING TASK
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bstract—We used the electroencephalogram (EEG) to in-
estigate whether positive and negative performance feed-
acks exert different long-lasting modulations of electrical
ctivity in a reasoning task. Nine college students serially
ested hypotheses concerning a hidden rule by judging its
resence or absence in triplets of digits, and revised them on

he basis of an exogenous performance feedback. The scaling
roperties of the transition period between feedback and triplet
resentation were investigated with detrended fluctuation anal-
sis (DFA). DFA showed temporal scale-free dynamics of EEG
ctivity in both feedback conditions for time scales larger than
50 ms. Furthermore, DFA revealed that negative feedback elic-
ts significantly higher scaling exponents than positive feed-
ack. This effect covers a wide network comprising parieto-
ccipital and left frontal regions. We thus showed that specific

ask demands can modify the temporal scale-free dynamics of
he ongoing brain activity. Putative neural correlates of these
ong-lasting feedback-specific modulations are proposed.

2007 IBRO. Published by Elsevier Ltd. All rights reserved.

ey words: scaling, EEG, hypothesis testing, ongoing brain
ctivity, detrended fluctuation analysis.

hen confronted with problems that they must solve under
ncomplete information, people typically generate and se-
ect hypotheses, and modify them according to feedback
rom the environment. Positive feedback should help in
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eeping the current hypothesis active and in keeping com-
eting hypotheses in the foreground.

Negative feedback is instrumental in shutting down
eural activity associated to invalidated hypotheses, inhib-

ting hypothesis-feedback associations, and in promoting
ew hypothesis testing (HT) (Papo et al., 2003).

The modalities through which performance feedback
odulates subsequent activity are still poorly understood.
tudies of the time course of brain electrical activity time-

ocked to performance feedback using event-related po-
entials (ERPs) showed that positive and negative feed-
ack conditions were associated with topographically and
hronometrically separable patterns of electrical brain ac-
ivity (Papo et al., 2003; Miltner et al., 1997; Ruchsow et
l., 2002; Muller et al., 2005). Moreover, neuroimaging
tudies of performance feedback (Elliott et al., 1997; Mon-
hi et al., 2001) showed that positive and negative feed-
ack specifically activates separable fronto-limbico-striatal

oops. Altogether, the regulatory properties of feedback
ere proposed to be fulfilled by a reward-related dopami-
ergic corticostriatal circuit (Holroyd and Coles, 2002) and

ts stress-driven resetting by medial temporal brain struc-
ures (Papo et al., 2003).

Both ERP and neuroimaging studies concentrated on
he short-run (�1 s) time-locked impulse-like effects of
eedback. The underlying assumption was that this time
indow represents the characteristic temporal scale of the

esponse to feedback. However, contrary to perceptual
henomena, the length and content of reasoning episodes
re not strictly determined by the discrete events or stimuli
romoting them. In fact, reasoning comes in episodes of
neven length. This variability is inherent to the phenom-
non. On one hand, imposing a fixed trial length mainly
odifies decision-making thresholds (Reddi and Carpen-

er, 2000); on the other hand, smoothing response times
hrough learning sessions prior to test phases essentially
odifies the cognitive task actually carried out. A related

ssue is represented by the fact that each reasoning epi-
ode comprises a number of simultaneously active pro-
esses such as attention, working memory, and rule gen-
ration. Although each of these processes unfolds at dif-
erent characteristic temporal scales, they typically interact
ith each other, and this renders their separation both

heoretically and practically impervious.
In the present study, we investigated whether positive

nd negative performance feedbacks exert differential en-
uring modulations of electric brain activity in a HT task.

We addressed this issue in the following way: 1) we did
ot disentangle the many processes simultaneously active
n HT, but considered instead that the different cognitive
ved.
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ngredients are not separable (the whole is not just a pure
ddition of the parts); 2) we investigated how feedback
odulates ongoing brain activity in a range of temporal

cales, from those typical of single neuron activity to those
llowed by the experiment.

Several studies have shown that ongoing brain activity
t rest exhibits scale-free behavior: its temporal correla-

ions are not dominated by a characteristic time scale, but
ather extend with similar characteristics at all time scales
p to tenths of seconds. Scale-free behavior is character-

zed by a power-law dependence of some measure of the
ystem (e.g. the autocorrelation function, or the average of

ts fluctuations) on the scale of the system. In the case of
he brain electrical activity, this means that the power-law
ependence on time of one such measure is the same

ndependently from the temporal resolution at which the
bservation is made, e.g. from the scale of milliseconds to
he scale of seconds. This self-similar behavior is common
o a large number of complex biological and non-biological
ystems (Stanley et al., 2000), and reflects a tendency of
hese systems to self-organize at different scales indepen-
ently from the mechanisms underlying their dynamics
Bak et al., 1987). Scale-free behavior was shown for
lectroencephalogram (EEG) signal amplitudes (Novikov
t al., 1997; Pereda et al., 1998; Watters, 1998; Freeman
nd Barrie, 2000; Hwa and Ferree, 2002; Le Van Quyen,
003), for amplitudes of alpha and beta band oscillations
Linkenkaer-Hansen et al., 2001, 2004; Nikulin and Bris-
ar, 2005), and for the duration of synchrony episodes
etween different brain areas in several frequency bands
Gong et al., 2003; Stam and de Bruin, 2004). Spatial
cale-free dynamics was also shown at scales ranging
rom a few millimeters to an entire hemisphere (Freeman
nd Barrie, 2000). A few recent studies showed that scale-
ree dynamics is not only an intrinsic physiological property
f spontaneous ongoing brain activity, but is modulated
and not disrupted) by passive sensory nerve stimulations
Linkenkaer-Hansen et al., 2004) or eye open/eye closed
ondition (Stam and de Bruin, 2004). Two more studies
xamined the scale-free dynamics of the ongoing activity

n several frequency bands relative to different cognitive
asks (music listening compared with text listening, a spa-
ial imagination task and a rest condition (Bhattacharya
nd Petsche, 2001), imaginary and real visual-motor track-

ng (Popivanov et al., 2006)) and found again that temporal
caling is modulated, but not disrupted, by different tasks.

