Title

Grouping mechanisms in numerosity perception

Authors

Lorenzo Ciccione ${ }^{\text {A, } B, C}$
Stanislas Dehaene ${ }^{B, C}$
${ }^{\text {A }}$ PSL (Paris Sciences Lettres) University, 60 rue Mazarine, 75006 Paris, France
${ }^{B}$ Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
${ }^{\text {c }}$ Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France

Abstract

Enumeration of a dot array is faster and easier if the items form recognizable subgroups. This phenomenon, which has been termed groupitizing, appears in children after one year of formal education and correlates with arithmetic abilities. We formulated and tested the hypothesis that groupitizing reflects an ability to sidestep counting by using arithmetic shortcuts, for instance using the grouping structure to add or multiply rather than just count. Three groups of students with different levels of familiarity with mathematics were asked to name the numerosity of sets of 1-15 dots in various arrangements, for instance 9 represented as a single group of 9 items, three distinct groups of 2, 3, and 4 items (affording addition $2+3+4$), or three identical groups of 3 items (affording multiplication 3×3). Grouping systematically improved enumeration performance, regardless of whether the items were grouped spatially or by color alone, but only when an array was divided into subgroups with the same number of items. Response times and error patterns supported the hypothesis of a multiplication process. Our results demonstrate that even a simple enumeration task implicitly involves mental arithmetic.

Introduction

Understanding the cognitive basis of numerosity perception is a central topic in the field of numerical cognition. A broad divide separates approximate versus exact numerosity perception. Approximating the cardinal of a set of objects is an ancient and evolutionarily useful process, as it allows individuals to go for the larger amount of food, to avoid the larger groups of predators, or to choose the larger groups of social partners to stay with. Approximate number sense is an ability common to many animal species (McComb, Packer, \& Pusey, 1994; Jordan, MacLean, \& Brannon, 2008; Rugani, Vallortigara, Priftis, \& Regolin, 2015) and to all human cultures, independent of formal education (Gordon, 2004; Pica, Lemer, Izard, \& Dehaene, 2004). Finding the exact numerosity of a large set, however, is a distinct ability which seems only present in those human cultures that possess a set of counting symbols that allows them to assign, with a $1: 1$ correspondence, a specific name to each specific cardinal value of a set (Dehaene et al., 1999; Gelman \& Gallistel, 1978; Pica et al., 2004). Determining the exact numerosity of a large set requires a counting strategy, i.e., the pairing of objects with the series of number symbols in an incremental 1:1 manner. Counting is evidenced by a systematic, linear increase in naming times as a function of numerosity, suggesting a serial process (Mandler \& Shebo, 1982).

Beyond approximation and counting, humans also possess a third numerosity perception process, subitizing. It was long observed that, for small groups of 1,2 or 3 elements, human adults do not need a counting strategy to determine their cardinal value, but they can embrace it at once (Jevons, 1871), as if our sensory system were able to determine the "twoness" or the "threeness" of a set without considering each item separately. This ability was firstly scientifically analyzed by Kaufman and collaborators in 1949 (Kaufmann et al., 1949), who called it "subitizing", from the medieval Latin subitare, which means understanding something immediately, without reflection. The term is thus
used to indicate the rapid, confident and accurate numerosity judgements of sets composed of 3 items or less. Later on, it was shown that this limit could be overcome via repeated practice with fixed patterns (Wolters et al., 1987) or by using canonical patterns such as dice patterns instead of random configurations (Mandler \& Shebo, 1982), suggesting that "adults first develop simple canonical perceptions for twoness and threeness and then apply these schemas to the counting of large arrays".

While approximation, counting and subitizing are considered the three main processes underlying human enumeration, Wender and Rothkegel (2000) and Starkey and McCandliss (2014) studied a fourth process: grouping. They found that the classical set size effect observed for numerosities above 3 (a strong increase of enumeration latencies with numerosity) essentially vanishes when the items can be grouped into smaller subsets. The grouping cue that they examined consisted in the spatial separation of dots into distinct subgroups, each with a numerosity in the subitizable range of 1 to 3 items. The ability to capitalize on grouping information in order to facilitate the enumeration process was termed "groupitizing". Starkey and McCandliss (2014) further proposed that groupitizing might "reflect adults' ability to use their grasp of number concepts such as the knowledge that specific numbers are composed of specific subsets". In support of this conclusion, they showed that groupitizing was not present in a younger group of kindergartners, that the size of the effect increased with age, and that its amplitude correlated with arithmetic abilities in classical symbolic arithmetic tasks. However, they did not analyze the nature of the groupitizing process itself. The goal of the present research is to fill this gap by providing a thorough exploration of the conditions under which groupitizing occurs in adult subjects, and to explore its relation to symbolic arithmetic. In their study, Wender and Rothkegel (2000) and Starkey and McCandliss (2014) only created groups of subitizable items by spacing them apart. However, is spatial distance the only cue
that can induce groupitizing? Furthermore, what is the role (if any) of the recognition of repeated patterns within the array? If arithmetic is involved, then we should predict faster naming times when the grouping supports mental multiplication, because the items are grouped in groups of equal sizes (e.g. 6 items $=3$ groups of 2 items $=3 \times 2$).

