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Distinct brain mechanisms for conscious versus subliminal error detection
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Metacognition, the ability to monitor one's own cognitive processes, is frequently assumed to be univocally
associated with conscious processing. However, some monitoring processes, such as those associated with
the evaluation of one's own performance, may conceivably be sufficiently automatized to be deployed
non-consciously. Here, we used simultaneous electro- and magneto-encephalography (EEG/MEG) to investi-
gate how error detection is modulated by perceptual awareness of a masked target digit. The Error-Related
Negativity (ERN), an EEG component occurring ~100 ms after an erroneous response, was exclusively
observed on conscious trials: regardless of masking strength, the amplitude of the ERN showed a step-like in-
crease when the stimulus became visible. Nevertheless, even in the absence of an ERN, participants still man-
aged to detect their errors at above-chance levels under subliminal conditions. Error detection on conscious
trials originated from the posterior cingulate cortex, while a small response to non-conscious errors was seen
in dorsal anterior cingulate. We propose the existence of two distinct brain mechanisms for metacognitive
judgements: a conscious all-or-none process of single-trial response evaluation, and a non-conscious statis-
tical assessment of confidence.

© 2013 Elsevier Inc. All rights reserved.
Introduction

What are the limits of non-conscious processing? In the past twenty
years, evidence has accrued in favor of deep processing of subliminal
stimuli (i.e., stimuli presented below the threshold of subjective visibil-
ity). Not only can early visual processing be preserved under masking
conditions (Del Cul et al., 2007; Melloni et al., 2007), but subliminal
primes can modulate visual (Dehaene et al., 2001), semantic (Van den
Bussche et al., 2009) and motor stages (Dehaene et al., 1998; for a re-
view, see Kouider and Dehaene, 2007). Even executive processes, once
considered the hallmark of the conscious mind, can be partially
influenced by non-conscious signals related to motivation (Pessiglione
et al., 2007), task switching (Lau and Passingham, 2007) and inhibitory
processes (Van Gaal et al., 2008). These findings raise the issue of
whether subliminal stimuli could affect any cognitive process, or
whether certain processes depend on an all-or-none conscious ignition
(Del Cul et al., 2007).
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Here, we investigate meta-cognition — the ability to reflect on one-
self and on one's own cognitive processes. Intuitively, introspective re-
flection is virtually indistinguishable from conscious processing: it is
hard to envisage introspection without consciousness. This intuition
has served as a basis for the frequent identification of consciousness
with self-oriented, metacognitive or “second-order” cognition: any in-
formation that can enter into a higher-order thought process would
be conscious by definition (Kunimoto et al., 2001; Lau and Rosenthal,
2011; Persaud et al., 2007). However, this conclusion may also be dis-
puted. Somemetacognitive monitoring processes, such as those associ-
ated with the evaluation of one's performance (Logan and Crump,
2010) or the subsequent correction of one's errors (Endrass et al.,
2007;Nieuwenhuis et al., 2001;Wessel et al., 2011) are conceivably suf-
ficiently simple and automatized to be deployed non-consciously. Thus,
whether metacognitive processing implies conscious processing can
and should be tested empirically.

To investigate how performance monitoring relates to conscious
perception, the present experiments concentrate on the error-related
negativity (ERN), a key marker of error processing. The ERN is an
event-related potential that peaks on fronto-central electrodes 50 to
100 ms after making an erroneous response; it is easily observed in
EEG recordings (Dehaene et al., 1994; Falkenstein et al., 2000; Gehring
et al., 1993), and a similar, though harder to detect MEG component
has been reported (Keil et al., 2010; Miltner et al., 2003). The ERN is as-
sumed to originate in the cingulate cortex (Agam et al., 2011; Debener
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et al., 2005) and its role in cognitive control has been related to error de-
tection (Gehring and Fencsik, 2001; Nieuwenhuis et al., 2001), rein-
forcement learning (Holroyd and Coles, 2002) and conflict processing
(Botvinick et al., 2001; Veen and Carter, 2002).

The debated issue that we address here is whether the ERN index-
es a process which is automatic enough to be deployed unconscious-
ly. In relating this issue to the existing literature, it is crucial to keep in
mind that an error can fail to be consciously detected for several rea-
sons. A distinction must be made between errors that remain
unnoticed (1) because the erroneous action itself is not detected
(for instance because it consists in a fast key press or eye-movement
(Endrass et al., 2007; Nieuwenhuis et al., 2007; Logan and Crump,
2010; Hughes and Yeung, 2011)), (2) because the subject cannot de-
termine which response is the correct one (e.g. when responding
to a visible but confusing stimulus or instruction), or (3) because
the subject is completely unaware of the stimulus and therefore of
the correct response (e.g. when responding to a stimulus made invis-
ible by masking).

Initially, the relationship between consciousness and the ERN was
explored in the context of case (1), i.e. unaware actions (Nieuwenhuis
et al., 2001). It suggested that the ERN may remain present even
when participants are unaware of having made a partially erroneous
eye-movement (Endrass et al., 2007; Nieuwenhuis et al., 2001; but
seeWessel et al., 2011). In these studies, crucially, subjects performed
a difficult antisaccade task and were sometimes unaware of their er-
roneous glances in the pro-saccade direction. These results were fur-
ther extended to case (2) (i.e., confusion about which response is the
correct one), in paradigms where undetected errors were induced by
conflicting stimuli evoking two contradictory responses (Dhar et al.,
2011; Hughes and Yeung, 2011; O'Connell et al., 2007 but see Maier
et al., 2008; Steinhauser and Yeung, 2010). These studies have typi-
cally used the Eriksen flanker task, in which the presence of multiple
conflicting letters may purposely confuse the participant as to the na-
ture of the correct response.

Here, however, we aimed at testing the third case, i.e. whether an
ERN can be elicited by an unseen masked stimulus. Our main motiva-
tion was to extend the existing literature on the depth of subliminal
processing of masked words and digits (Kouider and Dehaene,
2007). In masking experiments, it is well known that participants
may deny seeing the stimuli, yet still perform above chance level in
a broad range of categorization task, such as deciding whether a
digit is larger or smaller than 5 (Dehaene et al., 1998; Del Cul et al.,
2007). As an extreme case, in blindsight, a patient may deny any con-
scious experience, while remaining able to perform way above
chance in simple tasks on stimuli presented in their blind hemi-field
(Kentridge and Heywood, 1999; Weiskrantz, 1996).

The specific question for the present research is whether, in sublim-
inal conditions induced by masking, the error detection system may
also be triggered non-consciously. We evaluate this question both by
monitoring the presence of the ERN, as well as by asking the partici-
pants for a second-order behavioral response. On each trial, the partic-
ipant first makes a forced-choice number comparison, and is then
asked to decide whether he made an error or not. The finding of either
anunconscious ERN, or of an above-chance second-ordermetacognitive
performance on subliminal trials, would expand the range of uncon-
scious operations. Corroborating recent evidence that even executive
processes of task switching and response inhibitionmay be partially ini-
tiated non-consciously (Lau and Passingham, 2007; van Gaal et al.,
2008), it would indicate that an unseen masked stimulus is capable of
progressing through a hierarchy of successive processing stages, all
the way up to a level of metacognitive monitoring. A negative answer,
on the other hand, would support the view that there are sharp limits
to unconscious processing, and that some cognitive operations only
proceed once the stimulus has crossed an all-or-none threshold for con-
scious access (Aly and Yonelinas, 2012; Dehaene and Changeux, 2011;
Province and Rouder, 2012; Sergent and Dehaene, 2004a).
Only two studies (Pavone et al., 2009; Woodman, 2010) investi-
gated the existence of an ERN on subliminal trials, yet they obtained
contradictory results: Woodman (2010) found that the ERN was ab-
sent for masked stimuli, while Pavone et al. (2009) found that it
could still be detected. Crucially, in order to contrast conscious versus
non-conscious processing, both studies manipulated parameters of
contrast or duration. Such sensory manipulations per se can have a
large impact on the amount of information available on subliminal
trials compared to conscious trials. Their findings may therefore re-
sult in a large part from this objective change in stimulus strength.
One of our aims was therefore to determine if changes in subjective
perception alone, in the presence of a constant stimulus, would mod-
ulate the ERN and metacognitive performance. To this end, we mea-
sured error responses to visual stimuli of variable masking strength,
ranging from fully visible to fully invisible (Fig. 1). Such design
allowed us to determine how subjective perception of a stimulus, by
itself, affects performance-monitoring processes, as assessed by be-
havioral and error-related MEEG brain measures.

In two masking experiments, participants performed a number
comparison task on a masked digit, while perceptual evidence was
systematically manipulated by varying the target-mask Stimulus
Onset Asynchrony (SOA; Del Cul et al., 2007). To maximize the
number of errors, a strong pressure to respond fast was imposed in
experiment 1. The main results were replicated in a second experi-
ment in which this pressure was reduced. Crucially, subjective per-
ception was assessed on a trial by trial basis by asking participants
to report their visibility of the target (Seen/Unseen) as well as their
perceived performance (Error/Correct) in the number comparison
task. Given that subjective reports vary spontaneously across trials,
this approach allowed us to study how the ERN and error-detection
performance were modulated by subjective perception of the
stimulus (subliminal/subjectively unseen trials versus conscious/seen
trials), independently of the objective variation in masking strength.

