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Abstract 

 

Enumeration of a dot array is faster and easier if the items form recognizable subgroups. This 

phenomenon, which has been termed groupitizing, appears in children after one year of formal 

education and correlates with arithmetic abilities. We formulated and tested the hypothesis that 

groupitizing reflects an ability to sidestep counting by using arithmetic shortcuts, for instance using 

the grouping structure to add or multiply rather than just count. Three groups of students with 

different levels of familiarity with mathematics were asked to name the numerosity of sets of 1-15 

dots in various arrangements, for instance 9 represented as a single group of 9 items, three distinct 

groups of 2, 3, and 4 items (affording addition 2+3+4), or three identical groups of 3 items (affording 

multiplication 3x3). Grouping systematically improved enumeration performance, regardless of 

whether the items were grouped spatially or by color alone, but only when an array was divided into 

subgroups with the same number of items. Response times and error patterns supported the 

hypothesis of a multiplication process. Our results demonstrate that even a simple enumeration task 

implicitly involves mental arithmetic. 

  



3 

 

Introduction 

Understanding the cognitive basis of numerosity perception is a central topic in the field of 

numerical cognition. A broad divide separates approximate versus exact numerosity perception. 

Approximating the cardinal of a set of objects is an ancient and evolutionarily useful process, as it 

allows individuals to go for the larger amount of food, to avoid the larger groups of predators, or to 

choose the larger groups of social partners to stay with. Approximate number sense is an ability 

common to many animal species (McComb, Packer, & Pusey, 1994; Jordan, MacLean, & Brannon, 

2008; Rugani, Vallortigara, Priftis, & Regolin, 2015) and to all human cultures, independent of formal 

education (Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004). Finding the exact numerosity of a 

large set, however, is a distinct ability which seems only present in those human cultures that 

possess a set of counting symbols that allows them to assign, with a 1:1 correspondence, a specific 

name to each specific cardinal value of a set (Dehaene et al., 1999; Gelman & Gallistel, 1978; Pica et 

al., 2004). Determining the exact numerosity of a large set requires a counting strategy, i.e., the 

pairing of objects with the series of number symbols in an incremental 1:1 manner. Counting is 

evidenced by a systematic, linear increase in naming times as a function of numerosity, suggesting 

a serial process (Mandler & Shebo, 1982).  

Beyond approximation and counting, humans also possess a third numerosity perception process, 

subitizing. It was long observed that, for small groups of 1, 2 or 3 elements, human adults do not 

need a counting strategy to determine their cardinal value, but they can embrace it at once (Jevons, 

1871), as if our sensory system were able to determine the “twoness” or the “threeness” of a set 

without considering each item separately. This ability was firstly scientifically analyzed by Kaufman 

and collaborators in 1949 (Kaufmann et al., 1949), who called it “subitizing”, from the medieval Latin 

subitare, which means understanding something immediately, without reflection. The term is thus 
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used to indicate the rapid, confident and accurate numerosity judgements of sets composed of 3 

items or less. Later on, it was shown that this limit could be overcome via repeated practice with 

fixed patterns (Wolters et al., 1987) or by using canonical patterns such as dice patterns instead of 

random configurations (Mandler & Shebo, 1982), suggesting that “adults first develop simple 

canonical perceptions for twoness and threeness and then apply these schemas to the counting of 

large arrays”. 

While approximation, counting and subitizing are considered the three main processes underlying 

human enumeration, Wender and Rothkegel (2000) and Starkey and McCandliss (2014) studied a 

fourth process: grouping. They found that the classical set size effect observed for numerosities 

above 3 (a strong increase of enumeration latencies with numerosity) essentially vanishes when the 

items can be grouped into smaller subsets. The grouping cue that they examined consisted in the 

spatial separation of dots into distinct subgroups, each with a numerosity in the subitizable range of 

1 to 3 items. The ability to capitalize on grouping information in order to facilitate the enumeration 

process was termed “groupitizing”. Starkey and McCandliss (2014) further proposed that 

groupitizing might “reflect adults’ ability to use their grasp of number concepts such as the 

knowledge that specific numbers are composed of specific subsets”. In support of this conclusion, 

they showed that groupitizing was not present in a younger group of kindergartners, that the size of 

the effect increased with age, and that its amplitude correlated with arithmetic abilities in classical 

symbolic arithmetic tasks. However, they did not analyze the nature of the groupitizing process itself.  