Following these latter studies, we conjectured that per-
ormance feedback may modulate the scale-free dynamics
f the ongoing brain activity associated with the subse-
uent performance of a complex cognitive task. To inves-

igate this hypothesis, we re-analyzed the data from the
EG study of HT performed by Papo et al. (2003). In this

ask, subjects serially tested hypotheses concerning a hid-
en rule by judging its presence or absence in triplets of
igits, and revised them on the basis of an exogenous
erformance feedback. We focused on the period during
hich subjects, after having received either a positive or a
egative feedback, are adjusting their hypotheses in order

o optimally respond to the following triplet. We hypothe- o
ized that positive and negative feedbacks induce two
eparable dynamic regimes characterized by a quantita-
ively different scale-free behavior of the underlying ongo-
ng brain activity during preparation of the response to a
ew triplet. In order to avoid the influence of the high-
mplitude transitory ERP evoked by feedback on the esti-
ation of the scale-free behavior, we analyzed the tempo-

al segment starting from 1.5 s after feedback, i.e. well
fter the extinction of the ERPs evoked by the feedback,
nd ending just before the new triplet presentation. Evoked
esponses have been shown to modestly affect long-range
orrelations in ongoing activity, provided long enough time
eries are taken into account (Linkenkaer-Hansen et al.,
004). However, since the time interval considered in our
tudy was of very limited length, our analysis tried to stay
s far away as possible from the perceptually-evoked re-
ponse, lest the whole interval of interest be dominated by
he high amplitude of the early evoked potentials.

We investigated both the existence of scale-free dy-
amics of the raw EEG activity and its modulation by
eedback with detrended fluctuation analysis (DFA) (Peng
t al., 1995), a method that estimates how the average
emporal fluctuations of the signal at a particular time scale
epend on that scale: a power-law dependence is the sign
f scale-free behavior. DFA is a widely used estimator of
cale-free behavior in biological time series because it is
obust to spurious correlation detection induced by non-
tationarities in the signal (Peng et al., 1995).

EXPERIMENTAL PROCEDURES

ubjects

hirteen right-handed graduate and undergraduate students vol-
nteered in the experiment. Subjects had normal or corrected to
ormal vision and no history of neurological or psychiatric disease.
hree of them could not be kept for further analyses due to
xcessive rates of recording artifacts; while one subject was ex-
luded because she was not naive as to the task’s manipulations.
he nine remaining subjects (five women and four men; mean
ge�25, range 21–30 years) were all blind as to the experiment’s
bjectives.

timuli and procedure

ubjects sat in front of a computer screen and judged, using a
ouble-button press device, whether or not triplets of numbers
ere instances of a hidden rule chosen by the experimenter. At

he beginning of each trial (Fig. 1) one triplet was presented.
ubjects’ responses appeared on the screen below the triplet, as
n “O” and an “N” respectively for positive and negative re-
ponses. Following a time interval varying between 800 and 1200
s, subjects received the experimenter’s feedback on the com-
uter screen, indicating whether their performance was correct or
ot. Positive and negative feedbacks were respectively repre-
ented by a green and a red square surrounding the letters
ymbolizing subjects’ response. Triplet, subjects’ response, and
eedback stayed on the screen till 1 s after feedback onset. The
creen was then offset before the following trial could start. There
as a 3–5 s intertrial interval. There were 30 blocks of 10 trials
ach, corresponding to 30 different hidden rules. Subjects were

nformed that the rule was changed at the end of each block of
rials. Successive blocks were separated by time intervals of the

rder of 30 s/1 min. Importantly, the feedbacks were controlled by
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he experimenter and not by subject’s performance, as there were
o rules behind the triplets. Feedback frequency was manipu-

ated, so that an equal number of blocks respectively had 8:2, 5:5,
nd 2:8 positive-to-negative feedback ratios. In the (8:2) and (2:8)
locks the last five trials were paired to five consecutive positive
nd negative feedbacks respectively, while in all blocks the first
ve trials comprised either two or three positive/negative feedback
esponses. The order of presentation of blocks was quasi-ran-
omized across subjects. All subjects were verbally debriefed
fter the experimental session, and none of them was aware of
eedbacks being unrelated to performance. Thus, it can safely be
tated that, for all practical purposes, no subject construed feed-
ack as random, with all subjects behaving accordingly and trying
o the best of their abilities to carry out the proposed hypothesis
esting task. Importantly, analysis of variance revealed that re-
ponse times increased as a function of the frequency of negative
eedback. The fact that response times varied according to feed-
ack frequency convincingly indicated the meaningfulness of this
xperimental manipulation (cf. Papo et al., 2003, Behavioral Re-
ults). Behavioral results and analysis of ERPs time-locked to
eedback presentation as a function of the feedback value (posi-
ive or negative) are extensively described and discussed in Papo
t al. (2003). The core result of the ERP study is that positive and
egative feedback conditions were associated with topographi-
ally and chronometrically separable patterns of electrical brain
ctivity. Positive trial-to-trial feedback elicited a parieto-central
300, whereas negative feedback was characterized by P200–
240 complexes with a frontal–central onset and lasting longer

han in posterior regions.

