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Human functional imaging has identified the middle part of the intraparietal sulcus (IPS) as an important brain 

substrate for different types of numerical tasks. This area is often equated with the macaque ventral intraparietal 

area (VIP) where neuronal selectivity for non-symbolic numerical stimuli (sets of items) is found. However, the 

low spatial resolution and whole-brain averaging analysis performed in most fMRI studies limit the extent to 

which an exact correspondence of activations in different numerical tasks with specific sub-regions of the IPS 

can be established. Here we acquired high-resolution 7T fMRI data in a group of human adults and related the 

activations in several numerical contrasts (implying different numerical stimuli and tasks) to anatomical and 

functional landmarks on the cortical surface. Our results reveal a functional heterogeneity within human intra- 

parietal cortex where the retinotopic visual field maps in superior/medial parts of the IPS and superior parietal 

gyrus respond preferentially to the visual processing of concrete sets of items (over single Arabic numerals), 

whereas lateral/inferior parts of the IPS are predominantly recruited during numerical operations such as cal- 

culation and quantitative comparison. Since calculation and comparison-related activity fell mainly outside the 

retinotopic visual field maps considered the human functional equivalent of the monkey VIP/LIP complex, the 

areas most activated during such numerical operations in humans are likely different from VIP. 
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. Introduction 

The human posterior parietal cortex, especially within and around

he horizontal intraparietal sulcus (HIPS), is known to play a key role in

umerical cognition, being recruited by a variety of diverse tasks involv-

ng numerical processing ( Dehaene et al., 2003 ; Hubbard et al., 2005 ;

iazza and Eger, 2016 ; Eger, 2016 ; Knops, 2017 ). 

FMRI studies provided evidence for a rough co-localization of activ-

ty during calculation and more basic number related tasks: areas within

nd around HIPS were found to be overall activated during approximate

nd exact calculation ( Dehaene, 1999 ; Knops et al., 2009 ; Pinel and De-

aene, 2010 ; Pinel et al., 2007 ; Simon et al., 2002 ), as well as during nu-

erical comparisons, where their BOLD signal was moreover modulated

y the numerical distance of the compared numbers ( Pinel et al., 2001 ,

004 ; Ansari et al., 2006 ). A common set of IPS regions were found

ctivated when solving both non-symbolic and symbolic additions com-

ared to visually and difficulty matched control tasks ( Bugden et al.,

019 ). Independent of the execution of such numerical operations, en-

anced activity for numbers as opposed to letters or colors was also
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o a lesser extent measured in HIPS during an orthogonal target detec-

ion task ( Eger et al., 2003 ). Moreover, parietal regions were reported

o habituate to repeated presentation of the same numerical quantity

nd show numerical distance-dependent recovery of activity for deviant

umbers ( Piazza et al., 2004 ; Cantlon et al., 2006 ) to some extent even

cross formats ( Piazza et al., 2007 ; Vogel et al., 2017 ), to encode numeri-

al quantity in multi-voxel patterns of evoked activity ( Borghesani et al.,

019 ; Bulthé et al., 2014 ; Castaldi et al., 2016 , Castaldi et al., 2019 ;

avdaroglu and Knops, 2018 ; Damarla and Just, 2013 ; Eger et al., 2009 ,

015 ; Lasne et al., 2019 ) and to contain topographically organized nu-

erosity maps ( Harvey et al., 2013 ; Harvey and Dumoulin, 2017a,b ). 

Recently, two meta-analyses quantified the degree of overlap of the

arietal activations elicited by a large range of numerical tasks and con-

luded that the same regions are recruited, namely the inferior and su-

erior parietal lobules (IPL and SPL) which delimit the intraparietal sul-

us (IPS), during calculation and numerical tasks that were unrelated to

rithmetics, both in adults ( Arsalidou and Taylor, 2011 ) and in children

 Arsalidou et al., 2018 ). 
ogies in Medicine and Surgery, University of Pisa, Via S Zeno 31, Pisa, Italy. 
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FMRI studies in developmental dyscalculia showed abnormal acti-

ations of, among others, the mid-posterior parietal cortex during sym-

olic ( Mussolin et al., 2010 ) and non-symbolic ( Bulthé et al., 2019 ;

aufmann et al., 2009a ; Price et al., 2007 ) numerical comparisons, or-

inality judgements ( Kaufmann et al., 2009b ), approximate calculation

 Kucian et al., 2006 ) or simple arithmetical verification ( Iuculano et al.,

015 ; Rosenberg-Lee et al., 2015 ) in dyscalculic children with respect

o controls. While some studies found hypoactivation of the IPS in DD

hildren (e.g. Price et al., 2007 ), others found hyperactivation of this re-

ion which normalized after short term math tutoring ( Iuculano et al.,

015 ). Moreover, a meta-analysis identified the IPS as one of the areas

onsistently differing between individuals with and without dyscalculia

uring diverse number processing tasks ( Kaufmann et al., 2011 ). 

Thus, overall, at least when considered at a coarse spatial scale,

 large body of imaging work in humans suggests the existence of a

euronal substrate supporting a wide range of numerical functions (in-

luding different tasks and numerical formats) within the same gen-

ral areas, which is altered in subjects with impaired numerical skills.

evertheless, there are also reports of format-specific responses (see

okolowski et al., 2017 for a recent metanalysis), which may suggest

 subregional specialization within parietal cortex. For example, dur-

ng number comparison tasks, activity in the IPS was higher for non-

ymbolic with respect to symbolic numbers, while the reverse contrast

licited activation in the angular gyrus ( Holloway et al., 2010 ) or the

emporal parietal junction ( He et al., 2014 ). Moreover, topographically

rganized maps were found only for non-symbolic, but not for symbolic

umbers ( Harvey et al., 2013 ). 

However, what are the more precise neuroanatomical substrates or

unctional subregions of intraparietal cortex responsive to the hetero-

eneity of tasks and stimuli used to investigate numerical cognition,

emains insufficiently understood. One influential review article made

n effort in this direction, and described the location of numerical func-

ions within the context of the more general functional organization of

ntraparietal cortex by comparing human and non-human primate find-

ngs ( Hubbard et al., 2005 ). Electrophysiological studies in macaque

onkeys have recorded numerical responses of single neurons, which

istinguish between different numbers of items presented, from ventral

VIP) and lateral (LIP) intraparietal areas in macaques ( Nieder et al.,

006 ; Roitman et al., 2007 ). Hubbard et al. noted that in humans nu-

erical processing-related activation foci (for estimation, comparison

nd simple arithmetic) were found in close spatial proximity to activa-

ions elicited by visuo-tactile multisensory, grasping and saccadic eye

ovement tasks, tasks that in monkeys activate areas VIP, AIP and LIP

 Bremmer et al., 2001 ; Sereno et al., 2001 ; Simon et al., 2002 ). Based

n these colocalizations and overall similarities of the spatial arrange-

ent of the intraparietal sub-regions, the brain regions activated for

umerical tasks in humans have come to be considered the equiva-

ent of macaque VIP (and to a lesser extent, LIP). However, it is im-

ortant to note that the numerical responses considered here in hu-

ans (mostly including the execution of numerical operations) were

uite different from the ones investigated by macaque neurophysiology

preferential responsiveness to non-symbolic sample numbers during a

elayed comparison/match-to-sample task). It still remains to be con-

rmed whether at a more fine-grained level of anatomical localization

f activations, these different aspects of numerical processing recruit

dentical sub-regions in humans, and what is their precise substrate in

erms of known functionally defined areas. 