More specifically, we asked the following four questions:

1) Can color and spatial contiguity act as groupitizing cues? Since both color and distance are wellknown cues that promote grouping, in agreement with Gestalt theories of perception (Brunswik \& Kamiya, 1953; Wagemans et al., 2012), if groupitizing reflects an abstract arithmetic process, it should be deployed identically whether the items can be grouped spatially or by color (e.g. 6 items $=2$ red, 2 blue and 2 green). Furthermore, past their distinct perceptual stage, spatial and color groupings should show parallel effects of other grouping variables.
2) Do repeated groupings with the same number of items facilitate groupitizing? The mental multiplication hypothesis predicts that arrays divided into equal subsets (e.g. 9 dots divided into 3 groups of 3) should be faster enumerated than arrays divided into non-equal subsets (e.g. 9 dots divided into groups of 4,3 and 2 dots), because the former display facilitates a multiplication process. Furthermore, this effect should be maximal when the subgroups share not only the same numerosity, but also the same shape, such as that it is more immediately obvious that they share the same numerosity and that the total number can be immediately obtained by multiplying by the number of groups.
3) Which cognitive computations underlie groupitizing? If multiplication and addition are involved, depending on the specific array patterns, we predict different patterns of response times and error rates for displays that afford (1) addition only, e.g. 6=1+2+3; (2) multiplication, e.g. $6=2+2+2=2 \times 3$; or (3) a combination of both, e.g. $7=3+3+1=2 \times 3+1$. Specifically, we predict that multiplication should
afford considerable savings in effort, response time and error rate. We also predict that this could occur at the expense of the emergence of a new error type: while enumeration errors typically cluster around the correct numerosity, multiplication errors could reflect a slip in the multiplication table (e.g. $4 \times 2=6$).
4) Does groupitizing vary with mathematical knowledge? Again, a reliance on arithmetic facts would predict that, for equal age, the participants' level of math training should affect groupitizing performance.

Methods

Participants. The experiment involved 42 participants with normal (or corrected to normal) vision and no color blindness. We replicated the experiment in three groups of participants with low, medium or high levels of math knowledge (for a similar approach, see Dehaene et al., 1993). At the highest level, we tested 15 students in mathematics or related fields (physics, chemistry and informatics) at the highly selective Ecole Normale Supérieure (ENS Ulm, Paris). For the medium level, we tested 15 students in humanities, also at ENS. These groups differed in their knowledge of university-level mathematics but they both had excellent performances in basic mathematics (they all scored the highest grade in their high-school final mathematics exam). As the lowest level, a third group of 12 students were selected among first-year students of the Psychology department of the Université de Saint Denis (Paris). Note that, in France, entrance to university is a mandatory right and is therefore unselective. The third group had a much smaller familiarity with mathematics and significantly worst performance in high-school.

The experimental procedure was approved by the local ethical committee, and all subjects gave written consent and were informed that they could withdraw from the experiment at any moment
without giving any reason. They were compensated with 12 euros for their 60 minutes participation in the experiment. All data were treated anonymously. 6 subjects out of 30 (3 from the humanities group and 3 from the science group) were excluded from the data analyzes described in the following paragraphs, due to these reasons: 2 participants were color-blind but they did not inform us about it before the experiment; the computer crashed during 2 other experimental sessions and no data were recorded from these subjects; 2 other participants failed to perform the task in the correct way, since they answered for more than 50% of the trials after the presentation of the stimulus (during the fixation cross). We thus analyzed data from 36 subjects (12 humanities students, 12 sciences students and 12 psychology students; age: 21 ± 1.5).

Stimuli. Subjects were seated in front of a monitor, with their eyes at a distance of 60 centimeters from the screen. Stimuli were black and colored dots of 3 millimeters diameter (0.29° of visual angle) on a white background; the arrays spanned an area of 12 centimeters squared (11.42° of visual angle), at the center of the screen (similar to Mandler \& Shebo, 1982; Starkey \& McCandliss, 2014). Arrays comprised between 1 and 15 dots. However, arrays of 1, 2, 3, 13, 14 and 15 dots were presented only as fillers, in order to avoid a distinct pattern of improved performance at the extremes of the range of numbers tested, a phenomenon described by Burr and colleagues (Burr et al., 2010).