Materials & methods

Participants

In the first experiment, seventeen volunteerswere tested (5women
and 12 men; mean age 23.8 years). Because our experimental condi-
tions were partially determined by subjective reports, four participants
were discarded for having insufficient numbers of trials in some of the
conditions. Specifically, we removed participants with false-alarm rate
superior to 10% in the mask-only condition, or with less than 15% of
seen trials in the 50 ms SOA condition. In the second experiment, six-
teen participants were tested (6 women and 10 men; mean age
23.2 years). Two had to be discarded due to technical problems during
MEG recording. One participant was discarded using the same behav-
ioral criteria as in the first experiment. In the end, each experiment
comprised data from 13 participants. All participants had normal or
corrected-to-normal vision.

Design & procedure

A masking paradigm similar to Del Cul et al. (2007) was used in
this experiment. The target-stimuli (the digits 1, 4, 6, or 9) were
presented on a white background screen using E-Prime software.
The trial started with a small increase in the size of the fixation
cross (100 ms duration) signalling the beginning of the trial. Then
the target stimulus appeared for 16 ms at one of two positions (top
or bottom, 2.29° from fixation), with a 50% probability. After a vari-
able delay, a mask appeared at the target location for 250 ms. The
mask was composed of four letters (two E's and two M's, see Fig. 1)
tightly surrounding the target stimulus without superimposing or
touching it. The stimulus-onset asynchrony (SOA) between the
onset of the target and the onset of the mask was varied across trials.



Fig. 1. Experimental design: On each trial, a number was presented for 16 ms at one of two possible locations (top or bottom). It was followed by a mask composed of a fixed array
of letters centered on the target location. The delay between target onset and mask onset (SOA) varied randomly across trials (16, 33, 50, 66 or 100 ms). In one sixth of the trials, the
mask was presented alone (mask only condition). Participants first performed an objective forced-choice number comparison task where they decided whether the number was
smaller or larger than 5. In experiment 1, the response had to be made in less than 550 ms, otherwise a negative sound was emitted. In experiment 2, participants were simply
instructed to respond as fast as they could while maintaining accuracy. Then, on each trial, participants performed two subjective tasks. First they evaluated the subjective visibility
of the target by choosing between the words “Seen” and “Unseen”, displayed randomly either left or right of fixation. Second, they evaluated their own performance in the primary
number comparison task by choosing between the words “Correct” and “Error”, again displayed randomly either left or right.
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Five SOAs were randomly intermixed: 16, 33, 50, 66 and 100 ms. The
foreperiod duration was manipulated so that the mask always
appeared 800 ms after the signal of the beginning of the trial. In one
sixth of the trials, the target number was replaced by a blank screen
with the same duration of 16 ms (mask-only condition), allowing
us to study visibility ratings when no target was presented.

Participants primarily had to perform a forced-choice task of com-
paring the target number to the number 5. Responses were collected
within 1000 ms (experiment 1) or 2000 ms (experiment 2) after target
onset with two buttons using the index of each hand (left button
press=smaller-than-5; right button-press=larger-than-5 response).
To induce errors, participants were instructed to respond as fast as
they could just after the appearance of the target. In experiment 1,
time pressure was increased by presenting an unpleasant sound
(mean pitch: 136.2 Hz, 215 ms duration) 1000 ms after target presen-
tation whenever response time exceeded 550 ms. In experiment 2, no
further time pressure was imposed.

At the end of each trial, after another delay of 500 ms, participants
were requested to provide two subjective answers with no time–
pressure. The first answer was related to the subjective visibility of
the target number. In this visibility task, participants had to indicate
if they saw a target number or not. The second answer concerned
the participants' knowledge of their performance. Here, they had to
indicate whether they thought they had made an error or not in the
number comparison task (performance evaluation task). Instructions
were clearly stated to ensure that participants understood that the
performance evaluation task was directed to the number comparison
task and not the visibility judgment. Furthermore, participants were
informed that, even when they had not seen the stimulus and
thought that they responded randomly, they still had a 50% chance
of having made a correct response. Therefore, they were told to haz-
ard a guess on their performance, even when they did not see the
stimulus. For both subjective responses, words corresponding to the
two responses (seen/unseen and error/correct) were displayed on the
screen and participants had to use the corresponding-side buttons
to answer. The words were presented at randomized left and right
locations (2.3° from fixation) to ensure that participants didn't use
automatized button-press strategy.

The experiment was divided in blocks of 96 trials. Each block
contained 16 trials for every SOA condition, with each digit presented
at the two possible target locations (top/bottom). Participants
performed 6 or 7 blocks during EEG/MEG recording. For Experiment
1, in order to achieve fast responses, participants were given a train-
ing session before the actual recording. They first received 5 min of
training where the target stimulus was not masked. Next, participants
performed 3 pre-recording blocks of the actual experiment in order to
check that overall performance was suitable for MEG/EEG recording.
In Experiment 2, where fast responding was not required, only ten
trials of the experiment were given as training before starting the ac-
tual recording.

Simultaneous EEG and MEG recordings

Simultaneous recording of MEG and EEG data was performed. The
MEG system (the Elekta-Neuromag) comprised 306 sensors: 102
Magnetometers and 204 orthogonal planar gradiometers (pairs of
sensors measuring the longitudinal and latitudinal derivatives of the
magnetic field). The EEG system consisted of a cap of 60 electrodes
with reference on the nose and ground on the clavicle bone. Six addi-
tional electrodes were used to record electrocardiographic (ECG) and
electro-oculographic (vertical and horizontal EOG) signals.

A 3-dimensional Fastrak digitizer (Polhemus, USA) was used to
digitize the position of three fiducial head landmarks (Nasion and
Pre-auricular points) and four coils used as indicators of head position
in the MEG helmet, for further alignment with MRI data. Sampling
rate was set at 1000 Hz with a hardware band-pass filter from 0.1
to 330 Hz.

SDT analysis

To obtain an unbiased measure of visibility and performance, we
used Signal Detection Theory (SDT) to compute d′=z(HIT)−z(FA)
for the target-detection task (detection-d′, where HIT=proportion
of trials with target present and response seen, and FA=proportion
of trials with target absent and response seen) and the number com-
parison task (where HIT=proportion of trials with target smaller
than 5 and a left response, and FA=proportion of trials with target
larger than 5 and a left response).

The meta-d′ measure was computed according to Maniscalco and
Lau (2012). Briefly, classic SDT can be extended to predict what should
be the theoretical performance in meta-cognitive judgements where
one must evaluate one's own primary performance, such as confidence
ratings or error detection. The theory assumes that both primary and
meta-cognitive judgements have access to the same stimulus sample
on the same continuum. First-order judgments are performed by set-
ting a first criterion in the middle of the continuum. Meta-cognitive
judgements are performed by setting two additional criteria surround-
ing the first-order one, and responding “error” if the sample falls be-
tween these two criteria, or “correct” if the sample falls beyond them
(i.e. a sample distant enough from the first-order criterion signals
high confidence in the primary response). From this ideal-observer
theory, precise mathematical relations linking performance and
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meta-performance can bededuced (Galvin et al., 2003) and it is possible
to compute a second-order measure of meta-performance by classify-
ing meta-cognitive responses as second-order hits and false alarm.
However, the traditional measure of d′ does not directly apply to a
second-order task because it is not unbiased (second-order d′ systemat-
ically depends on the first-order criterion) and the assumption of nor-
mality of the distributions is violated. In order to obtain a valid
measure of meta-performance, unbiased and comparable to the first-
order d′, Maniscalco et al. (http://www.columbia.edu/~bsm2105/
type2sdt/) proposed an alternative solution, meta-d′. Their proposal
consists in bringing both first and second-order performance to the
same scale, by determining what should have been the d′ in the
first-order task given the observed second-order (meta) performance,
under the assumption that the subject used exactly the same informa-
tion in both cases. Since meta-d′ is expressed in the same scale as d′,
the two can be compared directly. When meta-d′bd′, it means that
the subject did worse in the performance evaluation task than expected
according to his actual d′ value. On the opposite, if the meta-d′>d′, it
means that more information was available for subjective performance
evaluation than for the primary objective decision.

Meta-d′ was estimated by fitting the parameters of a type-I SDT
model so that the predicted type-II hits and false-alarm rates were
fitted to the actual type-II data. Therefore, meta-d′ corresponds to
the d′ that maximizes the likelihood of the observed type perfor-
mance, assuming the same bias of response as the one observed in
the data.
MEG/EEG data analysis

MEG data were first processed with MaxFilter™ software using
the Signal Space Separation algorithm. Bad MEG channels were
detected automatically andmanually, and interpolated. Head position
information recorded at the beginning of each block was used to re-
align head position across runs and transform the signal to a standard
head position framework.