One important set of functional markers underlying the organiza-

ion of intraparietal cortex is a series of retinotopic visuals field maps

 Arcaro et al., 2011 ; Kastner et al., 2017 ; Konen and Kastner, 2008 ;

ereno et al., 2001 ; Silver et al., 2005 ; Swisher et al., 2007 ) which

an be identified by means of phase-encoded or population receptive

eld mapping. In human IPS, six such field maps have been identified

rom its most posterior to most anterior subparts, labelled IPS0 to IPS5

 Konen and Kastner, 2008 ; Silver et al., 2005 ; Swisher et al., 2007 ).

ctivity in the retinotopic visual field maps was shown to increase dur-
ng visual ( Sheremata et al., 2018 ) and auditory ( Michalka et al., 2016 )

orking memory tasks, with activity being modulated by memory load

 Sheremata et al., 2010 ). Activation patterns in these areas can repre-

ent specific features (e.g. orientation, Ester et al., 2015 ) and location

 Sprague et al., 2014 ) of a remembered target. Transiently disrupting

ctivity in these field maps, in particular in IPS2, was shown to affect

ccuracy of memory-guided saccades ( Mackey and Curtis, 2017 ), sim-

larly to what was observed in monkeys when selectively inactivating

IP ( Li et al., 1999 ), where neurons discharging during the delay period

f memory-guided saccades were found ( Gnadt and Andersen, 1988 ). In

umans the responses across intraparietal visual field map sub-regions

hange from IPS1/2, located in the posterior/medial parietal cortex,

referring saccadic eye movements, to IPS 3/4/5 preferring smooth pur-

uit eye movements ( Konen and Kastner, 2008 ), located more anteriorly

nd laterally and roughly overlapping with areas responsive to visuo-

actile stimulation ( Bremmer et al., 2001 ; Sereno and Huang, 2006 ).

hese functional properties mirror those observed in monkeys: neurons

n macaque LIP respond to saccadic eye movements ( Andersen et al.,

990 ), whereas the majority of the neurons in VIP prefer smooth pur-

uit eye-movements ( Schlack et al., 2003 ) and multisensory motion

 Avillac et al., 2005 ). Based on these similarities in the relative anatom-

cal localization and functional response properties of individual areas,

he visuals field maps in human cortex have been proposed to consti-

ute a plausible human equivalent of the macaque LIP/VIP complex

 Kastner et al., 2017 ; Konen and Kastner, 2008 ). 

Topographic numerosity maps in human cortex, where individual

oxels respond preferentially to different numbers of visual items but

ot symbolic numbers ( Harvey et al., 2013 ), were found to roughly over-

ap with the area containing retinotopic field maps. In a recent review

rticle, Harvey et al. (2017) noted that the numerosity maps in humans

ere located superior/medially in the superior parietal lobule, rather

han in the fundus of the IPS where activations for numerical compari-

on and calculation tasks usually appear to be centered. Based on these

bservations, they proposed that the neuronal circuits supporting basic

hysical quantity processing and numerical tasks, as for example com-

arison, may be distinct, and questioned the often-assumed correspon-

ence between number processing related activations in human HIPS

nd macaque VIP. However, this proposal was based on a review of

he local maxima reported across multiple studies in different groups of

ubjects, where data were in addition acquired at different spatial res-

lutions and field strengths. Group analyses in whole brain space are

ikely to insufficiently represent the precise cortical location of activa-

ion foci. They depend on the inter-subject variability of every given

ample of subjects from which they are derived, and projections of such

axima from different studies onto an average surface could reflect the

ifferent samples used, rather than true differences in activated anatom-

cal location. 

In the work reported here, we explicitly tested for the first time

ithin the same group of human subjects the idea that there exists a

egional specialization within human intraparietal cortex with separate

ubregions recruited during different aspects of numerical processing,

uch as the visual processing of concrete sets of items or digits on the

ne hand, and different numerical operations (comparison and mental

alculation), on the other hand. For a more precise anatomical localiza-

ion of activations, we exploited the enhanced resolution of ultra-high

eld (7T) fMRI in combination with extraction of the cortical surface in

ach subject. We further related the observed activations on the corti-

al surface to anatomical and functional markers derived from two at-

ases: one based on identifying the major sulci and gyri ( Destrieux et al.,

010 ), and the other based on visual topography, corresponding to the

isual field maps IPS0–5 mentioned above ( Wang et al., 2015 ). Given

he evidence in the literature for a functional correspondence between

he series of topographic maps and regions LIP and VIP, we used these

eld maps here as a means to identifying the likely human equivalent of

he macaque LIP/VIP complex independently of a numerical task. This

ndependent definition then allows us to test whether a preferential re-
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ruitment of the human equivalent of the LIP/VIP complex holds for all

r just some of the number-related functions investigated here, thereby

dvancing the understanding of how numerical processing fits into the

ore general functional architecture of human parietal cortex. 

. Methods 

.1. Subjects, data acquisition procedure and fMRI paradigms 

Sixteen healthy adult volunteers (seven males and nine females,

ean age 25 ± 2 years) with normal or corrected vision participated in

he study. The experiment was approved by the regional ethical commit-

ee (Hôpital de Bicêtre, France) and undertaken with the understanding

nd written consent of each subject. 

A SIEMENS MAGNETOM 7T scanner with head gradient insert

Gmax 80mT/m and slew rate 333T/m/s) and adapted 32-channel head

oil (Nova Medical, Wilmington, MA, USA) was used to collect func-

ional images as T2 ∗ -weighted Fat-Saturation echo-planar image (EPI)

olumes with 1.3 mm isotropic voxels using a multi-band sequence

 Moeller et al., 2010 ) ( https://www.cmrr.umn.edu/multiband/ , multi-

and [MB] = 2, GRAPPA acceleration with [IPAT] = 2, partial Fourier

PF] = 6/8, matrix = 150 × 150, repetition time [TR] = 1.75 s, echo

ime [TE] = 21 ms, echo spacing [ES] = 0.74 ms, flip angle [FA] = 65°,

andwidth [BW] = 1516 Hz/px, phase-encode direction anterior to pos-

erior). Calibration preparation was done using Gradient Recalled Echo

GRE) data. Fifty transversal slices covering the parietal and frontal cor-

ex were obtained in ascending interleaved order. At the beginning of

he scanning session, two single volumes were acquired with the pa-

ameters listed above but with opposite phase encode directions. The

ingle-band reference images of these two initial volumes were used for

istortion correction (see Data Analysis). 

Anatomical images (T1-weighted) were acquired at 1 mm isotropic

esolution using an MP2RAGE sequence (GRAPPA acceleration with

IPAT] = 3, partial Fourier [PF] = 6/8, matrix = 256 × 256, rep-

tition time [TR] = 5 s, echo time [TE] = 2.82 ms, time of inver-

ion [TI] 1/2 = 800/2700 ms, flip angle [FA] 1/2 = 4°/5°, bandwidth

BW] = 240 Hz/px). A radiofrequency absorbent jacket (Accusorb MRI,

WT Materials Inc., Passaic, NJ, USA) was used to minimize the so-

alled “third-arm ” or “shoulder ” artifacts due to regions where the

ead gradient is unable to unambiguously spatially encode the image

 Wald et al., 2005 ). The participants’ head was stabilized by padding

nd tape to prevent excessive movements. They saw the visual stimuli

ack-projected onto a translucent screen through a mirror attached to

he head coil, and responses were recorded via two buttons held in their

eft and right hands. 