The design was a 2×4 factorial design where stimuli varied according to the "grouping cue" factor (2 levels: spacing and color) and the "grouping pattern" factor (4 levels; see figure 1). In the "spacing" grouping-cue condition, arrays comprised between 2 and 4 spatially separated subgroups, each with 1,2,3 or 4 dots. The minimal distance between dots was 1 centimeter (each dot had at least one dot at a distance of 1 centimeter), and subsets were separated from each other by a fixed distance of 4 centimeters (i.e., the distance between the two closest dots belonging to two different
subgroups was 4 centimeters). In the "color" grouping-cue condition, the dots were not spatially separated (they all were at a fixed minimal distance of 1 centimeter, as explained above), but appeared in 2, 3 or 4 spatially contiguous subsets, each painted in a different color (black, red, green or blue, randomly chosen).

The four levels for the grouping-pattern factor were:

1) The "no-groups" condition: dots were not divided into subgroups. Each array comprised spatially contiguous and equidistant dots. In the "distance" condition, all dots were black on a white background. In the "color" condition, dots were presented in randomly assigned, spatially intermixed colors (see figure 1).
2) The "maximally different groups" condition: the array was divided into subgroups which, inasmuch as possible, comprised a different number of dots $(4=3+1 ; 5=3+2 ; 6=3+2+1 ; 7=4$ $+3 ; 8=4+3+1 ; 9=4+3+2 ; 10=4+3+2+1 ; 11=4+3+2+2 ; 12=4+3+3+2)$. This condition was designed to induce addition, but not multiplication.
3) The "minimally different groups with different shape" condition: the array was divided into subgroups with, inasmuch as possible, the same number of dots, yet a distinct spatial arrangement $(4=2+2 ; 5=2+2+1 ; 6=3+3$ or $2+2+2 ; 7=3+3+1 ; 8=4+4$ or $2+2+2+2 ; 9=3+3+3 ; 10$ $=3+3+3+1 ; 11=3+3+3+2 ; 12=4+4+4$ or $3+3+3+3)$. This condition was designed to induce addition and/or multiplication.
4) The "minimally different groups with same shape" condition: this was similar to the previous condition, except that the same spatial arrangement was used within each subset (see figure 1), thus maximally facilitating a multiplication process.

Each array numerosity appeared four times in each condition (with the actual disposition of the dots varying on each trial in order to avoid learning effects). The arrays of 6,8 , and 12 dots, as pointed
above, had two different configurations for the third and the fourth condition, since they are divisible in two different configurations having subsets with the same amount of dots ($6=3+3$ or 2 $+2+2 ; 8=4+4$ or $2+2+2+2$; and $12=4+4+4$ or $3+3$); for these arrays, both configurations in third and fourth conditions were presented four times each.

All stimuli were previously generated according to the aforementioned characteristics using a custom program in Python. They were presented in a random order and with a random orientation for each subject.

Experimental procedure. On each trial, subjects saw an array which remained on screen. They were asked to vocally name its numerosity aloud as fast and as accurately as they could. Once they gave their answer, they pressed the spacebar to move to the next trial. If the spacebar was not pressed, the trial automatically ended after 4 seconds (which was, therefore, the time limit for the vocal response). After each trial, a fixation cross appeared for 1000 ms at the center of the screen, and then the next array appeared. The duration of the task was ~ 50 minutes (3 blocks of 15 minutes each, with 2-minutes break between them). The subjects performed 50 practice trials in the presence of the researcher before starting the actual experiment, in order to check if they made any sort of mistake (e.g. pronouncing irrelevant words or pressing the spacebar before saying the numerosity, changing their distance from the screen, finger counting, etc). At the end of the experiment, subjects were asked to freely describe the computation strategies they used in the task, if any.

Measurement of vocal onset. The first author manually detected the vocal onset (together with the accuracy: wrong or right answer) by directly looking at the spectrogram of the recorded vocal response on each trial. In order to avoid any sort of experimental bias, he was not aware of the specific condition of the trial, but only of the target numerosity. This method of measurement of
vocal onset, although highly time-consuming, is still considered the gold standard in the literature (Protopapas, 2007; Jansen \& Watter, 2008; Roux, Armstrong, \& Carreiras, 2017). Automatized measures gave similar, though less accurate, results.

Analysis. Median response times (for correct answers) and accuracy were computed for each subject and each cell of the design and entered into either a mixed-model repeated measures omnibus ANOVA with Greenhouse-Geisser sphericity correction, or a linear mixed-effect model (see below).

Results

Subitizing. Although numerosities 1,2 and 3 were not part of the main factorial design, we first verified the presence of a classical subitizing effect, i.e. virtually identical response times for arrays of 1,2 and 3 dots. The means of median response times were $0.71,0.70$ and 0.73 s respectively for arrays of 1,2 and 3 dots, with no significant difference within each numerosity as a function of grouping cue, grouping pattern or mathematical knowledge (all related p values <0.01).