To remove the remaining noise, Principal Component Analysis
(PCA) was used. Artifacts were detected on the electro-occulogram
(EOG) and electro-cardiogram. Data were averaged on the onset of
each blinks and heart beats separately and PCA was performed sepa-
rately for each type of sensor. Then, one to three of the first compo-
nents characterizing the artifact were selected by mean of visual
inspection to be further removed.

Data were then entered into Matlab software and processed with
Fieldtrip software (http://fieldtrip.fcdonders.nl/). For the first experi-
ment, an automatic rejection of trials based on signal discontinuities
(all signal above 30 and 25 standard deviations in 110–140 Hz fre-
quency range) was performed. However, less than 1% of the trials re-
moved, and therefore this step was omitted in experiment 2, where
the number of error trials was smaller. A low-pass filter at 30 Hz
was then applied as well as a baseline correction from 300 ms to
200 ms before target onset.

Data were then realigned on response onset to be further aver-
aged by subject and conditions. To obtain grand-average evoked re-
sponse data, we first averaged individual data for each SOA
separately, then averaged across SOAs and then across participants.
For the first experiment only, response times were equalized across
error and correct trials (see Supplementary Methods). Without such
a correction, the slower RTs on seen correct trials caused artifactual
differences due to non-aligned sensory-evoked components on
response-locked averages (Fig. S4). This RT correction was not need-
ed in experiment 2 where RTs were longer and response-locked ERPs
were therefore uncontaminated by sensory-evoked components. An
additional baseline correction was simply performed from 200 to
50 ms before motor response. We verified that these small differ-
ences in procedure did not affect the main results, and in particular
the same dependency of ERN on visibility was observed when no RT
correction was applied to experiment 1 (See Supplementary Results).

Combined EEG/MEG source reconstruction

Brainstorm software was used to derive current estimate from cor-
rect and error MEEG waveforms, for each condition of visibility and
each subject separately. Cortical surfaces of 22 participants (2 partici-
pants were discarded in each experiment as no MRI data could be
obtained) were reconstructed from individual MRI with FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) for cortex surface (gray-white
matter boundary) and Brainvisa (http://brainvisa.info/) for scalp
surface. Inner skull and outer-skull surfaces were estimated by
Brainstorm, in order to compute accurate forward model using a
three-compartment boundary-element method (OpenMeeg toolbox;
http://www-sop.inria.fr/athena/software/OpenMEEG/). Sources were
computed with weighted minimum-norm method and dSPM (depth-
weighting factor of 0.8, loosing factor of 0.2 for dipole orientation). Indi-
vidual source estimate data were then projected on a template cortical
surface, in order to be averaged across participants, separately for each
experiment.Mean power (i.e. square of the t-values) of regions of inter-
est was computed to present time-courses of brain activity.

Statistical analysis

Behavioral data analysis
All behavioral data analyses were performed with Matlab software

with the help of the Statistics toolbox using repeated-measures anal-
ysis. Reaction-time analysis was performed on the median RT of each
condition.

MEG data analysis
To detect significance differences between error and correct condi-

tions for each type of sensor, we used a cluster-based non-parametric
t-test with Monte Carlo randomization provided in the Fieldtrip soft-
ware (Maris and Oostenveld, 2007). This method identifies clusters of
nearby sensors presenting a significant difference between two condi-
tions for a sufficient durationwhile correcting formultiple comparisons.
For each sample, t-values and associated p-value were first computed
bymeans of a non-parametricMonte-Carlo randomization test. Clusters
were then identified by taking all samples adjacent in space or in time
(minimum of 2 sensors per cluster, 4.3 average spatial neighbors per
EEG electrode and 8.2 per MEG channel) with pb0.05. The final signifi-
cance of the cluster was found by computing the sum of t-values of the
entire cluster, and comparingwith the results of Monte-Carlo permuta-
tions (1500 permutation). Clusters were considered significant at
corrected pb0.05 if the probability computed with the Monte-Carlo
methodwas inferior to 2.5% (two-tailed test). Time-windows of interest
were chosen for each experiment on the basis of the EEG results for seen
trials to optimize cluster detectability. The ERN is usually observed in a
100 ms time-window after button press (Dehaene et al., 1994). As the
onset of the difference was observed slightly later in experiment 1
than experiment 2, search for clusters was performed respectively on
a 30–100 ms time-window after motor response for experiment 1
and 0–100 ms in experiment 2.

For statistical analysis on a-priori clusters, average voltage over cen-
tral electrodes (FC1, FC2, C1, Cz, C2) were computed over the same
time-window as for the cluster analysis (30–100 ms and 0–100 ms
after motor response respectively for experiment 1 and 2, analysis of
later time windows is reported in Supplementary Results). Analysis
was performed in Matlab using repeated-measures t-tests (two-tailed)
and ANOVA with visibility and performance as within-subjects factors.
Analysis by SOA required more sophisticated statistical analysis as
trial rejection and factorial analysis (SOA*Visibility*Performance) led
to unequal number of participants in each combination of condition.
Therefore, analysis of variance was performed in R software using a

http://www.columbia.edu/~bsm2105/type2sdt/
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linear mixed-effects model ((Baayen et al., 2008) R package lme4)
which allowed us to include all data available (unbalanced design)
and still encompass repeated-measures. The functions used yield t sta-
tistic and, as degrees of freedom cannot be computed for this kind of
analysis, p-values were derived from a Markov Chain Monte Carlo
(MCMC) method.
Results

Subjectivity visibility is reliably affected by masking

Subjective visibility, as measured by the percentage of seen re-
sponses, increased in a non-linear sigmoid manner with SOA
(F5,55=316.7, pb10−4, see Supplementary result), replicating earli-
er results (Del Cul et al., 2007). Stimuli that were masked after a
short latency (SOAb~50 ms) were almost always judged as invisible,
while visibility rose very rapidly after this point (Fig. 2). Visibility
was slightly higher in experiment 1 compared to experiment 2
(two way ANOVA with factor experiment and SOA, F1,55=3.371,
p=0.094), probably because participants underwent more training
in experiment 1 than in experiment 2. However, the main effect of
SOA was highly significant in both cases, and no interaction was
found between SOA and experiment (F5,55=1.77, p=0.135).

Raw visibility reports (Seen, Unseen) can be criticized as subjec-
tive and potentially biased measures. We therefore transformed
them into an objective index of target detection sensitivity and
bias, using classical signal detection theory. To this end, at each
SOA level, visibility ratings (percent Seen responses) were compared
Fig. 2. Visibility and performance results according to SOA for experiment 1 (left column
responses (left axis ranging from 0 to 100%) as a function of SOA. The thick line represen
response bias towards unseen response (same scale as detection-d′), for each SOA. (C-D) Pe
jective report of performance (Error trials correctly classified as Error in dark red, Correct tria
in light red and Correct trials incorrectly classified as Error in light blue), for each SOA.
against those in the mask-only condition, and converted to
detection-d′ and bias values (see Materials & methods). For the
shortest SOA condition (SOA=16 ms), participants were at chance
to detect the presence of the target, as the detection-d′ did not differ
significantly from 0 (Exp1: average d′=0.15, t12=0.98, p=0.34,
Exp2: average d′=0.01, t12=0.07, p=0.94). Furthermore, participants
adopted a conservative criterion (bias>0, t12=14.6, pb10−4, t12=17,
pb10−4), reflecting the frequent use of the unseen response on both
target-present andmask-only trials, and therefore confirming the invis-
ibility of the targets at this SOA. As SOA increased, detection-d′ increased
(F4,44=220.7, pb10−4) while response-bias toward the unseen re-
sponse decreased (F4,44=221, pb10−4), confirming that visibility im-
proved with SOA. Finally, on mask-only trials, false-positives were
very rare (exp 1: 3% erroneous seen responses; exp 2: 4%). Overall,
these observations confirm that subjective visibility reports were reli-
able and that masking at short SOA induced a subjective state of invisi-
bility on a large proportion of trials.
Cognitive and metacognitive performance are affected by masking

We then looked at the variations in performance and meta-
performance as a function of SOA (see Fig. 2; Response times are
reported in Supplementary material).

Objective performance in the number comparison task increased
with SOA (F4,44=318.89, pb10−4), with a non-linear profile virtually
parallel to subjective visibility (Figs. 2C-D). As intended, in the first
experiment where strong time pressure was imposed, participant's
performance did not reach ceiling even for the largest SOA (SOA
) and 2 (right column). (A–B) Visibility ratings, expressed as the proportion of seen
ts detection-d′ values (right axis, ranging from 0 to 4) while the thin line represents
rcentage of each category of trials according to actual objective performance and sub-
ls correctly classified as Correct in dark blue, Error trials incorrectly classified as Correct
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100 ms, Fig. 2C). Thus, experiment 1 achieved its goal of generating a
minimum of ~20% errors at each SOA, allowing us to explore the
mechanisms of error detection. In the second experiment, where
time pressure was relaxed, performance at the longest SOA reached
95% correct (Fig. 2D), thus resulting in a much smaller number of an-
alyzable errors. This pattern resulted in a significant SOA by experi-
ment interaction (F4,44=19.49, pb10−4).