The goal of the present research is to fill this gap by providing a thorough exploration of the 

conditions under which groupitizing occurs in adult subjects, and to explore its relation to symbolic 

arithmetic. In their study, Wender and Rothkegel (2000) and Starkey and McCandliss (2014) only 

created groups of subitizable items by spacing them apart. However, is spatial distance the only cue 
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that can induce groupitizing? Furthermore, what is the role (if any) of the recognition of repeated 

patterns within the array? If arithmetic is involved, then we should predict faster naming times when 

the grouping supports mental multiplication, because the items are grouped in groups of equal sizes 

(e.g. 6 items = 3 groups of 2 items = 3 x 2). 

More specifically, we asked the following four questions: 

1)  Can color and spatial contiguity act as groupitizing cues? Since both color and distance are well-

known cues that promote grouping, in agreement with Gestalt theories of perception (Brunswik & 

Kamiya, 1953; Wagemans et al., 2012), if groupitizing reflects an abstract arithmetic process, it 

should be deployed identically whether the items can be grouped spatially or by color (e.g. 6 items 

= 2 red, 2 blue and 2 green). Furthermore, past their distinct perceptual stage, spatial and color 

groupings should show parallel effects of other grouping variables. 

2) Do repeated groupings with the same number of items facilitate groupitizing? The mental 

multiplication hypothesis predicts that arrays divided into equal subsets (e.g. 9 dots divided into 3 

groups of 3) should be faster enumerated than arrays divided into non-equal subsets (e.g. 9 dots 

divided into groups of 4, 3 and 2 dots), because the former display facilitates a multiplication 

process. Furthermore, this effect should be maximal when the subgroups share not only the same 

numerosity, but also the same shape, such as that it is more immediately obvious that they share 

the same numerosity and that the total number can be immediately obtained by multiplying by the 

number of groups. 

3) Which cognitive computations underlie groupitizing? If multiplication and addition are involved, 

depending on the specific array patterns, we predict different patterns of response times and error 

rates for displays that afford (1) addition only, e.g. 6=1+2+3; (2) multiplication, e.g. 6=2+2+2=2x3; or 

(3) a combination of both, e.g. 7=3+3+1=2x3 +1. Specifically, we predict that multiplication should 
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afford considerable savings in effort, response time and error rate. We also predict that this could 

occur at the expense of the emergence of a new error type: while enumeration errors typically 

cluster around the correct numerosity, multiplication errors could reflect a slip in the multiplication 

table (e.g. 4x2 = 6). 

4) Does groupitizing vary with mathematical knowledge? Again, a reliance on arithmetic facts would 

predict that, for equal age, the participants’ level of math training should affect groupitizing 

performance. 

 

Methods 

Participants. The experiment involved 42 participants with normal (or corrected to normal) vision 

and no color blindness. We replicated the experiment in three groups of participants with low, 

medium or high levels of math knowledge (for a similar approach, see Dehaene et al., 1993). At the 

highest level, we tested 15 students in mathematics or related fields (physics, chemistry and 

informatics) at the highly selective Ecole Normale Supérieure (ENS Ulm, Paris). For the medium level, 

we tested 15 students in humanities, also at ENS. These groups differed in their knowledge of 

university-level mathematics but they both had excellent performances in basic mathematics (they 

all scored the highest grade in their high-school final mathematics exam). As the lowest level, a third 

group of 12 students were selected among first-year students of the Psychology department of the 

Université de Saint Denis (Paris). Note that, in France, entrance to university is a mandatory right 

and is therefore unselective. The third group had a much smaller familiarity with mathematics and 

significantly worst performance in high-school.  

