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Abstract 20 

 21 

Humans and other animals base important decisions on estimates of number, and 22 

intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains 23 

debated whether an independent neuronal processing mechanism underlies this “number 24 

sense”, or whether number is instead judged indirectly on the basis of other quantitative 25 

features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended 26 

either to the numerosity or to an orthogonal dimension (average item size) of visual dot 27 

arrays. Numerosity explained a significant amount of variance in activation patterns, above 28 

and beyond non-numerical dimensions. Its representation was progressively enhanced along 29 

the dorsal visual pathway and was selectively amplified by attention when task relevant. 30 

These results reveal a dedicated extraction mechanism for numerosity that operates 31 

independently of other quantitative dimensions of the stimuli, and suggest that later stages 32 

along the dorsal stream are most important for the explicit manipulation of numerical 33 

quantity. 34 

 35 

 36 

  37 
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Introduction 38 

 39 

One largely debated theme in cognitive neuroscience is how the human brain developed 40 

the ability to perform mathematics. While mathematical skills certainly rely on the interplay of 41 

a wide range of cognitive functions (De Smedt et al., 2013; Fias, 2016; Iuculano and Menon, 42 

2018), an influential theory in the field proposes that a necessary prerequisite to develop 43 

such a sophisticated uniquely human ability resides in the ‘number sense’ (Dehaene, 1997). 44 

This is a phylogenetically ancient competence that enables humans and other animals to 45 

assess and mentally manipulate the approximate number of objects in sets. In humans the 46 

precision of the number sense (or ‘numerical acuity’, typically measured by visual number 47 

discrimination) sharpens with age and with the acquisition of formal mathematical education 48 

(Piazza et al., 2013), and correlates with arithmetical skills throughout the life-span (Halberda 49 

et al., 2008; Libertus et al., 2011, 2013; Chen and Li, 2014; Anobile et al., 2016a, 2018). 50 

Deviations from the typical developmental trend of numerical acuity can be a symptom of 51 

developmental dyscalculia (Piazza et al., 2010), a neurodevelopmental disorder that causes 52 

specific mathematical learning difficulties.  53 

The neural substrate subtending this sense of numerical quantity is thought to be shared 54 

across species and has been linked to a network of areas in the frontal and parietal cortices 55 

sensitive to changes in numerosity since very early in life (Izard et al., 2008; Hyde and 56 

Spelke, 2011; see for reviews: Cantlon, 2012; de Hevia et al., 2017). In these areas 57 

electrophysiological recordings in monkeys identified single neurons tuned to specific 58 

numerosities of visual arrays (Nieder et al., 2002; Nieder and Miller, 2004; Roitman et al., 59 

2007; Nieder, 2016) and fMRI studies in humans found activation in these areas to be 60 

modulated during quantity perception as well as during calculation (for reviews see: 61 

Arsalidou and Taylor, 2011; Eger, 2016; Piazza and Eger, 2016). While the first imaging 62 

studies in humans were limited by the low spatial resolution and univariate subtraction-based 63 

analyses, fMRI adaptation and multivariate pattern analysis methods provide higher 64 

sensitivity to finer-scale activity differences (Kourtzi and Grill-Spector, 2005; Norman et al., 65 

2006; Tong and Pratte, 2012). These methods allowed researchers to study the 66 

representation of individual numbers by recording the distance-dependent signal release 67 

from adaptation (Piazza et al., 2004), or reading out patterns of number-related activity 68 

across multiple voxels of the frontal and parietal cortex (Eger et al., 2009). Moreover, 69 

population-receptive field mapping (pRF) methods identified individual locations tuned to 70 

specific numerosities arranged in spatially organized maps in the parietal cortex (Harvey et 71 

al., 2013).  72 
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While these earlier findings mostly pointed at the key role of parietal and frontal areas in 73 

numerical representation, some recent studies found that it is possible to decode the number 74 

of items seen by the subjects from the fMRI activity patterns in early visual areas (Bulthé et 75 

al., 2014; Eger et al., 2015; Bulthé et al., 2015; DeWind et al., 2018, but see Castaldi et al., 76 

2016). Moreover, spatially organized numerosity maps were recently claimed to extend to the 77 

occipital cortex (Harvey and Dumoulin, 2017a) and early ERP components compatible with 78 

generators in early visual areas responded to variations in the numerosity of visual arrays 79 

(Park et al., 2015; Fornaciai et al., 2017; Fornaciai and Park, 2017). 80 

Several properties characterizing numerosity perception, such as being ratio-dependent 81 

(Weber’s law) and being susceptible to adaptation, led some authors to suggest that number 82 

is a “primary” visual property of the image that is directly perceived through specialized and 83 

dedicated mechanisms (Burr and Ross, 2008; Ross, 2010; Anobile et al., 2016b). However, 84 

in spite of dedicated efforts on modeling the extraction of numerosity from the visual image 85 

(Dehaene and Changeux, 1993; Verguts and Fias, 2004; Dakin et al., 2011; Stoianov and 86 

Zorzi, 2012; Morgan et al., 2014), the detailed neural processing mechanisms used by the 87 

brain to arrive at a representation of numerosity from the visual input remain little understood, 88 

and much less understood than the ones for other basic visual features such as orientation, 89 

colour, motion, etc. Numerosity is a notoriously difficult feature to study since changes in 90 

numerosity tend to be associated with changes in other quantitative features of the sets 91 

during natural viewing conditions (e.g., more items tend to occupy a larger area, or be 92 

spaced more densely), and it appears impossible to control for all of these associated 93 

quantities at the same time. For this reason, in spite of a large body of behavioural and 94 

neuroscientific work on this topic, it still remains debated whether the available evidence 95 

supports a dedicated neuronal processing mechanism for numerosity. Some have argued 96 

instead that numerosity might be judged indirectly by weighing a combination of other, non-97 

numerical, quantitative features of the stimuli (Gebuis and Reynvoet, 2012; Gebuis et al., 98 

2014; Leibovich et al., 2016). For example, numerosity can be mathematically defined as the 99 

product of density (number of items per unit of area) by field area; or by the total surface area 100 

divided by mean item size. Thus, decisions on numerical quantity could be taken merely 101 

indirectly, on the basis of representations of these non-numerical properties, without 102 

numerosity being encoded directly by perceptual systems. 103 

While this possibility is interesting, several behavioural findings argue against it: (1) the 104 

discrimination of numerosity and of one often correlated non-numerical feature (item density) 105 

follow different psychophysical laws (Anobile et al., 2016b), and (2) at least for relatively 106 

small numbers of not too densely spaced items, perceptual thresholds for numerosity 107 

discrimination are typically much smaller than the ones predicted from the thresholds for 108 
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density and field area together (Cicchini et al., 2016), making it unlikely that estimates of 109 

numerosity are based on the latter. For what concerns the neuronal level, a few recent 110 

studies have started to directly quantify the effects of non-numerical dimensions of non-111 

symbolic numerical stimuli (e.g. Park et al., 2015; Fornaciai et al., 2017; Harvey and 112 