EG recording system

rain electrical activity was recorded from 62 electrodes posi-
ioned according to the extended 10–20 system location, with a
asion reference. The electro-oculogram (EOG) was also re-

ig. 1. Example of a trial with positive feedback. The period analyzed
fter the extinction of the ERPs evoked by feedback, and ended just
orded. The EEG was amplified (0.05–100 Hz) with a sampling
requency of 500 Hz. The analyses performed in this work are
estricted to the innermost 39 electrodes shown in Fig. 2.

re-processing and data epoching

Main analysis. Raw EEG data were corrected for blink,
ertical and horizontal eye movements (Gratton et al., 1983).
pochs of 2.5 s beginning 1.5 s after feedback presentation and

udy started from 1.5 s after feedback (0.5 s after trial offset), i.e. well
e new triplet presentation (marked as trial onset in the figure).

AFZ

F5 F3 F1 FZ F2 F4 F6 

FC5 FC3 FC1 FCZ FC2 FC4 FC6

C5 C3 C1 CZ C2 C4 C6 

CP5 CP3 CP1 CPZ CP2 CP4 CP6

P5 P3 P1 PZ P2 P4 P6 

PO3 POZ PO4

Channel locations
Fig. 2. Channel location of the 39 electrodes used in this study.
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nding 4 s after feedback presentation were extracted from the
orrected data. Since triplet presentation occurred 4–6 s after
eedback presentation, the selected temporal segment is the larg-
st segment of a fixed length ending before the arrival of the next
riplet for all the trials. Since for each block, EEG recordings stop
t feedback offset of the last trial, epochs were extracted from the
rst nine trials of every block, while no data were available for the
reparation period following the last trial. Artifacted epochs were
iscarded by a semi-automatic artifact rejection procedure
threshold�80 �V). After pre-processing, on average 100 trials for
ach electrode, subject and condition were available for further
nalyses.

Control analysis. Due to the duration of the analyzed ep-
chs (2.5 s), epochs containing at least one eye movement were
elatively frequent. Although residuals of corrected eye move-
ents are unlikely to affect the results of the analyses carried out

n this study, in order to rule out any influence of eye movements
nd/or the eye movement correction algorithm on the results, a
ontrol analysis was directly performed on eye-movement-free
aw data. Epochs of 2 s beginning 2 s after feedback presentation
nd ending 4 s after feedback presentation were extracted from
he raw EEG data. As for the main analysis, epochs were ex-
racted from the first nine trials of every block. Epochs containing
oth eye movements and other artifacts detected by a semi-
utomatic artifact rejection procedure (threshold�80 �V) were
iscarded. As a result, two more subjects were discarded because
f the high rate of epoch rejection. An average of 30 artifact-free
rials for each electrode, subject and condition was available for
urther analyses.

stimation of scale-free behavior

he most intuitive way to characterize scale-free behavior of a
ime series x(t) is by looking at its temporal correlations, quantified
y its autocorrelation function:

Cx(�)�
��x(t)��x��(x(t��)��x�)�

��x(t)��x��2� . (1)

he autocorrelation function (1) is a measure of the “memory” of
he time series, indicating how much the signal x(t) depends on its
ast value � time steps before. This memory can be grossly

uantified with the correlation time T��
0

� Cx�t�dt, representing the

haracteristic time scale of the system. If T is finite, the system
oses its memory for times t��T. If however the autocorrelation
unction decays as

Cx(t)�t�� for t→� (2)

ith 0���1, then T diverges and no characteristic time scale
xists. In this case, the time series x(t) possesses long-range
cale-free correlations characterized by the scaling exponent �.
stimating � from the power-law tail of the autocorrelation function

s not the best method though, since noise and slow trends often
istort the result. Moreover, temporal correlations in EEG time series
re typically stronger than those described by Eq. 2. In this regime,
alled non-ergodic, the autocorrelation function cannot be defined
nymore because it does not converge to the ensemble average for
ach temporal lag, but randomly and widely fluctuates around the
verage (Margolin and Barkai, 2005). However, some other mea-
ures as those estimated by DFA and power spectrum analysis
PSA) may still exhibit power-law scale-free behavior.

FA

FA was introduced to characterize the scale-free behavior of
on-stationary time-series (Peng et al., 1994, 1995). We adapted

FA to our data statistics by the following three consecutive steps:
) The time series x(t) of length N is integrated:

y(t)��
t′�1

t (x(t′)��x�).

) The integrated time series is divided into segments overlap-
ping for one half of their length n (we verified that partial
overlapping, used to having better statistics for long seg-
ments, does not alter the estimate; Herzel et al., 1994). For
each segment, a least-squares line is fit to the data, repre-
senting the trend in that segment. The y coordinate of the
straight line segments is denoted by yn(t). Single-segment
residuals are then obtained by subtracting the trend yn(t) from
the integrated time series.

) The root mean square fluctuation of the residuals is com-
puted by

F(n)�� 1
2(N ⁄ n)�1�

t0
�1

n�
t�t0

t0�n

[y(t)�yn(t)]2	 (3)

where t0, denoting the beginning of each segment, increases
in jumps of n/2 along the sequence. Simulations (Peng et al.,
1994; Buldyrev et al., 1995) and analytical studies (Taqqu et
al., 1995; Heneghan and McDarby, 2000) have shown that
F(n) has the asymptotic behavior:

F(n)�n	 (4)

where 	�0.5 for processes with a finite characteristic scale,
while

	�1�
�

2
(5)

if the autocorrelation function decays like in Eq. (2) with 0���1.
One major advantage of DFA over other methods is that if the
system exhibits scale-free dynamics in the non-ergodic regime,
DFA residuals still keep the power-law behavior of Eq. (4): 	�1
for 1/f noise, and 	�1.5 for brownian noise. Since EEG time
series exhibit power-law temporal scaling with 	�1 (Watters,
1998; Lee et al., 2002), this property was crucial to our analysis.