In different runs participants performed either a delayed number

omparison task, or a mental arithmetic task. In the delayed number

omparison task ( Fig. 1 A), different numbers presented either in sym-

olic or non-symbolic formats were presented in random positions in-

ide a white circular region subtending ~7° of visual angle at the center

f the screen. Black Arabic digits and numbers of items were shown

ith two different fonts (Arial Rounded MT versus Times New Roman

or symbolic numbers) and shapes (circles versus triangles for non-

ymbolic numbers). The total surface area covered (number of black

ixels) was approximately equated between all non-symbolic numbers

resulting in smaller items for larger numerosities) and symbols. The im-

ge RMS contrast was equivalent between formats (RMS contrast: non-

ymbolic = 0.24, symbolic = 0.24). Other visual features were not explic-

tly controlled. A post-hoc analysis of the visual features revealed that

onvex hull was larger for non-symbolic compared to symbolic stimuli

t(14) = 155.9, p < 10 − 5 ), while the center of mass did not differ across

ormats (X-coordinates: non-symbolic = 200 ± 2, symbolic = 199 ± 3,

(14) = 0.7, p = 0.5; Y-coordinates: non-symbolic = 200 ± 3, sym-

olic = 199 ± 3, t(14) = 0.7, p = 0.5). Examples of all conditions are

hown in Fig. 1 B. 
The delayed comparison task started with brief (200 ms) presenta-

ion of a sample stimulus. Participants had to attend to the numerical

ontent of each stimulus and to hold this information in memory un-

il the following stimulus was presented (after an SOA of 10.5 s). One

econd before the onset of the following trial the fixation cross color

hanged from gray to either red or green. When red, this marked a match

rial: in that case participants had to compare the current stimulus with

he previously seen one, and respond by pressing one of the two buttons

eld by their left or right hand depending on whether they judged the

urrent stimulus as numerically larger or smaller than the previous one.

n the contrary, if the fixation cross turned green, participants only had

o update their memory with the new sample stimulus. Three different

ample numbers (digits 3, 5 or 8 or the corresponding sets of items, see

ig. 1 B for examples) were used and two possible match stimuli could

ppear in each case (2 and 5 for sample 3, 3 and 8 for sample 5, 5

nd 13 for sample 8). The presentation format (non-symbolic vs sym-

olic) always differed between a given sample and match. Analyses of

he behavioral data collected during scanning are reported in the supple-

entary material (Fig. S1). Each participant performed six 8.5 min long

uns for the delayed number comparison paradigm. Each run contained

ix sample trials and two match trials (one smaller and one larger) per

umber and format. 

In addition, all but one participant also performed a 4.9 min run

ith a mental arithmetic task ( Fig. 1 C and D) adapted from a previ-

usly published functional localizer study ( Pinel and Dehaene, 2010 ;

inel et al., 2007 ). One participant was not tested with this paradigm,

ue to a longer than usual preparation procedure at the beginning of the

ession and subsequent lack of time. In different blocks, participants ei-

her solved mental subtraction problems according to verbal instruction

as for example: “Calculez quinze moins sept ” [Calculate fifteen minus

even], see Fig. 1 C), with the first operand ranging from 10 to 19 and

he second from 2 to 9, or read mathematics-unrelated sentences (as for

xample: “Il y a beaucoup de ponts à Paris ” [There are many bridges in

aris], see Fig. 1 D). Each one of six blocks for each condition contained

en sentences, which were written in white on a black background, and

entrally presented on four successive screens (each shown for 250 ms)

eparated by a 100 ms interval within sentence and a 2700 ms interval at

he end of each sentence). Each screen presented a maximum of three

ords. Calculation and reading blocks were interleaved with baseline

eriods consisting of an additional 4 s of blank screen. 

Stimuli were presented under Matlab 9.0 using Cogent

 http://www.vislab.ucl.ac.uk/cogent.php ) or using E-Prime software. 

(A) In a delayed number comparison task, sample and comparison

timuli were briefly shown (200 ms) in either non-symbolic (sets of

tems) or symbolic (Arabic digit) format. Participants were instructed

o keep in memory the number seen in a given trial until the following

rial appeared (after 10.5 s), and to perform a numerical comparison on

ccasional match trials, marked by a change in the fixation color. Partic-

pants were asked to judge whether the number displayed in the match

rial was smaller or larger than the one seen in the previous sample trial.

B) Examples of sample stimuli. (C-D) During the mental arithmetic task,

articipants performed mental calculation (subtractions) according to

ritten verbal instructions (C) or read math unrelated sentences (D). 

. Data analysis 

Statistical parametric mapping software (SPM12, https://www.

l.ion.ucl.ac.uk/spm/software/spm12/ ) was used to motion-correct

he EPI images and to co-register them to the first single-band

eference image. EPI images were corrected for distortions in FSL

 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL ) in two steps: first we esti-

ated a set of field coefficients with the topup function from the

ingle-band reference images of the two initial volumes acquired

ith opposite phase encoding directions, and then we applied these

o all the EPI images with the apply_topup function. Freesurfer 6.0

 https://surfer.nmr.mgh.harvard.edu/ ) was used to perform cortical

https://www.cmrr.umn.edu/multiband/
http://www.vislab.ucl.ac.uk/cogent.php
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://surfer.nmr.mgh.harvard.edu/
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Fig. 1. Experimental paradigms. 
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urface reconstruction of the anatomical image and boundary based

egistration of the mean single-band reference image to each subject’s

natomy. 

The preprocessed EPI images (in subjects’ native space) were en-

ered into GLMs using SPM, for the delayed comparison task model-

ng separately 12 sample stimulus conditions (3 numbers x 2 formats

 2 stimulus sets [shapes/fonts in case of non-symbolic/symbolic for-

at]) within each run and 4 match stimulus conditions (2 formats x

 magnitudes [smaller vs larger than sample]) as stick functions (us-

ng the default of 0 duration for events) convolved with the standard

emodynamic response function. Only two regressors (calculation and

eading) modeling the onset of each sentence with a duration of 3.5 s

ere included in the GLM for the mental arithmetic task. To account for

erial auto-correlation, an AR(1) model was used and low-frequency sig-

al drifts were removed by high-pass filtering the data with a cutoff of

28 s. 

To identify the cortical areas preferentially involved in visual pro-

essing of concrete sets of items (over Arabic numerals), we contrasted

he activation elicited by non-symbolic against symbolic sample stim-

lus conditions during the delayed number comparison task (contrast

ame: ’Non-symbolic > Symbolic’). To isolate the correlates of two

ifferent numerical operations (comparison and calculation), we con-

rasted (A) the activation elicited by all match stimulus conditions

gainst all sample stimulus conditions (contrast name: ‘Comparing >

iewing’), and (B) the activation elicited while participants performed

ental subtractions against the activation elicited while reading math-

matical unrelated sentences (contrast name: ‘Calculation > Reading’).

hese three contrasts were first created in each single subject’s volume

pace and then projected onto the surface with Freesurfer 6.0. Single

ubject’s contrast maps were aligned to fsaverage and smoothed with a

-mm (FWHM) Gaussian kernel. Finally, a random-effects group analysis

as performed in the surface space. The resulting statistical maps were

hresholded at p < 0.05, corrected, using correction for multiple compar-
sons at cluster level (method based on Hagler et al., 2006 ) with cluster

orming threshold p < 0.001. 

Individual subjects’ statistical results were also projected onto their

espective cortical surfaces to qualitatively appreciate the localization of

ctivations elicited by the different contrasts with respect to the atlases-

ased region-of-interest. To quantify the degree of activation overlap

etween different pairs of contrasts at the individual subject level, and

o test whether some contrasts overlapped more than others within the

ntraparietal cortex, we then performed receiver operating characteris-

ics (ROC) analyses ( Green and Swets, 1996 ), using a similar approach

s Pinel et al. (2007) . These analyses focused on the intraparietal and

ransverse parietal sulci as defined by the Destrieux et al. (2010) atlas

s region of interest. Within this ROI, for each subject and each possible

airwise comparison between the three contrasts, the first contrast was

hresholded (at p < 0.0001, uncorrected), and considered the reference

or “ground-truth ”) against which the second contrast was compared.

he threshold of the second contrast was varied between its lowest and

ighest t-values. Comparison of the second contrast against the first at

ach of these thresholds yielded hit rates (corresponding to the propor-

ion of voxels above threshold in contrast 2 within the active voxels of

ontrast 1) and false alarm rates (corresponding to the proportion of vox-

ls above threshold in contrast 2 within the non-active voxels of contrast

), subsequently used to draw ROC curves. From the ROC curve based

n the relation between hit and false alarm rates, the area under the

urve (AUC) for each subject and contrast pair was computed. AUC can

e considered a measure of activation overlap that is as far as possible

ndependent of threshold. The difference in AUC across contrast pairs

as then tested for significance across subjects with repeated measures

NOVAs. 

