
Behavioral/Cognitive

Decoding the Dynamics of Action, Intention, and Error
Detection for Conscious and Subliminal Stimuli
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How do we detect our own errors, even before we receive any external feedback? One model hypothesizes that error detection results from
the confrontation of two signals: a fast and unconscious motor code, based on a direct sensory–motor pathway; and a slower conscious
intention code that computes the required response given the stimulus and task instructions. To test this theory and assess how the chain
of cognitive processes leading to error detection is modulated by consciousness, we applied multivariate decoding methods to single-trial
magnetoencephalography and electroencephalography data. Human participants performed a fast bimanual number comparison task
on masked digits presented at threshold, such that about half of them remained unseen. By using both erroneous and correct trials, we
designed orthogonal decoders for the actual response (left or right), the required response (left or right), and the response accuracy
(correct or incorrect). While perceptual stimulus information and the actual response hand could be decoded on both conscious and
non-conscious trials, the required response could only be decoded on conscious trials. Moreover, whether the current response was
correct or incorrect could be decoded only when the target digits were conscious, at a time and with a certainty that varied with the amount
of evidence in favor of the correct response. These results are in accordance with the proposed dual-route model of conscious versus
nonconscious evidence accumulation, and suggest that explicit error detection is possible only when the brain computes a conscious
representation of the desired response, distinct from the ongoing motor program.
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Introduction
Performance monitoring is a key function of the cognitive con-
trol system. When speed is emphasized over accuracy, we often
commit a large numbers of errors that we are nonetheless able to
correct and detect in a fast automatic manner (Rabbitt, 1966;
Gehring et al., 1993). But how can the very same system that
commits an error detect it? According to some models of cogni-
tive control (Norman and Shallice, 1986), decision and motor

control are organized as a hierarchy in which higher-level con-
scious and intentional processes attempt to monitor perfor-
mance (Posner and Rothbart, 1998), but sometimes arrives
too late to modulate ongoing actions (Norman, 1981; Rabbitt,
2002).

In particular, the dual-route model for conscious and non-
conscious decision making (Del Cul et al., 2009) hypothesizes
that whenever we have to produce a motor response to some
stimulus, two parallel routes (Fig. 1B) simultaneously accumulate
evidence from the sensory input: a fast nonconscious sensory–motor
route; and a slower but more accurate conscious route. Crucially,
when instructions emphasize speed over accuracy, responses may
frequently be emitted by the unconscious route, before the slower
conscious route emits its more conservative judgment. Any dis-
crepancy between the outputs of these two routes indicates that
an error was committed, signaling a “mismatch” (Coles et al.,
2001) or a conflict (Yeung et al., 2004) between actual and in-
tended actions.

Here, we aimed at testing several predictions of this dual-
route model. First, this model predicts that at the same time as the
subject is making an erroneous action, for instance, clicking on
the left-hand button, his or her brain should contain a distinct
representation of the required correct action (i.e., clicking right).
Second, this signal should be present only on conscious trials,
coding for the conscious intention of the subject. Third, we
should be able to predict the brain’s capacity for spontaneous
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error detection by the strength and timing of the discrepancy
between the action and intention codes.

In the present study, we investigated this question by attempt-
ing to decode, from single-trial brain activity, the chain of cogni-
tive processes linked to action monitoring and to determine how
each stage was modulated by consciousness access. Decoding
techniques, such as multivariate pattern analysis, have proven
powerful in isolating precise cognitive processes in brain activity
(Norman et al., 2006) and in distinguishing the processing se-
quence of a specific task (Bode and Haynes, 2009). Here, we
applied these techniques to high-temporal resolution magneto-
encephalography (MEG) and electroencephalography (EEG) re-
cordings while participants performed a fast number comparison
task on a masked digit and on each trial reported their subjective
perception (seen/unseen) of the target (Charles et al., 2013). By
training decoders to classify trials according to four different fea-
tures (stimulus position, actual motor action, required motor
action, and accuracy), separately on seen and unseen trials, we
assessed how subjective visibility modulated perception, ac-
tion, intention, and error detection. We then tested the pre-
diction of the dual-route model that error detection results
from the comparison of actions and intentions.

Materials and Methods
Participants
Thirteen volunteers (with normal or corrected-to-normal vision) were
tested in this MEG/EEG experiment. Event-related potential and event-

related fields of these data have been partially
reported previously (Charles et al., 2013). As
the present within-subject decoding analysis
necessitated a large number of error trials with
both left and right motor responses, partici-
pants were excluded from the analysis if they
did not have at least 20 error responses on
both types of motor responses. Six partici-
pants (three male, three female) had suffi-
cient numbers of trials in all of the
conditions and were kept for analysis. This
small number was compensated for by the
fact that we systematically examined the
within-subject significance of decoding
scores, thus obtaining, for each question we
raised, six within-subject replications as well
a between-subject nonparametric test.

Design and procedure
The paradigm of this experiment is described
in detail by Del Cul et al. (2007) and Charles et
al. (2013). Briefly, a target-stimulus (the digit
1, 4, 6, or 9) appeared on a white screen for 16
ms at one of two positions (top or bottom,
2.29° from fixation), with a pseudorandom
50% probability. After a variable delay, a mask
appeared at the target location for 250 ms. The
mask was composed of four letters (two Es and
two Ms; Fig. 1A) tightly surrounding the target
stimulus without superimposing or touching
it. The stimulus– onset asynchrony (SOA) be-
tween the onset of the target and the onset of
the mask was varied across trials. The following
five SOAs were randomly intermixed: 16, 33,
50, 66, and 100 ms. In one-sixth of the trials,
the target number was replaced by a blank
screen with the same duration of 16 ms (mask-
only condition), allowing us to study visibility
ratings when no target was presented.

Participants primarily performed a fast
forced-choice task of comparing the target

number to the number 5. Responses were collected within 1000 ms after
target onset with two buttons using the index finger of each hand (left
button press � �5 response; right button-press � �5 response). To
induce errors, participants were instructed to respond as fast as they
could just after the appearance of the target. Time pressure was increased
by presenting an unpleasant sound (mean pitch: 136.2 Hz; 215 ms dura-
tion) 1000 ms after target presentation whenever the response time ex-
ceeded 550 ms.

At the end of each trial, after another delay of 500 ms, participants were
requested to provide two subjective answers with no time pressure. First,
they had to indicate whether they saw the target number, or not (visibility
task). Second, they had to report whether they thought they had made an
error, or not, in the number comparison task (performance evaluation
task). For both subjective responses, words corresponding to the two
responses (seen/unseen and error/correct) were displayed on the screen,
and subjects had to use the corresponding-side buttons to answer. The
words were presented at randomized left and right locations (2.3° from
fixation) to ensure that subjects did not use an automatized button-press
strategy.