For the main analysis, the segment length n ranged from 8 ms to
.5 s, while for the control analysis it ranged from 8 ms to 2 s. In order
o have a sufficient statistics, for every subject the single-trial mean
quare residuals were further averaged across all blocks over all
rials corresponding to the same feedback type. The critical exponent

was estimated by computing the slope of a linear least-square fit of
(n) on a log-log scale in the scaling range. As shown in the Results,

he scaling range was restricted to 156–1248 ms for the main anal-
sis, and to 156–998 ms for the control analysis.

SA

n order to compare DFA to an alternative method for the detection
f scaling, PSA was also used. The theoretic power spectrum of a
rocess x(t) is defined as

S(f )�
�
��

�

x(t)e�2
iftdt

2

(6)

he power spectrum is linked to the autocorrelation function by a
ourier transform. If the correlation time T of the process x(t) is
nite, the power spectrum S(f) tends to a finite value for f¡0. If
owever the autocorrelation function decays like in Eq. (2) with
���1, the power spectrum diverges for f¡0 as
S(f)�f�� (7)
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here

��1�� (8)

Rangarajan and Ding, 2000). The relation between � and the
xponent 	 estimated by DFA is obtained by comparing Eq. (5)
nd Eq. (8):

	�
1��

2
(9)

s DFA residuals, if the system’s dynamics is scale-free, the
ower spectrum still shows a power-law behavior in the non-
rgodic regime, corresponding to the exponent � growing larger

han 1. In fact, Heneghan and McDarby (2000) showed that PSA
nd DFA are theoretically equivalent measures. Therefore, PSA
epresents a valid alternative method to DFA to estimate the
emporal scaling of EEG time series (Pereda et al., 1998; Free-
an and Barrie, 2000; Le Van Quyen, 2003).

The power spectrum of the EEG time series was estimated by
valuating the power spectrum on every trial, and averaging
cross all trials. Single-trial power spectrum was estimated by its
eriodogram: each trial was divided in windows overlapping for
ne half of their length, the power spectrum of every window was
omputed as the square modulus of the fast Fourier transform
FFT) estimate, and the resulting values were averaged across all
indows. The length of the window was half the length of the trial.
e checked that no substantial difference emerged when using

moothing windows. As for DFA, for every subject single-trial
ower spectrum estimates were averaged across all blocks over
ll trials corresponding to the same feedback type. The critical
xponent � of Eq. (7) was then estimated by computing the slope
f a linear least-square fit of the periodogram on a log–log scale in
he scaling range. The frequency domain equivalent of the DFA
caling range was 0.8–6.4 Hz. The corresponding exponent �
ould then be computed through Eq. (8).

tatistical analysis

tatistical analysis of the difference between the scaling expo-
ents in the two experimental conditions was performed by cluster
andomization analysis (CRA) Fieldtrip software for EEG/MEG
nalysis, freely available at http://www.ru.nl/fcdonders/fieldtrip, a
tatistical method that overrides the multiple comparison problem
n comparing topographies of EEG measures (Takashima et al.,
006). In its original formulation, CRA was conceived to analyze
tatistical differences in the ERPs/fields or in the time-frequency
epresentation between two experimental conditions in EEG/MEG
xperiments. In our study, CRA on scaling exponents consisted of
wo steps: 1) A paired t-test was computed for every electrode
etween the scaling exponents of all subjects in the two condi-
ions. The t-statistics array was then thresholded at P�0.05 and
assed as an argument to a cluster-finding algorithm to find all
lusters of connected electrodes exceeding the threshold. The
luster-finding algorithm eliminates small isolated (hence physio-
ogically not plausible) clusters by setting a minimum number of
bove-threshold neighboring electrodes to belong to a cluster (set
o two in our study). 2) For every cluster, the cluster-level test
tatistics was computed as the sum of the t-statistics of every
lectrode belonging to that cluster. The null distribution (namely
he distribution of the test statistic under the null hypothesis) of the
aximum of the different cluster-level test statistics was computed
y randomly permuting the order of paired observations. P-values
or the cluster-level statistics under this distribution of the maxi-
um were then computed. These P-values represented the prob-
bility that the cluster having the maximum cluster-level statistics
elongs to the null distribution. Clusters having P-values �0.05

ere considered statistically significant in this study. r
CRA on the power spectrum was computed following the same
teps described above, with the only difference that the t-statistics
rray of step 1 had an additional dimension (frequency). Clusters
ould therefore extend over several frequency bins.

urrogate data

n order to prove DFA and PSA efficiency in estimating the scaling
xponents, surrogate time series were generated having scale-
ree dynamics with scaling exponents in the same range of those
stimated in previous studies on raw EEG brain activity (Watters,
998; Pereda et al., 1998; Lee et al., 2002; Le Van Quyen, 2003).
or the sake of simplicity, we generated dichotomic time series
aving either the value 1 or �1 at each time step. We followed the
rocedure used in Buiatti et al. (1999). The sequence yi of random
umbers uniformly distributed in the interval [0,1] was first trans-
ormed into the sequence �i defined by

�i�T� 1

yi
1⁄(��1)�1	 (10)

ith ��1. The sequence �i is characterized by the distribution
ensity �(�) given by