Counting and groupitizing. The main target of our experiment was the existence of a groupitizing effect for larger numerosities in the range 4-12. The corresponding mean RTs appear in figure 2. As expected, the ANOVA (table 1) showed a main effect of set size, reflecting the fact that enumeration latencies generally increased with set size. Also, there was a main effect of grouping pattern, and an array size x grouping pattern interaction. To evaluate how grouping pattern affected response latencies, we performed a post-hoc Tukey test, which showed that there were significant differences between all four conditions (all p<.0001) except for the "no-groups" (mean RT $=2.02 \mathrm{~s}$) versus "maximally different groups" (mean RT = 2.0 s). As predicted, a large acceleration of responses occurred when the array was divided into equal subgroups with the same or maximally
similar numerosity (mean $\mathrm{RT}=1.58 \mathrm{~s}$), and a significant additional acceleration of naming responses was seen when the same exact shape was used to display each subset (mean RT = 1.39 s). Those results thus indicate a groupitizing effect.

Effect of specific numerosities. Since there was an array size x grouping pattern interaction, we next examined how response times varied with numerosity in each condition. For the no-groups and the different-numbers conditions, response times increased roughly linearly with numerosity, a classical phenomenon that reflects the serial process of counting (Moyer \& Landauer, 1967; Dehaene, 1992) for sets comprising more than 3 items (Dehaene \& Cohen, 1994). However, in the condition of grouping by equal or maximally similar numbers, the effect of array size ceased to be monotonic and roughly linear (see figure 2). Instead, there was an acceleration of responses which was most pronounced for non-prime numbers that could be subdivided in equal numbers. Conversely, the prime numbers 5, 7 and 11 were slower than their neighbors, leading to reversals in monotonicity. Thus, sets of 5 items were enumerated more slowly than sets of 6 items (Welch unequal variances t -test on response times, $\mathrm{t}(285.92)=2.18, \mathrm{p}=0.03$; mean RTs respectively 1.11 s and 1.04 s$)$, sets of 7 items more slowly than sets of 8 items $(t(285.5)=2.44, p=0.015 ; 1.42 \mathrm{~s}$ versus 1.32 s$)$, and sets of 11 items more slowly enumerated than sets of 12 items $(\mathrm{t}(285.77)=9.14, \mathrm{p}<.0001 ; 2.36 \mathrm{~s}$ versus 1.85 s). This pattern, which was present in all six group x cue conditions (figure 2), indicates that numerosities that could be resolved by multiplication alone (e.g. $8=4$ groups of 2) were faster than numerosities that required a combination of addition and multiplication (e.g. $7=3$ groups of 2 plus a group of 1).

As a quantitative test of this idea, we performed a linear mixed effects analysis, where the dependent variable was the mean response time to each numerosity in the range 4-12 in the "equal groups" conditions, and the fixed effects were array size (as a proxy for problem size, which is a good
predictor of multiplication difficulty), and the type of arithmetic operation postulated under our hypothesis: 0 for a simple multiplication (such as for $4=2 \times 2$), 1 for a multiplication and an addition of 1 (such as for $5=2 \times 2+1$), 2 for a multiplication and an addition of 2 (only for $11=3 \times 3+2$). The subjects were included as random effects. For the "equal groups" condition, both array size (slope $=$ $139 \pm 4 \mathrm{~ms} /$ item [\pm standard error], $\mathrm{t}(286)=35.25, \mathrm{p}<10^{-16}$) and operation type (slope $=289 \pm 14$ $\mathrm{ms} /$ item, $\mathrm{t}(286)=19.41, \mathrm{p}<10^{-16}$) were highly significant (conditional $\mathrm{r}^{2}=89.5 \%$ of variance explained), thus confirming that the maximal savings were observed for non-prime numbers that could be subdivided into equal groups, and that the need to add 1 or 2 imposed an additional toll for numerosities 5, 7, 10 and 11 . When we performed a similar regression on the mean RT from the "unequal or no groups" conditions, array size had a dominant effect (slope $=247 \pm 6 \mathrm{~ms} /$ item, $\mathrm{t}(286)=40.79, \mathrm{p}<10^{-16}$) while operation type had a much less pronounced, though still significant effect (slope $=68 \pm 22 \mathrm{~ms} /$ item, $\mathrm{t}(286)=2.97, \mathrm{p}=0.0032$). Thus, groupitizing effects were perhaps not totally absent even when the arrays were not systematically arranged as groups, but became very prominent in the "equal groups" conditions.