The experiment was divided in blocks of 96 trials, with 16 trials by SOA
condition in which each digit was presented at the two possible target
locations (top/bottom). Each participant performed six or seven blocks
during MEG/EEG recording. To achieve fast responses, participants were
given a training session before the actual recording. They first received 5
min of training during which the target stimulus was not masked. Par-
ticipants then performed three prerecording blocks of the actual experi-
ment to check that overall performance was suitable for MEG/EEG
recording.

Figure 1. Experimental design and dual-route model. A, On each trial, a number was presented for 16 ms at one of two possible
locations (top or bottom). It was followed by a mask composed of a fixed array of letters presented at a varying duration after target
onset (16, 33, 50, 66, or 100 ms). Participants first performed a fast forced-choice number comparison task where they decided
whether the number was smaller or larger than 5. Then, they evaluated the subjective visibility of the target and their own
performance in the primary number comparison task. B, Dual-route model for error detection. In this model, two routes accumu-
late sensory evidence in parallel. A response is emitted by whichever route first reaches its decision threshold. The first route
corresponds to automatic sensory–motor association and can be triggered nonconsciously to produce fast motor responses. The
second route corresponds to the slower, voluntary processing of the stimulus according to task instructions and produces a
conscious representation of the required response (i.e., a conscious intention). The comparison of the outputs of these two routes
allows participants to detect a discrepancy between their intended and ongoing responses, and therefore to self-evaluate their
performance.
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Simultaneous EEG and MEG recordings
Simultaneous recording of MEG and EEG data was performed. The MEG
system (Neuromag, Elekta) comprised 306 sensors: 102 magnetometers
and 204 orthogonal planar gradiometers ( pairs of sensors measuring the
longitudinal and latitudinal derivatives of the magnetic field). The EEG
system consisted of a cap of 60 electrodes with the reference on the nose
and the ground on the clavicle bone. Six additional electrodes were used
to record electrocardiogram (ECG) and electro-oculogram (EOG; verti-
cal and horizontal) signals.

A three-dimensional Fastrak digitizer (Polhemus) was used to digitize
the position of three fiducial head landmarks (nasion and preauricular
points) and four coils used as indicators of head position in the MEG
helmet, for further alignment. The sampling rate was set at 1000 Hz with
a hardware bandpass filter from 0.1 to 330 Hz.

MEG/EEG data preprocessing
MEG data were first processed with MaxFilter software using the signal
space separation algorithm. Bad MEG channels were detected both au-
tomatically and manually, and were subsequently interpolated. Head
position information recorded at the beginning of each block was used to
realign head position across runs and transform the signal to a standard
head position framework.

To remove the remaining noise, principal component analysis (PCA)
was applied to regress out the stereotypical physiological artifacts. First,
artifacted time periods were detected on the EOG and ECG. Second, data
were averaged on the onset of each blink and each heart beat separately,
and PCA was performed separately for each type of sensor. Then, one to
three of the first components characterizing the artifact were manually
selected to be further removed.

Data were then entered into Matlab software and processed with Field-
trip software (http://fieldtrip.fcdonders.nl/). An automatic rejection of
trials based on signal discontinuities (all signals above 30 and 25 SDs in
the 110 –140 Hz frequency range) was performed. A low-pass filter at 30
Hz was then applied as well as a baseline correction from 300 to 200 ms
before target stimulus onset.

An additional process was applied to the data used to decode stimulus
position. Since the mask stimulus was presented at the same position as
the target digit, we subtracted out the activity evoked by the mask to
minimize the information provided by the mask location and decode
only the information about the masked target. To do so, we first aligned
each trial on the mask onset. We averaged separately the trials for which
no target was presented, corresponding to the mask alone condition. We
then subtracted from the rest of the data this mask-related activity and
realigned those subtracted data on target onset (Del Cul et al., 2007).
While the efficiency of this method is limited by the possible interaction
between stimulus and mask presentation as well as trial-by-trial variabil-
ity in mask-evoked activity, it allows for a large reduction in the response
evoked by the mask. As stimulus position was not relevant for the other
decoded categories, we did not apply this method to other decoding
stages.

Decoding analysis
The support vector machine (SVM) method was used to decode dif-
ferent stages of perceptual decision, from stimulus encoding to per-
formance detection. Briefly, linear classifiers such as SVM allow the
discrimination, on a single-trial basis, of two conditions based on
their pattern of activity across trials (Chang and Lin, 2011). This is
achieved by finding a hyperplane separating the two classes of trials
along the dimensions given to the decoder (e.g, sensors or time). We
tested eight different decoders with binary SVM classifications for
decoding several perceptual stages. Crucially, we split the initial da-
taset according to visibility reports and tested on each subset of trials
how well the classifier could discriminate each of the four following
conditions: stimulus position, top versus bottom; actual motor re-
sponse, left versus right; correct motor response, left versus right; and
accuracy, error versus correct.

Importantly, as several of these categories are based on responses of the
participants, some of them had an unbalanced number of trials. For
instance, more responses were made with the right hand than with the

left hand, probably because subjects who were mostly right handed were
more prompt to answer with their dominant hand. Furthermore, the
difference between categories could also be partially confounded with
different numbers of trials in each subset. For instance, more errors were
made when making a right-hand response, for similar reasons, therefore
making more erroneous fast guesses with this response hand. These con-
founds present a problem for the decoding approach: for instance, when
trying to decode error versus correct trials, we might obtain better than
chance results simply because we are decoding left versus right responses.

To counteract these biases, we applied sample weights to equalize the
weight of the trials entered into the classification and belonging to each
cell of the potentially confounding category. As noted earlier, this re-
quired selecting participants who had �20 trials in each trial subcate-
gory, therefore making sure that each subcategory was sufficiently
populated. Sample weights were applied to each trial according to the
number of trials in the subcategory to be controlled for. Each sample
weight was computed using the following formula:

wcateg � ntot/�4 � ncateg�,

where wcateg designates the weight of all of the samples in the subject
category, ntot designates the total number of trials provided to the classi-
fier, and ncateg designates the total number of trials in this subcategory.
Note that total sum of weights across all trials was equal to ntot, similar to
the case where a weighting of 1 is applied to each trial. The subcategories
of trials that we controlled for were the required motor response (left or
right) for the position decoder and the actual motor response decoder,
and the actual motor response (left or right) for the correct response and
the accuracy decoders, respectively. Sample weights were entered as pa-
rameters in a linear kernel SVM implemented by SciKit-Learn toolbox
(Pedregosa et al., 2011). For the decoding of the required response for
which the results were the most crucial, we performed an additional step
in the analysis to ensure that the decoder was not biased by the unbal-
anced number of trials among classes. In particular, as decoding the
required response is identical to decoding the actual response in correct
trials, and these trials were more numerous than error trials, the decoder
could simply end up separating the trials according to the motor action
(left vs right). To ensure that this was not the case, we separated the data
according to the response hand and accuracy, and verified that within
each subset the decoder performed above chance in classifying the trials
according to the required motor response.