�(�)�(��1)
T��1

(��T)� (11)

he surrogate time series were generated from the sequence �i by
he following steps: for every i, a subsequence of n�[�i]�1 (where
...] indicates the integer part) identical 1s are added to the time series
(t), and a sign (1 or �1) is randomly assigned to the subsequence.
n the simulations, the value T�0.5 was used as in (Buiatti et al.,
999). The resulting time series consists of a sequence of laminar
egions (namely, subsequences having an identical value at all
imes) whose length has the power-law distribution of Eq. (11). In the
ange 2���3, the autocorrelation function of such time series has a
ower-law decay as in Eq. (2), where the relation between the two
xponents is ����2 (Buiatti et al., 1999). In order to check the
fficiency of DFA and PSA in estimating the temporal scaling in the
on-ergodic regime 1���2, we extended the relations between the
hree exponents, 	�(4��)/2 and ��3�� to the non-ergodic regime
���2. The physical meaning of this extension was investigated in
alashyan et al. (in press).

RESULTS

esting DFA and PSA on surrogate data

e first tested on surrogate data the efficiency of DFA
nd PSA to estimate the correct scaling with our exper-

mental data statistics. As will be shown in the next
ection, the scaling range over which scaling exponents
re estimated is restricted to the interval 156 –1248 ms.
or every value of the scaling exponent 	 between 0.7
nd 1.3, we generated 100 independent groups of 70

ime series (corresponding to the minimum number of
bservations per subject and condition in the main anal-
sis), temporally correlated with the scaling exponent 	
see Experimental Procedures), each one as long as the
xperimental trials (1250 time steps). Scaling exponents
ere estimated for each one of the 100 groups of trials
y following the same averaging and fitting procedure
escribed in the Experimental Procedures for the main
nalysis, and by using the same time and frequency

anges to compute the fit.

http://www.ru.nl/fcdonders/fieldtrip
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Results of the simulation are shown in Fig. 3. DFA
learly gives a very good estimate for every value of 	,
hile PSA tends to increasingly overestimate 	 for in-
reasing 	. Similar results (not shown) are obtained for
he statistics of the control analysis, though due to
oorer statistics, standard deviations are larger. We
herefore used DFA to estimate the scaling exponents of
he data.

A supplementary check of DFA efficiency was per-
ormed by computing DFA on the experimental data after
andomly shuffling their temporal order (this corresponds
o disrupting temporal correlations while leaving the data
istribution unaffected). As theoretically predicted in the
ase of no correlations, DFA gave an average scaling
xponent 	�0.50�0.01 (average�standard deviation
ver all electrodes, subjects and conditions), and no
tatistically significant difference between positive and
egative condition was detected (CRA gave no signifi-
ant clusters).

caling range

e investigated whether, and in which temporal range,
emporal correlations in the data exhibited power-law scal-
ng. As shown in the example of Fig. 4, DFA residuals
xhibit a different behavior at two different time ranges:
hey show no scaling in the short-time range up to about
�150 ms, while they are very well fitted by a power law for
imes t�� (the dotted line in the figure indicates the least-
quare fit to the data in the range 156–1248 ms). Scaling
xponents are generally larger than 1 for most subjects
nd electrodes, indicating a non-ergodic dynamical regime
onsistent with previously reported values (Watters, 1998;

ig. 3. Plot of the average DFA estimates and average PSA estimat

caling exponent 	 used to generate the time series. Error bars represent the s
FA clearly gives a very good estimate for every value of 	, while PSA tends
ereda et al., 1998; Lee et al., 2002). For times larger than
248 ms, the trial’s finite size causes the power-law fit to
ecome highly irregular. This is most probably due to a

ack of statistical power: only one or two residual estimates
re computed from each trial in this range. We verified that
his behavior is common to all subjects, electrodes and
onditions. For every electrode, subject and condition, we
herefore selected the range 156–1248 ms to compute the
ssociated scaling exponent.

eedback modulates the scaling exponent

FA analysis shows that feedback indeed modulates the
cale-free dynamics of the ongoing activity: as illustrated by
he slopes of the DFA residuals in the example of Fig. 5, DFA
caling exponents of the EEG signals following negative
eedback are higher than the ones following positive feed-
ack.

Fig. 6 summarizes the topography of the scaling expo-
ents and the statistical significance of feedback modula-
ion. Scaling exponents are higher in anterior regions than
n posterior ones in both conditions in a similar fashion
left-hand and central scalp of Fig. 6). The difference be-
ween the two exponents in the two conditions, though
mall compared with the exponent variability across elec-
rodes, is very coherent on wide brain areas (right scalp of
ig. 6). CRA gives a highly significant two-lobes cluster
P�0.002) composed by a middle posterior area and a left
nterior one. No other statistically significant clusters arise
rom CRA.

Scaling exponents also widely vary among subjects:
he average of the exponents over all electrodes for every

00 sets of surrogate data of the scaling exponent 	 versus the true
es over 1

tandard deviation of the mean. The segmented line represents 	�	.
to increasingly overestimate 	 for increasing 	.
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ubject fluctuates between 	�1.03 and 	�1.39. However,
eedback modulation is very coherent within every subject:
he average exponent over the significantly different elec-
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ig. 4. DFA residuals F(n) as a function of time window length n (squa
s (dashed line), relative to electrodes AFZ, FCZ, CPZ and POZ, sub

caling in the range 156–1248 ms, while at shorter and longer time sca
�1.14, 	�1.18, respectively.