Next, we investigated meta-cognitive performance as a function
of SOA. Our procedure allowed us to compare, on each trial, the
subject's objective accuracy with his evaluation of his performance.
Trials were classified as “meta-correct” if they were error trials per-
ceived as errors, or correct trials perceived as correct. Otherwise
they were labelled as “meta-incorrect”. Meta-cognitive perfor-
mance (i.e. percentage of meta-correct trials) increased with SOA
(F4,44=165.83, pb10−4), reaching 97% meta-correct trials in both
experiments. As seen on Figs. 2C–D, both types of meta-incorrect
responses (undetected errors as well as correct trials misperceived
as errors) progressively vanished with increasing SOA, in tight par-
allel with increasing target visibility.

Overall, these results indicate that the SOA manipulation success-
fully modulated, in tight parallel, the performance of our three tasks:
objective number comparison, metacognitive evaluation, and visibili-
ty judgment. In the next section, we show how visibility, indepen-
dently of SOA, indexes a major switch in the performance of the
other two tasks.

Cognitive and metacognitive performance are affected by visibility

To better characterize how behavior changed on conscious and
non-conscious trials, the data were then split by visibility (Seen vs Un-
seen). As visibility increased in a non-linear way with SOA, many
Fig. 3. Performance and meta-performance according to visibility and SOA in both experime
seen (belowmidline) and seen trials (above midline) were computed for each SOA. For each t
according to objective performance and subjective report of performance (same colo
meta-performance (meta-d′, triangles) were computed separately for seen (solid line) and u
participants had fewer than 5 trials in one of the visibility condition
for extreme SOA values. Therefore, we removed these trials from
the analysis and from the figures, keeping for seen trials only trials
corresponding to SOA larger than 33 ms and for unseen trials those
corresponding to SOA smaller than 50 ms.

As can be seen in Figs. 3A–B, participants performed way above
chance both in the number comparison task and in the performance
evaluation task when they could see the target number, independent-
ly of the SOA condition (for experiments and all SOA, performance
and meta-performance>50%, pb0.005). When averaging together
all SOAs or when considering only intermediate SOAs (33 and
50 ms) for which we had approximately as many seen and unseen tri-
als, both performance and meta-performance were significantly su-
perior on seen compared to unseen trials (for both experiments, all
pb0.01). This finding was similar in both experiments, with a small
difference: for the seen trials, at the longest SOA (100 ms), perfor-
mance was lower in experiment 1 compared to experiment 2 (80%
versus 96%), again because of the strong time pressure imposed in ex-
periment 1.

To obtain a clearer view of the relative sensitivity of the subject in
the second-order performance evaluation task compared to the primary
task, performance was converted to d′ andmeta-d′ values (Figs. 3C–D).
As described by second-order Signal Detection Theory (Galvin et al.,
2003; Maniscalco and Lau, 2012; Rounis et al., 2010) (SDT), d′ and
meta-d′ give an unbiased estimate of performance, respectively for
first-order task (here, number comparison) and second-order task
(error detection). Since these two measures are on the same scale,
they allow us to compare what the first-order performance actually
was towhat it should have been, given second-order error detection ac-
curacy (Galvin et al., 2003; Maniscalco and Lau, 2012; Rounis et al.,
2010).
nts (left column, experiment 1; right column, experiment 2). (A–B) Proportions of un-
ype of trials and each SOA, the relative percentage of each category of trials was derived
r code as in Fig. 2). (C-D) Unbiased measures of performance (d′, circles) and
nseen (dashed-line) trials and each SOA value. All error-bars represent standard error.



Table 2
Statistical increase in performance and meta-performance with SOA for experiment 1
and 2.

Experiment 1 Experiment 2

d′ F3,36=8.776, p=0.0002 F3,36=49.677, pb10−4

meta-d′ F3,36=8.12, p=0.0003 F3,36=10.3, pb10−4
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This analysis confirmed that even for equal SOA, both performance
and meta-performance showed a sudden jump with visibility (see
Figs. 3C–D; statistics in Table 1). Thus, visibility judgment, although a
subjective task, also indexes a large change in objective performance:
seen and unseen trials differmassively in the quantity of usable informa-
tion for both primary and secondary judgments (Del Cul et al., 2007,
2009).

For seen trials (Figs. 3C-D, solid lines), performance and meta-
performance (d′ and meta-d′) increased significantly with SOA in both
experiments (see Table 2). Meta-d′ always significantly exceeded d′, in
particular in Experiment 1 with time pressure (F1,12=167.3, pb10−4),
but also in Experiment 2 (F1,12=9.93, p=0.008). This finding indicates
that some of the primary responses were errors that could be detected
prior to second-order judgment, resulting in “change-of-mind” (Resulaj
et al., 2009). In sum, on seen trials, participants managed to perform
the metacognitive task with very high accuracy.
Cognitive and metacognitive performance are above chance on
unseen trials

We next performed similar analyses of cognitive and metacognitive
performance restricted to the unseen trials.

For first-order performance, performance remained at chance
level on unseen trials in experiment 1 (%correct=50%, for all SOA,
p>0.30, Fig. 3A), presumably due to the pressure on speed. In exper-
iment 2, when time pressure was relaxed, performance slightly
surpassed 50% (%correct>50%, for all SOA, pb0.05, Fig. 3B).

These results were confirmed by an analysis of first-order d′ values.
In experiment 1, performance was at chance for all SOAs (d′=0, all
p>0.10, Fig. 3C), but once speed pressure was relaxed in experi-
ment 2 (Fig. 3D), objective performance increased with SOA
(F2,24=10.589, p=0.0005) and differed from chance for SOA 33 ms
(t12=2.99, p=0.011) and 50 ms (t12=3.97, p=0.002). Experiment
2 thus demonstrates a classical subliminal effect (Persaud et al., 2007;
Pessiglione et al., 2007), i.e. a partial accumulation of evidence about
the unseen targets.

Most importantly, second-order performance in the error detec-
tion task (i.e. meta-performance) was significantly above chance in
both experiments for intermediate SOAs (SOA 33 and 50 ms, meta-
performance>50%, all pb0.005). Indeed, as shown in Figs. 3A–B,
when pooling these two intermediate SOAs, a large number of cor-
rect trials were correctly classified as such (exp 1: 65.8%; exp 2:
72.9%). Again, SDT analysis confirmed this result, as meta-d′ was
significantly superior to 0 (chance level) on unseen trials, both in ex-
periment 1 (SOA 16 ms: t12=2.42, p=0.032, SOA 33 ms: t12=2.26,
p=0.043 and SOA 50 ms: t12=3.79, p=0.003) and in experiment 2
(SOA 33 ms: t12=3.27, p=0.007 and SOA 50 ms: t12=4.52, p=0.
0007) and seem to increase with SOA (Exp1: F2,24=2.65, p=0.091;
F2,24=8.50, p=0.002).

Direct comparison of d′ and meta-d′ showed that, for both exper-
iments, meta-cognitive performance exceeded primary task perfor-
mance on unseen trials. This was true over all unseen trials (SOA
16–50 ms, Exp1: F1,60=11.48, p=0.005; Exp 2: F1,60=13.2, p=
0.003), at intermediate SOAs 33 ms (Exp1: t12=−1.89, p=0.041;
Exp2: t12=−1.97, p=0.036) and at SOA 50 ms (Exp1: t12=−3.28,
p=0.003; Exp2: t12=−2.09, p=0.023). Even in subliminal
Table 1
Statistical analyses of performance and meta-performance scores, relative to chance level, a

Pooling all SOAs

Performance exp 1 t12=10.5 pb10−4

exp 2 t12=12.5 pb10−4

Meta-performance exp 1 t12=9.42 pb10−4

exp 2 t12=8.73 pb10−4
conditions, once a primary response is emitted, participants can cate-
gorize it as correct or incorrect with better-than-chance performance.

To summarize, we found that in both experiments, participants
were above chance in judging their own errors, even on trials classi-
fied as unseen. Most remarkably, for subliminal stimuli in experiment
1, participants were at chance for the objective task, presumably due
to time pressure, and yet they were still able to evaluate their accura-
cy better than chance. In experiment 2, they were above chance for
both cognitive and metacognitive tasks, a result that may relate to
the reduced time pressure compared to experiment 1.

The error-related negativity is present only on seen trials

We then turned to EEG recordings, in order to probe whether
metacognitive performance was accompanied by an ERN, even
under subliminal conditions (Fig. 4).

Starting with the seen trials, a significant ERN, manifested by more
negative central voltages on error than on correct trials, was found in
both experiments (Figs. 4A-B, Exp. 1: t12=−3.39, p=0.0053; Exper-
iment 2: t12=−3.42, p=0.0051). Importantly, no significant differ-
ence was detectable on unseen trials in experiment 1 (t12=−0.55
p=0.59), suggesting that the ERN was absent under subliminal con-
ditions. In this experiment, the number-comparison task was strongly
speeded, leaving open the possibility that the results might be an ar-
tefact of time–pressure, with the response being emitted too fast to
observe an ERN. However, this interpretation was rejected by exper-
iment 2, where a similar result was observed (t12=0.02, p=0.98) al-
though time–pressure was relaxed and response-time was longer
(see Supplementary material).