As a complementary approach to single subject analysis, we com-

ared the individual activation strength (as quantified by t-values)

cross different subregions of the intraparietal cortex. For each sub-

ect, we defined regions of interest from two surface based parcellation
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Fig. 2. Visualization of regions of interest. 
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chemes: one based on the Destrieux et al. (2010) atlas, which identi-

es the major sulci and gyri based on curvature estimates ( Fig. 2 A), and

he other based on the Wang et al. (2015) atlas, which provides proba-

ilistic maps of the retinotopic visual field maps, including those from

PS0 to IPS5 ( Fig. 2 B). All ROIs were created on the Freesurfer surface

nd projected back into each subject’s volume space, where the left and

ight hemispheres were merged. 

The parietal field maps IPS0 to IPS5 derived from the

ang et al. (2015) atlas were merged into one large ROI (we re-

er to this most comprehensive region of interest as either ‘field map

OI’ or ‘IPS 0–5 complex’). As highlighted in Fig. 2 C, the field map ROI

IPS 0–5 complex, white outline) partly overlaps with several gyri and

ulci of the parietal cortex, including the Destrieux Atlas intraparietal

nd transverse parietal sulci (IPS) and the superior parietal gyrus

SPG), without fully matching any of them. We subdivided the region

urrounding the fundus of the IPS into four ROIs roughly extending

rom lateral to medial, or inferior to superior parietal lobule: 1) De-

trieux Atlas intraparietal sulcus exclusive of IPS0–5, 2) Destrieux Atlas

ntraparietal sulcus inclusive of IPS0–5, 3) Destrieux Atlas Superior

arietal Gyrus inclusive of IPS0–5, and 4) Destrieux Atlas Superior

arietal Gyrus exclusive of IPS0–5. For each subject, mean t-scores for

he different contrasts were extracted from these four ROIs, as well as

rom the entire IPS0–5 complex, and more specific ROIs correspond-

ng to its separate subparts: IPS0, IPS12 (merging IPS 1 and 2) and

PS345 (merging IPS 3, 4 and 5). As a measure of regionally specific

ontributions more independent of differences in overall activation

trength across different contrasts, for each ROI and contrast, we also

omputed the difference between the mean t-scores measured inside

nd outside each ROI (i.e. in the rest of the parietal lobe, here defined

y the union of the following Destrieux Atlas regions: Superior Parietal

yrus, Angular Part of Inferior Parietal Gyrus, Supramarginal Part of

nferior Parietal Gyrus, Postcentral Sulcus, and Intraparietal Sulcus).

ifferences in signal strength across ROIs and contrasts were tested for

ignificance with repeated measures ANOVAs. 

(A) Freesurfer anatomical parcellation according to Destrieux

t al. (2010) atlas and (B) field maps (IPS0 to IPS5) derived from the

ang et al. (2015) atlas are shown color-coded on the inflated tem-
 c  
late brain. The brain regions enclosed within the black rectangle are

hown in more detail in (C) where regions defined by the two atlases

n (A) and (B) are superimposed. The field map ROI (IPS0–5 complex,

hite outline) overlaps with the superior parietal gyrus ROI (SPG, pink

utline), the intraparietal sulcus and transverse parietal sulci ROI (IPS,

urple outline), the superior occipital sulcus and transverse occipital

ulcus ROI (blue outline) and the superior occipital gyrus ROI (green

utline). 

. Results 

To identify brain regions preferentially recruited during different

ypes of numerical processing, such as viewing and maintenance of ei-

her non-symbolic or symbolic numerical stimuli on the one hand, and

peration as numerical comparison and calculation on the other hand,

s a first step, we performed surface-based group analyses. Fig. 3 shows

he main three different contrast maps displayed on the surface of a tem-

late brain in relation to the parcellations derived from the two atlases

sed. 

Visual processing of sets of items compared to viewing Arabic digits

referentially activated both occipital-parietal and frontal regions (red

ctivations for the ‘Non-symbolic > Symbolic’ map in Fig. 3 A). More

pecifically, activations covered the superior occipital sulcus and trans-

erse occipital sulcus, intraparietal sulcus and transverse parietal sulci

IPS), superior parietal gyrus (SPG), postcentral sulcus and precentral

ulcus in the frontal cortex. Importantly, the parietal activations were

ainly localized within the field map ROI (delimited by the white out-

ines in Fig. 3 ), covering the superior/medial portion of IPS and the in-

erior part of SPG. The reverse contrast showed that symbolic numbers

licited stronger activations than non-symbolic stimuli (blue activations

n Fig. 3 A) in the angular gyrus and superior temporal sulcus. 

Explicitly performing a numerical comparison over mere viewing of

ample stimuli most strongly activated regions in the inferior/lateral

ank of IPS, outside the field map ROI (‘Comparing > Viewing’, Fig. 3 B).

ctivations for this contrast spread also more anteriorly into the post-

entral sulcus and gyrus, and the central and precentral sulci. Mental

alculation over reading also activated inferior/lateral regions of IPS
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Fig. 3. Regions within the intraparietal cortex recruited for visual processing of concrete sets of items over Arabic numerals, numerical comparison and calculation 

– group maps. 
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red activations for the ‘Calculation > Reading’ map in Fig. 3 C), while

he reverse contrast led to some minor activations in the superior tem-

oral sulcus (blue activations in Fig. 3 C). 

Overall, the surface-based group analyses revealed that while all the

ifferent contrasts targeting different components of numerical process-

ng activated areas within and around the IPS, different sub-regions

ithin this larger area were activated predominantly as a function

f the contrast: the medial/superior portion of the sulcus were most

trongly recruited for mere viewing of non-symbolic over symbolic stim-

li, whereas the most lateral/inferior regions of the sulcus were most

trongly activated for numerical operations, i.e. during numerical com-

arison or calculation. 

Activation maps from the surface-based random effects group anal-

ses ( n = 15), thresholded at p < 0.05 corrected for multiple compar-

sons at cluster level with cluster forming threshold p < 0.001. The color

ode is corresponding to voxel-level significance (i.e. each voxel in-

luded in the clusters surviving correction is displayed with its uncor-

ected significance value). (A) Activations for mere viewing of “Non-

ymbolic > Symbolic ” stimuli occurred predominantly within the field

ap ROI, while the reverse contrast showed activations in angular

yrus and superior temporal sulcus. (B) Activations for “Comparing

 Viewing ” of numbers were more pronounced in the areas outside

he field map ROI (in the intraparietal sulcus, inferiorly/laterally to

he IPS0–5 complex). (C) Activations for “Calculation > Reading ” were

ainly found in regions outside the field map ROI, while activations

or the reverse contrast occurred in superior temporal sulcus. The clus-

er summary table for each contrast is provided in Supplementary
able 1. t  
To further investigate in how far the organization of regional activa-

ions observed in the group analyses within sub-regions of intraparietal

ortex was also evident at the level of individual subjects, we conducted

urther analyses at the individual subject level. Fig. 4 A visualizes acti-

ations of three representative subjects on their corresponding cortical

urfaces (for the other subjects see Figs. S2 and S3). The topological or-

anization of activations in the parietal cortex observed in the group

nalysis is visible here also in individual subjects: the medial/superior

ub-regions of IPS and the inferior portion of SPG, comprising the field

ap ROI, were activated during simple viewing of non-symbolic over

ymbolic stimuli while comparing numbers or performing mental calcu-

ation both elicited activations within more lateral/inferior sub-regions.