The experimental procedure was approved by the local ethical committee, and all subjects gave 

written consent and were informed that they could withdraw from the experiment at any moment 
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without giving any reason. They were compensated with 12 euros for their 60 minutes participation 

in the experiment. All data were treated anonymously. 6 subjects out of 30 (3 from the humanities 

group and 3 from the science group) were excluded from the data analyzes described in the following 

paragraphs, due to these reasons: 2 participants were color-blind but they did not inform us about 

it before the experiment; the computer crashed during 2 other experimental sessions and no data 

were recorded from these subjects; 2 other participants failed to perform the task in the correct 

way, since they answered for more than 50% of the trials after the presentation of the stimulus 

(during the fixation cross).  We thus analyzed data from 36 subjects (12 humanities students, 12 

sciences students and 12 psychology students; age: 21  1.5). 

Stimuli. Subjects were seated in front of a monitor, with their eyes at a distance of 60 centimeters 

from the screen. Stimuli were black and colored dots of 3 millimeters diameter (0.29° of visual angle) 

on a white background; the arrays spanned an area of 12 centimeters squared (11.42° of visual 

angle), at the center of the screen (similar to Mandler & Shebo, 1982; Starkey & McCandliss, 2014). 

Arrays comprised between 1 and 15 dots. However, arrays of 1, 2, 3, 13, 14 and 15 dots were 

presented only as fillers, in order to avoid a distinct pattern of improved performance at the 

extremes of the range of numbers tested, a phenomenon described by Burr and colleagues (Burr et 

al., 2010).  

The design was a 2x4 factorial design where stimuli varied according to the “grouping cue” factor (2 

levels: spacing and color) and the “grouping pattern” factor (4 levels; see figure 1). In the “spacing” 

grouping-cue condition, arrays comprised between 2 and 4 spatially separated subgroups, each with 

1, 2, 3 or 4 dots. The minimal distance between dots was 1 centimeter (each dot had at least one 

dot at a distance of 1 centimeter), and subsets were separated from each other by a fixed distance 

of 4 centimeters (i.e., the distance between the two closest dots belonging to two different 
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subgroups was 4 centimeters). In the “color” grouping-cue condition, the dots were not spatially 

separated (they all were at a fixed minimal distance of 1 centimeter, as explained above), but 

appeared in 2, 3 or 4 spatially contiguous subsets, each painted in a different color (black, red, green 

or blue, randomly chosen).  

The four levels for the grouping-pattern factor were: 

1) The “no-groups” condition: dots were not divided into subgroups. Each array comprised spatially 

contiguous and equidistant dots. In the “distance” condition, all dots were black on a white 

background. In the “color” condition, dots were presented in randomly assigned, spatially 

intermixed colors (see figure 1). 

2) The “maximally different groups” condition: the array was divided into subgroups which, 

inasmuch as possible, comprised a different number of dots (4 = 3 + 1; 5 = 3 + 2; 6 = 3 + 2 + 1; 7 = 4 

+ 3; 8 = 4 + 3 + 1; 9 = 4 + 3 + 2; 10 = 4 + 3 + 2 + 1; 11 = 4 + 3 + 2 + 2; 12 = 4 + 3 + 3 + 2). This condition 

was designed to induce addition, but not multiplication. 

3) The “minimally different groups with different shape” condition: the array was divided into 

subgroups with, inasmuch as possible, the same number of dots, yet a distinct spatial arrangement 

(4 = 2 + 2; 5 = 2 + 2 + 1; 6 = 3 + 3 or 2 + 2 + 2; 7 = 3 + 3 + 1; 8 = 4 + 4 or 2 + 2 + 2 +2; 9 = 3 + 3 + 3; 10 

= 3 + 3 + 3 + 1; 11 = 3 + 3 + 3 + 2; 12 = 4 + 4 + 4 or 3 + 3 + 3 + 3). This condition was designed to 

induce addition and/or multiplication. 