The variation of the ERN with subjective report was confirmed by a
significant interaction between visibility (seen or unseen) and perfor-
mance (error or correct) on central voltages in the time window of the
ERN (Exp 1 F1,36=8.62, p=0.012; Exp 2 F1,36=10.46, p=0.0072, see
Materials &methods). The ERN remained undetectable on unseen trials,
even when we restricted the analysis to trials in which metacognitive
performance was correct (see Supplementary Results) and therefore a
maximal amount of stimulus information was accumulated. The
absence of the ERN on these trials suggests that above-chance
metacognitive performance on subliminal trials was not mediated by
the ERN, whichwas simply absent or drastically reduced under sublim-
inal conditions.

The ERN depends on visibility, not SOA

The above seen/unseen comparison is partially confounded with
differences in SOA, as the majority of seen trials comes from trials
with long SOAs. It could therefore be argued that the presence of
the ERN on seen trials has nothing to do with subjective visibility,
but is simply due to the additional information made available by
s a function of visibility, for experiment 1 and 2.

SOA 33 ms SOA 50 ms

t12=5.20 pb10−4 t12=6.9921 pb10−4

t12=3.70 p=0.0015 t12=5.08 p=0.0001
t12=2.719 p=0.0093 t12=4.507 p=0.0003
t12=1.677 p=0.0597 t12=5.15 p=0.0001



Fig. 4. Time courses of event-related potentials as a function of objective performance and visibility. (A,B) Grand-average event-related potentials (ERPs) recorded from a cluster of central
electrodes (FC1, FC2, C1, Cz, C2), sorted as a function of whether performance was erroneous (red lines) or correct (blue lines), andwhether the target was seen (solid lines) or unseen trials
(dashed lines), for experiment 1 (A) and experiment 2 (B). (C,D) Difference waveforms of error minus correct trials, separately for seen (solid line) and unseen (dashed line) trials.
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the longer SOA (indeed, a similar confound applies to previous re-
search by Pavone et al. (2009) and Woodman (2010). However, be-
cause we collected visibility information on every trial, our design
allowed bypassing this limitation. We sorted the trials as a function
of both SOA and trial-by-trial judgement of visibility, taking advan-
tage of spontaneous fluctuations in visibility for a fixed SOA. This
analysis could only be performed in experiment 1 as too few error tri-
als occurred in experiment 2.

On unseen trials, a general linear model (see Materials & methods)
with SOA (16, 33 or 50 ms) and performance (correct or error) as
Fig. 5. Time courses of event-related potentials as a function of SOA and objective performa
SOA condition for error (top raw, A and B) and correct (middle raw, C and D) trials in seen (l
a cluster of central electrodes (FC1, FC2, C1, Cz, C2). (E,F) Difference waveforms of error min
trial numbers, only the shortest SOA (16, 33 and 50)ms are presented for unseen trials whi
within-subject factors confirmed the absence of a difference between
error and correct trials (no ERN, p=0.91, Fig. 5F) and no interaction
with SOA (p=0.76). Indeed, none of the SOAs showed a significant
ERN (all p>0.25). For seen trials, conversely, a similar ANOVA over
SOAs 33, 50, 66 and 100 ms revealed a main difference between
error and correct trials (pb10−4, Fig. 5E). Furthermore, an interaction
with SOA (p=0.04) indicated that the ERN increased with SOA.

Most crucially, for SOA 50 ms, the voltage difference between cor-
rect and error trials varied drastically with visibility. No ERN was ob-
served for unseen trials (t10=0.58, p=0.29, Fig. 5F) while a clear ERN
nce for seen and unseen trials. (A–D) Grand-average event-related potentials (ERPs) by
eft column, A and C) and unseen (right column, B and D) conditions for experiment 1 on
us correct for seen (solid line) and unseen (dashed line) trials, by SOA. Due to reduced
le only longer SOAs (33 ms, 50 ms, 66 ms and 100 ms) are included for seen trials.
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was present for seen trials (t11=2.48 p=0.015, Fig. 5E). Thus, sub-
jective visibility, over and above objective variations in SOA, deter-
mined the presence or absence of an ERN. For SOA 33 ms, the
difference between error and correct trials did not reach significance
neither for the unseen (t12=−0.23, p=0.59), nor for the seen trials
(t8=1.16, p=0.14) probably due to the small number of partici-
pants having enough data points in this condition. Fig. 5E suggests
that at this SOA, the ERN was present but temporally spread out,
which we verified by observing significantly more negative voltages
for errors than for correct trials once averaging over the interval
50-200 ms (t8=2.53, p=0.018). Within the seen trials, the
error-correct difference reached significance for all other SOAs
(SOA 66 ms: t11=3.02, p=0.006; SOA 100 ms: t11=3.37, p=0.003).

In summary, at any SOA, the ERN was present if and only if partic-
ipants reported seeing the target.

MEG detects signatures of conscious and non-conscious errors

To identify the cerebral signatures of error processing, cluster analy-
sis was applied to MEG and EEG data in order to identify any cluster of
sensors showing a difference between error and correct trials. To take
advantage of the possible differences in sensitivity between sensors,
we analyzed separately each type of sensor (electrodes, magnetome-
ters, longitudinal and latitudinal gradiometers) for seen and unseen tri-
als. For EEG, cluster analysis essentially replicated the above ERN
analysis. On seen trials, a significant cluster, withmore negative voltages
Fig. 6. Error-related MEEG topographies as a function of target visibility. Each plot depicts
averaged across a 30–100 ms time window for experiment 1 and 0–100 ms for experiment 2
[MEGm], longitudinal gradiometers [MEGg1], latitudinal gradiometers [MEGg2]) and for the see
to a spatiotemporal cluster showing a significant difference (pb0.025) between error and corr
on error trials, was found on fronto-central electrodes in EEG, for both
experiment 1 (p=0.0067, Fig. 6A) and 2 (p=0.0013, Fig. 6C). The clus-
ter began at motor onset in experiment 2, and continued for 100 ms,
while it started at 50 ms after the response in experiment 1. In unseen
trials, no significant EEG cluster was detected.

For MEG, in experiment 1, significant clusters were found for two of
the three types of channels in the seen trials (Fig. 6A, latitudinal gradi-
ometers cluster: left fronto-lateral region, 25–70 ms after response,
p=0.015; magnetometers cluster: right parieto-central region, 65–
90 ms, p=0.023), suggesting different sensitivity to error-related sig-
nals across sensor types. Again however, no significant cluster was
found for the unseen trials (Fig. 6B).

As time–pressure induced speeded responses in experiment 1, we
then turned to experiment 2, inwhichmore evidence should be available
at response onset and error-related processes should have full ability to
develop. Indeed, MEG sensors revealed a different pattern of activity
for this experiment. For seen trials, onlymagnetometers (Fig. 6C) showed
error-related activity (orbito to dorso-frontal regions, 5–55 ms). More
surprisingly, even for unseen trials, significant differences were observed
in two clusters of sensors (Fig. 6D; longitudinal gradiometers, 0–65 ms,
p=0.002; magnetometers, 0–45 ms, p=0.007), none of them resem-
bling however with those found for the seen trials. These results suggest
thatMEG sensorsmayprovide amore sensitive and comprehensive view
of error-processes than EEG, a result that is coherent with recent studies
showing accrued sensitivity ofMEG sensors to sources located in the cin-
gulate gyrus, where the generators of the ERN are thought to be located
the scalp topography of the t-value for a difference between correct and error trials,
following the motor response, separately for each type of sensors (EEG, magnetometers
n and unseen trials, in experiments 1 (A) and 2 (B). Black circles indicate sensors belonging
ect conditions using a Monte-Carlo permutation test.
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(Irimia et al., 2011). Furthermore, this analysis confirms that these
error-processes are modulated by consciousness but also by time–
pressure as different results were obtained in the two experiments.
Conscious error detection originates from posterior cingulate cortex

To shed more light on the cerebral generators of these error re-
sponses observed at the sensor level, we applied distributed source esti-
mation on error and correctMEEG signals. For seen trials in experiment 1,
the main source of the difference between error and correct trials was
found bilaterally in the anterior part of the Posterior Cingulate Cortex
(PCC, Fig. 7A). Its time course matched the dynamics of the ERN
(Fig. 7E), and its peak coordinates (Talairach coordinates x=−6
y=−22 z=33) felt close to a recently published MEEG and fMRI
study (Agam et al., 2011). In the unseen condition, this activity was dras-
tically reduced, in accordance with the absence of a significant effect at
the sensor level. Lowering the threshold only revealed weak and incon-
sistent differences in the most posterior part of the cingulate cortex
(Fig. 7C).

In experiment 2, the involvement of PCC on conscious errors was
replicated (Talairach coordinates x=−9 y=−23 z=31), but addi-
tional error-related activity was also observed in dorsal anterior cin-
gulate (dACC, Talairach peak at coordinates x=7 y=2 z=27,
Figs. 7B and F), explaining the observed differences in MEG
sensor-level topographies in experiments 1 versus 2. Again, activa-
tion in these regions was drastically reduced for unseen trials. Never-
theless, small patches in dACC (Fig. 7D) remained active in the
unseen condition, compatible with the small but significant effect
detected at the sensor level in MEG data.