(A) For each subject, t-maps for each contrast are shown on the par-

icipants’ inflated surface, thresholded at p < 0.0001, uncorrected. These

ndividual subject maps indicate a similar localization of activations

licited by different contrasts as the one observed in the group anal-

ses. The white outline represents the field map ROI (IPS 0–5 complex

orders). Maps of the other subjects are shown in Figs. S2 and S3. (B)

ctivation overlap as quantified by receiver operating characteristics

ROC) analysis. ROC curves for all possible contrast pairs are shown for

he exemplar subject 2 (S2, top panel, ROC curves for all subjects are

hown in Fig. S4). Within each given contrast pair, the first contrast

pecifies the reference, and the second the test condition for the ROC

nalysis. The bar graph (bottom panel) shows the area under the ROC

urve (AUC) averaged across subjects for all contrast pairs. Error bars

epresent the standard error of the mean. 

To quantify the degree of activation overlap between different con-

rasts within the intraparietal region of interest, we performed receiver
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Fig. 4. Regions within the intraparietal 

cortex recruited for visual processing of 

concrete sets of items over Arabic numer- 

als, numerical comparison and calculation 

- individual subjects’ maps and activation 

overlap analysis. 
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perating characteristics (ROC) analyses for all possible contrast pairs

nd subjects (see Methods section for details). An example of the result-

ng ROC curves plotting hit rate against false alarm rate for one subject

or all the different pairwise comparisons (where each given contrast

ould serve either as reference or test condition) as well as the resulting

rea under the ROC curve (AUC) averaged across subjects, are displayed

n Fig. 4 B. The AUC, which corresponds to a threshold independent mea-

ure of the overlap in activated voxels in the IPS, was most pronounced

hen the two contrasts in a pair corresponded both to numerical opera-

ions ( “Calculation > Reading ” and “Comparing > Viewing ”, plotted in

ed in Fig. 4 B). It was lower when comparing each type of numerical op-

ration contrast against the Non-symbolic > Symbolic contrast (plotted

n green and blue in Fig. 4 B). 

AUC scores obtained for the different contrast pairs were entered

nto a two-way repeated measures ANOVA with comparison type (3

evels, corresponding to the three possible unique pairs between two

f the three contrasts of interest) and direction (2 levels, reflecting the

irection of the comparison, where each given contrast could serve ei-

her as reference or test condition, for example ‘Calculation > Read-

ng – Non-Symbolic > Symbolic’ vs ‘Non-Symbolic > Symbolic - Read-

ng > Calculation’) as factors. The ANOVA confirmed a highly signif-

cant main effect of comparison type (F(1.7,23.5) = 60.7, p < 10 − 5 ). The

UC (and thus degree of activation overlap) was significantly higher

hen both contrasts in the pair corresponded to numerical operations

red conditions in Fig. 4 B), compared to the situations where one con-

rast in the pair was ‘Nonsymbolic > Symbolic’ and the other either

Calculation > Reading’ (green conditions in Fig. 4 B, F(1.0,14.0) = 33.1,
 = 0.00005) or ‘Comparing > Viewing’ (blue conditions in Fig. 4 B,

(1.0,14.0) = 192.3, p < 10 − 5 ). Although not expected, the ANOVA also

evealed a significant interaction between comparison type and direc-

ion (F(1.9,26.5) = 8.1, p = 0.002) on top of a main effect of direction

F(1.0,14.0) = 37.1, p = 0.00003). As shown in Fig. 4 B, the effect of di-

ection is most pronounced for the second and third levels (green and

lue conditions) of the comparison type factor, with AUC being higher

hen the reference condition is one of the two numerical operation con-

rasts and the test condition is ‘Non-symbolic > Symbolic’, compared

o the reverse. This difference suggests that the voxels most activated

or numerical operations are also recruited to some extent by the ‘Non-

ymbolic > Symbolic’ contrast, whereas the voxels most activated for

he ‘Non-symbolic > Symbolic’ contrast are more specifically recruited

nly for that particular contrast. 

The individual subject analyses reported so far quantified the rel-

tive degree of activation overlap between different contrast without

xplicitly considering in which sub-regions these activations occurred.

herefore, to provide some complementary information, we performed

dditional analyses comparing activations strength across several sub-

arts of the intraparietal cortex. First, we focused these ROI analyses

pecifically on parts of anatomically defined IPS and SPG that either

id or did not overlap with the entire field map ROI (IPS0–5 com-

lex) ( Fig. 5 A). The IPS0–5 complex centrally overlapped with parts of

oth IPS and SPG which further extended laterally/inferiorly and me-

ially/superiorly from the IPS0–5 complex, respectively. We therefore

xtracted the signal for the different contrasts (mean t-values across vox-

ls for each individual subject) from four ROIs defined along a lateral-
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Fig. 5. Results of ROI analyses. 
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edial gradient. Specifically, moving from the most inferior/lateral to

he most medial/superior part of the intraparietal region, we defined

he first and second ROIs along IPS, excluding or including the IPS0–

 complex, respectively, then in the third and fourth ROIs the IPS 0–5

omplex was included or excluded, respectively, from the ROIs defined

long SPG. 

Mean t-scores varied across the four ROIs depending on the con-

rast ( Fig. 5 A), as confirmed by the significant interaction between ROI

nd contrast (F(3.6,50.6) = 45.6, p < 10 − 5 ). The mean t-scores for the con-

rast ‘Non-symbolic > Symbolic’ were significantly above zero in all four

OIs (all p < 10 − 5 ), however the signal intensity varied between regions

 Fig. 5 A, white bars): mean t-values became significantly higher when

roceeding from the most lateral ROI in IPS, which did not include the

PS 0–5 complex, towards the more medial ROIs, which included the

PS 0–5 complex along IPS and SPG, respectively, and then significantly

ecreased again for the most medial ROI in SPG, in which the IPS 0–

 complex was excluded (post-hoc tests across ROIs: all significant at

 < 0.0005 at least, except for the difference between the two ROIs in-

luding the IPS 0–5 complex that was not statistically significant). On
he contrary, the mean t-scores measured for the contrast ‘Comparing >

iewing’ followed an opposite trend, being highest whenever the IPS 0–

 complex was excluded from the ROI, i.e. for the most lateral ROI along

PS and the most medial ROI along SPG, and lowest for the IPS and SPG

OIs inclusive of the IPS0–5 complex (the latter not even being signifi-

antly different from zero, Fig. 5 A, black bars, post-hoc tests across ROIs

ere all significant with p = 0.01 at least). Finally the mean t-scores for

he contrast ‘Calculation > Reading’ were highest in the most lateral ROI

efined along IPS, excluding the IPS 0–5 complex, and progressively and

ignificantly lower in the more medial ROIs, reaching a value not sig-

ificantly different from zero for the most medial ROI in SPG, excluding

PS 0–5 complex ( Fig. 5 A, gray bars, post-hoc tests for the most lateral

s the progressively more medial ROIs: p = 0.003, p = 0.0002, p < 10 − 5 ).