4) The “minimally different groups with same shape” condition: this was similar to the previous 

condition, except that the same spatial arrangement was used within each subset (see figure 1), thus 

maximally facilitating a multiplication process. 

Each array numerosity appeared four times in each condition (with the actual disposition of the dots 

varying on each trial in order to avoid learning effects). The arrays of 6, 8, and 12 dots, as pointed 
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above, had two different configurations for the third and the fourth condition, since they are 

divisible in two different configurations having subsets with the same amount of dots (6 = 3 + 3 or 2 

+ 2 + 2; 8 = 4 + 4 or 2 + 2 + 2 + 2; and 12 = 4 + 4 + 4 or 3 + 3); for these arrays, both configurations in 

third and fourth conditions were presented four times each.  

All stimuli were previously generated according to the aforementioned characteristics using a 

custom program in Python. They were presented in a random order and with a random orientation 

for each subject. 

Experimental procedure. On each trial, subjects saw an array which remained on screen. They were 

asked to vocally name its numerosity aloud as fast and as accurately as they could. Once they gave 

their answer, they pressed the spacebar to move to the next trial. If the spacebar was not pressed, 

the trial automatically ended after 4 seconds (which was, therefore, the time limit for the vocal 

response). After each trial, a fixation cross appeared for 1000 ms at the center of the screen, and 

then the next array appeared. The duration of the task was ~50 minutes (3 blocks of 15 minutes 

each, with 2-minutes break between them). The subjects performed 50 practice trials in the 

presence of the researcher before starting the actual experiment, in order to check if they made any 

sort of mistake (e.g. pronouncing irrelevant words or pressing the spacebar before saying the 

numerosity, changing their distance from the screen, finger counting, etc). At the end of the 

experiment, subjects were asked to freely describe the computation strategies they used in the task, 

if any. 

Measurement of vocal onset. The first author manually detected the vocal onset (together with the 

accuracy: wrong or right answer) by directly looking at the spectrogram of the recorded vocal 

response on each trial. In order to avoid any sort of experimental bias, he was not aware of the 

specific condition of the trial, but only of the target numerosity. This method of measurement of 
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vocal onset, although highly time-consuming, is still considered the gold standard in the literature 

(Protopapas, 2007; Jansen & Watter, 2008; Roux, Armstrong, & Carreiras, 2017). Automatized 

measures gave similar, though less accurate, results. 

Analysis. Median response times (for correct answers) and accuracy were computed for each 

subject and each cell of the design and entered into either a mixed-model repeated measures 

omnibus ANOVA with Greenhouse-Geisser sphericity correction, or a linear mixed-effect model (see 

below).  

 

Results 

Subitizing. Although numerosities 1, 2 and 3 were not part of the main factorial design, we first 

verified the presence of a classical subitizing effect, i.e. virtually identical response times for arrays 

of 1, 2 and 3 dots. The means of median response times were 0.71, 0.70 and 0.73 s respectively for 

arrays of 1, 2 and 3 dots, with no significant difference within each numerosity as a function of 

grouping cue, grouping pattern or mathematical knowledge (all related p values < 0.01).  

Counting and groupitizing. The main target of our experiment was the existence of a groupitizing 

effect for larger numerosities in the range 4 – 12. The corresponding mean RTs appear in figure 2. 

As expected, the ANOVA (table 1) showed a main effect of set size, reflecting the fact that 

enumeration latencies generally increased with set size. Also, there was a main effect of grouping 

pattern, and an array size x grouping pattern interaction. To evaluate how grouping pattern affected 

response latencies, we performed a post-hoc Tukey test, which showed that there were significant 

differences between all four conditions (all p<.0001) except for the “no-groups” (mean RT = 2.02 s) 

versus “maximally different groups” (mean RT = 2.0 s). As predicted, a large acceleration of 

responses occurred when the array was divided into equal subgroups with the same or maximally 
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similar numerosity (mean RT = 1.58 s), and a significant additional acceleration of naming responses 

was seen when the same exact shape was used to display each subset (mean RT = 1.39 s). Those 

results thus indicate a groupitizing effect. 