Dumoulin, 2017b; Fornaciai and Park, 2018; DeWind et al., 2018). Those studies found that 113 

activity in earlier (occipital) or later (parietal) brain regions appeared to be linked to the 114 

numerical content of sets after taking into account effects of certain non-numerical 115 

dimensions. However, they mostly only considered the effect of one non-numerical variable 116 

at the time and compare it to that of number, without taking into account effects explained by 117 

all relevant non-numerical dimensions together. Thus, it still remains unclear to what extent 118 

activity evoked by non-symbolic numerical stimuli within early and later regions can be 119 

explained by a mechanism that encodes numerosity in itself, or by the ensemble of 120 

responses to the different non-numerical dimensions of the stimuli. 121 

Here, we implement a new approach to separate brain signals related to numerical and 122 

non-numerical quantities and test for a dedicated neuronal mechanism for extracting the 123 

numerosity of visual sets. We reasoned that the following signatures would advocate for the 124 

existence of such a mechanism: 125 

First, information on numerosity should be detectable in activity patterns after multiple 126 

important non-numerical quantities are simultaneously (and not only individually) taken into 127 

account. Second, and importantly, this information should be specifically amplified depending 128 

on whether the numerical dimension of the stimuli is task relevant. If numerosity is an 129 

independently encoded perceptual feature, it should be possible to selectively enhance its 130 

brain representation by attention, as it has been previously shown for other task-relevant 131 

primary features, such as orientation, contrast, color, direction etc. (Jehee et al., 2011; Ester 132 

et al., 2016). In other words, tasks involving selective attention to number should enhance 133 

the information about numerosity in the relevant brain areas, without affecting the level of 134 

information on associated non-numerical dimensions. In fact, we propose that the presence 135 

of such attentional amplification is a key criterion in order to identify which brain areas 136 

explicitly encode numerosity. 137 

On the contrary, if activity patterns could be entirely accounted for by the combination of 138 

responses to multiple non-numerical dimensions of the stimuli, no information specifically 139 

related to number should be found in the patterns of activity once accounting for the other 140 

(non-numerical) dimensions simultaneously. Furthermore, if numerosity was not directly 141 

encoded but only indirectly inferred from percepts of non-numerical properties, attentional 142 
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enhancement should not occur for signals related to numerosity, but if anything, only for 143 

other properties (e.g., density and field area) that can jointly define it.   144 

To test these predictions, we created a novel stimulus space to disentangle the 145 

contribution of numerical and non-numerical dimensions to brain activity patterns, and 146 

designed a task where attention is selectively directed towards either of two orthogonal 147 

quantitative dimensions of the visual array (number or item size). We exploited the enhanced 148 

sensitivity achieved by fMRI at ultra-high field (7 Tesla) and specific multivariate pattern 149 

analyses to simultaneously model and separate the contributions of the different numerical 150 

and non-numerical quantities to fine-scale activity patterns within multiple regions defined by 151 

a probabilistic atlas based on visual topography. 152 

 153 

Results 154 

 155 

We scanned twenty healthy adult volunteers while they performed two tasks on arrays of 156 

dots varying orthogonally in numerosity (6, 10, or 17 items), average item size (0.04, 0.07, or 157 

0.12 visual square degrees - vd2) and total field area (44 or 20 vd2) (Fig 1A). Participants 158 

alternated between a “number” and a “size” task in different blocks: during the “number” 159 

blocks they had to direct attention to the numerosity of each sample stimulus and keep it in 160 

memory for comparison with an occasionally following match stimulus, while during “size” 161 

blocks they performed the equivalent task on the average item size of the arrays (Fig 1B). 162 

When a match stimulus appeared (indicated by a change in color of the fixation point), 163 

participants had to decide whether the match stimulus was larger or smaller on the attended 164 

dimension than the previous sample held in memory and to respond by button press. 165 

 166 

Behavioral performance and univariate fMRI activation effects 167 

Response accuracies for comparison of match stimuli were overall high and not significantly 168 

different across tasks (86% for the number task and 85% for the average size task, t(19) = 169 

0.46, p = 0.65), suggesting that subjects attended to the correct stimulus dimension and the 170 

difficulty was on average successfully matched across tasks (Fig 2A). 171 

We started the analysis of the functional imaging data by evaluating overall regional 172 

activation effects during both tasks. Surface-based random-effects group analysis identified 173 

similar bilateral activations in the occipito-parietal and frontal cortex during both tasks for 174 
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sample stimuli against the implicit baseline (Fig 2B and 2C, thresholded at p<0.001 175 

uncorrected). To localize activity in relation to the major sulci and gyri, an anatomical brain 176 

parcellation based on the Destrieux Atlas (Fischl, 2004) was superimposed onto the activity 177 

maps. In both tasks the activity covered a wide occipito-parietal area starting from the 178 

superior occipital and transverse occipital sulci and extending throughout the intraparietal 179 

sulcus up to the post-central sulcus. The frontal activity mainly covered the superior frontal 180 

gyrus. The direct contrast of sample stimulus-related activity during the number versus the 181 

size task revealed no area with significantly stronger activation for either of the two, despite 182 

the uncorrected significance threshold (Fig 2D). Altogether, these results suggest that task 183 

difficulty was successfully matched and that under these conditions attending to different 184 

quantitative dimensions leads to equivalent overall activation of the brain regions involved in 185 

the task. Differences in overall activation level can therefore not confound the following more 186 

specific results on the within-dimension discriminability of quantitative features. 187 

 188 

Multivariate fMRI Pattern Analyses 189 

Read-out of sample numerosity is modulated by task 190 

Given that the whole brain univariate contrasts had confirmed equivalent activations 191 

across the two tasks, we further investigated, using multivariate classification, what was the 192 

degree of discriminability of activity patterns evoked by different sample numerosities across 193 

different regions of the dorsal visual stream and during the number and size task. In each 194 

subject we identified several regions of interest (ROIs) derived from a surface-based 195 

probabilistic atlas based on visual topography (Wang et al., 2015, Fig 3A). Within each 196 

region, we used an equivalent number of most activated voxels (in the orthogonal contrast 197 

‘all sample stimuli > baseline’) to train and test multivariate classifiers to discriminate 198 

between numerosities for each task. Fig 3B shows the across-subject overlap map for the 199 

included voxels which mainly highlight the foveal portion of the different ROIs, in line with the 200 

central presentation of the dot arrays. We first compared decoding accuracies in three large 201 

regions corresponding to early, intermediate and higher level areas (including areas from V1 202 

to V3, from V3AB to V7 and from IPS1 to IPS5, respectively). Then, to track the presence of 203 

information discriminative of numerosity across the dorsal visual stream more in detail, we 204 

further compared the classification accuracies across seven contiguous ROIs from V1 up to 205 

IPS345. Fig 3C shows the performance of the classifiers trained to discriminate between 206 

different numerosities as a function of task. Overall, the presented sample numerosity could 207 

be decoded in all the ROIs and during both the number and size task, however with 208 

important differences. When explicitly attending to numerosity, the classification accuracy 209 
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gradually increased across the dorsal stream (starting to be enhanced from intermediate 210 

areas, specifically from V3AB on), and was highest in parietal areas. During the size task, 211 

when attention was not explicitly directed towards the numerical aspect of the stimuli, the 212 

different numerosities were still decodable, however the classification accuracies were 213 

reduced in intermediate and higher regions, while they remained almost unchanged in early 214 

visual areas (specifically in V1, V2 and V3). 215 

The task-driven modulation of decoding accuracies across the three major ROIs is 216 

confirmed by a significant interaction between ROI and task (F(2,38) = 9.81, p = 0.0004). For 217 

the number task, the classification accuracy progressively increased from the early visual 218 

areas (slightly above 60%) to intermediate and higher level regions where it reached almost 219 