For each participant, MEG/EEG preprocessed data were entered into
the classification pipeline (King et al., 2013). Importantly, we used two
types of decoders, differing in the features that the decoder was trained
on. In the first case, both time and space were used as decoding features,
and the decoder was provided with the entire trial time window (0 – 800
ms after stimulus presentation). In this case, the decoder learned to de-
code in a high dimensional space with a total of ntime point � nchannel

dimensions. In the second case, we trained a different decoder for each
time point, using as a feature only the spatial dimension (nchannel dimen-
sions). For the first type of decoder, we obtained only one classification
measure for each trial. In the second case, we could reconstruct for each
trial the entire time course of classification accuracy, allowing us to study
more precisely the dynamics of the related cognitive process.

All decoding stages (including normalization of the MEG/EEG data)
were fitted within the cross-validation loop on the training sets only. To
obtain valid training/testing datasets, we used a stratified k-folding
method, according to the number of trials in each subcategory (as de-
scribed above). The data were split into seven folds, with each fold com-
posed of a testing set of one of seven trials and a training set of six of seven
trials, with the same proportion of trials coming from each subcategory.

To reduce the dimensionality of the data and improve the perfor-
mance of the classifier, we first applied univariate feature selection
(Haynes and Rees, 2006) on each training dataset. To do so, we used a
simple ANOVA nested in the cross-validation loop, allowing only the
most informative features to be kept. The number of features kept for the
analysis was arbitrarily set to 50%. The remaining feature � trial training
data were then rescaled using the mean of z-score transformation. This
method allows for all the EEG and MEG channels, which are recorded in
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different physical units, to be put on the same scale and used properly by
the classifier. The penalization parameter of the algorithm was then esti-
mated by means of a grid search by nested cross-validation applied
within each training dataset (two stratified k-folds), and the best hyper-
plane was retrieved. Finally, we fitted a cumulative probability distribu-
tion function on the decision function of the training dataset using the
method of Platt (1999), allowing us to obtain for each trial, not just a
discrete output label, but a continuous value bounded by 0 and 1, repre-
senting the classifier’s estimate of the probability to belong to the first
class. Then, exactly the same feature selection and scaling parameters
obtained from the training dataset were applied to the testing dataset, and
the obtained classifier was applied to the test trials, allowing us to obtain
a cross-validated classification measure for each of the test trials. We
ensured that we applied all multivariate classification guidelines outlined
in the study of Lemm et al. (2011) to minimize classification bias and
avoid circular analyses that could result in overfitting the data.

Statistical analysis
Within-subject classification scores. Classification scores across trials
were estimated for each subject with a receiver operating characteris-
tic (ROC) curve analysis applied to the obtained classification prob-
abilities and were summarized by the area under the curve (AUC)
values. The ROC curve presents the true-positive rate (the proportion
of trials belonging to class A and classified as A; i.e., hits) as a function
of the false-positive rate (the proportion of trials belonging to class B
and classified as A; i.e., false alarms), providing a measure of both the
sensitivity and specificity of the decoder. A diagonal ROC curve,
which coincides with an AUC of 50%, corresponds to a situation
where the number of hits and false alarms are equal, showing a chance
level classification score. On the contrary, an AUC of 100%, which
corresponds to an ROC curve on the left upper bound of the diagonal,

indicates a perfect positive prediction with no false positives and a
perfect decoding score. Importantly, and unlike average accuracy,
AUC analysis provides an unbiased measure of decoding accuracy,
robust to imbalanced problems and independent of the statistical
distribution of the classes.

The classification AUCs were estimated for each subject for the
decoders on the entire trial duration (Fig. 2, right column), and
above-chance significance within and across subjects was computed
by means of a nonparametric Wilcoxon rank sum test. Separately, the
AUC was computed for the obtained decoding time series separately
for each time point and was averaged across subjects. The middle
columns in Figure 2 show the AUC time series averaged across sub-
jects for each decoder.

Within-subject time cluster analysis on decoder time series. To determine
the moments at which the decoders performed above chance, we com-
puted within-subject statistics on the obtained trial time series. Using
individual data, for each decoder we used a cluster-based nonparametric
with Monte Carlo randomization (adapted from Maris and Oostenveld,
2007) on the trial-by-trial time series of decoding probabilities. This
method allowed us to identify clusters of time points in which time series
of the two learned classes present a significant difference while correcting
for multiple comparisons. For each time sample, p values of the differ-
ence between the two decoded classes were first computed by means of a
nonparametric Mann–Whitney U test. Clusters were then identified by
taking all dyads of time samples adjacent in time with p � 0.05. The final
significance of the cluster was determined by computing the sum of AUC
values of the entire cluster and comparing them with the results of Monte
Carlo permutations (2000 permutations). Clusters were considered sig-
nificant at corrected p � 0.05 if the probability computed with the Monte
Carlo method was inferior to 5% (one-tailed test). The number of sub-

Figure 2. Decoding perception, action, intention, and accuracy, for conscious and nonconscious trials. Multivariate decoding was applied either to each time sample (central columns) or to the
full trial time window (right columns). Results demonstrate that while stimulus position and actual response could be decoded in both conscious and nonconditions with high accuracy, the required
response and the accuracy could be decoded solely in conscious conditions. A, B, D, E, G, H, J, K, Central columns, AUC, a measure of decoding accuracy, is plotted after averaging across subjects,
aligned on stimulus onset, separately for the stimulus position decoder (top vs bottom, A, B), actual response decoder (left vs right, D, E), required response decoder (left vs right, G, H ), and accuracy
decoder (error vs correct, J, K ), respectively, in seen (A, C, E, G) and unseen (B, D, F, H ) conditions. Gray bars below each graph indicate, for each time point, the number of subjects presenting an
above-chance classification score at that instant as computed by cluster analysis. C, F, I, L, Right column, For all six subjects, change in classification scores (AUC) between seen (left points) and unseen
(right points) conditions are plotted separately for the stimulus position decoder (C), actual response decoder (F ), required response decoder (I ), and accuracy decoder (L). In each case, decoding was
applied on all the sensors and time points from the full trial time window (0 – 800 ms after stimulus presentation).
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jects presenting a significant cluster at each time point is shown in Figure
2 at the bottom of each graph.

Regression analysis on single-trial amplitude. The dual-route model of
error detection predicts that, on each trial, evidence on the required
response and the actual response are compared to determine the accu-
racy of the action. In other words, for a given trial, the amount of evi-
dence that an error was made depends on the discrepancy between action
and intention.