Effect of specific numerosities. Since there was an array size x grouping pattern interaction, we next 

examined how response times varied with numerosity in each condition. For the no-groups and the 

different-numbers conditions, response times increased roughly linearly with numerosity, a classical 

phenomenon that reflects the serial process of counting (Moyer & Landauer, 1967; Dehaene, 1992) 

for sets comprising more than 3 items (Dehaene & Cohen, 1994). However, in the condition of 

grouping by equal or maximally similar numbers, the effect of array size ceased to be monotonic and 

roughly linear (see figure 2). Instead, there was an acceleration of responses which was most 

pronounced for non-prime numbers that could be subdivided in equal numbers. Conversely, the 

prime numbers 5, 7 and 11 were slower than their neighbors, leading to reversals in monotonicity. 

Thus, sets of 5 items were enumerated more slowly than sets of 6 items (Welch unequal variances 

t-test on response times, t(285.92) = 2.18, p = 0.03; mean RTs respectively 1.11 s and 1.04 s), sets of 

7 items more slowly than sets of 8 items (t(285.5) = 2.44, p = 0.015; 1.42 s versus 1.32 s), and sets 

of 11 items more slowly enumerated than sets of 12 items (t(285.77) = 9.14, p < .0001; 2.36 s versus 

1.85 s). This pattern, which was present in all six group x cue conditions (figure 2), indicates that 

numerosities that could be resolved by multiplication alone (e.g. 8 = 4 groups of 2) were faster than 

numerosities that required a combination of addition and multiplication (e.g. 7 = 3 groups of 2 plus 

a group of 1). 

As a quantitative test of this idea, we performed a linear mixed effects analysis, where the 

dependent variable was the mean response time to each numerosity in the range 4-12 in the “equal 

groups” conditions, and the fixed effects were array size (as a proxy for problem size, which is a good 
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predictor of multiplication difficulty), and the type of arithmetic operation postulated under our 

hypothesis: 0 for a simple multiplication (such as for 4 = 2x2), 1 for a multiplication and an addition 

of 1 (such as for 5 = 2x2 +1), 2 for a multiplication and an addition of 2 (only for 11 = 3x3 +2). The 

subjects were included as random effects. For the “equal groups” condition, both array size (slope = 

139 ± 4 ms/item [±standard error], t(286)=35.25, p<10-16) and operation type (slope = 289 ± 14 

ms/item, t(286)=19.41, p<10-16) were highly significant (conditional r2 = 89.5% of variance 

explained), thus confirming that the maximal savings were observed for non-prime numbers that 

could be subdivided into equal groups, and that the need to add 1 or 2 imposed an additional toll 

for numerosities 5, 7, 10 and 11. When we performed a similar regression on the mean RT from the 

“unequal or no groups” conditions, array size had a dominant effect (slope = 247 ± 6 ms/item, 

t(286)=40.79, p<10-16) while operation type had a much less pronounced, though still significant 

effect (slope = 68 ± 22 ms/item, t(286)=2.97, p=0.0032). Thus, groupitizing effects were perhaps not 

totally absent even when the arrays were not systematically arranged as groups, but became very 

prominent in the “equal groups” conditions. 

Order effect. In the conditions with the same number in each group, arrays of 6, 8, and 12 dots 

offered another test of the multiplicative model. Such arrays were presented to the subjects in two 

possible configurations, reflecting the commutativity of multiplication: the number of groups could 

be either the smaller number (for example, 8 dots divided into 2 groups of 4 dots) or the larger 

number (for example, 8 dots divided into 4 groups of 2 dots). A classical finding in symbolic 

arithmetic is that there is an order effect in mental multiplication (Aiken & Williams, 1973; Campbell 