70% correct. Post-hoc tests showed that the classification accuracy increase in intermediate 220 

and higher areas with respect to early areas was very close to or clearly significant (p = 221 

0.075 and p = 0.028 respectively). During the size task, the classification accuracy in the 222 

intermediate and higher regions dropped down to 61% and 60% respectively (yet remaining 223 

highly significantly above chance in both cases, see p-values in Table 1 in Supplementary 224 

materials). The change in classification accuracy across tasks was highly significant both for 225 

the intermediate and higher areas (p = 0.001 and p = 0.00001). On the other hand, the 226 

classification accuracy in the early visual areas remained nearly constant (62%) and was not 227 

significantly modulated by task (p = 0.5). 228 

The significant interaction between ROI and task was confirmed when testing the seven 229 

individual regions (F(6,114) = 7.17, p = 0.000002). Although the post-hoc tests did not show 230 

significant differences in classification accuracies across individual ROIs, for the number task 231 

the decoding accuracies progressively increased across the visual hierarchy and varied from 232 

slightly above 60% in the primary visual areas (V1 = 62%, V2 = 62%, V3 = 61%) up to almost 233 

70% in the intermediate and higher ROIs (V3AB = 64%, V7 = 65%; IPS12 = 67%, IPS345 = 234 

67%). During the size task, decoding accuracies were much reduced in intermediate and 235 

higher regions (V3AB=58%, V7=58%; IPS12=59%, IPS345=58%, yet still significantly above 236 

chance in all ROIs, see p-values in Table 1 in Supplementary materials), while they remained 237 

almost unchanged in the primary visual areas (V1 = 61%, V2 = 62%, V3 = 60%). 238 

Accordingly, the post-hoc tests indicated that the classification accuracy in individual regions 239 

significantly changed across tasks only from V3AB on (V1: p = 0.28; V2: p = 0.83; V3: p = 240 

0.55; V3AB p = 0.0002; V7: p = 0.00003; IPS12: p = 0.00001; IPS345: p = 0.00005). 241 

In sum, multivariate classification analyses revealed that the sample numerosity 242 

presented could be read out from brain activity patterns in all ROIs tested during both tasks, 243 

although accuracy was enhanced in mid-to-higher level but not in earlier regions when 244 
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number was the attended feature. However, since in this analysis activations for all sample 245 

stimuli for a given numerosity were pooled together, the decoding performance obtained 246 

could still be partly driven by features other than numerosity per se. 247 

 248 

Multiple regression RSA to disentangle the contributions of quantitative 249 

dimensions 250 

As a critical test of whether the representations of numerical and non-numerical features 251 

of the stimuli could be dissociated across the dorsal visual stream, we performed 252 

Representational Similarity Analysis (RSA, Kriegeskorte, 2008; Kriegeskorte and Kievit, 253 

2013) which, unlike classification-based decoding, allows to assess the effect of multiple 254 

quantitative dimensions on activity patterns simultaneously. For each ROI and task, we 255 

obtained a neural representational dissimilarity matrix (neural RDM, Fig 4A) by computing 256 

the correlation distance between activation patterns for each possible pair of conditions. We 257 

then applied multiple regression analysis to test in how far the fMRI pattern dissimilarity 258 

structure could be explained by multiple predictor matrices reflecting the stimuli’s dissimilarity 259 

along several important quantitative dimensions: numerosity, average item size, total field 260 

area, total surface area and density (Fig 4B). Of note, our design orthogonally manipulating 261 

numerosity, average item size and total field area ensured that numerosity was also partly 262 

decorrelated from density and total surface area (as shown by the correlation values in the 263 

Predictor Correlation matrix, Fig 4B), allowing for a good dissociation between stimulus 264 

descriptors. By using a multiple regression approach we capitalize on the fact that the 265 

resulting beta weights reflect only the part of the variance that each one of these stimulus 266 

descriptors uniquely explained in the pattern of activity of a given ROI on top of the 267 

contribution of all the others. Indeed, by entering numerical and non-numerical dimensions 268 

together into a multiple regression, a significantly above zero beta for number would imply 269 

that the numerical information is contributing to the pattern of activity within a given ROI, over 270 

and above the contribution of the other non-numerical quantitative dimensions.  271 

Fig 5 displays the results of the estimated beta weights for various ROIs separately for the 272 

number (Fig 4A) and size tasks (Fig 4B). Beta weights for the effect of number independent 273 

of the other dimensions (black triangles) were generally positive and progressively explained 274 

the activity patterns better when proceeding from lower to higher-level regions when task 275 

relevant. The evolution of the numerical information across the visual stream was attenuated 276 

during the size task, yet betas remained significantly above zero in all regions (see p-values 277 

in Table 2 in supplementary material). Beta weights for the non-numerical dimensions (other 278 
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shapes in Fig 4) were pronounced predominantly in the earlier visual areas and, importantly, 279 

they appeared to be not clearly affected by task. 280 

 281 

Quantitative dimensions are modulated by task across ROIs to different extent 282 

To statistically test for differential modulation of the contribution of the different 283 

quantitative dimensions to activation patterns, beta weights were analyzed with repeated 284 

measure ANOVAs with ROI, task and dimension as factors. As for the classification analysis, 285 

we first focused on the three large regions corresponding to early, intermediate and higher-286 

level areas and then further on individual ROIs from V1 up to IPS345. 287 

The significant triple interaction between ROI, task and dimension confirmed that the beta 288 

weights estimated for the different dimensions were differently affected by task across ROIs 289 

(for the three large regions: F(4.42,80.40) = 3.32, p = 0.01; for the individual regions: 290 

F(24,456) = 3.06, p = 0.000002). To identify which dimension was maximally driving this 291 

effect, we quantified the changes in beta weights across ROIs and tasks for each dimension 292 

separately.   293 

 294 

Effects of the numerical dimension 295 

Beta values for number were the only ones showing a significant interaction between ROI 296 

and task, when comparing the three large subdivisions across the visual stream 297 

(F(1.35,25.61) = 5.97, p = 0.015). During the number task, betas for number were higher in 298 

intermediate and higher-level areas with respect to early visual areas (although only the 299 

former comparison was significant, p=0.04). During the size task the betas for number were 300 

significantly lower (significant difference across tasks in early: p = 0.007; intermediate: p = 301 

0.000001; higher areas: p = 0.00001) and not different across regions.  302 

When focusing on the seven individual ROIs, the interaction between ROI and task was 303 

significant (F(2.04,38.83) = 5.29, p= 0.009). Although post-hoc tests did not identify 304 

significant differences across ROIs, linear regression showed that the increase in beta 305 

weights for number across the dorsal visual stream was significant during the number task 306 

only (F(1,5) = 14.23, p = 0.01, R2 = 0.74), while during the size task betas for number were 307 

much more homogenous across ROIs (F(1,5)=2.37, p = 0.18, R2 = 0.32). Indeed the 308 

difference in beta weights between the number and size task was only minor or not 309 

significant in V1 and V2, more pronounced in V3, and highly significant from V3AB on 310 
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(difference across tasks: V1: p = 0.025; V2: p = 0.13; V3: p = 0.001; V3AB p = 0.000001; V7: 311 

p = 0.000008; IPS12: p = 0.000001; IPS345: p = 0.000112).  312 

 313 

Effects of the non-numerical dimensions 314 

Different from number, beta weights estimated for the non-numerical dimensions were not 315 

modulated by task (no significant interaction between ROIs and task, no significant main 316 

effect of task) for any of the dimensions.  317 

Independent of the task, total field area best explained activity patterns in early visual 318 

areas, while its contribution was reduced when proceeding through intermediate to higher-319 

level areas (significant main effect of ROIs: F(1.22,23.29) = 35.24, p = 0.000002; significant 320 

differences in beta weights between primary and intermediate or higher-level ROIs: p = 321 