Order effect. In the conditions with the same number in each group, arrays of 6,8 , and 12 dots offered another test of the multiplicative model. Such arrays were presented to the subjects in two possible configurations, reflecting the commutativity of multiplication: the number of groups could be either the smaller number (for example, 8 dots divided into 2 groups of 4 dots) or the larger number (for example, 8 dots divided into 4 groups of 2 dots). A classical finding in symbolic arithmetic is that there is an order effect in mental multiplication (Aiken \& Williams, 1973; Campbell \& Graham, 1985; Zimmerman et al., 2016): it is easier to compute a multiplication such as 8×3 as 3 groups of 8 (3 times 8 in English) than as 8 groups of 3 (8 times 3 in English). If there was a covert multiplication during enumeration, then this effect should also appear in our data. Indeed, we found
that the first type of configuration, with a smaller number of groups, led to significantly faster responses; in other words, response times increased with the number of groups more than with the number of items in a group (see figure 3). Welch unequal variances t -test were conducted for each array size, showing a significant difference between the two configurations for all array sizes (array of $6: \mathrm{t}(279.4)=2.88, \mathrm{p}<.01$; array of $8: \mathrm{t}(272.64)=2.88, \mathrm{p}<.01$; array of $12: \mathrm{t}(274.15)=2.10, \mathrm{p}<$.001).

Effects of grouping cue. We then looked at the effects that involved grouping cue. In the main ANOVA, a main effect of grouping cue and a grouping cue x grouping pattern interaction were found, indicating that participants were slightly faster with spatial cues than with color cues overall (Welch t test, $\mathrm{t}(2589.6)=2.98, \mathrm{p}<.01$; mean RTs respectively 1.71 s and 1.79 s) and had slightly greater savings from spatial cues when these afforded equal groups (Welch t test, $t(1292.4)=-4.02, p<.001$; mean RT for arrays with spatial cues: 1.43 s ; with color cues: 1.55 s). Nevertheless, both color and spatial cues made groupitizing possible: as shown in figure 2 , very similar profiles of responses were found for both. We separately submitted the "color" condition and the "spacing" condition to mixed models repeated measures ANOVAs and we found the same main effects and interaction effects discussed above for both grouping cues.

Influence of math knowledge. The ANOVA on RTs also revealed a significant effect of mathematical knowledge and its interactions with array size and with grouping pattern (see table 1). We thus submitted the results to a post-hoc Tukey test, which revealed no significant difference in response times between the two groups of students from the most selective university (high and medium math knowledge; t ratio $=1.13 ; \mathrm{p}=.5$) but a significant difference between the group of low-math students (mean RT $=1.932 \mathrm{~s}$) and both the medium (mean $\mathrm{RT}=1.705 \mathrm{~s} ; \mathrm{t}$ ratio $=2.85, \mathrm{p}=.019$) and high one (mean RT $=1.615 \mathrm{~s} ; \mathrm{t}$ ratio $=3.98, \mathrm{p}=.001$). An interaction of mathematical knowledge and
array size, as well as a triple interaction of math knowledge, array size and grouping pattern, indicated that, although savings due to groupitizing were present in all groups, they were slightly more pronounced in students with lower mathematical knowledge, which is unsurprising given that these participants were slower overall (see figure 2).

Error patterns. Overall accuracy was very high (>90\%), which was expected given that subjects had up to 4 seconds to respond. Nevertheless, we submitted the mean error rates per condition to the same ANOVA as above, and found the same main effects except for the absence of a grouping cue effect (array size: $F(2.33,76.91)=45.94, p<.0001$; grouping pattern: $F(1.89,62.23)=33.20, p$ <.0001; mathematical knowledge: $F(2,33)=3.91, p=0.03$; grouping cue: $F(1,33)=1.67, p=0.2)$. There was an interaction of mathematical knowledge x array size $(F(4.66,76.91)=2.99 ; p=.02)$ and, once again, no interaction between mathematical knowledge and the grouping pattern ($F(3.77$, $62.23)=1.20 ; \mathrm{p}=.32$). Figure 4 shows, as a summary, the mean error rates per condition (independently on the grouping cue), separately for the three levels of the mathematical knowledge factor. As we can easily see, the higher the mathematical knowledge, the smaller the number of errors, especially for large arrays.

Once again, we conducted a post-hoc Tukey test to evaluate how the grouping pattern affected error rates: we found significant differences between all conditions (all $p<.0001$) except for the "no-groups" versus "maximally different groups" (t ratio $=-2.02 ; \mathrm{p}=.1867$) and for the two conditions with equal (or maximally similar) numbers of dots per subgroup (t ratio $=0.18 ; \mathrm{p}=$.9979). In the latter conditions, errors dropped almost to zero, except for the numbers above ~ 8 (figure 4). We next analyzed the nature of those remaining errors.