To evaluate this prediction, we used the actual and the required
response entire-trial decoders as indices of the amount of internal
information available on each trial about the action and the intention.
This analysis was performed separately on seen and unseen trials. As
the chance level was not identical across subjects, we normalized for
each subject the trial-by-trial classification probabilities. We then
transformed the obtained signal so that it would be centered on 0 and
fluctuate between 1 and �1 (instead of 0 and 1; see Fig. 5A). This can
be achieved by subtracting on a trial-by-trial basis the decoded prob-
ability of belonging to one of the two classes from the probability of
belonging to the opposite class (see Fig. 5A): as the sum of the prob-
ability is equal to 1, when the probability of belonging to one class is
close to 1, the subtraction will be close to either 1 or �1, while it will
be close to 0 when the probability is at chance. We then computed the
product of the two obtained indices, because this measure gave us a
trial-by-trial index of the discrepancy between action and intention.
We then retrieved, for each trial, the output of the accuracy decoder
corresponding to the decoded trial-by-trial probability of an errone-
ous motor response, and correlated it to our index of congruity be-
tween action and intention.

We correlated for each subject the trial-by-trial indices obtained by
multiplying the motor and intention decoder with the accuracy proba-
bility. We used robust linear regression (Holland and Welsch, 1977) to
reduce the effect of points with aberrant classification scores (this
method did not qualitatively affect our results). A nonparametric test was
then performed on the slope of the regression obtained across subjects.
As negative values of the computed product should signal erroneous
responses, we expected a negative correlation between the two measures,
with the smallest negative value being associated with the highest prob-
ability of decoding an error.

Regression analysis on single-trial timing. Another prediction of the
dual-route model is that one should be able to determine the accuracy of
its own response only when information is available on both the required
response and the response actually made. This prediction implies that the
latest obtained information on either the actual response or the correct
response should determine the moment at which an internal estimate of
response accuracy can be emitted.

To test this prediction, we searched for a correlation between the time
at which the accuracy decoder crossed a threshold and the moment when
the latest of the action and intention decoders crossed their threshold.
For each subject separately, we normalized the classification probability
time series according to the baseline (�100 to 0 before stimulus presen-
tation) to obtain values centered on 0 and ranging from �1 to 1. To
increase the signal-to-noise ratio, we converted the SVM probability time
series into a cumulative-sum time series (see Fig. 7A), and we extracted
for each decoder the moment at which each time series reached 50% of its
mean final value across trials (see Fig. 7B). Trials that did not reach the
threshold for any of the three decoders were excluded from the analysis,
resulting in the selection of about half of the trials for which intention,
action, and accuracy could be decoded with high performance. We then
took the maximal value of the decision times for the actual response and
the required response decoders, and correlated it with the crossing of the
threshold of the accuracy decoder. We then performed a nonparametric
Wilcoxon signed rank test on the � values across subjects.

Results
Analysis of behavioral data
We first investigated how behavior varied with conscious percep-
tion. We split the data according to the trial-by-trial report of
visibility. Accuracy in the number comparison task was higher in

seen than in unseen trials (t(5) � �4.47, p � 0.01). While errors
were significantly faster than correct trials on seen trials (F(1,4) �
18.4, p � 0.012), no such effect was observed on unseen trials. As
previously found (Charles et al., 2013), subjective visibility in-
creased in a nonlinear manner with SOA (F(4,20) � 33.7, p �
10�4), with unseen responses associated mainly with short SOA
duration while seen responses dominated for longer SOA values.
However, no further effect of SOA was found on reaction times
(RTs) or accuracy after splitting the data by visibility. Therefore,
in the decoding analysis, trials were split according to subjective
visibility alone, regardless of SOA.

Decoding stages of stimulus processing
To determine how consciousness influenced the processing chain
leading from stimulus perception to the response and its evalua-
tion, we separated different stages in a decision hierarchy, and we
tested whether and when an experimental variable attached to
each processing stage could be decoded from the single-trial
brain activity, separately for conscious and nonconscious trials.
Figure 2 depicts, for each decoder, the individual classification
score (AUC; see Materials and Methods) over the entire trial
window and the time course of the classification score averaged
across subjects.

Decoding early visual processes: stimulus position classifier
Figure 2C shows the result of the classification of stimuli position
over the entire trial duration, for both seen and unseen trials. This
analysis revealed that stimulus position could be decoded for
each individual subject on both seen and unseen trials, with high
accuracy. Nonparametric statistics showed that the decoder per-
formed significantly above chance for each subject (Wilcoxon
rank sum test on classification probabilities, all p � 10�4). The
AUC was significantly higher than chance across subjects for both
types of trials (Wilcoxon rank sum test, AUC � 0.5, n � 6, both
p � 0.05).

Considering the results of the decoding on each time point
allowed us to determine precisely the dynamics of perceptual
processing of the stimulus, in seen and in unseen conditions (Fig.
2A,B). The peak of performance of the decoder was observed
	175 ms after stimulus presentation for seen trials and 130 ms
for unseen trials. Within-subject statistical analysis revealed that,
for both seen and unseen trials, subjects presented a significant
cluster starting 	75 ms after onset of the stimulus, which lasted
for at least 450 ms. Interestingly, for five of the six subjects the
time window of significance lasted longer for conscious than for
nonconscious trials.

We then performed a nonparametric test to determine
whether the overall difference between the two decoded classes
was greater for seen compared with unseen trials. Nonparametric
tests across subjects revealed no statistical significance between
the two (p � 0.47), suggesting that the performance in decoding
stimulus position over the entire trial duration were not different
in seen compared with unseen trials.

These results suggest that it is possible to classify the stimulus
position with high accuracy both for seen compared with unseen
trials, showing that early visual processing of the stimulus is
largely unimpaired in nonconscious conditions.

Decoding motor decision: actual response decoder
We then turned to the motor response decoder. The aim of this
analysis was to determine whether it was possible for a decoder to
learn which motor decision was made by the subject. According
to our design, a left-hand action implies that the subject’s re-
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sponse to the stimulus was �5 while a right-hand action corre-
sponded to a response of �5.

Figure 2D–F shows that the decoder performed significantly
above chance to determine whether a left or a right motor re-
sponse was produced on each trial, both for seen and unseen
trials. Again, analysis of the AUCs obtained from the decoding of
the motor response over the entire time window revealed that for
each subject we were able to decode the motor response better
than chance both for seen and for unseen trials (Wilcoxon rank
sum test, all p � 10�4; Fig. 2F). Similarly, the AUC was signifi-
cantly higher than chance across subjects both in conscious and
nonconscious conditions (Wilcoxon rank sum test, n � 6, both
p � 0.05), confirming that the motor response could be decoded
with high accuracy in both cases. Interestingly, comparison be-
tween seen and unseen trials revealed no statistical difference
between the two, suggesting a comparable decoding accuracy of
the motor response in conscious and nonconscious conditions.