0.000155, p = 0.000008, respectively). Beta values were highly significantly modulated also 322 

across the different individual ROIs (main effect of ROIs: F(2.11,40.11) = 32.27, p < 10-5). 323 

Indeed, activity patterns in V1, V2 and V3 were explained equally well by total field area and 324 

better than intermediate and higher regions, starting from V3AB on (all p < 0.01 at least). 325 

Total surface area also most strongly modulated pattern dissimilarity in early visual areas. 326 

The significant main effect of ROI (F(1.4,27.63) = 16.61, p = 0.000078) and the following 327 

post-hoc tests showed that beta values for this dimension in the early visual areas were 328 

significantly higher than those estimated for the intermediate (p = 0.000475) and higher-level 329 

(p = 0.000943) ROIs, independent of the task. Beta weights for total surface area were 330 

comparable in V1, V2 and V3 (no significant difference across these ROIs) and significantly 331 

higher than those of the others ROIs starting from V3AB/V7 on (significant main effect of 332 

ROI: F(3.13,59.41) = 13.27, p = 0.000001, comparisons across regions: all p < 0.01 at least).  333 

Density modulated early visual areas during the number task and both earlier and higher-334 

level areas during the size task. The main effect of ROI was significant (F(1.41,26.72) = 4.05, 335 

p = 0.04), but additional post-hoc tests did not reveal any significant difference across the 336 

three large ROIs. Also at the level of individual regions the main effect of ROI was significant 337 

(F(2.55,48.54) = 4.15, p = 0.01) and the strongest difference across ROIs emerged when 338 

comparing the lowest beta weights estimated in V3AB with those obtained in V1 (p = 0.003) 339 

and V7, IPS12 and IPS345 (p = 0.03, p = 0.01, p = 0.002). 340 

Surprisingly, effects due to average item size could not be detected in any of the ROIs 341 

tested.  342 
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In sum, while early visual areas contained independent information on multiple 343 

quantitative properties of which some explained more variance than numerosity, all regions 344 

were modulated to some extent by numerical distance over and above what was explainable 345 

by the non-numerical dimensions. Moreover, importantly, explicitly directing attention to 346 

number did enhance the representation of numerical information and did so selectively, 347 

without altering the representations of non-numerical quantities. Finally, although present 348 

starting from the earliest stages of visual analysis, the numerical information at this level was 349 

only to a minor extent modulated by task and the greatest contribution to explicit 350 

manipulation of numerical quantity was found in intermediate and higher-level regions.  351 

  352 
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Discussion 353 

 354 

Our work exploited the enhanced spatial resolution provided by ultra-high field fMRI to 355 

reveal how the human brain represents multiple quantitative dimensions of non-symbolic 356 

numerical stimuli. Furthermore, we tested whether and at what cortical level the numerical 357 

information can be represented and specifically modulated by attention independently of non-358 

numerical visual properties of the image.  359 

At the level of overall regional activity, attending to the numerosity or to the average size 360 

of the dots in the array recruited largely overlapping occipital and parietal areas, as also 361 

previously observed for perception and comparison of different types of quantities (Pinel et 362 

al., 2004; Dormal and Pesenti, 2009; Borghesani et al., 2018; for a meta-analysis on other 363 

non-numerical representations see: Sokolowski et al., 2017). Only multivariate pattern 364 

analysis could detect differences in the way information along the different dimensions was 365 

encoded as a function of task in our study. Importantly, the equal percentage of correct 366 

responses across tasks ensured that the differences detected could not be attributed to an 367 

overall unspecific difference in task difficulty. 368 

Multivariate decoding analyses showed that the sample numerosity presented could be 369 

read out from brain activity all along the visual stream, however with important differences 370 

across regions. When explicitly attended, the numerical information could be read out with 371 

gradually higher accuracy following an occipital-parietal gradient, up to a maximum level in 372 

the parietal cortices. The effect of attention strongly affected the accuracy of the numerical 373 

discrimination in intermediate and higher regions while leaving the accuracy in the early 374 

visual areas unaffected. The successful read-out of information related to numerosity from 375 

parietal cortices in the current experiment contrasts with some previous studies where fMRI 376 

signals discriminative of numerosity information could not be detected in the parietal regions 377 

(DeWind et al., 2018; Fornaciai and Park, 2018). Differences in paradigms and sensitivity of 378 

the scanners used may account for this discrepancy. Most crucially, in those studies, 379 

participants were shown with different numerosities and the task required detecting changes 380 

in the colour of the dots. Thus, participants’ attention may have not been directed to the 381 

numerosity of the visual arrays in that case, and the numerical information may have been 382 

reduced when focussing on the dots’ colour, similarly to what was observed for the size task 383 

in the current experiment. Although in the present study we could still read out numerical 384 

information even when it was irrelevant for the task, this signal may have remained 385 

undetected by less sensitive MRI scanners.  386 
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In the current study the number presented could be decoded from the earliest stages of 387 

visual processing. However, since this analysis collapsed across the non-numerical 388 

dimensions of our stimulus set it is unclear whether the information underlying successful 389 

decoding was strictly numerical, especially in earlier regions. Some previous studies have 390 

dealt with the problem of correlations between numerical and non-numerical stimulus 391 

dimensions by controlling for non-numerical features one at the time and testing for fMRI 392 

adaptation effects, or replicability of decoding performance or layouts across conditions 393 

where individual non-numerical features where controlled for (Piazza et al., 2004; Eger et al., 394 

2009; Harvey et al., 2013; Harvey and Dumoulin, 2017a; DeWind et al., 2018). When the 395 

effects of non-numerical dimensions were measured directly, this was done in some studies 396 

by computing the explained variance or classification performance for each feature in 397 

isolation and comparing it to the one for number (Harvey and Dumoulin, 2017b; Cavdaroglu 398 

and Knops, 2018), leaving open the degree to which the simultaneous contribution of several 399 

non-numerical dimensions could account for the findings (Gebuis et al., 2014). Some other 400 

previous studies have taken a different approach, by modelling jointly the effects of 401 

numerosity and two non-numerical dimensions (termed “size in area” and “spacing”) which 402 

were designed to be orthogonal to numerosity but do not necessarily constitute natural, 403 

perceptually relevant feature dimensions, but rather mathematically defined constructs 404 

(DeWind et al., 2015; Park et al., 2015; DeWind et al., 2018; Fornaciai and Park, 2018). This 405 

design also allowed the authors to estimate, from the combined beta weights of numerosity 406 

and the mentioned two orthogonal dimensions, which feature represented by different 407 

directions in their stimulus space most accounted for the effects in a given ERP component 408 

or brain area. However, brain signals can reflect a combination of responses to multiple 409 

quantitative dimensions, and this approach does not permit to distinguish, for example, a 410 

modulation by numerosity from two independent modulations by field area and density. 411 