& Graham, 1985; Zimmerman et al., 2016): it is easier to compute a multiplication such as 8x3 as 3 

groups of 8 (3 times 8 in English) than as 8 groups of 3 (8 times 3 in English). If there was a covert 

multiplication during enumeration, then this effect should also appear in our data. Indeed, we found 
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that the first type of configuration, with a smaller number of groups, led to significantly faster 

responses; in other words, response times increased with the number of groups more than with the 

number of items in a group (see figure 3). Welch unequal variances t-test were conducted for each 

array size, showing a significant difference between the two configurations for all array sizes (array 

of 6: t(279.4) = 2.88, p < .01; array of 8: t(272.64)= 2.88, p < .01; array of 12: t(274.15) = 2.10, p < 

.001). 

Effects of grouping cue. We then looked at the effects that involved grouping cue. In the main 

ANOVA, a main effect of grouping cue and a grouping cue x grouping pattern interaction were found, 

indicating that participants were slightly faster with spatial cues than with color cues overall (Welch 

t test, t(2589.6) = 2.98, p < .01; mean RTs respectively 1.71 s and 1.79 s) and had slightly greater 

savings from spatial cues when these afforded equal groups (Welch t test, t(1292.4) = -4.02, p < .001; 

mean RT for arrays with spatial cues: 1.43 s ; with color cues: 1.55 s). Nevertheless, both color and 

spatial cues made groupitizing possible:  as shown in figure 2, very similar profiles of responses were 

found for both. We separately submitted the “color” condition and the “spacing” condition to mixed 

models repeated measures ANOVAs and we found the same main effects and interaction effects 

discussed above for both grouping cues. 

Influence of math knowledge. The ANOVA on RTs also revealed a significant effect of mathematical 

knowledge and its interactions with array size and with grouping pattern (see table 1). We thus 

submitted the results to a post-hoc Tukey test, which revealed no significant difference in response 

times between the two groups of students from the most selective university (high and medium 

math knowledge; t ratio = 1.13; p = .5) but a significant difference between the group of low-math 

students (mean RT = 1.932 s) and both the medium (mean RT = 1.705 s; t ratio = 2.85, p = .019) and 

high one (mean RT = 1.615 s; t ratio = 3.98, p = .001). An interaction of mathematical knowledge and 
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array size, as well as a triple interaction of math knowledge, array size and grouping pattern, 

indicated that, although savings due to groupitizing were present in all groups, they were slightly 

more pronounced in students with lower mathematical knowledge, which is unsurprising given that 

these participants were slower overall (see figure 2). 

Error patterns. Overall accuracy was very high (>90%), which was expected given that subjects had 

up to 4 seconds to respond. Nevertheless, we submitted the mean error rates per condition to the 

same ANOVA as above, and found the same main effects except for the absence of a grouping cue 

effect (array size: F(2.33, 76.91) = 45.94, p < .0001; grouping pattern: F(1.89, 62.23) = 33.20, p 

<.0001; mathematical knowledge: F(2, 33) = 3.91, p = 0.03; grouping cue: F(1, 33) = 1.67, p = 0.2). 

There was an interaction of mathematical knowledge x array size (F(4.66, 76.91) = 2.99; p = .02) and, 

once again, no interaction between mathematical knowledge and the grouping pattern (F(3.77, 

62.23) = 1.20; p = .32). Figure 4 shows, as a summary, the mean error rates per condition 

(independently on the grouping cue), separately for the three levels of the mathematical knowledge 

factor. As we can easily see, the higher the mathematical knowledge, the smaller the number of 

errors, especially for large arrays. 

Once again, we conducted a post-hoc Tukey test to evaluate how the grouping pattern 

affected error rates: we found significant differences between all conditions (all p<.0001) except 

for the “no-groups” versus “maximally different groups” (t ratio = -2.02; p = .1867) and for the two 

conditions with equal (or maximally similar) numbers of dots per subgroup (t ratio = 0.18; p = 

.9979). In the latter conditions, errors dropped almost to zero, except for the numbers above ~8 

(figure 4). We next analyzed the nature of those remaining errors. 