ig. 5. Log–log plots of DFA residuals F(n) as a function of time windo

eedback conditions relative to electrodes AFZ, FCZ, CPZ and POZ, subject
eedback condition than in the positive feedback one.
rodes is higher for negative feedback than for positive
eedback in eight subjects out of nine, and substantially
qual in the remaining subject (Fig. 7).
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eedback does not modulate power spectrum

e investigated whether feedback also modulates the
EG power spectrum at any specific frequency band. Data
ower spectrum is characterized by a low-frequency power-

aw decrease followed by a prominent alpha peak around
0 Hz in most posterior electrodes (Fig. 8). However, no
eedback modulation is visible. CRA on all frequency
ands in the interval 0.05–90 Hz did not reveal any signif-

cant cluster in any frequency band (P�0.12), meaning no
tatistically significant difference between the two condi-
ions in the whole EEG power spectrum.

ontrolling the influence of eye movements

ue to the duration of the analyzed epochs (2.5 s), epochs
ontaining at least one eye movement (EM) were relatively
requent. Despite the fact that residuals of EM surviving the
rtifact correction algorithm are unlikely to affect the results
f the analyses carried out in this study, in order to explic-

tly rule out any influence of eye movements and/or of the
ye movement correction algorithm on the results, we

nvestigated whether: 1) feedback modulates EM; and 2)
eedback modulation of the scaling exponent is attributable
o the effect of EM.

eedback modulates eye movements

ince we were interested in the amplitude of EM, but not in
ts sign, we measured the average of the absolute value of
ertical and horizontal EM in the two conditions over all
rials. We found that EM were quite frequent within about
00 ms after screen offset (hence in the first 300 ms of the
ime window explored in the main analysis), but quite rare

ig. 6. Topography of DFA scaling exponents averaged across all
ondition. Color bars indicate the correspondence between colors an
tatistically significant cluster resulting from CRA (P�0.002), indica
ignificantly higher than positive feedback ones. The cluster compris
ndicate the difference of the averaged scaling exponents between p
ssigned to the electrodes not belonging to the cluster. For interpretat
eb version of this article.
n the rest of the period before triplet presentation. How- c
ver, vertical EM were slightly but significantly larger for
egative feedback than for positive feedback (paired t-test
n the single subject absolute value averaged over the
ime window 1.5–4 s of the main analysis, P�0.03), while
orizontal EM were not (P�0.18).

eedback modulation of scaling exponents
s independent of EM

n order to rule out the influence of EM residuals after the
rtifact correction algorithm on the feedback modulation of
he scaling exponents, we recomputed the scaling expo-
ents on the raw data after removal of all epochs contain-

ng EM (see Control Analysis in the Experimental Proce-
ures for details). In this EM-free data set, no statistical
ifference was detectable between the residual EM signals
f the two feedback conditions: paired t-test on the single
ubject absolute value averaged over the time window 2–4
of the control analysis gave P�0.4 for both vertical and
orizontal eye movements. Compared with the main anal-
sis, data statistics were substantially reduced (seven sub-

ects, an average of 30 trials per subject). However, sim-
lations on surrogate data (see first section of Results)
howed that the statistics were sufficient for a reliable
stimate of the scaling exponents by DFA. The topography
f the scaling exponents estimated from the EM-free data
et (left and middle scalp in Fig. 9) showed a very similar
istribution of both positive and negative feedback expo-
ents to the one emerging from the main analysis, the only
ifference being a decrease of the most fronto-lateral ex-
onents. The statistical analysis of the difference between
he two conditions also confirmed the results of the first
nalysis (right scalp in Fig. 9): CRA revealed a two-lobes

for positive (left-hand scalp) and negative (middle scalp) feedback
exponent values. The right-hand scalp shows the topography of the
ide brain area in which negative feedback scaling exponents are
ctrodes out of 39. Colors for the electrodes belonging to the cluster
edback and negative feedback (see color bar). A zero difference is
references to color in this figure legend, the reader is referred to the
subjects
d scaling
ting a w

es 17 ele
ositive fe
luster consisting of a left anterior and middle posterior
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rea in which scaling exponents are significantly higher
fter negative feedback than after positive feedback

ig. 7. Averages of single-subject DFA exponents over the electrodes
gray bars) refer to positive (negative) feedback condition. The averag
ubjects out of nine, and almost equal in the remaining subject.

ig. 8. Semilogarithmic plot of power spectrum as a function of frequen

o electrodes AFZ, FCZ, CPZ and POZ, subject 5. A power-law decrease at low
s evident. No clear feedback modulation is visible.
P�0.04). This cluster almost overlaps with the one
merging from the main analysis, confirming the previous

ng to the cluster showing significant feedback modulation. Black bars
nt is higher for negative feedback than for positive feedback in eight

sitive (black line) and negative (gray line) feedback conditions relative
belongi
cy for po

frequencies followed by an alpha (10 Hz) peak in FCZ, CPZ and POZ
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esult. Residual EM surviving the EM correction algorithm
ay contribute to the high values of a few fronto-lateral

caling exponents emerging from the main analysis, and
ince they are also modulated by feedback, to the signifi-
ant difference in the most frontal electrodes. However, the
arge overlap of the posterior and left anterior areas emerg-
ng from the two analyses strongly suggests that feedback

odulation on these wide regions is largely independent
rom EM.

DISCUSSION

he main finding of this study is that the scale-free tem-
oral dynamics of the brain electrical activity during a HT
ask is modulated by performance feedback: negative
eedback elicits a higher degree of temporal scaling (i.e. a
igher DFA scaling exponent) than positive feedback. We
hus showed that specific task demands modulate the
cale-free dynamics of the associated ongoing brain
ctivity.