Distribution of errors. The hypothesis that subjects used a multiplicative shortcut in the "equal groups" conditions can be tested by examining the distribution of errors. Figure 5 shows how errors
were distributed, separately for arrays with no grouping or divided into different groups (left graph) and with equal or maximally similar groups (right graph). In the former case, erroneous responses mostly corresponded to numbers close to the correct array size, often within a distance of ± 1, suggesting that they correspond to counting errors. However, in the "equal groups" conditions (right graph), the distribution differed: errors were often more distant from the target and, furthermore, often corresponded to another number within the same row or column of the multiplication table (e.g. for an array of 9 presented as 3 groups of 3, the errors were often 6 or 12). Focusing solely on the array sizes $4,6,8,9$ and 12 , a simple count confirmed that such "table errors" were significantly more frequent in the "equal groups" conditions ($81 / 136=59.56 \%$) than in the other conditions $\left(20 / 188=10.63 \% ; \chi^{2}=85.758, \mathrm{df}=1, \mathrm{p}<.0001\right)$, whereas the converse was true for close errors (i.e., correct numerosity ± 1): they were significantly less frequent in the "equal groups" conditions $(43 / 136=31.62 \%)$ than in the other conditions $\left(145 / 188=77.13 \% ; \chi^{2}=65.25, \mathrm{df}=1, \mathrm{p}<.0001\right)$. This finding thus comforts the hypothesis that a multiplication process underlies the savings in enumeration time that characterize the groupitizing phenomenon.

Discussion

Given the results presented in the previous section, it is now possible to answer the questions formulated at the beginning of the article.

First, color can act as a grouping cue in order to make groupitizing possible. Arrays with contiguous dots grouped by color were enumerated faster than the same arrays where the colors were randomly dispersed. Furthermore, over all conditions of the experiment, the results were remarkably parallel whether color or space was used as a grouping cue (figure 2). Thus, groupitizing is a robust phenomenon, regardless of whether color or spacing is used as the grouping cue. This
result is coherent with the scientific literature on the role of Gestalt factors on perception (Brunswik \& Kamiya, 1953; Wagemans et al., 2012).

Second, the results indicate that the presentation of repeated patterns of items facilitate groupitizing. Arrays divided into equal subsets were systematically enumerated faster and more accurately than arrays divided into non-equal subsets. This effect was maximal when the subgroups shared not only the same numerosity, but also the same shape, and thus promoted a multiplication process.

More surprisingly, the arrays divided into subgroups with unequal numbers of dots (e.g., 9 dots divided into 3 subgroups of 4,3 and 2 dots) were not enumerated faster or more accurately than arrays with no grouping cue. According to previous literature (Mandler \& Shebo, 1982; Wolters et al., 1987; Wender \& Rothkegel, 2000; Starkey \& McCandliss, 2014) we should have expected an advantage for sets organized in subgroups, regardless of their number of items. One interpretation of this negative result is that our adult participants were, in fact, already making use of counting-bygroups even in the no-group condition. Indeed, most of the subjects (29 out of 36), when asked about the perceived strategies used in the task, explicitly referred to the autonomous formation of subgroups in the "no-groups" condition: they actually tried to form some small and mostly subitizable groups of dots in order to accelerate the counting process. Therefore, an internally driven grouping mechanism might have facilitated subjects' responses, making their response times in the "no-groups" condition (blue line in figure 2) not significantly different from the response times in the "maximally different groups" condition (red line in figure 2). Our results indicate that, in educated adults, seeing an array decomposed in subcomponents does not necessarily represent a benefit, both in terms of response times and accuracy, for numerosity visual detection, because an internally driven grouping mechanism may be just as fast and efficient as an externally driven one.

Third, our results clarify which cognitive computations are used in groupitizing. They suggest that grouping is particularly useful when the subgroups allow for a multiplication or a combination of multiplication and addition. When at least one multiplication could be used (in the conditions with "minimally different groups"), the subjects enumerated the arrays faster relative to the condition with "maximally different groups", which did not allow for any multiplication. Further support for this conclusion comes from the observation that smaller sets were sometimes enumerated more slowly that larger sets, whenever the latter could be grouped in the most regular manner. Thus, sets of 5 items were enumerated more slowly than sets of 6 items, 7 items more slowly than 8 items, and 11 items more slowly than 12 items, in the conditions where the subgroups shared, inasmuch as possible, the same numerosity. The explanation is simple: numbers 5, 7 and 11 are prime and therefore cannot be subdivided into equal subgroups, hence they could not elicit a single multiplication but a combination of multiplication and addition (e.g. 7=2x3+1); on the contrary, sets of 6,8 and 12 items could be enumerated through a shortcut based on a single multiplication (e.g. $8=2 \times 4$). In hindsight, precursors of this result can be found in the literature. Starkey and McCandliss (2014) only collected data for arrays of 5, 6 or 7 elements, each made of 3 subitizable subgroups, and their figures show that participants were faster at enumerating arrays of 6 elements compared to arrays of 5 and 7 dots (which are prime). Likewise, Mandler and Shebo (1982)'s results, replicated by Wender \& Rothkegel (2000), show that arrays of 6, 8 and 9 dots (organized in canonical patterns) were enumerated considerably better and faster than arrays of 7 or 10 dots. For the latter, the subjects were forced to compute, respectively, $2 \times 3+1$ and $2 \times 4+2$, whereas arrays of 6,8 , and 9 were arranged as $2 \times 3,2 \times 4$ and 3×3 matrices of dots - again supporting a simple multiplication process.