In our study, on the contrary, we separated the contributions of numerical and non-412 

numerical stimulus dimensions by applying multiple regression to representational distance 413 

matrices which allowed us to test for the extent to which numerosity could explain the pattern 414 

of activity while taking into account simultaneously the variability explained by several 415 

important natural non-numerical features. Indeed estimating significantly above zero beta 416 

values for number implies that information about numerosity is present in the pattern of 417 

activity over and above the contributions of all the non-numerical features. We found that 418 

information specific to number was detectable beyond the information of the other 419 

dimensions, and that the numerical information was gradually enhanced when progressing 420 

along the visual stream when explicitly task relevant, and much more weakly represented, 421 

although still detectable, when not task-relevant. Importantly, the level of information on other 422 
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quantitative but non-numerical properties of the image, such as total field area, total surface 423 

area and density, although reliably detected, especially in earlier brain regions, was not 424 

altered when explicitly attending to the numerical quantity. The presence of separable 425 

contributions of the representations of numerical and non-numerical dimensions in activation 426 

patterns together with the selective attentional modulation of the numerical information 427 

provides strong evidence for a specific neuronal extraction mechanism dedicated to the 428 

property number. The fact that such specifically numerical information is found from early 429 

stages of the cortical hierarchy on, and that attentional modulation does not affect associated 430 

non-numerical quantities makes it unlikely that numerical judgements would only be made 431 

indirectly on the basis of different non-numerical features.  432 

The enhancement of numerical information in activation patterns found here when number 433 

was the relevant stimulus dimension is extending a growing body of work on the neuronal 434 

correlates of feature-based attention. Neurophysiological studies have shown that attention 435 

to basic visual features either increases the gain or sharpens responses of neuronal 436 

populations preferentially responsive to these features in different visual areas (e.g. Treue 437 

and Trujillo, 1999; McAdams and Maunsell, 2000; Reynolds et al., 2000; Martinez-Trujillo 438 

and Treue, 2004; David et al., 2008, see also: Carrasco, 2011 for a review). 439 

Correspondingly, fMRI decoding studies have found that directing attention to one feature 440 

dimension such as orientation, motion direction or color or to particular values within one 441 

given dimension improves the read-out of these features from brain activity in early sensory 442 

regions (Kamitani and Tong, 2005, 2006; Serences and Boynton, 2007; Jehee et al., 2011) 443 

but in some cases also in higher-level areas (Liu et al., 2011; Ester et al., 2016).  According 444 

to one influential account, higher-level fronto-parietal areas such as the lateral intraparietal 445 

area (LIP) implement spatial “priority maps” in which the level of activity at individual 446 

locations depends jointly on the different features of objects at these locations as well as on 447 

top-down factors such as their task relevance, associated reward, etc (Itti and Koch, 2001; 448 

Thompson and Bichot, 2005; Gottlieb, 2007; Sapountzis et al., 2018). Independent of spatial 449 

priority, LIP neurons have also been found to represent higher-level factors such as learned 450 

category membership and other non-spatial information (Freedman and Assad, 2009) and to 451 

flexibly switch between encoding of different visual features, such as color or motion, 452 

depending on the task (Toth and Assad, 2002; Ibos and Freedman, 2014). The idea of a role 453 

for intraparietal areas as mere “priority maps” or reflecting entirely flexible encoding of 454 

information on task-relevant features (without intrinsic selectivity) can insufficiently account 455 

for our results, since it would predict an equivalent amplification of the representation of 456 

average size when this is the attended feature instead of number. This is not what we 457 

observed. Our results are thus more compatible with an enhancement of the responses of 458 



16 
 

neuronal populations with intrinsic selectivity to the feature numerosity in these areas 459 

(comparable to the one observed for other features in lower-level visual regions).  460 

While the existence of individual neurons tuned to different numbers of items in 461 

intraparietal cortex is well established (Nieder and Miller, 2004; Roitman et al., 2007), the 462 

only electrophysiological study that recorded from neurons in the ventral intraparietal (VIP) 463 

cortex in macaque monkeys under changing task conditions (Viswanathan and Nieder, 2015) 464 

found that neurons encoded numerosity to the same extent, regardless of whether the task 465 

required to attend to the number or the color of the items. This differs from our results which 466 

show a clear attentional amplification of numerosity information. Given that the human IPS 1-467 

5 investigated in the current work is usually considered to be the equivalent of the macaque 468 

LIP/VIP complex (Kastner et al., 2017), the difference between results may be due to a 469 

difference across species, but differences in paradigms and in the nature of the signal 470 

recorded in the two studies make it difficult to directly relate the two findings. For example, 471 

monkeys were trained initially with the color match to sample task, then re-trained to respond 472 

to number, thus implying comparisons across an extended time period and different context, 473 

whereas our participants switched between the two tasks within the same scanning session. 474 

In addition, it is possible that the color task with a single color per stimulus and a small 475 

number of highly distinguishable alternatives placed lower demands on attentional load 476 

compared to our average size task, therefore leaving number processing unaltered. 477 

Nevertheless, as a common denominator both studies agree on pointing to some degree of 478 

spontaneous encoding of numerosity in intraparietal areas under conditions of attention to an 479 

orthogonal stimulus dimension.   480 

The gradual enhancement of numerosity information observed by us in the number task 481 

when progressing along the dorsal visual stream is compatible with a multi-stage process of 482 

the extraction of numerosity where attention may operate at multiple levels over which 483 

attentional enhancements accumulate. If numerosity information can be retrieved from 484 

multiple levels of the cortical hierarchy, this does not need to imply that this features is 485 

encoded by individual neurons at all these levels, but it may be detectable by multivariate 486 

methods even if it existed only in distributed form across the population of neurons. As one 487 

speculative interpretation, the numerical information read out from early visual areas could 488 

reflect a location map (Dehaene and Changeux, 1993), or the process of object 489 

segmentation where different individual items start to be separately represented, but this 490 

representation may not yet be in a form that is most easily read out for numerical 491 

discrimination. Higher areas may progressively transform and concentrate the initially 492 

distributed information onto individual neurons, which most likely constitute the base on 493 

which we operate when comparing numbers. This interpretation is in line with a recent study 494 
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showing that although different numerosities could be discriminated based on the pattern of 495 

activity in early visual areas and parietal cortex, the behavioral precision of numerical 496 

discrimination was correlated with the decoding accuracy only in the latter region (Lasne et 497 

al., 2018). 498 

A surprising result of the current experiment is that we could not find information about 499 

average item size in the pattern of activity in any of the regions examined, even though this 500 

feature’s perceptual discriminability was equated with the one of numerosity. This suggests 501 

that the neural mechanisms supporting average size representation may differ from those 502 

engaged during single object size analysis which has been shown to overlap partly with 503 

numerosity maps in parietal regions (Harvey et al., 2015). Mechanisms for average size 504 

perception, and in general for ensemble statistics are still unclear. It has been previously 505 

suggested that average item size perception, like density perception, may rely on texture 506 

processing mechanisms rather than individual item identification (Im and Halberda, 2013). 507 

Various regions along the ventral visual stream have been implicated in texture perception. 508 

In particular, adaptation studies have identified recovery of fMRI signal in the medial part of 509 

the posterior collateral sulcus that was selective for texture as opposed to color or shape of 510 

3D irregular objects (Cavina-Pratesi et al., 2010) and the parahippocampal place area (PPA) 511 

showed equal release from adaptation for object ensemble and surface textures, suggesting 512 

that ensembles and textures are processed similarly (Cant and Xu, 2012). It is possible that 513 

average size is also represented in the ventral stream which was not covered here, and 514 

future studies should focus on these regions to try to detect a representation of average size. 515 