When further restricting the analysis to unseen meta-correct trials,
in which performance was correctly evaluated (see Supplementary
Fig. 7. Difference of source estimates between error and correct MEEG signals. (A–D) View
periment 2 (B,D), for seen (A–B) and unseen (C–D) trials. Data are thresholded at 66% of m
time-window for experiment 1 (A,C) and 0–100 ms for experiment 2 (B,D). (E–F) Time-co
Cingulate Cortex (vACC), dorsal Anterior Cingulate Cortex (dACC) and Posterior Cingulate C
(dashed-line) trials. Values correspond to instantaneous power in the region of interest (av
Results), time-courses indeed revealed a short-lived response (Fig. S5)
in dACC coincidingwith the early part of the error-related activation ob-
served on seen trials. Thus, this transient dACC activation might be one
of the substrates for above-chance metacognitive performance.

Discussion

In this study we explored whether the meta-cognitive process of
error detection in a simple response-time decision task requires con-
scious perception of the stimulus in order to be deployed. We
recorded brain responses in a masking paradigm with variable
time–pressure and masking strength, and evaluated the relation be-
tween first-order performance, meta-cognition, and subjective visi-
bility. Our findings indicate that two types of metacognitive
processes have to be distinguished: (1) The likelihood of having
made an error can be estimated above chance level, in a statistical
manner, even when making a forced-choice response to a subliminal
stimulus; (2) the ERN, which reflects the detection of whether an
error was made on a given trial, indexes another process that is
only deployed on trials where the stimulus is consciously perceived.

Metacognition without consciousness

Behaviorally, we compared performance in the number compari-
son task and in the meta-performance task of detecting one's own er-
rors. For the latter, following Maniscalco and Lau (2012), we used a
meta-d′ measure that evaluates what should have been the perfor-
mance in the first-order task given the performance observed in the
second order task. This method allowed us to compare, on the same
scale, performance in the number comparison task (d′) and perfor-
mance in error detection (meta-d′).
of the medial surface of the left and right hemispheres, for experiment 1 (A,C) and ex-
aximum activity within each condition. Brain activity was averaged in a 30–100 ms
urses of brain activity in three bilateral regions of interest located in ventral Anterior
ortex (PCC), for experiment 1 (E) and experiment (2), for seen (solid-line) and unseen
erage, across vertices, of the square current density t-maps).
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In two distinct experiments, we found that participants were able
to do better than chance in detecting their own performance under
conscious, but also under non-conscious conditions. In Experiment
1, meta-performance in error detection exceeded performance in
the first-order task, presumably because, under time–pressure, the
primary response was emitted too early, and participants later re-
vised their judgments using a more complete accumulation of evi-
dence on the stimulus (Resulaj et al., 2009). This interpretation was
supported by Experiment 2: when time–pressure was weakened,
both performance and meta-performance reached above-chance
levels and evolved in close parallel as a function of SOA (Fig. 3).

Crucially, participants performed above chance in detecting their
own errors even on unseen trials. In both experiments, meta-cognitive
performance on unseen trials increased with SOA, suggesting that lon-
ger SOAs allowed increasing amounts of evidence to be accumulated,
as previously demonstrated for subliminal visual and motor processing
(Del Cul et al., 2007; Vorberg and Mattler, 2003).

Our findings therefore suggest that meta-cognition should be added
to the list of processes that can be partially deployed non-consciously.
Such a result is in line with a previous report showing a higher-
than-chance performance in metacognitive judgments of confidence
under conditions of invisibility due to inattention (Kanai et al., 2010).
Similarly, another study showed that a blindsight patient was able to
perform above chance-level in his second-order confidence judgments,
even when the stimulus was presented in his blind hemi-field (Evans
andAzzopardi, 2007). Suchfindings contradict the view that under con-
ditions of subjective invisibility, participants are not able to predict their
accuracy in detecting a masked target. Indeed, measurement of post-
error slowing suggests that participants are able to monitor their per-
formance non-consciously, and are sensitive to their objective errors
even when the experimental paradigm misleads them into thinking
that their performance was correct (Logan and Crump, 2010).

These findings conflict with the common intuition according to
which self-oriented monitoring processes are tightly linked to con-
sciousness (Kunimoto et al., 2001; Lau and Passingham, 2006; Persaud
et al., 2007). In particular, our finding that above-chancemetacognitive
judgments do not necessarily indicate conscious perception of the stim-
ulus seems incompatible with the use of wagering or confidence as an
index of consciousness (Kunimoto et al., 2001; Persaud et al., 2007).
Nonetheless, such a critiquemust be qualified, as above-chance sublim-
inal metacognition is probably limited to experimental circumstances
where a forced-choice judgment is imposed. Furthermore, in the pres-
ent study, participants had to be explicitly informed that even when
responding randomly they still had a 50% chance of being correct.
Therefore they should venture “error” and “correct” responses on ap-
proximately half of trials. Prior to this instruction, a pilot study showed
that most of them spontaneously responded with the “error” key on all
unseen trials, suggesting a total lack of confidence in their capacity to
make both first- and second-error judgments. In the same manner,
blindsight patients may first have to gain an explicit awareness that
their performance largely exceeds chance level before performing a
second-order metacognitive task (Evans and Azzopardi, 2007). It re-
mains unclear whether above-chance subliminal metacognitive abili-
ties would be observed without this prior knowledge of first-order
accuracy. In that sense, wagering and confidence judgments may vary
more tightly with subjective reports of visibility in some contexts than
others. Altogether however, these findings confirm that, as any other
decision processes, second-order judgments are subject to response
biases (Evans and Azzopardi, 2007; Fleming and Dolan, 2010) and
should therefore be analyzed carefully to disentangle the effect of crite-
rion setting from the true level of “meta-evidence” available about a
given cognitive process.

Second-order signal detection theory (SDT) offers a theoretical
framework within which to analyze such measures, and is capable of
explaining both first- and second-order non-conscious performance.
According to classical SDT, an observer receives a sensory sample on a
continuum, and the first-order response is selected by deciding on
which side of a decision boundary it falls. Second-order SDT points
out that information on the distance of the sensory evidence from the
decision boundary can be used to partially predict response accuracy,
thus supporting a second-order judgement (Galvin et al., 2003). Intui-
tively, sensory evidence that falls very close to the decision boundary
is highly ambiguous and will therefore likely lead to an error. In con-
trast, sensory evidence that falls far from the boundary is (statistically)
more indicative of a correct response. According to this model, decision
and confidence are therefore computed simultaneously from the same
data. Previous behavioral and neural evidence (Kepecs et al., 2008;
Kiani and Shadlen, 2009; Resulaj et al., 2009) supports this view. Fur-
thermore, the theory can explain the gist of our present results: since
first-order evidence towards a decision can be accumulated from
unseen stimuli, resulting in above-chance first-order performance
(Vorberg and Mattler, 2003), it follows from the theory that it should
also be possible for the same system to compute second-order confi-
dence information non-consciously — as demonstrated here.

However, the data of Experiment 1 impose a small revision on the
second-order SDTmechanism proposed by Galvin et al. (2003). This the-
ory supposes that a single sample of sensory evidence is used for both
first-order and second-order tasks, predicting that meta-performance
cannot exceed performance (Galvin et al., 2003). However, in Experi-
ment 1, under strong time pressure, primary judgment was at chance
while second-order performance was above chance. In that respect, our
findings are reminiscent of the observation of “changes-of-mind” in a
sensori-motor task, i.e. accurate corrective movements performed after
the first response was launched even though no additional sensory
data was provided (Resulaj et al., 2009). Both findings can be accounted
for by supposing that early responses do not fully make use of the avail-
able sensory evidence and that, with additional time, participants can ac-
cumulate additional evidence in order to ultimately revise their
judgments. Indeed, when we removed time pressure in Experiment 2,
both performance and meta-performance became aligned with each
other (d′ andmeta-d′ did not differ).

The SDT framework can be modified to take into account such dy-
namics of decision making (Resulaj et al., 2009). Indeed, the recently
introduced Two-Stage Dynamic Signal Detection Theory (Pleskac and
Busemeyer, 2010) integrates these two elements into a framework
that accurately predicts both the dynamics of decision-making and
subsequent confidence judgments. This model allows additional pro-
cessing of the stimulus to take place even after an initial decision has
been made. Such feature results in confidence judgments that can po-
tentially rely on more information than primary choices, especially
when speed is emphasized over accuracy, exactly as observed in our
study.

All-or-none error detection and conscious perception

The SDT framework for metacognition is, however, inherently limit-
ed. It is continuous and statistical in nature, and cannot label, with
near-certainty, whether a given trial was correct or erroneous. Rather,
it merely achieves above-chance meta-performance on average. While
such a statistical mechanism adequately accounts for the observed
metacognitive performance on subliminal trials, it seems insufficient
to explain error detection on conscious trials. When participants
reported seeing the stimuli, they were often highly confident in the de-
tection of their errors, and accurately categorized their performance on
each trial in the absence of any feedback (Fig. 3). A distinct mechanism
therefore seems needed to account for the capacity to label specific tri-
als as erroneous, which only occurred on conscious trials. Indeed, EEG
and MEG recordings gave evidence that a distinct performance moni-
toring mechanism, indexed by the ERN, was deployed exclusively on
conscious trials.