The two feedback conditions significantly differed at
everal electrodes clustered around two main areas: a left
nterior and a middle posterior one. However, the topo-
raphic pattern of the scaling exponents was similar in the

wo conditions. This suggests that the brain activity mod-
lated by feedback is widely distributed across different
reas. This finding is consistent with the results of our
revious study (Papo et al., 2006), in which intracranial
ources of activity at various narrow-band frequencies
ere estimated in the 100–400 ms time-window following

eedback onset. Positive and negative feedback were as-
ociated to early parahippocampo-cingular sources of al-
ha oscillations, and to late partially overlapping neural

ig. 9. Topography of the DFA scaling exponents averaged across a
onditions. The right-hand scalp shows the topography of the differenc
lectrodes for which the scaling exponents are significantly differen
ignificantly higher than positive feedback ones in a wide brain area la
s assigned to the electrodes not belonging to this set.
ircuits, comprising regions in prefrontal, cingular, and h
emporal cortices, but operating at feedback-specific laten-
ies and frequencies. However, given the non-linear na-
ure of the DFA measure and the extended temporal range
n which it is performed, inferences about the sources
hould remain highly speculative. Heuristically, higher ex-
onent values for negative feedback can be explained in
he following terms: following negative feedback, subjects
ught to find a new hypothesis to test, after the previously
ested one has been falsified. Contrary to the activity fol-
owing positive feedback, subjects need to explore a po-
entially infinite space in order to select a new hypothesis
o test. To explore this space in a more efficient manner,
hey need to keep track of their previous steps. Evidence
rom statistical physics suggests that efficient random
earches under these conditions are characterized by
caling properties similar to those found in this paper
Viswanathan et al., 1999). The associated electrical brain
ctivity may then reflect this aspect by modulating the way
he system weights its own past as in the present study or
y increasing the time-span during which the signal keeps
rack of its own past. Alternatively, the modulation of the
caling exponent could reflect less specific aspects of the
ask, like task difficulty or arousal. Further studies are
eeded to investigate which aspects of such a complex
ognitive task are more relevant in modulating the scale-
ree behavior.

DFA scaling exponents, in the range 1–1.4, are com-
atible with the ones estimated in other studies using DFA
n resting ongoing EEG signals (Watters, 1998; Lee et al.,
002), as well as using PSA (the two exponents being
elated by Eq. (9)) (Pereda et al., 1998; Freeman and
arrie, 2000; Le Van Quyen, 2003). Scaling exponents are

ts for positive (left-hand scalp) and negative (middle scalp) feedback
averaged scaling exponents between the two conditions for the set of
uated by CRA (P�0.04). Negative feedback scaling exponents are
erlapping the one emerged from the main analysis. A zero difference
ll subjec
e of the

t as eval
omogeneous over the posterior half of the scalp, and
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ncrease toward the frontal areas (Fig. 6). This pattern is
ery similar in the two experimental conditions. The in-
rease of frontal exponents is unlikely to be due to EM
esidual effects since it is also present in the eye-move-
ent-free trials (Fig. 9). Previous studies did not investi-
ate the topography of the scaling exponents. Since our
tudy did not comprise a rest condition, we do not know
hether stronger temporal correlations in frontal areas are
pecific to the HT task, or more generally related to ongo-
ng brain activity.

Our results highlighted two different correlation re-
imes: while no scaling appears at short time scales, a
lear power-law scaling emerges uniformly across elec-
rodes and subjects for time windows larger than 150 ms.

similar crossover around 100 ms has been shown and
xtensively discussed in a study of spontaneous ongoing
rain activity (Hwa and Ferree, 2002). This suggests that
ifferent time ranges are characterized by separable sta-
istical properties (Varela, 1999). A different dynamical
rigin can therefore be inferred. The disruption at short
ime scales of the long-range correlations present at larger
cales could stem from the large peak around 10 Hz (Hwa
nd Ferree, 2002), which is clearly visible in our data in the
ower spectrum of several posterior electrodes (Fig. 8). An
lternative explanation has been proposed by Robinson
2003), who suggested a relationship between crossover
nd dendritic constants. However, Hwa and Ferree (2002)
ound that short time scales also showed a scaling regime
lthough with a scaling exponent that was significantly
ifferent from the long-range one. This may suggest that
he crossover around 100 ms is a general property of the
ngoing brain activity connected to the dominant alpha
hythm. On one hand, the lack of short-range scaling in our
ata may indicate that, on top of the temporal structure of
he ongoing activity, there are task/stimulus-specific neural
rocesses that disrupt scaling in the short range. On the
ther hand, the emergence of scale-free dynamics at

onger ranges may suggest that the effect of transitory
timulations is a local perturbation that does not destroy
he long-range temporal structure of the ongoing activity.
his view is reinforced by the study of Linkenkaer-Hansen
t al. (2004), who found that brief passive nerve stimula-
ions induce a decrease of the scaling exponent of long-
ange temporal correlations in alpha and beta oscillations,
ut not a disruption of the scaling.

Despite the short time range, surrogate data analysis
hows that DFA is able to estimate the correct scaling. In
ddition, the absence of feedback modulation in any spe-
ific frequency band suggests that modulation of temporal
caling is genuine, and not influenced by any process
aving a characteristic time scale.