What we observed, however, was that beta weights for density obtained from RSA 516 

regression became significant in the parietal regions during the size task, suggesting that 517 

texture processing mechanisms may be automatically activated during the average size task. 518 

This interpretation, however, has to remain speculative and future studies should investigate 519 

neural mechanisms relating texture, density and average size processing.  520 

In conclusion, with this study using high-resolution, high-field fMRI we provide direct 521 

neuroscientific evidence for a processing mechanism dedicated to visual numerosity which is 522 

separable from the ones underlying the processing of non-numerical quantities from early 523 

stages of cortical processing on, and independently and progressively amplified across the 524 

dorsal visual stream when numerical information is explicitly processed. An important goal for 525 

the future will be to better understand what are the processing steps and transformations 526 

occurring at the different levels of the cortical hierarchy that characterize this specific sense 527 

of numerosity, for example by comparing fMRI data against computational models simulating 528 

the visual extraction of numerosity. 529 
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 530 

Methods  531 

 532 

Subjects and MRI acquisition 533 

Twenty healthy adults with normal or corrected vision (10 males and 10 females, mean 534 

age 24 years) participated in the study. The study was approved by the regional ethical 535 

committee (Hôpital de Bicêtre, France) and all participants gave written informed consent. 536 

Functional images were acquired on a SIEMENS MAGNETOM 7T scanner with head 537 

gradient insert (Gmax 80mT/m and slew rate 333T/m/s) and adapted 32-channel head coil 538 

(Nova Medical, Wilmington, MA, USA) as T2*-weighted fat-saturation echo-planar image 539 

(EPI) volumes with 1.3 mm isotropic voxels using a multi-band sequence (Moeller et al., 540 

2010) (https://www.cmrr.umn.edu/multiband/, multi-band [MB] = 2, GRAPPA acceleration 541 

with [IPAT] = 2, partial Fourier [PF] = 7/8, matrix =120 x 150, repetition time [TR] = 2 s, echo 542 

time [TE] = 22 ms, echo spacing [ES] = 0.71 ms, flip angle [FA] = 68°, bandwidth [BW] = 543 

1588 Hz/px, phase-encode direction left>>right). Calibration preparation was done using 544 

Gradient Recalled Echo (GRE) data. Sixty oblique slices covering the occipital, parietal and 545 

partially the frontal cortex were obtained in ascending interleaved order. Before the 546 

experimental runs two single volumes were acquired with the parameters listed above but 547 

with opposite phase encode direction to be used for distortion correction in the later analysis 548 

(see Image Processing and Data Analysis). T1-weighted anatomical images were acquired 549 

at 0.8 mm isotropic resolution using an MP2RAGE sequence (GRAPPA acceleration with 550 

[IPAT] = 3, partial Fourier [PF] = 6/8, matrix = 281 x 300, repetition time [TR] = 6 s, echo time 551 

[TE] = 2.92 ms, time of inversion [TI] 1/2= 800/2700 ms, flip angle [FA]  1/2 = 4°/5°, 552 

bandwidth [BW] = 240 Hz/px,). During scanning participants wore a radiofrequency 553 

absorbent jacket (Accusorb MRI, MWT Materials Inc., Passaic, NJ, USA) to minimize so-554 

called “third-arm” or “shoulder” artifacts due to regions where the head gradient is unable to 555 

unambiguously spatially encode the image (Wald et al., 2005). Head movement was 556 

minimized by padding and tape. Visual stimuli were back-projected onto a translucent screen 557 

at the end of the scanner bore and viewed through a mirror attached to the head coil. 558 

Participants held two response buttons in their left and right hands. 559 

   560 

Stimuli and procedure 561 

https://www.cmrr.umn.edu/multiband/
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During fMRI scanning participants were centrally presented with heterogeneous arrays of 562 

dots, half black, and half white, on a mid-gray background. The generated sets of dots were 563 

orthogonally varied in number, average item size and total field area for a total of 18 564 

conditions: six, ten or seventeen dots were presented with either small, medium or large 565 

average item area (0.04, 0.07, 0.12 visual squares degree) and designed to fall within a 566 

small or large total field area (defined by a virtual circle of either about 5 or 7.5 visual degree 567 

diameter). Numbers and average item sizes were chosen to be perceptually equally 568 

discriminable based on a previous behavioral study (Castaldi et al., 2018). Total field areas 569 

were chosen so that arrays of dots could be sufficiently sparse (~1 dot/vd2) to target the 570 

‘number regime’ (Anobile et al., 2013, 2015).  571 

Within each run participants performed two tasks in different blocks, as indicated by the 572 

written task instructions provided at the beginning of each block. Instructions were shown for 573 

2 s and specified whether participants had to attend either to the number of dots (number 574 

task) or to the average item size of the dots (size task) in the array. Six seconds after the 575 

instruction a delayed comparison task started with brief presentation (500 ms) of a sample 576 

dot array stimulus. At each trial participants attended to the cued dimension of the sample 577 

stimulus and held this information in memory until the following trial was presented, knowing 578 

that a comparison response with the following trial may be required. After a variable ISI of 3.5 579 

– 5.5 s, a second dot array was presented. If the color of the fixation point remained 580 

unchanged (green), no comparison was required and participants only had to update their 581 

memory with the new sample stimulus. If instead the fixation point changed color (turning to 582 

red 1 s before the stimulus presentation) participants had to compare the current stimulus 583 

(match stimulus) with the one held in memory and decide whether the current stimulus was 584 

larger or smaller (on the attended dimension) than the previous one. Response was provided 585 

by button press and after 5.5 s the next sample stimulus was presented and the whole 586 

procedure started again. Match stimuli were designed to be ~2 JNDs larger or smaller than 587 

the previously presented sample stimulus on the attended dimension, based on each 588 

participant’s Weber fraction as measured in a behavioral test prior to the fMRI scanning, 589 

while the unattended dimension was the same as the previous sample stimulus.  590 

Twenty trials were presented in each block: one trial for each one of the 18 sample 591 

stimulus conditions (3 numerosity x 3 sizes x 2 total field areas) and two match trials. The 592 

hands assigned to either the ‘smaller’ or ‘larger’ response were inverted in the middle of the 593 

scanning session, i.e. after the third run, and counterbalanced across subjects. Within the 594 

scanning session participants performed six runs of ~7 min and 44 s. Each run included four 595 

blocks where the two tasks alternated. The type of task with which the run started was 596 

balanced across runs and participants. 597 
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To measure their numerical and average size acuity, participants performed a behavioral 598 

test prior to the fMRI scanning. In different sessions participants were shown two consecutive 599 

centrally presented arrays of dots and were required to perform a discrimination task on the 600 

attended dimension (either numerosity or average item size) by pressing the left or the right 601 

arrow (to choose the first or the second stimulus respectively). The set of stimuli used 602 

included arrays of 5,7,9,11,15 and 20 dots (ratios 0.5, 0.7, 0.9, 1.1, 1.5 and 2 with respect to 603 

the reference of 10 dots) that could be displayed with the average dot areas of 0.05, 0.06, 604 