In Experiment 1, the ERNwas detectable on conscious trials but was
drastically reduced to undetectable levels when participants reported
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not seeing the target. This result was confirmed by an analysis of the
neural generators of the ERN, whose activation showed a step-like in-
crease with visibility. Even for identical masking strength, the ERN
was observed on seen trials but not on unseen trials. This result was rep-
licated in Experiment 2 where the pressure to respond quickly was re-
moved, showing that the absence of a subliminal ERNwasnot causedby
a lack of processing time.

Our results replicate and extend prior research using a 4-dot
masking task (Woodman, 2010). In this task, Woodman observed
an ERN when the target was consciously perceived, but not when it
was masked and became invisible. In this study, however, visibility
was confounded with a physical change in the display (delayed
mask offset). Our study goes beyond their finding by taking advan-
tage of the spontaneous fluctuations in visibility that occur for a
fixed stimulus. We demonstrate that the ERN is modulated purely
as function of subjective reportability without any objective change
in the stimulus. Our study also shows that the absence of the ERN
needs not be accompanied by a lack of meta-cognitive performance,
and provides information as to the generators of these two error
monitoring devices.

In contrast to the results of Woodman (2010), Pavone et al. (2009)
reported the detection of a significant ERN on both unaware and
aware errors, compared to correct trials. A close examination of
their graphs, however, suggests that their difference might be related
to pre-response baseline shifts, possibly due to the fact that response
times were not equalized. Note that in our experiment, we only ex-
amined the ERPs to error and correct trials that were carefully equal-
ized to have equal distributions of responses times (see Materials &
methods). A failure to do so may result in the emergence of artifactual
differences in the time course of the ERPs which are unrelated to er-
rors themselves, but simply reflect variations in response speed be-
tween correct and error trials. If a baseline correction was applied to
Pavone et al.'s results, their graphs suggest that an identical negativity
would be seen on correct and erroneous subliminal trials — i.e. an ab-
sence of a subliminal ERN, similar to what we observed.

Some studies aimed at manipulating more directly the awareness
of making an error which, as we noted in the Introduction, constitutes
a different question. In antisaccade studies (Endrass et al., 2007;
Nieuwenhuis et al., 2001; Wessel et al., 2011) an ERN has been ob-
served when participants made eye-movement errors that were not
consciously detected. The apparent conflict with our work is only su-
perficial as in these studies the target was always consciously visible
and a conscious motor intention could always be prepared. The only
aspect of which participants remained unaware was the deviation of
their actual movements from the intended trajectory. Their results
therefore suggest that the ERN may remain present when the action
itself is non-conscious. In contrast, our results suggest that the ERN
vanishes when the target, and therefore the correct response, cannot
be consciously represented.

Other studies (Dhar et al., 2011; Hughes and Yeung, 2011;
O'Connell et al., 2007), focused exclusively on error awareness in ex-
perimental paradigms where conflicting stimulus–response rules in-
duced confusions on the nature of the correct response. Again, they
found that the ERN was present even for errors that were undetected.
However it remains unclear in such paradigms whether participants
were unaware of their errors because of an erroneous representation
of the correct response, or because of a failure in the error-detection
process itself. In either case, such results do not conflict with our find-
ing as these studies did not manipulate awareness of the stimulus it-
self but rather introduced confusion on the stimulus–response
mapping.

A converging finding of these studies, confirmed by others (Hewig
et al., 2011; Hughes and Yeung, 2011; Steinhauser and Yeung, 2010),
is that the ERN does not necessarily signal a consciously perceived
error. Again, this conclusion is not incompatible with our result:
while the ERN is evoked only when a conscious target is present, it
may not yet reflect the conscious detection of the error. Rather, it
may just index an intermediate process on the way to conscious
error detection. Indeed, several recent articles suggest that error
awareness might be related to the error positivity (Pe) (Dhar et al.,
2011; Endrass et al., 2007; Hewig et al., 2011; Hughes and Yeung,
2011; Nieuwenhuis et al., 2001; O'Connell et al., 2007; Steinhauser
and Yeung, 2010) which follows the ERN. In that sense, the Pe may
be analogous to the sensory P3 potential observed in many experi-
ments where conscious and unconscious sensory trials are contrasted
(Dehaene and Changeux, 2011). A detailed analysis of the behavior of
the Pe in our two experiments, confirming the dissociation between
ERN and Pe and partially supporting the above hypotheses, may be
found in Supplementary materials (see also Fig. 4).

The present results further clarify the types of brain events that
occur when a sensory stimulus becomes conscious and crosses the
threshold for reportability. The Global Neuronal Workspace (GNW)
model proposes that conscious access is associated with a sharp
non-linear transition in brain activity (Dehaene and Changeux, 2011),
leading to an all-or-none change in subjective reports and late brain ac-
tivity on seen compared to unseen trials (Del Cul et al., 2007; Quiroga et
al., 2008; Sergent and Dehaene, 2004b; Sergent et al., 2005). However,
this all-or-none view has been challenged on the grounds that behav-
ioral measures, priming, and brain activation often show a continuous
rather than discontinuous reduction on subliminal relative to supralim-
inal trials (Dehaene et al., 1998; Overgaard et al., 2006; van Gaal et al.,
2008; Vorberg and Mattler, 2003). The present results on the ERN
speak in favor of a non-linear transition between subjectively seen and
unseen trials: while subliminal performance in both first- and
second-order tasks increased smoothly with the target-mask delay
(SOA), the ERN did not vary continuously with SOA. Instead, it jumped
suddenly as a sole function of subjective visibility showing that the
error-detection system reflected by the ERN was strongly impeded for
subjectively invisible trials. The crossing of the subjective threshold
for conscious reportability was accompanied by a step-like improve-
ment in the availability of information and, more crucially, by the sud-
den emergence of the ERN. Importantly, the ERN strictly followed the
subjective reports of visibility, above and beyond objective variation
in stimulation.

These results were obtained by asking participants to subjectively
label the trial into two categories, “seen” and “unseen”. This binary vis-
ibility judgment was motivated by previous reports showing that in
masking paradigms, participants focus their responses on the ex-
treme points of a continuous scale when they are asked to report
prime visibility (Sergent and Dehaene, 2004a). Our approach was
also adopted for simplicity. Participants already performed no less
than three responses on each trial. Requiring them to perform a
more complicated visibility rating task would have lengthened the
experiment even further. In the future, it might useful to examine if
the present findings replicate with a more continuous estimate of vis-
ibility (Overgaard et al., 2006; Sergent and Dehaene, 2004a; Sergent
et al., 2005; Seth and Dienes, 2008), thus improving our ability to de-
tect whether the ERN follow an all-or-none pattern.

One may raise the critique that subjective reports of visibility are
potentially biased and do not accurately reflect the conscious content
of the subjects (Persaud et al., 2007). While the issue of finding an ap-
propriate measure of perceptual consciousness remains debated (Lau,
2008; Overgaard et al., 2010; Persaud et al., 2007; Seth et al., 2006)
and is not the subject of this study, our results argue that subjective
reports provide valid data inasmuch as they correlate strongly with
objective changes in behavior and brain activity. Confirming previous
results (Del Cul et al., 2007, 2009), we found that visibility reports
present a tight correlation with objective performance in the
number-comparison task, suggesting that participants are accurately
able to monitor and report the state of their perception. Furthermore,
our results suggest that subjective reports of visibility reliably index a
large objective change in brain activity, namely the ERN. Even when
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considering only near-threshold stimuli (intermediate SOA), the ERN
switched on or off in tight correlation with subjective reports of visi-
bility or invisibility.

Our results probably go beyond what could have been found using
objective measures of visibility alone. Our shortest SOA conditions cor-
respond to fully subliminal trials (Dehaene et al., 2006), since both ob-
jective detection and task d′ are indistinguishable from zero. We found
that these trials are characterized by an absence of ERN and a lack of
metacognitive ability. As interesting as such a result might be, it may
not be unexpected, considering how much the available sensory evi-
dence is reduced on such heavily masked trials. To determine whether
the ERN can be deployed non-consciously, it is therefore crucial to
focus onmore lightlymasked trials, where a longer SOA provides great-
er sensory evidence for error detection. Unfortunately, such trials pro-
vide a challenge for purely objective approaches to consciousness, as
their detection d-prime is way above chance. Nevertheless, by sorting
trials as a function of whether they fall above or below the threshold
for conscious perception, a purely subjective criterion, we found that
unseen trials are also characterized by an absence of ERN, while at the
same time subjects remain better than chance in the metacognitive
task of detecting their errors. Interestingly, we show here a complete
dissociation between the continuously increasing estimation of error
likelihood on unseen trials, and the all-or-none detection of errors
reflected by the ERN on subjectively seen trials.