To detect any potential additional specializations within the entire

eld map ROI, we also compared mean t-scores for smaller subparts of it

in particular IPS0, IPS12, and IPS 345) ( Fig. 5 B). The ANOVA showed

 significant interaction between ROI and contrast (F(2.3,32.7) = 5.5

 = 0.007). The values measured for the contrast ‘Non-symbolic > Sym-

olic’ were significantly above zero in all ROIs (all p < 10 − 5 ), and signif-
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cantly higher in IPS12 and IPS345 with respect to IPS0 (post-hoc tests

cross ROIs: significant at p = 0.002 at least). The mean t-scores mea-

ured for the contrasts ‘Comparing > Viewing’ and ‘Calculation > Read-

ng’ were not significantly different from zero, except for IPS12 where

evertheless the t-scores for these contrasts were much lower than the

nes measured for the contrast ‘Non-symbolic > Symbolic’ (post-hoc

ests across tasks in IPS12: p = 0.002 and p = 0.003). 

As an alternative measure of relative regional preference more inde-

endent of the overall activation strength of each contrast, we further

omputed for each contrast the difference between the mean t-scores

easured inside each ROI and outside it in the rest of parietal cortex

 Fig. 5 C and D). Positive values indicate stronger activations inside a

iven ROI with respect to the rest of the parietal cortex, whereas neg-

tive values point at the opposite pattern. A significant interaction be-

ween ROI and contrast (F(3.7,51.9) = 43.7, p < 10 − 5 ) was confirmed also

or these measures for the four main regions of interest. For the con-

rast ‘Non-symbolic > Symbolic’, mean t-score differences were positive

nside IPS, especially when the IPS 0–5 complex was included in the

OI ( Fig. 5 C). As for the SPG ROIs, the mean t-score differences were

ositive only when including the IPS 0–5 complex, whereas excluding it

esulted in values not significantly different from zero. Regional differ-

nces were confirmed by significant post-hoc tests across ROIs inclusive

ersus exclusive of the IPS 0–5 complex (all significant at p = 0.001 at

east). For the contrast ‘Comparing > Viewing’, mean t-scores differences

ere positive in the most lateral ROI defined along IPS excluding IPS 0–5

omplex, whereas more medial ROIs along IPS and SPG showed progres-

ively more negative values (post-hoc test across ROIs all significant at

 = 0.02 at least). In the most medial ROI along the SPG, excluding the

PS0–5 complex, values were nearly zero. The mean t-score differences

or the contrast ‘Calculation > Reading’ were positive for the most lat-

ral ROI defined along IPS excluding the IPS 0–5 complex (post-hoc tests

or the most lateral vs the progressively more medial ROIs: p = 0.002,

 < 0.0001, p < 10 − 7 ), and they were not significantly different from zero

or the other more medial ROIs, except for the most medial one where

he value was negative. 

Mean t-scores for the selected ROIs corresponding to (A) anatomi-

ally defined intraparietal sulcus and superior parietal gyrus according

o Destrieux et al. (2010) masked inclusively or exclusively with IPS0–5

omplex (field map ROI) according to Wang et al. (2015) (see ROI dis-

lay on top) and (B) field map ROI overall and its smaller subdivisions.

C and D) Differences in mean t-scores for the same ROIs with respect

o the rest of parietal cortex (inside ROI-outside ROI). The ROI analy-

es confirmed a cross-over pattern: higher t-scores for “Non-symbolic >

ymbolic ” numbers (white bars) within the field map ROI with respect

o more lateral IPS areas, and higher t-scores for contrasts “Comparing >

iewing ” (gray bars) and “Calculation > Reading ” (black bars) in lateral

PS regions outside with respect to inside the field map ROI. Plots show

ean t-scores (or difference of mean t-scores) across subjects ( n = 15)

 standard error of the mean (SEM). 

Overall, the individual subject analyses confirmed a similar pattern

f regional activation preferences as the one described previously in the

roup data. They showed that at the level of individual brains, contrasts

Comparing > Viewing ” and “Calculation > Reading ” showed a larger

egree of activation overlap (as quantified by ROC analyses) between

ach other than with the “Non-symbolic > Symbolic ” contrast within the

ntraparietal region. Further analyses focusing on activation strength

ithin a set of intraparietal subregions confirmed a significant cross-

ver pattern: higher overall activations for the contrast “Non-symbolic

 Symbolic ” within the field map ROI compared to most lateral IPS or

ost medial SPG areas, as well as compared to all the rest of parietal

ortex, and higher overall activations for the contrasts “Comparing >

iewing ” and “Calculation > Reading ” in lateral IPS parts outside com-

ared to inside the field map ROI, and compared to all the rest of the

arietal cortex. Between the smaller field map ROI subdivisions a weak,

ut significant, sub-regional specialization emerged in addition: activa-

ions in IPS0 were lower than those in IPS12 and IPS345 for the contrast
 m  
Non-symbolic > Symbolic ” and IPS12 showed low but significant acti-

ations also for the contrasts “Comparing > Viewing ” and “Calculation

 Reading ”. 

. Discussion 

While previous coarse-scale quantitative meta-analyses

 Arsalidou and Taylor, 2011 ; Arsalidou et al., 2018 ) suggested an

mplication of human intraparietal cortex in a wide range of cognitive

rocesses related to numerical processing, the present study inves-

igated whether a finer-scale pattern of sub-regional specialization

or different kinds of numerical stimuli and tasks can be revealed in

hese regions when using the enhanced spatial resolution provided by

ltra-high field fMRI combined with cortical surface-based analysis in

ndividual subjects. To more precisely localize the observed activation

oci and shed new light on the way in which these are related to the

ore general functional organization of human (and more generally

rimate) intraparietal cortex, we further related activations to anatomi-

al and functional markers on the cortical surface, with the help of two

tlases based on curvature and visual topography. 

Our results showed that mere viewing of sets of items as opposed to

igits and numerical operations (explicit comparison and calculation),

ll led to activations within and around the IPS, however with clear dif-

erences across conditions and sub-regions. Viewing non-symbolic nu-

erical stimuli activated the superior/medial parts of IPS and SPG more

trongly than symbolic numbers which in turn activated more the an-

ular gyrus and superior temporal sulcus. On the other hand, operating

n the numerical information either to perform a comparison task or to

ompute the result of simple subtraction problems maximally recruited

ifferent and more inferior/lateral areas of IPS with respect to those

nvolved in visual processing of non-symbolic sample stimuli. 

Using population receptive field (pRF) mapping, Harvey et al. (2013 )

nd Harvey and Dumoulin (2017 b) described a topographically orga-

ized map of preferential responses to non-symbolic numerosities that

verlapped with the areas containing retinotopic visual field maps, even

hough not coinciding with the borders of any particular one of those

aps. The specific paradigm with extensive amount of stimulation and

ong scanning time required to perform pRF mapping reliably made it

nfeasible for us to use the same approach here. Rather, we used a more

lassical activation contrast for non-symbolic number stimuli (compared

o symbolic numbers) overall. This contrast is similar to the ones used

y some previous studies which also reported preferential activation for

on-symbolic over symbolic numerical stimuli in intraparietal regions,

ither during explicit comparison ( Holloway et al., 2010 ) or during mere

iewing and memorizing of sample stimuli ( He et al., 2014 ), the latter

ase very comparable to the situation in our study. However, due to the

elatively low spatial resolution used in those previous studies in com-

ination with averaging across subjects in whole brain space, they were

ot able to attribute these effects to specific subparts of the IPS, and

e extend their results by localizing the effects more precisely to the

uperior/medial bank of the sulcus, to a large degree in overlap with

he visual field maps. In that sense, the results obtained with our con-

rast point into the same direction as the ones obtained by Harvey et al.

2013 ) and Harvey and Dumoulin (2017 b): regions preferentially re-

ponsive to viewing of non-symbolic sets of items on the upper bank of

he IPS overlap with those showing visual topography, even though our

ontrast is likely to have recruited a somewhat wider set of regions than

arvey’s topographic numerosity maps per se. 