Further support for the mental multiplication hypothesis comes from two additional observations. First, on groupitizing trials, subjects often made enumeration errors that fell within the correct row or column of the multiplication table (e.g. answering 6 instead of 9), as if a mental multiplication was autonomously elicited (Zbrodoff \& Logan, 1986). Second, with arrays of 6,8 and 12 dots, the smaller the number of subgroups, the faster the response times. For instance, subjects were faster with 2 groups of 3 dots compared to 3 groups of 2 dots. The crucial point is that the same errors and asymmetries are observed during mental calculation with Arabic digits (Aiken \& Williams, 1973; Campbell \& Graham, 1985; Zimmerman et al., 2016). Thus, the results are compatible with the hypothesis that subjects actually computed an internal multiplication. More generally, they show that a visual grouping format that facilitates the conceptualization of a number as being composed of a small number of equal subgroups facilitates the enumeration process.

Finally, we found a significant effect of mathematical knowledge, both in response times and in accuracy. A significant interaction of mathematical knowledge with array size and a (modest) triple interaction of math knowledge X array size X grouping pattern, were also observed. Those findings are compatible with previous indications that mathematical training can enhance the precision of non-symbolic number estimation (Piazza et al., 2013). Nevertheless, groupitizing effects were present and showed very similar profiles in all three groups, suggesting that the multiplication shortcut can be used as long as basic arithmetic has been acquired, independently on the knowledge of higher mathematical concepts (Starkey \& McCandliss, 2014). It would be interesting to replicate the present experiment in a younger sample, where there could be greater variability in elementary mental arithmetic abilities.

Overall our findings confirm that arithmetic knowledge such as $3 \times 3=9$ can be implicitly probed by an elementary numerosity naming task, in agreement with the literature showing that
the performance in elementary numerosity detection or comparison tasks correlates with arithmetic skills (Piazza et al., 2010; Starkey \& McCandliss, 2014). Furthermore, our findings support the hypothesis that different cognitive computations are used depending on the pattern of the subgroups, thus pointing to the precise conditions under which grouping may or may not be beneficial in numerosity detection tasks: when the subgroups are equal, mental multiplication allows subjects to be faster and more accurate at determining the numerosity of the array but, in case of unequal subsets, this groupitizing advantage is reduced.

Acknowledgements

The study was funded by INSERM, CEA, Collège de France, and the Bettencourt-Schueller foundation. We are thankful to the Département d'Etudes Cognitives of Ecole Normale Supérieure de Paris for hosting our experimental sessions. We are grateful to Michele Orrù (Ecole Normale Supérieure de Paris) for his help with stimuli creation and to Marie Lubineau (ESPCI Paris) for her help with data collection.

Tables

Effect	df	F	partial η^{2}	
Array size	$3.27,107.92$	525.52	$<.0001$.94
Grouping cue	1,33	72.60	$<.0001$.69
Grouping pattern	$2.01,66.42$	286.77	$<.0001$.90
Array size*Grouping cue	$3.32,109.61$	2.94	.03	.08
Array size*Grouping pattern	$5.09,167.85$	27.15	$<.0001$.45
Grouping cue*Grouping pattern	$2.39,78.79$	5.87	.003	.15
Array size*Grouping cue*Grouping pattern	$4.65,153.37$	3.77	0.7	.06
Math knowledge	2,33	8.43	.001	.34
Math knowledge*Array size	$6.54,107.92$	2.34	.03	.12
Math knowledge*Grouping cue	2,33	.69	.51	.04
Math knowledge*Grouping pattern	$4.03,66.42$	0.86	.49	.05
Math knowledge*Array size*Grouping cue	$6.64,109.61$	1.95	.07	.11
Math knowledge*Array size*Grouping pattern	$10.17,167.85$	1.88	.05	.10
Math knowledge*Grouping cue*Grouping pattern	$4.78,78.79$	0.56	.72	.03
Math knowledge*Array size*Grouping pattern	$9.29,153.37$	1.10	.37	.06
GGrouping cue				

Table 1. Mixed model repeated measures omnibus ANOVA.

Grouping pattern	Grouping cue		Hypothetical computations
	Spacing	Color	
No groups	\therefore	$\bullet \cdot$	Counting
Groups with maximally different numbers	$\bullet \quad \therefore$		Addition
Groups with same or minimally different numbers, different shapes		$\bullet \bullet$.	Addition or Multiplication
Groups with same or minimally different numbers, same shape			Multiplication

Figure 1. Stimuli used in the present enumeration task. The figure shows examples of stimuli for a target numerosity of 9 dots.

Figure 2. Mean enumeration times in each condition. Each graph shows the mean response times for a given group of subjects and a given grouping cue (dots grouped by spacing or by color), as a function of the numerosity of the array (x axis) and the grouping pattern (color legend). Error bars indicate one standard error of the mean.