0.08, 0.11, 0.15 and 0.2 visual square degrees (ratios 0.5, 0.6, 0.8, 1.1, 1.5 and 2 with 605 

respect to the reference of 0.1 visual square degrees). Dots were randomly drawn within two 606 

possible virtual circles of ~5.8 and 7.6 visual degrees diameter. Reference and test stimuli 607 

could appear either as first or as second stimulus. After task instructions and twelve practice 608 

trials, participants performed three sessions of one task and three sessions of the other, with 609 

counterbalanced order across subjects. For each task participants performed a total of 432 610 

comparisons (6 numerosities x 6 average item sizes x 2 total field areas x 2 presentation 611 

order x 3 sessions). To quantify participants’ precision in number and size judgments, we 612 

computed the JND for each task. The percentage of test trials with “greater than reference” 613 

responses was plotted against the log-transformed difference between test and reference 614 

and fitted with a cumulative Gaussian function using Psignifit toolbox (Schütt et al., 2016). 615 

The difference between the 50% and the 75% points yielded the JND. 616 

Stimuli and paradigms were generated and presented under Matlab 9.0 using 617 

PsychToolbox routines (Brainard, 1997). 618 

 619 

Image Processing and Data Analysis 620 

EPI images were motion-corrected and co-registered to the first single band reference 621 

image using statistical parametric mapping software (SPM12, 622 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  The single-band reference images of the 623 

two initial volumes acquired with opposite phase encode directions served to estimate a set 624 

of field coefficients using topup in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), which was 625 

subsequently used to apply distortion correction (apply_topup) to all EPI images. Cortical 626 

surface reconstruction and boundary based registration of single band reference images to 627 

each subject’s cortical surface, as well as a minimal amount of surface constrained 628 

smoothing (FWHM = 1.5 mm) for noise reduction were performed in Freesurfer 629 

(https://surfer.nmr.mgh.harvard.edu/).  630 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://surfer.nmr.mgh.harvard.edu/
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The preprocessed EPI images (in subjects’ native space) were entered into a general 631 

linear model separately modeling the effects of the 36 sample conditions (3 numerosities x 3 632 

average item sizes x 2 total field areas x 2 tasks, within each run the two repetitions for each 633 

condition were pooled together), the match stimulus separately for left and right hand and the 634 

written instructions at the beginning of the block as stick functions (using the default of 0 635 

duration for events) convolved with the standard hemodynamic response function. The six 636 

motion parameters were included in the GLM as covariate of no interest. An AR(1) model 637 

was used to account for serial auto-correlation and low-frequency signal drifts were removed 638 

by a high-pass filter with a cutoff of 192 s. In each subject we contrasted the activation 639 

elicited by: all the sample stimuli during the number tasks against the implicit baseline 640 

(contrast name: ‘Judge Number > Baseline’); all the sample stimuli during the size tasks 641 

against the implicit baseline (contrast name: ‘Judge Size > Baseline’); all the sample stimuli 642 

during the number tasks against all the sample stimuli during the size tasks (contrast name: 643 

‘Judge Number > Judge Size). After creating the contrasts in each single subject’s volume 644 

space, the contrast images were projected onto the surface with Freesurfer, aligned to 645 

fsaverage and smoothed with a 3-mm fwhm Gaussian kernel. The second-level group 646 

analysis was then performed in the surface space.  647 

The beta estimates for the sample stimulus conditions from the first-level analysis (1 beta 648 

estimate per run and condition) were entered into pattern recognition analysis. In each 649 

subject we defined anatomical regions of interest (ROIs) derived from a surface based 650 

probabilistic atlas (Wang et al., 2015) where regions are defined based on retinotopy. ROIs 651 

for V1 to IPS5 were created on the Freesurfer surface and projected back into each subject’s 652 

volume space. For each ROI we merged the left and right hemisphere. ROIs were further 653 

merged into three large ROIs corresponding to early (V1 to V3), intermediate (V3A, V3B and 654 

V7, also known as IPS0) and higher-level (IPS 1 to IPS5) areas. In addition we focused the 655 

analysis on individual regions: V1, V2, V3, V3AB (merging V3A and V3B), V7, IPS12 656 

(merging IPS 1 and 2), IPS345 (merging IPS 3, 4 and 5). Within each one of these bilateral 657 

regions we selected on a subject-by-subject basis an equal number of 800 voxels that 658 

responded most strongly to the orthogonal contrast ‘all sample stimuli > baseline’ for pattern 659 

recognition analysis. To evaluate the degree of spatial consistency of the selected voxels 660 

across subjects we created an overlap map with Freesurfer (Fig 3B): single subjects’ ROIs 661 

were aligned to fsaverage and the number of subjects for which a given location was 662 

included in their specific ROI was represented by a heat map (with yellow color meaning that 663 

a given location was selected in all subjects).  664 

Pattern classification analysis was performed in scikit-learn (Pedregosa et al., 2011) using 665 

beta estimates after subtracting the voxel-wise mean across conditions by applying linear 666 
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support vector machines (SVM) with regularization parameter C=1. Classification analysis 667 

was performed leaving patterns of one run out at each loop of the 6-fold cross-validation 668 

cycle. This implies that classifiers were trained on five betas per condition and tested with the 669 

left out beta images (one per condition). The classification accuracies obtained for each cycle 670 

were then averaged together. Pairwise classification was performed for all pairs of 671 

numerosities collapsing across the size and total field area dimensions, but keeping patterns 672 

separated by task. Classification accuracy was then averaged across all pairs of 673 

numerosities for each task. A one-sample t-test against the theoretical chance level of 50% 674 

was performed to evaluate significance of discrimination. Repeated measures ANOVAs 675 

where then performed on classification accuracies with ROI and task as factors. 676 

For representational similarity analysis (RSA, Kriegeskorte, 2008; Kriegeskorte and Kievit, 677 

2013) the GLM was performed concatenating the runs and obtaining one single beta per 678 

condition, task and subject. Comparable to the procedure of the pattern classification 679 

analysis, voxel-wise scaling was applied by subtracting the mean across conditions. Neural 680 

representational dissimilarity matrices (neural RDMs) for each task and ROI were created by 681 

computing the correlation distance (1  – the Pearson correlation across voxels) between 682 

activity patterns associated with all possible pairs of conditions using CoSMoMVPA Toolbox 683 

(Oosterhof et al., 2016). The neural RDMs were then entered in a multiple regression with 684 

five predictors corresponding to matrices encoding the distance on a logarithmic scale for the 685 

different quantitative dimensions defining the dot arrays: number, average item size, total 686 

field area, total surface area and density. In the multiple regression analysis all distance 687 

matrices were z-transformed before estimating the regression coefficients. The obtained beta 688 

weights for each dimension and ROI were tested with one-sample t-tests against zero across 689 

subjects. The effects of ROI, dimension and task were analyzed with repeated measures 690 

ANOVAs.  691 
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Figures  914 

 915 

Fig 1 Stimulus set and design for the fMRI experiment 916 

 (A) Example of the full set of stimulus conditions. Arrays of six, ten or seventeen dots were 917 

created with three average item areas (0.04, 0.07 and 0.12 visual degree2) and displayed 918 

within two total field areas, enclosed by imaginary circles of 5° (TFA 1) and 7.5° (TFA 2) 919 

diameter. (B) Illustration of the trials’ temporal presentation and paradigm during scanning. At 920 

the beginning of each block, written instructions informed participants about the dimension to 921 

attend: either the numerosity or the average size of the dots arrays. Participants were 922 

instructed to keep in memory the relevant dimension of each sample trial until the following 923 

trial was shown (after a variable time interval of 3.5 - 5.5 s). The color of the fixation point in 924 

the upcoming trial provided further instruction: if it remained green, participants had to update 925 

their memory with the new stimulus (new sample trial), while if it turned red, participants had 926 

to compare the current stimulus (match trial) with the one kept in memory, and to indicate by 927 

button press whether the match stimulus was larger or smaller than the sample on the 928 

attended dimension. After the response a new sample stimulus appeared after at least 8 929 

seconds. FMRI analyses focused on activity evoked by sample stimuli only.  930 

 931 

 932 
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933 
Fig 2 Behavioral performance during scanning and univariate effects of task 934 