The current study further extends and nicely complements the re-

ults obtained by Harvey and colleagues (Harvey et al., 2013 ; Harvey and

umoulin, 2017 b), by dissociating the responses associated with view-

ng different kinds of numerical stimuli from those elicited by execut-

ng numerical operations. Congruently with previous studies using de-

ayed comparison tasks ( Cavdaroglu and Knops, 2018 ; Cavdaroglu et al.,

015 ) we observed that match trials, during which a comparison was

ade, elicited stronger signals in intraparietal areas with respect to sam-
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le trials. Once again, our analysis methods allowed us to more precisely

in down the location of these activations within the IPS than done pre-

iously and compare it to the ones observed during mere viewing. Activ-

ty during comparison over mere viewing of sample stimuli was found

ost strongly outside the IPS0–5 complex, and this part of the IPS lo-

ated inferiorly and laterally to the retinotopic visual field maps was

ost strongly activated with respect to the rest of the parietal cortex. 

The same inferior/lateral region of IPS was also more strongly ac-

ivated by calculation over reading. It is important to note that only

ubtractions were tested in the current experiment and results need not

e entirely identical for other types of arithmetical operations. Indeed,

here is evidence suggesting that the neuronal correlates of different

rithmetical operations show some heterogeneity ( Chochon et al., 1999 ;

ee, 2000 ; Dehaene et al., 2003 ; Zhou et al., 2007 ; De Smedt et al.,

011 ; Prado et al., 2011 ; Rosenberg-Lee et al., 2011 , 2014 , though see:

awashima et al., 2004 ). Neuropsychological cases of double dissocia-

ions between the ability to solve multiplications and subtractions (re-

iewed in Dehaene et al., 2003 ) have led to the suggestion that multipli-

ations may be typically solved by recalling the solution from rote verbal

emory, whereas subtractions may require actual computation based

n some sort of internal manipulation of numerical quantities on an in-

ernal number line, possibly similar to the strategy employed to solve

umerical comparisons ( Dehaene et al., 2003 ). Neuroimaging studies

n healthy subjects have reported stronger IPS activations for subtrac-

ion with respect to multiplication ( Chochon et al., 1999 ; Lee, 2000 ;

rado et al., 2011 ) or whenever a procedural strategy is used as op-

osed to fact retrieval in which case the angular gyrus is more involved

 Polspoel et al., 2017 ; Tschentscher and Hauk, 2014 ). 

In line with the idea of subtraction and comparisons involving po-

entially similar internal manipulations of quantity, we provide evidence

or an overlapping neural substrate supporting these two operations, lo-

alized in IPS in the most inferior/lateral part of the sulcus, outside the

etinotopic visual field maps which seem on the contrary more involved

n visual processing of sets of items over digits. Of course, the fact that

 given region is similarly activated during two different tasks (such as

umber comparison and calculation here) at the univariate level, does

ot necessarily imply recruitment of identical neuronal populations. In-

erestingly, one previous study using multi-voxel pattern analyses found

 significant correlation across voxels between the strength of numer-

cal distance effects measured during a number comparison task and

esponses for subtraction over multiplication in the IPS, suggesting that

he activation overlap extends to an intermediate scale of neuronal re-

ponses ( Prado et al., 2011 ). Future studies should perhaps use related

ultivariate techniques to probe the neuronal codes underlying inter-

ally computed quantities, such as those representing the outcome of a

omparison process or an arithmetical operation. Extending the current

esults to other types of arithmetical operations or to different stim-

lus formats is also an important goal that future studies should ad-

ress. Bugden et al. (2019) recently showed that overlapping IPS regions

re activated when solving either non-symbolic or symbolic additions.

ased on the current results we would expect these activations to be pre-

ominantly found in the lateral-inferior part of the intraparietal sulcus,

n overlapping locations with the one here recruited for our two types of

umerical operations. The ROC analysis performed in the current exper-

ment showed that the voxels most activated for numerical operations

re also recruited, although to a smaller extent, by the “Non-symbolic >

ymbolic ” contrast. A tentative interpretation of this unexpected result

ight consider this activation as a sort of ‘input signal’ on which calcu-

ation procedures can potentially be applied. Such ‘input signal’ might

e stronger for non-symbolic compared to symbolic stimuli potentially

ue to a difficulty effect (discussed in the following paragraphs). 

It could be argued that the activations described in the current study

ight not be specific to number processing, but rather related to asso-

iated motor responses, visual features of the stimuli or domain general

rocesses (such as visuospatial attention, memory and task difficulty).

hese factors are likely contributing to some of the activation differences
bserved in the current experiment as much as to those described in pre-

ious reviews ( Dehaene et al., 2003 ; Hubbard et al., 2005 ; Harvey et al.,

017 ) and metanalyses ( Arsalidou and Taylor, 2011 ; Arsalidou et al.,

018 ) attempting to localize numerical processing-related activation

oci during performance of numerical operations (estimation, compari-

on and simple arithmetic) in different numerical formats (non-symbolic

rrays, symbolic numbers, math related sentences). What constitutes an

ppropriate baseline condition for a numerical operation such as mental

alculation or numerical comparison is a non-trivial question on which

urrently no consensus exists in the field. 

Yet, we do not believe that factors unspecifically related to numeri-

al processing are sufficient to completely explain the entire pattern of

ctivation differences observed here and in the literature. For example,

n the current study, the contribution of motor responses to the activ-

ty elicited by the contrast ‘Comparing vs Viewing’ can hardly explain

hy these activations were located in overlapping regions along the

ntraparietal sulcus with those elicited by the contrast ‘Calculation vs

eading’, but not with those elicited by the contrast ‘Non-symbolic vs

ymbolic’, given that none of these two latter contrasts involved mo-

or responses. Low-level visual features of the stimuli (e.g. difference

n shape) are also unlikely to fully explain the activation localization

ifferences across contrasts. The visual stimuli presented in the mental

alculation paradigm, i.e. words and number words, were much differ-

nt in terms of low-level features from those used in the delayed num-

er comparison paradigm, where digits and non-symbolic arrays were

hown. Yet, activations elicited by the contrast ‘Calculation vs Reading’

verlapped with the one elicited by the contrast ‘Comparing vs View-

ng’, but not with those obtained in the contrast ‘Non-symbolic vs Sym-

olic’. While in our study non-symbolic and symbolic stimuli differed

n convex hull, a previous study using population receptive field meth-

ds found that numerosity models predicted parietal responses better

han models of responses to several non-numerical visual features, in-

luding convex hull ( Harvey and Dumoulin, 2017a ). Similarly, the pat-

ern of activity read out from similar parietal regions reflected the nu-

erical information over and above other non-numerical low-level fea-

ures, including convex hull ( Castaldi et al., 2019 ). These results suggest

hat the parietal activity within the retinotopic visual field maps is pri-

arily modulated by the numerical content of the stimuli rather than

y the stimuli’s convex hull. Task difficulty was not explicitly matched

ere and although there was no effect of format on response accuracy,

eaction times were slightly but significantly longer when comparing

on-symbolic match stimuli. However, once again, while task difficulty

ight have potentially contributed to the activation effects observed

ere for different contrasts, it can hardly completely explain the entire

attern. Using single-subject analyses, Fedorenko et al. (2013) showed

hat a large fronto-parietal network, the so-called multiple demand sys-

em ( Duncan, 2010 ), activated more for hard compared to easy condi-

ions over a wide range of tasks varying in both the content and opera-

ions evoked (including mental arithmetic, holding information in work-

ng memory, filtering and suppressing task-irrelevant information, for

erbal, numerical and visuo-spatial stimuli). The co-localization of ac-

ivity elicited by “Comparing > Viewing ” and by “Calculation > Reading ”

ight thus be interpreted in term of general task difficulty, compar-

ng and calculation supposedly being more difficult compared to view-

ng and reading, respectively. Calculation-related activations have, how-

ver, been observed by others in the IPS even when the control condi-

ions used were matched in task difficulty ( Bugden et al., 2019 ). More-

ver, an interpretation in terms of general task difficulty is not suffi-

ient to explain the regional differences across contrasts observed here,

n particular why viewing non-symbolic as opposed to symbolic stimuli

a process more difficulty in terms of RTs, see Fig. S1) activates a differ-

nt parietal sub-region with respect to calculation and comparison when

ompared with the respective easier conditions. Overall, while acknowl-

dging the fact that differences in low-level features and task difficulty

annot be formally discarded as potentially contributing to some of the
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ctivations observed here, we don’t think they are likely to explain the

omplete pattern of findings. 