It must be pointed out that, by comparison to previous
tudies, scaling was examined on a relatively narrow range
f time scales, though the widest allowed by the experi-
ent. This limitation is hard to bypass when investigating

he scale-free dynamics of task-related brain activity,
hich is often inherently short. However, we believe that

his limitation does not invalidate the claim of scale-free

ehavior in the range that we were able to study: a large p
umber of analogous studies on natural systems have
een performed on similarly narrow ranges but are widely
ccepted as valid, as the limitation is inherent to natural
ystems (Avnir et al., 1998).

cale-free dynamics in ongoing brain activity

he emergence of scale-free behavior in the observed
EG activity may be explained by several hypotheses.
ower-law, scale-free dynamics could simply arise as a

esult of the joint action of multiple processes, each with its
wn characteristic length. This explanation would be co-
erent with the heterogeneity of the time scales of the
ognitive processes involved in the present study.

A more sophisticated theory suggests that the brain is
n a state called critical in analogy with the behavior of
quilibrium physical systems in the neighborhood of phase
ransitions. The critical state is characterized by fluctua-
ions at all spatial and temporal scales, a phenomenon
nown as self-organized criticality (Bak et al., 1987, 1988;
aslov et al., 1994) which represents a good compromise
etween high susceptibility to perturbations and slowly
ecaying structural memory (Linkenkaer-Hansen et al.,
001; Bak et al., 1988; Linkenkaer-Hansen et al., 2004).
vidence for the differential modulation of temporal scaling
f oscillations at several frequency bands by different cog-
itive tasks (Bhattacharya and Petsche, 2001; Popivanov
t al., 2006) together with the results from the present
tudy would indicate that external stimuli can modify the
ttitude of the system to respond to task-specific demands,
nd can modulate the way the signal keeps a memory of its
wn past, redefining the value of each moment to answer
urrent task-specific needs (Hopfield and Brody, 2001).
ur results further suggest that the modulation of the

cale-free temporal dynamics of the ongoing activity can
e driven by a discrete sensory stimulus within the same
omplex cognitive task.

The statistics underlying scale-free dynamics in EEG
ignals are poorly explored, probably due to their high
on-stationarity. The link between scaling of DFA residuals
nd the statistical properties of the time series has been
roved analytically only in the classical regime of weak
haos (Taqqu et al., 1995; Heneghan and McDarby, 2000),
here the autocorrelation function decays as a power law.
owever, the behavior of DFA and PSA in the non-ergodic

egime where the autocorrelation function is not defined
nymore is not supported by a clear theoretic analysis yet.
recent study shows how non-ergodicity influences the

veraging, causing other estimation methods to fail, and
hy the scaling exponents estimated by DFA are not af-

ected by this effect (Kalashyan et al., in press).

eural correlates of reasoning

he physiological basis of scale-free behavior of ongoing
EG oscillations has been suggested to be represented by
euronal activity-dependent plasticity operating at tempo-
al scales within the scaling range, which would modify in

cumulative way the patterns of functional network con-
ectivity (Azouz and Gray, 1999). In particular, synaptic

lasticity has been proposed as a possible basis for the
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mergence of critical states of neural network’s oscillatory
ctivity (Linkenkaer-Hansen et al., 2001). The dynamical
tate of the synapse represents a transient memory buffer
f the most recent segment of spike train previously sent to
he synapse, and external stimuli may act by modulating
his sliding window into the past (Maass et al., 2002).
eedback may modulate scaling behavior by acting on
xcitatory subthreshold activity, which dominates ongoing
ctivity (Freeman and Barrie, 2000; Davidsen and Schus-
er, 2000; Tsuda, 2001), thereby varying the effective di-
ension of neuronal dynamics (Tsuda, 2001). Feedback

ould affect threshold levels, e.g. by modulating neuronal
xcitability, or the threshold dynamics of neuronal activity
Richardson et al., 2003), e.g. by modulating synaptic
oise.

At different spatial and temporal scales, feedback
ould also exert its action on tonic neuromodulatory mech-
nisms. Following Papo et al. (2003), we suggest that
ositive feedback may modulate subsequent reward-re-

ated responses by regulating tonic dopamine release,
hile negative feedback may modulate tonic noradrenaline
ctivity and the overall level of available neuronal energy,
hereby having an impact on both memory and affective
rocesses that can be activated by the system (Berridge
nd Waterhouse, 2003).

CONCLUSION

n conclusion, we have shown that the scale-free dynamics
f the brain electrical activity are modulated by perfor-
ance feedback during the preparatory period of a HT

ask. This result shows that specific cognitive demands
an modulate the long-range temporal scaling properties
f the ongoing brain activity. We believe that investigating
he modulation of long-range scale-free brain temporal
ynamics by cognitive processing is a potentially valuable
pproach to gain new insights on many complex cognitive
rocesses.

A common view in the cognitive neuroscience of higher
rain function holds that cognitive acts originate in the
ynamics of loosely coupled modules (Van Orden et al.,
003). The dynamics inside a module dominate interac-
ions with other components, and observed behavior can
e partitioned among these devices. However, the scaling
f the EEG signal indicates that the various components of
he cognitive process at study are not trivially separable
Tsuda, 2001) and that observed behavior is an emergent
roperty of coherent neuronal phenomena active in a wide
ange of intertwined, not trivially separable temporal scales
Van Orden et al., 2003). Variations in background noise
rising from the coordination of time scales represent the
ignature of the underlying cognitive process, the neural
orrelates of which are represented by neurophysiological
ctivity at all the scales characterized by similar correla-
ions, from the neuronal constants’ scale to that of ob-
erved behavior. This approach offers new possibilities to
ridge the gap between the macroscopic level of behavior
nd the complexity of brain activity, with task-related neu-

ophysiological activities unfolding at all temporal scales.
cknowledgments—We are grateful to Manuela Piazza for in-
ightful discussions and comments on the manuscript. D.P. was
upported by a Post-doctoral Fellowship of the Fondation pour la
echerche Médicale, Paris (France). This article is dedicated to
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