Computational models of the ERN

How do the brain generators of the ERN compute whether the re-
sponse is correct or erroneous or a given trial in the absence of any
experimenter feedback? Some models of the ERN postulate that it re-
flects a comparison (Bernstein et al., 1995; Falkenstein et al., 2000) or
conflict (Veen and Carter, 2002; Yeung et al., 2004) between the actu-
al and the intended response. How can one integrate awareness in
such models? The dual-route model proposed by Del Cul et al.
(2009) provides a model of how conscious and non-conscious deci-
sions are made, and how they might be compared to yield an error
signal. According to this model, two parallel routes accumulate senso-
ry evidence towards a categorical decision on the same input stimu-
lus. Each route has different noise levels and thresholds: One is a
fast, non-conscious sensori-motor route, and one is a slower con-
scious decision route. A motor response is emitted by the route that
first reaches its decision threshold. In the case where time–pressure
in emphasized over accuracy, the response is emitted mainly via the
fast and noisy motor route which is subject to non-conscious influ-
ences (Dehaene et al., 1998; Vorberg and Mattler, 2003). On such tri-
als, the “conscious route” slowly computes the intended response
(Del Cul et al., 2009). Any discrepancy between these two responses
would then result in an ERN — a difference between intended and ex-
ecuted action. By its very nature, the model generates an ERN only
when a conscious intention exists, i.e. when the second route has
crossed its threshold. Thus, the model can explain the correlation be-
tween conscious perception and the presence of the ERN.

This model is compatible both with the view of the ERN as a conflict
monitoring system (Veen and Carter, 2002; Yeung et al., 2004) or a
comparison process (Bernstein et al., 1995; Falkenstein et al., 2000). In
a similar vein, others have proposed that the ERN is a “prediction-error”
signal that indexes the difference between a prediction and an observed
outcome: either an ongoing response that departs from the one
intended given the perceived stimulus (Alexander and Brown, 2011),
or an anticipated reward that departs from the usual one expected
when the response is correct (Holroyd and Coles, 2002). Assuming
that such expectations are derived from a conscious-level representa-
tion of the correct intended response, these mechanisms explain why
the ERN is seen onlywhen the stimulus is consciously perceived. On un-
seen trials, no conscious intention or expectation can be computed. Ac-
cordingly, the difference process putatively indexed by the ERN is
impeded, and cannot distinguish between correct and erroneous
responses.

These models also predict that the ERN should vary with the
amount of evidence in favor of the correct response and the confi-
dence in the correctness of that response. Indeed, several studies
demonstrated a tight correlation between subjective ratings of confi-
dence in one's response, and the size of the ERN (Scheffers and Coles,
2000; Shalgi and Deouell, 2012; Wessel et al., 2011). Scheffers and
Coles (2000) showed that for errors due to data limitation, the ampli-
tude of the ERN was identical on correct and error trials. Even within
objectively correct responses, the ERN varied massively as a function
of whether subjects believed that they made an error. Similarly, Shalgi
and Deouell (2012) found that for objective errors for which partici-
pants were highly confident in their performance rating, the ERN am-
plitude was predictive of whether the participant thought he had
made an error or not. In particular, the ERN vanished when the partic-
ipant thought he responded correctly, even though the objective per-
formance did not change.

Apparently contradicting the finding, other studies found that it
was only a later event-related potential, the Pe, which showed a sys-
tematic trial-by-trial correlation with confidence and error aware-
ness. (Dhar et al., 2011; Hughes and Yeung, 2011; O'Connell et al.,
2007). Steinhauser and Yeung (2010) demonstrated that financial re-
wards could shift the participants' threshold for reporting having
made an error or a correct response, but that this criterion shift had
no impact on the ERN itself. Hughes and Yeung (2011) also found
that, while the ERN was reduced in masking conditions, the Pe was
the most predictive component of error awareness. In both cases,
the ERN remained invariant to changes in error awareness or in
error signaling.

Taken together these findings suggest an interesting dissociation
between these two components in the global system of performance
monitoring. While the ERN seems to reflect a comparison or differ-
ence of intended and executed actions (Carbonnell and Falkenstein,
2006) and thus, as we suggest here, varies continuously as a function
of intention strength, the Pe seems to be directly linked to the aware-
ness of making an error (Hughes and Yeung, 2011; Nieuwenhuis et
al., 2001) and its subsequent signalling (Steinhauser and Yeung,
2010). Such a model predicts that both ERN and Pe should be affected
when manipulating the amount of evidence concerning the correct
response (Hughes and Yeung, 2011; Maier et al., 2008; Scheffers
and Coles, 2000; Shalgi and Deouell, 2012 but see Steinhauser and
Yeung, 2012). However, as found by Steinhauser and Yeung (2010),
only the Pe should be changed when considering error awareness
and subsequent error reportability (Hughes and Yeung, 2011;
Nieuwenhuis et al., 2001; Steinhauser and Yeung, 2010). Further
analysis of our data on the Pe time-window tended to confirm this
hypothesis. While such a model remains speculative and will require
further studies to be validated, the present findings provide converg-
ing evidence on the role of the ERN in the hierarchy of processes lead-
ing to error detection.
Brain regions involved in error monitoring

What brain mechanisms underlie conscious versus non-conscious
metacognitive computations? Our results show that error detection is
independent of the ERN on unseen trials. In both experiments, no ERN
was present on unseen trials, even when participants correctly evaluat-
ed their own performance. In fact, we observed a double dissociation
between the ERN and behavioral error detection: no ERNwas observed
whenmeta-performance exceeded performance in non-conscious trials
(Experiment 1) while the ERN was present even though meta-
performance was aligned on performance in conscious trials (Experi-
ment 2). Source reconstruction of theMEEG signal confirmed that activ-
ity in one of the main generators of the ERN, the posterior cingulate
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cortex (PCC) (Agam et al., 2011; Dhar et al., 2011; Schie et al., 2004),
was drastically reduced in the unseen condition.

However, on unseen trials, brain activity correlating with perfor-
mance was observed for some of the MEG sensors. Source analysis re-
vealed that this signal originated from the dorsal anterior cingulate
cortex (dACC), a region also known to activate after errors (Debener et
al., 2005; Dehaene et al., 1994; Keil et al., 2010). Importantly, this activa-
tion was present only when time–pressure was relaxed (Experiment 2)
and response-times longer, highlighting its sensitivity to evidence accu-
mulation. Activity in this region might thus convey some non-conscious
information on the level of confidence in the current response, possibly
explaining the participants' subliminal meta-cognitive ability. Note that
this brain signal is short-lived and thus may not be sufficient to fully ex-
plain above-chancemetacognitive responses occurring several hundreds
of milliseconds later. However, this activity might be the input to other
brain processes that compute the final judgment of confidence in one's
response. Brodmann's area 10 is a plausible candidate, as several imaging
studies associate it with confidence judgments (Fleming et al., 2010;
Rolls et al., 2010; Yokoyama et al., 2010).

Although dACC has long been proposed to be the sole generator of
the ERN (Debener et al., 2005; Dehaene et al., 1994; Emeric et al.,
2008), our results are compatible with recent evidence suggesting that
PCC might be another plausible source for the ERN (Agam et al., 2011;
Munro et al., 2007; Vlamings, 2008). Both PCC and dACC have been
shown to be active in several error-processing studies (Fassbender et
al., 2004; Wittfoth et al., 2008). However it has been suggested that
dACC could not only reflect error detection process but might be related
to behavioral adjustment such as error avoidance (Magno et al., 2006),
mapping between stimulus and response (Williams et al., 2004) and re-
ward prediction-error (Kennerley et al., 2011). Furthermore, dACC has
been shown to be activated on conflict trials independently of objective
accuracy (Ullsperger and Von Cramon, 2001). Because functional con-
nectivity analyses show that both PCC and dACC are part of a larger func-
tional network (Agam et al., 2011) and share direct anatomical
connections (Vogt et al., 2006), it is therefore likely that these regions
are both active when an error is made, as suggested by the present
MEEG source modelling of experiment 2. Nonetheless, they might have
different roles in performance monitoring. A possible framework to ex-
plain our data could be that, while PCC directly detects the commission
of an error (Agam et al., 2011; Munro et al., 2007; Vlamings, 2008),
dACC integrates this information to implement corrective behavior
(Modirrousta and Fellows, 2008) and further monitoring processes.
While more studies will be needed to pinpoint the functional architec-
ture of cingulate cortex, the present results suggest an interesting differ-
ence in sensitivity to conscious versus non-conscious choices for
posterior versus anterior cingulate cortex, in keeping with speculations
as to the role of the PCC as a crucial node for conscious awareness
(Immordino-Yang et al., 2009; Vogt and Laureys, 2009).

Conclusion

Our study suggests the existence of at least twometa-cognitive sys-
tems for performance monitoring. One of them is capable of being
deployed non-consciously, but it only provides statistical information
on the likelihood of having made an error. The other, associated with
the ERN, shows an all-or-none signal specifically on error trials where
the target was consciously perceived,making it possible for participants
to realize their error. By demonstrating the co-existence of these two
mechanisms, we provide new evidence on the global architecture of
cognitive control and its link to consciousness.
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