An animate debate within the field of numerical cognition concerns

he question of whether the semantic meaning of numbers is represented

n a format specific or format invariant fashion ( Dehaene et al., 1998 ,

003 ; Cohen Kadosh and Walsh, 2009 ; Carey and Barner, 2019 ). As

 result, many functional imaging studies have tried to identify either

hared or distinct substrates of number processing in different formats.

hese have used a variety of approaches, from classic univariate sub-

raction designs (e.g., Holloway et al., 2010 ; Chassy and Grodd, 2012 ;

yons and Beilock, 2013 ; He et al., 2014 ) to methods focusing on within-

ategory distinction employing either fMRI adaptation or multivariate

attern analysis ( Piazza et al., 2007 ; Eger et al., 2009 ; Kadosh et al.,

011 ; Bulthé et al., 2014 ; Lyons et al., 2015 ; Lyons and Beilock, 2018 ),

eading to a range of different conclusions. A recent metanalysis of uni-

ariate activation studies found evidence for both overlapping and dis-

inct brain substrates underlying symbolic and non-symbolic number

rocessing ( Sokolowski et al., 2017 ). Addressing this precise debate was

eyond the scope of this manuscript, and although we reported some dif-

erential activations between numerical formats, our experimental con-

itions were not designed to isolate any shared semantic aspect across

ormats with specific non-numerical control conditions. The contribu-

ion of the current work is to highlight some functional heterogene-

ty between precisely defined subregions of intraparietal cortex. Future

tudies may combine the methodological approach introduced here with

ore specific and detailed contrast designs and disentangle whether

verlapping activations across formats are mainly encountered in the

ontext of a shared higher-order operation such as a quantitative com-

arison or arithmetic computation (which predominantly recruited lat-

ral IPS parts in our case), or whether they can also be observed during

ore basic types of processing (and if so, which are the precise recruited

ub-regions in that case). 

The main functional landmark in relation to which we mapped nu-

erical processing related activity here are intraparietal retinotopic

isual field maps which, as noted in the introduction, are consid-

red the likely human equivalents of the macaque LIP/VIP complex

here neurons responsive to the numerosity of non-symbolic arrays

ave been described by neurophysiological studies ( Nieder et al., 2006 ;

oitman et al., 2007 ). Identifying equivalence between areas is non-

rivial related to the fact that human parietal cortex has differentially

xpanded and is also recruited by higher-level functions that are not

resent in monkeys, such as language, sophisticated tool use and higher-

evel mathematics ( Grefkes and Fink, 2005 ; Kastner et al., 2017 ). There-

ore, the number of areas and their relative localization with respect

o IPS anatomy can show some differences across the two species, and

uggestions for correspondence should rather emphasize similarities in

haracteristic functional response properties across areas. Such tenta-

ive equivalence, based on functional similarities reviewed in the intro-

uction, has been proposed between lower-level intraparietal field maps

nd LIP, as well as higher-level visual field maps and VIP ( Kastner et al.,

017 ; Konen and Kastner, 2008 ). 

The mentioned findings led us to investigate separately IPS0, IPS12

nd IPS345 subparts here, and to consider our IPS12 and IPS345 ROIs as

ore likely corresponding to macaque LIP and VIP, respectively. How-

ver, we also note that this particular subdivision should be taken with

ome caution, as no one-to-one correspondence between individual re-

ions in the two species may exist. So far, a higher number of retino-

opic visual field maps has been described in humans than in monkeys,

nd determining the exact equivalence between regions should take

nto account multiple criteria and is still a topic of ongoing research

 Kastner et al., 2017 ). In the current study, the field map ROIs IPS12

nd IPS345 both showed higher activations with respect to IPS0 and

o the rest of parietal cortex during viewing of non-symbolic stimuli

ompared to digits, in line with the preferential neuronal responses to

on-symbolic numerical stimuli that have been described in macaque

IP and VIP. 
S
In addition, significant, although less strong, activations where also

bserved in the IPS12 ROI during numerical comparison and calcula-

ion. Some responsiveness of superior parietal regions during numerical

perations has been noticed previously (e.g. Dehaene et al., 2003 ) and

een hypothesized to reflect attentional shifts along an imaginary num-

er line. In line with this hypothesis, activity in intraparietal regions

dentified by their responsiveness to saccadic eye movements could be

ead out to train a decoder to distinguish leftward from rightward sac-

ades, and this decoder could subsequently be used to predict two dif-

erent arithmetic operations (subtraction vs addition) presumably asso-

iated with leftward as opposed to rightward shifts along the mental

umber line ( Knops et al., 2009 ). Parietal field maps including IPS2

hich carried some effect of numerical operations here have also been

mplicated in processing spatial information at a relatively abstract level

y other recent studies. Despite being defined as visual field maps, these

reas were activated during a demanding auditory short-term memory

ask when the spatial position of the auditory stimuli had to be kept in

emory ( Michalka et al., 2016 ). A role in attentional shifts along an

nternally represented space of numerical magnitude as underlying the

ctivation during numerical operations, although speculative, appears

o fit well with these other findings. 

However, beyond the minor result in IPS12, the regions most

trongly recruited during numerical operations (both comparison and

alculation) fell outside the field map ROI which we used here as in-

ependent criterion of the human equivalent of the LIP/VIP complex,

nd into more lateral/inferior portions of the IPS. A correspondence be-

ween the areas maximally recruited during these types of numerical

perations in humans and macaque regions VIP and LIP, as commonly

ssumed in the literature, therefore appears unlikely given the present

esults. Currently, it remains to some extent unclear which, if any, would

e the counterpart in the macaque monkey brain of the more lateral hu-

an IPS regions shown to be responsive to numerical operations here.

nterestingly, a functional connectivity study suggested the existence of

volutionarily novel cortical networks in humans for which no corre-

pondence in the monkeys’ brain could be identified ( Mantini et al.,

013 ). One of these networks which was in addition located within the

reas having undergone the largest degree of cortical surface expansion

etween monkeys and humans, encompassed the intraparietal cortex

ear HIPS ( Mantini et al., 2013 ), and could possibly overlap with the

peration-related activations shown here on the inferior/lateral bank of

he IPS. 

In conclusion, intraparietal cortex is confirmed to play a crucial role

n different components of numerical processing tasks, however, our

tudy revealed a sub-regional specialization where more medial versus

ore lateral parts of the intraparietal sulcus are preferentially recruited

uring mere viewing of non-symbolic (over symbolic) numerical stim-

li and numerical operations (comparison and calculation), respectively.

hile the former showed a large extent of overlap with the area con-

aining retinotopic field maps, the latter activations were predominantly

ocated outside those regions, and thus likely arise within an area that

s distinct from the human equivalent of the LIP/VIP complex. In light

f the current results it would be interesting to further investigate what

s the more comprehensive functional response profile of the potentially

uman-specific lateral intraparietal sulcus subparts, and what might be

he common computational denominator underlying different tasks re-

ruiting these regions. Finally, future studies should also test whether

he sub-regional specialization observed here in adults is already present

n children or whether this differentiation emerges during development

nd mathematical learning. 
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