The time course of the decoding of the motor response (Fig.
2D,E) revealed that decoding accuracy increased linearly from
	120 ms after stimulus presentation both for seen and unseen
trials. For five of six subjects, the earliest significant difference
between left and right responses was observed at 240 ms after
stimulus presentation. Decoding accuracy reached a plateau
around the average time of the actual key press (365 and 366 ms,
respectively, for seen and unseen trials). The maximal peak was
observed at 	425 ms for seen trials and at 365 ms for unseen
trials, slightly later than the mean RT across subjects. In sum-
mary, this analysis revealed that the actual motor response could
be decoded with very high accuracy both in conscious and non-
conscious conditions.

Required response decoder
One of the main goals of this study was to test whether it is
possible to decode, from the time course of brain activity, the
presence of a higher-order representation of the required re-
sponse. We predicted that, on top of the representation of the
actual ongoing motor program, there might be a distinct repre-
sentation of the intended response. On the majority of trials
where the response is correct, the intended and actual responses
coincide. However, whenever subjects commit an error, the dual-
route model predicts that their brain contains a distinct represen-
tation of the response that would have been correct. Thus, this
neural code should encode the response that should have been
made by the subjects, independently of the response that they
actually make.

To test this idea, we trained a decoder to classify trials accord-
ing to the required response, regardless of the actual motor re-
sponse on the same trial. Importantly, to teach the decoder the
proper class, we weighted equally the erroneous and correct trials.
Since errors were overall much less frequent than correct trials,
we used a weighting technique that ensured that both errors and
correct trials were equally used in training the decoder (see Ma-
terials and Methods), thus removing the correlation between in-
tended and actual responses.

On seen trials, decoding over the entire time window revealed
that we were able to decode the required response for each subject
(Wilcoxon rank sum test, all p � 0.005; Fig. 2I). Analysis across
subjects revealed that the average AUC was significantly above
chance (Wilcoxon rank sum test, n � 6, p � 0.05). However, for
unseen trials, we were not able to decode the required response.
Analysis of the decoding results showed that the classifier per-
formed at chance for all subjects (Wilcoxon rank sum test, all p �
0.35), except for one subject for which the classifier performed

significantly below chance (Wilcoxon rank sum test, p � 10�4;
Fig. 2I). Similarly, the average decoding score across subjects did
not differ from chance (Wilcoxon rank sum test, n � 6, p � 0.35).
This resulted in a significant effect of visibility on the decoding
scores across subject (Wilcoxon rank sum test, n � 6, p � 10�3).

When training the decoder on each time sample (Fig. 2G,H),
within-subject statistical analysis revealed a significant cluster for
all subjects in the seen condition (Fig. 2G). Three subjects pre-
sented an identical significant temporal cluster between 350 and
750 ms after stimulus presentation, while the remaining subjects
presented a shorter period of significance in this time window.
Interestingly, decoding performance varied in time across sub-
jects, with some subjects presenting above-chance decoding ac-
curacy only starting on average at 500 ms after stimulus
presentation. No such decoding was possible for unseen trials
(Fig. 2H). Cluster-level significance was not achieved for most of
the subjects. For one subject, a 10 ms time window of significance
was found, unlikely to reflect a solid effect (subject 6, 700 –710 ms
after stimulus onset). For another subject, a more sustained clus-
ter was found, but at a time that is unlikely to be meaningful
(subject 5, 925–960 ms after stimulus onset). Therefore, these
results suggest that a representation of the required response can
be decoded from brain activity in seen trials, but that not enough
information is available on unseen trials for the classifier to ex-
tract this representation.

As the decoding of the required response was performed on
highly unbalanced datasets, where correct trial were more nu-
merous than error trials, we verified that the decoder on seen
trials was not simply picking up the motor activity on correct
trials. Thus, we separated the trials according to the actual motor
response (left vs right) and the actual performance (error vs cor-
rect). Crucially, we verified that, within each such subset, the
decoder performed above chance in classifying the trials accord-
ing to the required motor response (Fig. 3). If the intention de-
coder simply used information related to the ongoing motor
action, its results should be at chance when testing its ability to
decode the required response for a fixed actual motor action,
and it should be significantly below chance when testing error
trials only. Therefore, these two analyses ensured that the
present decoder was indeed decoding information related to
the required response, regardless of the motor response and
the accuracy (Fig. 3).

We first tested separately the trials with a fixed response hand.
When considering the decoding of the required response over the
entire time window, average classification scores across subjects
were above chance for both right and left motor response (Wil-
coxon rank sum test, AUC � 0.5, n � 6, p � 0.016 and p � 0.03,
respectively). When considering decoding time series, the de-
coder for the required response performed above chance for five
of six subjects within right-hand motor responses, while within
left-hand motor responses for which fewer trials were available,
significance was achieved in two subjects. For both motor re-
sponses, time windows of significance overlapped on a 410 – 650
ms time period after stimulus onset. We then tested whether
above-chance decoding could be observed for error trials specif-
ically. Average decoding scores across subjects did not signifi-
cantly exceed chance when considering the entire time window.
However, when considering decoding time series, decoding per-
formance reached significance in three subjects, within a time
window of 430 –530 ms. For two of the remaining three subjects,
a trend was seen in the appropriate direction (i.e., responses
tended to be classified according to the required response and
therefore opposite to the actual response).
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In conclusion, while this analysis was
limited by the small number of trials avail-
able within each subcategory of trials, it
confirmed that the intention decoder
learned to classify trials according to the
required response and not the actual mo-
tor response made by the subject.

Accuracy decoder
We then determined whether our record-
ings contained decodable single-trial in-
formation about the accuracy of the
motor decision, separately for seen and
unseen trials. The dual-route model pos-
tulates that to determine the accuracy of
their decisions, participants compare
their actual motor response to the re-
sponse that they should have made, and
evaluate the discrepancy between these
two internal representations. As we were
not able to decode the representation of
the required response on unseen trials, the
model predicted that we should also not
be able to decode accuracy on these trials.
That is indeed what we found. Consider-
ing the entire time window, we were able
to decode with high performance the ac-
curacy of the response at a trial-by-trial
level for all six subjects on seen trials (Wil-
coxon rank sum test, all p � 10�4), resulting in an above-chance
classification score across subjects (Wilcoxon rank sum test, n �
6, p � 0.05). Importantly, we were not able to decode the accu-
racy of the motor response on unseen trials except for one subject
(Wilcoxon rank sum test, all p � 0.03), resulting in a chance-level
decoding score across subjects (Wilcoxon rank sum test, n � 6, all
p � 0.08). This resulted in a significant effect of visibility on the
decoding scores across subjects (Wilcoxon rank sum test, n � 6,
p � 10�3).

Considering the decoding analysis for each time sample, the
peak of decoding performance on seen trials was reached at the
latest time window rather than for previous action and intention
decoders, 	600 ms after stimulus presentation. On unseen trials,
decoding scores remained at chance over the entire time window.

Following the dual-route prediction model, our results there-
fore suggest that the brain encodes a representation of response
accuracy that can be decoded with high accuracy on conscious
trials, but that on nonconscious trials, when no information is
available on the required response, the accuracy of the motor
response cannot be predicted.