Figure 3. Influence of grouping order on enumeration speed. For numerosities 6,8 and 12, which could be grouped in two different ways, response times were slower in the configuration LxS, with the largest number of groups and the smallest number of dots per group (e.g. $6=3$ groups of 2 dots) than in the configuration SxL, with the smallest number of groups, and the largest number of dots per group (e.g. $6=2$ groups of 3 dots). Error bars indicate one standard error of the mean.

No groups

Groups with:
Different numbers
Same number,
Different shape
Same number,
Same shape

Figure 4. Mean error rates as a function of the numerosity of the array (x axis), the grouping pattern (color legend), and mathematical knowledge (3 groups of subjects). Error bars indicate one standard error of the mean.

Figure 5. Distribution of enumeration errors as a function of the grouping pattern (left graph: no groups and groups with different numbers; right graph: groups with the same or maximally similar number). Note how the distribution of errors changes with grouping: not only do errors massively decrease, but the distribution ceases to be dominated by nearest-neighbor errors (target ± 1) and many more multiplication table errors occur.

References

Aiken, L. R., \& Williams, E. N. (1973). Response Times in Adding and Multiplying Single-Digit Numbers. Perceptual and Motor Skills, 37(1), 3-13. https://doi.org/10.2466/pms.1973.37.1.3

Brunswik, E., \& Kamiya, J. (1953). Ecological Cue-Validity of "Proximity" and of Other Gestalt Factors. The American Journal of Psychology, 66(1), 20. https://doi.org/10.2307/1417965

Burr, D. C., Turi, M., \& Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20-20.

Campbell, J. I. D., \& Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 39(2), 338-366. https://doi.org/10.1037/h0080065

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.

Dehaene, S., \& Cohen, L. (1994). Dissociable mechanisms of subitizing and counting:

Neuropsychological evidence from simultanagnosic patients. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 958.

Dehaene, S., Bossini, S., \& Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. https://doi.org/10.1037/0096-3445.122.3.371

Dehaene, S., Spelke, E. S., Pinel, Stanescu, \& Tsivkin. (1999). Sources of Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science, 284(5416), 967-970.

Gelman, R., \& Gallistel, C. R. (1978). The child's understanding of number. Harvard University Press.

Gordon, P. (2004). Numerical Cognition Without Words: Evidence from Amazonia. Science, 306(5695), 496-499. pbhJansen, P. A., \& Watter, S. (2008). SayWhen: An automated method for
high-accuracy speech onset detection. Behavior Research Methods, 40(3), 744-751. https://doi.org/10.3758/BRM.40.3.744

Jevons, W. S. (1871). The power of numerical discrimination. Nature.
Jordan, K. E., MacLean, E. L., \& Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108(3), 617-625. psyh. https://doi.org/10.1016/j.cognition.2008.05.006

Kaufmann, E. L., Lord, M. W., Reese, T. W., \& Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498-525.

Mandler, G., \& Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1-21.

Moyer, R. S., \& Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519-1520.

McComb, K., Packer, C., \& Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo.. Animal Behaviour, 47(2), 379-387. psyh. https://doi.org/10.1006/anbe.1994.1052

Piazza, M., Pica, P., Izard, V., Spelke, E. S., \& Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological science, 24(6), 1037-1043.

Pica, P., Lemer, C., Izard, V., \& Dehaene, S. (2004). Exact and Approximate Arithmetic in an Amazonian IndigeneGroup. Science, 306(5695), 499-503. pbh.

Protopapas, A. (2007). Check Vocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859-862.

Roux, F., Armstrong, B. C., \& Carreiras, M. (2017). Chronset: An automated tool for detecting speech onset. Behavior Research Methods, 49(5), 1864-1881. https://doi.org/10.3758/s13428-016-0830-1

Rugani, R., Vallortigara, G., Priftis, K., \& Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-536. pbh.

Starkey, G. S., \& McCandliss, B. D. (2014). The emergence of "groupitizing" in children's numerical cognition. Journal of Experimental Child Psychology, 126, 120-137. https://doi.org/10.1016/j.jecp.2014.03.006

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., \& von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figureground organization. Psychological Bulletin, 138(6), 1172-1217. https://doi.org/10.1037/a0029333 Wender, K. F., \& Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological Research, 64(2), 81-92.

Wolters, G., Van Kempen, H., \& Wijlhuizen, G.-J. (1987). Quantification of small numbers of dots: Subitizing or pattern recognition? The American Journal of Psychology, 100(2), 225-237. psyh. https://doi.org/10.2307/1422405

Zbrodoff, N. J., \& Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115(2), 118.

Zimmerman, F., Shalom, D., Gonzalez, P. A., Garrido, J. M., Alvarez Heduan, F., Dehaene, S., Sigman, M., \& Rieznik, A. (2016). Arithmetic on Your Phone: A Large Scale Investigation of Simple Additions and Multiplications. PLOS ONE, 11(12), e0168431. https://doi.org/10.1371/journal.pone. 0168431