Distribution of errors. The hypothesis that subjects used a multiplicative shortcut in the “equal 

groups” conditions can be tested by examining the distribution of errors. Figure 5 shows how errors 
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were distributed, separately for arrays with no grouping or divided into different groups (left graph) 

and with equal or maximally similar groups (right graph). In the former case, erroneous responses 

mostly corresponded to numbers close to the correct array size, often within a distance of 1, 

suggesting that they correspond to counting errors. However, in the “equal groups” conditions (right 

graph), the distribution differed: errors were often more distant from the target and, furthermore, 

often corresponded to another number within the same row or column of the multiplication table 

(e.g. for an array of 9 presented as 3 groups of 3, the errors were often 6 or 12). Focusing solely on 

the array sizes 4, 6, 8, 9 and 12, a simple count confirmed that such “table errors” were significantly 

more frequent in the “equal groups” conditions (81/136 = 59.56 %) than in the other conditions 

(20/188 = 10.63 %; 2 = 85.758, df = 1, p<.0001), whereas the converse was true for close errors (i.e., 

correct numerosity  1): they were significantly less frequent in the “equal groups” conditions 

(43/136 = 31.62%) than in the other conditions (145/188 = 77.13%; 2 = 65.25, df = 1, p<.0001). This 

finding thus comforts the hypothesis that a multiplication process underlies the savings in 

enumeration time that characterize the groupitizing phenomenon. 

 

Discussion 

Given the results presented in the previous section, it is now possible to answer the questions 

formulated at the beginning of the article.  

 First, color can act as a grouping cue in order to make groupitizing possible. Arrays with 

contiguous dots grouped by color were enumerated faster than the same arrays where the colors 

were randomly dispersed. Furthermore, over all conditions of the experiment, the results were 

remarkably parallel whether color or space was used as a grouping cue (figure 2). Thus, groupitizing 

is a robust phenomenon, regardless of whether color or spacing is used as the grouping cue. This 
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result is coherent with the scientific literature on the role of Gestalt factors on perception (Brunswik 

& Kamiya, 1953; Wagemans et al., 2012). 

 Second, the results indicate that the presentation of repeated patterns of items facilitate 

groupitizing. Arrays divided into equal subsets were systematically enumerated faster and more 

accurately than arrays divided into non-equal subsets. This effect was maximal when the subgroups 

shared not only the same numerosity, but also the same shape, and thus promoted a multiplication 

process.  

More surprisingly, the arrays divided into subgroups with unequal numbers of dots (e.g., 9 

dots divided into 3 subgroups of 4, 3 and 2 dots) were not enumerated faster or more accurately 

than arrays with no grouping cue. According to previous literature (Mandler & Shebo, 1982; Wolters 

et al., 1987; Wender & Rothkegel, 2000; Starkey & McCandliss, 2014) we should have expected an 

advantage for sets organized in subgroups, regardless of their number of items. One interpretation 

of this negative result is that our adult participants were, in fact, already making use of counting-by-

groups even in the no-group condition. Indeed, most of the subjects (29 out of 36), when asked 

about the perceived strategies used in the task, explicitly referred to the autonomous formation of 

subgroups in the “no-groups” condition: they actually tried to form some small and mostly 

subitizable groups of dots in order to accelerate the counting process. Therefore, an internally driven 

grouping mechanism might have facilitated subjects’ responses, making their response times in the 