Effect of visibility on early versus late processing stages and effect
of SOA
Our results suggest that only the early stages of processing of the
stimulus, containing either visual or motor activity, can be de-
coded equally well on conscious and nonconscious trials, while
higher-order representations of the goal of the action and its
accuracy are available only in conscious conditions. To support
this, we performed an ANOVA separately, with visibility and
decoder type (perceptual and motor vs intention and accuracy) as
main factors. A significant interaction (F(1,29) � 21.07; p � 10�4)
revealed that, indeed, while early stages could be decoded with
equal performance in conscious and nonconscious conditions,
late stages could be decoded only in conscious trials.

The above seen/unseen comparison is partially confounded
with differences in objective conditions of stimulation, as the
majority of seen trials comes from trials with long SOAs, while
unseen trials correspond in majority to short SOAs (Charles et al.,
2013). We performed an additional analysis to ensure that visi-
bility and SOA were disentangled. To do so, we split the decoding
results according to SOA and computed decoding scores sepa-
rately for each subset of data. Due to the unbalanced number of
trials for each SOA, this analysis could not be performed for each
SOA conditions for all subjects. However, for the intermediate
SOA of 33 ms, a sufficient number of trials were available both for
seen and unseen trials (Fig. 4) for four subjects. On these trials,
the pattern of results was unchanged: decoding of the stimulus
position and the actual response could be performed on both
conscious and nonconscious trials for each SOA conditions (Fig.
4), but decoding of the required response and the accuracy could
be performed only on conscious trials. Indeed, an ANOVA with
visibility and decoder type (perceptual and motor vs intention
and accuracy) as main factors for this intermediate SOA value
revealed a significant interaction (F(1,19) � 6.653; p � 0.05; n �
4), suggesting that subjective visibility, above objective variations
in stimulation, influenced the decoding of late decision stages.

Trial-by-trial test of predictions of the dual-route model
Congruity between action and intention correlates with the
strength of error detection
The dual-route model states that if no representation of the re-
quired response is available, as seems to be the case in the unseen
condition, then the accuracy of one’s performance cannot be
determined. A related prediction is that trial-by-trial variation in
the amount of evidence, concerning either the required response
or the actual response, should be predictive of the amount of
evidence concerning decision accuracy. In particular, the more
evidence one has on what the required response is, the better one
can determine whether one’s performance is correct or not.

Figure 3. Decoding conscious intention independently of motor action. This figure demonstrates that, while subjects are
preparing for a given response (correct or erroneous) their brain activity contains decodable information about the response that
they should make (the required response). The graph shows the output of the intention decoder (i.e., the estimated probability of
the required response being left, averaged across subjects). The decoder was trained on all seen trials. Trials were then sorted
according to the actual response and the required response. Errors are plotted in red, and correct trials in blue. Time 0 corresponds
to the onset of the stimulus.
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To test this prediction, we collected the trial-by-trial classifi-
cation probabilities computed by the three main decoders sepa-
rately for seen and unseen trials and used them as indices of the
amount of evidence available for the required response, the actual
motor response, and the accuracy (see Materials and Methods).
Our main goal was to determine whether for each trial, the dis-
crepancy between action and intention predicted the decoding of
accuracy.

We computed for each trial an intention index and a motor
index varying from �1 to 1 across trials and coding for the
amount of information that this trial contained, respectively,
about the intended response and the motor response (Fig. 5B; �1
corresponds to a sure left response and 1 to a sure right response).
According to the dual-route model, the product of the intention
and action indices, which evaluates their congruency, should pre-
dict the accuracy of the response. If the product is positive, it
means that the action and the intention are congruent, and the
actual motor response is therefore likely to be correct. On the
contrary, if the product is negative, it means that intention and
action vote in favor of different responses, and the actual motor
response is likely to be incorrect. Note that if one of the indices is
close to 0 (i.e., no information is available either on the action or
on the intention), the product is also close to 0, so the model
predicts that the accuracy of the response cannot be predicted.
Across trials, accuracy evidence should therefore be correlated
with the product of action and intention indices.

After transforming the classification probability of the actual
motor response and the required response into signed indices of
action and intention strength (Fig. 5A), we computed for each
trial the product of these two indices, obtaining a measure, for
each trial, of the congruity between intention and action (see
Materials and Methods). We then retrieved from the accuracy
decoder the estimated probability that the response was errone-
ous on the same trial. Finally, we tested whether these two mea-
sures were correlated, as predicted by the dual-route model. As
the obtained indices were signed values, we expected a negative
correlation between the two measures: a negative product indi-
cated a discrepancy between action and intention, and therefore a
greater probability of error (Fig. 5B).

Figure 5C depicts this correlation for each subject for seen
trials. Linear regression was performed for each subject, and we
tested whether the slope differed from 0. All regression slopes
were negative (Fig. 5C), and the Wilcoxon rank sum test on the
slopes across subjects confirmed that the average slope was sig-
nificantly different from 0 (n � 6, p � 0.016). These findings
indicated that, indeed, trial-by-trial fluctuations in the congruity
between intention and action signals correlated with fluctuations
in the strength of error representation in the participants’ brain,
as predicted by the dual-route model. Unsurprisingly, such cor-
relation did not reach significance in unseen trials for which no
intention signal could be decoded.

Figure 4. Decoding perception, action, intention, and accuracy for conscious and nonconscious trials according to SOA. Multivariate decoding was applied either to each time sample (central
columns) or to the full trial time window (right columns), and results were spited by SOA condition. Results demonstrate that the required response and the accuracy could be decoded in conscious
conditions for each SOA condition. A, B, D, E, G, H, J, K, Central columns, AUC, a measure of decoding accuracy, is plotted for each SOA condition after averaging across subjects, aligned on stimulus
onset, separately for the stimulus position decoder (top vs bottom, A, B), actual response decoder (left vs right, D, E), required response decoder (left vs right, G, H ), and accuracy decoder (error vs
correct, J, K ). Due to reduced trial numbers, only the shortest SOAs (16, 33, and 50 ms) are presented for unseen trials (B, E, H, K ), while only longer SOAs (33, 50, 66, and 100 ms) are included for
seen trials (A, D, G, J ). Bars below each graph indicate, for each time point, the number of subjects presenting an above-chance classification score at that instant as computed by cluster analysis.
C, F, I, L, Right column, For each subject and each SOA condition, individual measures of AUC are plotted for seen (left) and unseen (right) trials, separately for the stimulus position decoder (C), actual
response decoder (F ), required response decoder (I ), and accuracy decoder (L). In each case, decoding was applied on all the sensors and time points from the full trial time window (0 – 800 ms after
stimulus presentation), and results were then split according to SOA condition.
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The timing of error detection correlates with the slowest of the
internal codes for action and intention
Another prediction of the dual-route model is that the timing of
error detection should be predictable from the timing of the com-
putation of the action and intention codes. To investigate this
question more precisely, we realigned the obtained decoding
time series on the onset of the response, to gain a clearer view of
how the dynamics of error detection varied with the timing of the
response. Figure 6 depicts the time courses of the classification
scores realigned on the onset of the motor response in seen trials.
Above-chance decoding of the motor response (Fig. 6A) and the
required response (Fig. 6B) occurred before the onset of the ac-
tual key press. Classification performance was significantly better
than chance in the time window of �150 to �100 ms before the
key press for the actual response decoder (Wilcoxon rank sum
test, n � 6, p � 0.05) and �100 to �50 ms for the required
response decoder (Wilcoxon rank sum test, n � 6, p � 0.05).
Crucially, decoding of the accuracy was possible immediately
after this point, in the time window just preceding the motor
response (�50 to 0 ms before key-press; Wilcoxon rank sum test,
n � 6, p � 0.05; Fig. 6C), suggesting that error detection followed
the computation of the actual response. Interestingly, decodabil-
ity of the accuracy continued to increase after this point, in the
time window of the error-related negativity (ERN) and the fol-
lowing positive deflection, the Pe. The highest classification
scores were obtained at the time of the Pe, 250 ms after the motor
response. Indeed, as the Pe corresponds to a long-lasting compo-
nent while the ERN corresponds to a sharper peak after the motor
response, it is not surprising that decoding aligned on the stimu-
lus revealed higher decoding scores at the time of the Pe when
data were realigned a posteriori on the motor response.