 935 

(A) The percentage of correct responses to match stimuli for the two tasks performed during 936 

scanning shows that task difficulty was successfully matched. (B-D) Statistical results 937 

obtained from the surface based group analysis (n=20). The maps show the activation 938 

elicited for all sample trials during the number task (B) and the size task (C) when contrasted 939 

against the implicit baseline and against each other (D). Activation maps are thresholded at 940 

p<0.001, uncorrected for multiple comparison, and displayed on Freesurfer’s fsaverage 941 

surface with outlines identifying the major sulci and gyri based on the Destrieux Atlas.  942 

  943 



31 
 

 944 

 945 

 946 

Fig 3 ROI localization and results of multivariate classification for discrimination between 947 

numerosities as a function of the task 948 

(A) Color-coded ROIs defined by the probabilistic atlas are shown on the inflated brain 949 

template. (B) Across-subject overlap map of the most activated voxels in the contrast all 950 

sample>baseline. For each subject the most activated voxels were selected from each ROI 951 

(outlines) and hemisphere and the color map shows the number of subjects for which a given 952 

location was selected. (C) Sample numerosities could be classified significantly above 953 

chance across all the combined (left side) and individual (right side) ROIs, both during the 954 

number (white bars) and size (gray bars) task. The classification performance is strongly 955 

modulated by task only in the intermediate and higher-level ROIs, starting from V3AB on, but 956 

not in the early areas (V1, V2 and V3). Results show mean classification accuracy across 957 

subjects (n=20)  standard error of the mean (SEM).   958 

 959 

 960 

 961 
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 963 

Fig 4 Schematic Illustration of Representational Similarity Analysis  964 

Neural representational dissimilarity matrices (RDM) derived from fMRI were entered in a 965 

multiple regression where predictors corresponded to five matrices describing the 966 

dissimilarities across stimulus conditions along numerical and non-numerical dimensions. (A) 967 

Example neural RDM, quantifying the correlation distance (1 – Pearson correlation) between 968 

the patterns of activity elicited by all possible pairs of stimulus conditions across voxels within 969 

a given ROI (matrix scaled between 0 and 1 for visualization purposes). Each cell represents 970 

the correlation distance between activity patterns associated with a given pair of stimulus 971 

conditions (relatively lower values indicate more similar, and higher values more dissimilar 972 

patterns, respectively). (B) The five dissimilarity matrices used as predictors in the multiple 973 

regression analysis represent the logarithmic distance between pairs of stimuli in terms of 974 

number, average item size, total field area, total surface area and density (all matrices scaled 975 

between 0 and 1 for visualization purposes). The correlation across these five predicted 976 

matrices is shown in the ‘predictor correlation’ matrix. The orthogonal combination of number 977 

(N), average item size (S) and total field area (TFA) levels in our design ensured that number 978 

was also partially de-correlated from total surface area (TSA) and density (D). 979 
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 980 

Fig 5 Results of the Representational Similarity Analysis  981 

Beta weights obtained from the RSA multiple regression analysis for number (black 982 

triangles), average item size (circles), total field area (TFA, diamonds), total surface area 983 

(TSA, squares) and density (red triangles) for the number (A) and size (B) task. While the 984 

fMRI pattern dissimilarity in early visual areas reflected contributions of multiple properties 985 

(TFA, density, TSA, but also number on top of these), when attending to number (A) the 986 

dissimilarity matrix for number increasingly better explained the fMRI pattern dissimilarity 987 

when progressing towards higher areas of the dorsal visual stream, where the contribution of 988 

non-numerical dimensions was smaller. The dissimilarity matrix for number however, 989 

contributed much less to explain neural dissimilarity in mid- and higher-level ROIs during the 990 

size task (B). The contribution of the non-numerical dissimilarity matrices remained mostly 991 

unaffected in most of the ROIs, with only a slightly enhanced contribution of the dissimilarity 992 

matrix for density which significantly contributed to explain the neural RDMs in higher areas 993 

during the size judgments. Data points show mean beta weights across subjects (n=20)  994 

standard error of the mean (SEM). P-values testing the significance of the beta coefficients 995 

for each dimension and ROI are reported in Table 1 in Supplementary Material.  996 

 997 

  998 
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Supplementary Material 999 

Tables 1000 

Task: Judge Number 

Stat\ROI V1-3 V3AB-V7 IPS 1-5 V1 V2 V3 V3AB V7 IPS12 IPS345 
t-value 39.38 42.13 37.00 47.64 39.36 53.33 45.95 42.17 34.12 35.76 

Dof 19 19 19 19 19 19 19 19 19 19 
p-value <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 

Task: Judge Size 
Stat\ROI V1-3 V3AB-V7 IPS 1-5 V1 V2 V3 V3AB V7 IPS12 IPS345 
t-value 46.75 43.47 36.38 38.81 41.11 41.21 37.43 45.20 43.56 47.82 

Dof 19 19 19 19 19 19 19 19 19 19 
p-value <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 

 1001 

Table 1 Statistical results for the performance of the classifiers trained to discriminate 1002 

between different numerosities.  1003 

The table reports t-values, degrees of freedom (Dof) and p-values of the two-tailed t-tests 1004 

against zero used to evaluate the accuracies of number classification for every ROI and task.  1005 

  1006 
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Task: Judge Number 
Dim\ROI V1-3 V3AB-V7 IPS 1-5 V1 V2 V3 V3AB V7 IPS12 IPS345 

N <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 <.0005 
S .447 .972 .587 .946 .996 .495 .836 .818 .500 .587 

TFA <.0005 .001 .157 <.0005 <.0005 <.0005 <.0005 .025 .185 .392 
TSA .007 .815 .016 .014 .005 .026 .580 .271 .021 .005 

D .052 .456 .151 .002 .043 .464 .339 .998 .200 .075 
Task: Judge Size 

  

Dim\ROI V1-3 V3AB-V7 IPS 1-5 V1 V2 V3 V3AB V7 IPS12 IPS345 
N .001 .001 .003 .024 <.0005 .001 .020 .010 .013 .005 
S .405 .086 .083 .777 .085 .339 .459 .243 .119 .155 

TFA <.0005 .012 .445 <.0005 <.0005 <.0005 .002 .170 .419 .747 
TSA <.0005 .238 .439 .003 .001 .017 .361 .622 .352 .921 

D .025 .328 .004 .004 .127 .348 .821 .083 .007 .009 
 1007 

Table 2 Statistical results for beta weights obtained from the RSA multiple regression.  1008 

The table shows p-values of two-tailed t-tests against zero across subjects for every ROI and 1009 

dimension (N: number, S: average item size, TFA: total field area, TSA: total surface area, D: 1010 

density) for the number (upper table) and size (lower table) tasks. 1011 

 1012 