Nonetheless, these results suggest that error detection imme-
diately follows the erroneous motor action. However, when

speed pressure is imposed, the dual-route model predicts that a
motor response may be emitted early on, before a clear intention
has been computed from the stimulus. In this case, error detec-
tion should be possible only once the intention is determined.
Overall, the timing of error detection should vary on a trial-by-
trial basis according to the availability of both intention and ac-
tion signals, whichever comes last.

Figure 5. Congruity between action and intention correlates with the strength of error decoding. A, To obtain a trial-by-trial measure of the strength of internal representations of
action and intention, we first transformed the output of the classifiers by subtracting the classification probability of the left response from the classification probability of the right
response, thus yielding for each trial a measure ranging from �1 (i.e., certainly of a left response) to 1 (certainty of a right response). This computation was done separately for the actual
response and for the required response, thus yielding two single-trial indices of the strength of internal representations, the action index, and the intention index. B, The product of the
intention and action indices reflects the congruity between intended and executed actions. positive values (blue) are obtained when both action and intention are congruent (the values
of the two indices are of the same sign), indicating a high probability of being correct. On the opposite side, negative values (red) indicate a discrepancy between action and intention,
and therefore a high probability of committing an error. Note than when no information is available on either the action or the intention, the product is close to 0 and does not allow
distinguishing error from correct trials. C, Correlation results of the product of action and intention indices with the decoded error probability for each subject. Each dot corresponds to
a single seen trial (red � errors, blue � correct). A negative correlation confirms that the internal representation of an upcoming error is stronger when the discrepancy between internal
representations of action and intention is larger.

Figure 6. Decoding action, intention, and accuracy before and after the actual key
press. A–C, For seen trials only, the figure shows the time course of decoding the actual
response (A), the required response (B), and the accuracy (C) relative to actual key-press.
The curves were realigned on motor onset and an average measure of decoding success
(AUC) was computed across subjects. Gray bars below graphs indicate for each time point
the number of subjects presenting an above-chance classification score at that instant, as
computed by cluster analysis.
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To test this prediction, we computed for each trial the mo-
ment at which each of the three decoders (action, intention, and
accuracy) crossed a given threshold (see Materials and Methods).
We therefore obtained for each trial three time measure indices
(Tint, Tact, and Tacc), corresponding respectively to the timing of
intention, action, and accuracy detection (Fig. 7A). We then
tested how these times correlated with one another.

We first verified whether Tact correlated with the actual trial-
by-trial RT. This was indeed the case; the slope of a linear regres-
sion was significantly �0 across subjects (Wilcoxon rank sum
test, p � 0.016).

As only the latest event between action and intention should
determine when one can detect making an error, we then com-
puted, for each trial, the maximum value between Tint and Tact

and correlated it with Tacc, as shown in Figure 7A. None of the
regressions reached significance at the single-subject level (all
p � 0.05). However, a nonparametric test on the slope of the
regression across subjects revealed a significant positive cor-
relation (Wilcoxon rank sum test, p � 0.016; Fig. 7B), suggest-
ing a correlation between the timing of performance detection
and the timing of action and intention, as predicted by the
dual-route model.

Discussion
We showed that MEG/EEG signals contain decodable infor-
mation on the correct motor response, independently of the
ongoing motor plan. Such information was present only on
seen trials and not on unseen trials, while lower-level percep-
tual information and motor action were decodable on both
types of trials. These findings suggest that, when the stimulus

is masked below the threshold for conscious access, the brain
is unable to compute a clear representation of the required
action for that stimulus given the task instructions. Further-
more, the accuracy of the motor decision was also decodable
from conscious trials only, with a magnitude and at a point in
time correlating with the information that is decodable about
the actual and the required action. These results fit with the
prediction of the dual-route model of error detection, accord-
ing to which accuracy can be determined, on conscious trials
only, by comparing the output of two distinct cortical routes
for conscious and nonconscious processes, which compute
intention and action, respectively.

The crucial finding of this study is that, for conscious trials,
a representation of the required response can be decoded in
brain activity, independently of the ongoing motor action.
This finding builds upon our previous work (Charles et al.,
2013) where we showed that when performing a task on
masked stimuli, the ERN, a known brain marker of error de-
tection is present only on a conscious trial. In the present
study, we replicated this finding using multivariate analysis,
showing that the accuracy of motor decisions can be decoded
only in conscious conditions. Crucially, we now show the
presence, in brain activity, of an intention signal, which is
modulated in exactly the same fashion by subjective visibility,
and might serve as an input to error detection and the trigger-
ing of the ERN.

The presence of an accurate intention signal independent
from the action itself, but contemporaneous with it, readily ex-
plains how errors can be detected and corrected, sometimes

Figure 7. The timing of error detection correlates with the slowest of two signals for action and intention. A, Example of a single-trial computation of decoding time. To improve the
signal-to-noise ratio, we computed the cumulative sum, across time, of the probability values obtained from each of the three decoders for actual response, required response, and
accuracy. Threshold values for each decoder were defined, and the timing of threshold crossing for each time series was taken as an index of the time when this code first became available
on this trial. Thus, three values were obtained for each trial (Tact, Tint, and Tacc), corresponding respectively to the time for threshold crossing of the actual response, the required response,
and the accuracy decoder. B, Correlation results of the slowest (maximum) time index between Tint and Tact with the time index of error detection Tacc. Each dot corresponds to a single
seen trial (red � errors, blue � correct). A positive correlation indicates that, as predicted, error information becomes available only once both action and intention codes have been
computed.
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nearly instantaneously after the wrong key-press (Rabbitt, 2002),
or why the ERN starts nearly simultaneously with the erroneous
response itself (Rodriguez-Fornells et al., 2002). Indeed, the ex-
istence of such a signal had been postulated in several previous
models that proposed that error detection results from a compar-
ison (Bernstein et al., 1995; Coles et al., 2001; Maier et al., 2008)
or a conflict (Van Veen and Carter, 2002b; Yeung et al., 2004)
between the executed and the required response.

A dissociation between intention and action was previously
reported by Desmurget et al. (2009) and Desmurget and Sirigu
(2012), who found that, during intracranial stimulation of the
right inferior parietal region, subjects reported a strong inten-
tion to move, without any actual electromyographic activity.
Similarly, decisions can be decoded from the activity of pre-
frontal cortex before any motor preparation (Haynes et al.,
2007). Our finding provides further evidence of a brain repre-
sentation distinct from the ongoing motor plan that nonethe-
less carries information about the intended action. Our
decoding method, operating on sensor-level data, did not al-
low us to investigate directly which brain regions carried this
intention signal. However, previous findings suggest that pre-
motor cortex (Gallivan et al., 2011), precuneus (Soon et al.,
2013), medial prefrontal cortex (Haynes et al., 2007), and pa-
rietal cortex (Desmurget et al., 2009) could be plausible can-
didates for decoding intentions. In the present experiment,
since decoding the required response coincided with decoding
the result of the number comparison task, regions involved in
number processing (Dehaene et al., 2003) might also be in-
volved. Further research, dissociating these factors, will be
needed to specify the precise source of the intention signal that
serves as a basis for error detection.

Which computational models may explain how the same
system produces an initial error and its subsequent correction?
According to some models of decision making, a single deci-
sion system accounts for both the initial incorrect response
and the subsequent corrective action (Kiani and Shadlen,
2009; Resulaj et al., 2009; Pleskac and Busemeyer, 2010),
which corresponds to a late “change of mind” (Resulaj et al.,
2009) signaling the commission of an error. This single-
representation model is challenged by our findings, which
demonstrate the simultaneous presence of two orthogonal
patterns of brain activity coding respectively for the ongoing
and the required response, and suggest that neural codes for
the desired response and the executed motor response are not
activated in parallel. In connectionist models of conflict, two
decision unit responses compete to produce the motor action
errors resulting from the initial activation of the incorrect
decision unit, while activity in the correct decision unit builds
up more slowly. The overlap of these two activations triggers a
conflict signal reflected by ERN (Botvinick et al., 2001; Yeung
et al., 2004). Similarly, in models of error detection as a com-
parison, an “efference copy” of the motor response is kept in
memory while further processing of the stimulus leads to the
computation of the correct response (Falkenstein et al., 2000;
Coles et al., 2001), the mismatch between these two represen-
tations leading to an error detection signal. While these two
models predict that a representation of the required response
should be decodable from both correct and error trials, such
information should be available only at later stages, concom-
itant with the moment when accuracy first becomes decod-
able. Our findings, which indicate a parallel activation of
the correct and incorrect responses, do not fit with these
predictions.

An alternative model that fits with the observed data is a
dual-route model for conscious versus nonconscious pro-
cesses (Del Cul et al., 2009) in which intentions emerge from
the computation of a slower but more accurate route for con-
scious evidence accumulation. We previously suggested that
the dual-route model could account for our observation of an
all-or-none error detection reflected by the ERN and triggered
only in conscious trials (Charles et al., 2013). Indeed, the ERN
and its following positive component, the Pe (Falkenstein et
al., 2000), as well as patterns of brain activity originating from
cingulate cortex (Debener et al., 2005; Charles et al., 2013)
could have been at the origin of the signals used by the present
performance accuracy decoder. Another related prediction of
the model is that the size of the discrepancy (Scheffers and
Coles, 2000) or conflict (Steinhauser and Yeung, 2010) be-
tween intended and executed action should predict the size of
the internal error signal. Indeed, we found that on conscious
trials the trial-by-trial product of action and intention decod-
ing scores correlated with the decoded probability of accuracy.
Likewise, several studies found that the ERN and the Pe vary
with the objective amount of evidence in favor of the correct
response (Hughes and Yeung, 2011; Steinhauser and Yeung,
2012; Charles et al., 2013) as well as the subjective identifica-
tion of the required response (Scheffers and Coles, 2000;
O’Connell et al., 2007; Dhar et al., 2011; Hughes and Yeung,
2011; Wessel et al., 2011; Shalgi and Deouell, 2012). Further-
more, we found that the time at which this accuracy code
emerged correlated with the slowest of the action and inten-
tion codes, in accordance with the prediction that the latency
of error detection should reflect the latest of the two available
signals for action and intention (Van Veen and Carter, 2002b;
Yeung et al., 2004). More detailed investigations will be
needed to determine precisely how our results relate to find-
ings regarding the determinants of the amplitude and timing
of the ERN and the Pe. In particular, our data need to be
reconciled with findings obtained when aligning evoked re-
sponses with corrective responses (Burle et al., 2008). How-
ever, overall, our conclusions are in accordance with models
that view these components as essential steps in the error de-
tection process (Steinhauser and Yeung, 2010; Wessel et al.,
2011; Wessel, 2012).

The present study also sheds light on the distinction be-
tween subliminal and conscious processing. We found a dis-
sociation between early and late stages of stimulus processing,
consistent with the findings that automatized perceptual, cog-
nitive, and motor operations are preserved even under sub-
liminal conditions (Del Cul et al., 2006; Melloni et al., 2007),
while later stages show an all-or-none dissociation between
conscious and nonconscious trials (Sergent and Dehaene,
2004; Del Cul et al., 2007). Nonetheless, cognitive processes
related to performance monitoring may also be partially trig-
gered nonconsciously (Nieuwenhuis et al., 2001; Cohen et al.,
2009; Logan and Crump, 2010). Indeed, in our previous anal-
ysis of the present dataset, we found that subjects could detect
the accuracy of motor decisions with above-chance accuracy
even on unseen trials (Charles et al., 2013), suggesting that
some performance evaluation processes distinct from the ERN
operate nonconsciously. According to the dual-route model,
the level of evidence reached by the nonconscious route is a
noisy indicator of the confidence in the response (Galvin et al.,
2003; Pleskac and Busemeyer, 2010), and thus may be used as
a subliminal index of accuracy. Crucially, however, this mech-
anism is only statistical in nature, and thus unable to confi-
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dently and categorically label a given trial as correct as
erroneous. Our results suggest that such categorical meta-
cognitive knowledge cannot be attained unconsciously, but
requires an explicit representation of the required action.
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