“no-groups” condition (blue line in figure 2) not significantly different from the response times in 

the “maximally different groups” condition (red line in figure 2). Our results indicate that, in 

educated adults, seeing an array decomposed in subcomponents does not necessarily represent a 

benefit, both in terms of response times and accuracy, for numerosity visual detection, because an 

internally driven grouping mechanism may be just as fast and efficient as an externally driven one. 
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 Third, our results clarify which cognitive computations are used in groupitizing. They suggest 

that grouping is particularly useful when the subgroups allow for a multiplication or a combination 

of multiplication and addition. When at least one multiplication could be used (in the conditions 

with “minimally different groups”), the subjects enumerated the arrays faster relative to the 

condition with “maximally different groups”, which did not allow for any multiplication. Further 

support for this conclusion comes from the observation that smaller sets were sometimes 

enumerated more slowly that larger sets, whenever the latter could be grouped in the most regular 

manner. Thus, sets of 5 items were enumerated more slowly than sets of 6 items, 7 items more 

slowly than 8 items, and 11 items more slowly than 12 items, in the conditions where the subgroups 

shared, inasmuch as possible, the same numerosity. The explanation is simple: numbers 5, 7 and 11 

are prime and therefore cannot be subdivided into equal subgroups, hence they could not elicit a 

single multiplication but a combination of multiplication and addition (e.g. 7=2x3+1); on the 

contrary, sets of 6, 8 and 12 items could be enumerated through a shortcut based on a single 

multiplication (e.g. 8=2x4). In hindsight, precursors of this result can be found in the literature. 

Starkey and McCandliss (2014) only collected data for arrays of 5, 6 or 7 elements, each made of 3 

subitizable subgroups, and their figures show that participants were faster at enumerating arrays of 

6 elements compared to arrays of 5 and 7 dots (which are prime). Likewise, Mandler and Shebo 

(1982)’s results, replicated by Wender & Rothkegel (2000), show that arrays of 6, 8 and 9 dots 

(organized in canonical patterns) were enumerated considerably better and faster than arrays of 7 

or 10 dots. For the latter, the subjects were forced to compute, respectively, 2 x 3 + 1 and 2 x 4 + 2, 

whereas arrays of 6, 8, and 9 were arranged as 2 x 3, 2 x 4 and 3 x 3 matrices of dots – again 

supporting a simple multiplication process. 
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 Further support for the mental multiplication hypothesis comes from two additional 

observations. First, on groupitizing trials, subjects often made enumeration errors that fell within 

the correct row or column of the multiplication table (e.g. answering 6 instead of 9), as if a mental 

multiplication was autonomously elicited (Zbrodoff & Logan, 1986). Second, with arrays of 6, 8 and 

12 dots, the smaller the number of subgroups, the faster the response times. For instance, subjects 

were faster with 2 groups of 3 dots compared to 3 groups of 2 dots. The crucial point is that the 

same errors and asymmetries are observed during mental calculation with Arabic digits (Aiken & 

Williams, 1973; Campbell & Graham, 1985; Zimmerman et al., 2016). Thus, the results are 

compatible with the hypothesis that subjects actually computed an internal multiplication. More 

generally, they show that a visual grouping format that facilitates the conceptualization of a number 

as being composed of a small number of equal subgroups facilitates the enumeration process. 

Finally, we found a significant effect of mathematical knowledge, both in response times and 

in accuracy. A significant interaction of mathematical knowledge with array size and a (modest) triple 

interaction of math knowledge X array size X grouping pattern, were also observed. Those findings 

are compatible with previous indications that mathematical training can enhance the precision of 

non-symbolic number estimation (Piazza et al., 2013). Nevertheless, groupitizing effects were 

present and showed very similar profiles in all three groups, suggesting that the multiplication 

shortcut can be used as long as basic arithmetic has been acquired, independently on the knowledge 

of higher mathematical concepts (Starkey & McCandliss, 2014). It would be interesting to replicate 

the present experiment in a younger sample, where there could be greater variability in elementary 

mental arithmetic abilities.  

Overall our findings confirm that arithmetic knowledge such as 3x3=9 can be implicitly 

probed by an elementary numerosity naming task, in agreement with the literature showing that 
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the performance in elementary numerosity detection or comparison tasks correlates with arithmetic 

skills (Piazza et al., 2010; Starkey & McCandliss, 2014). Furthermore, our findings support the 

hypothesis that different cognitive computations are used depending on the pattern of the 

subgroups, thus pointing to the precise conditions under which grouping may or may not be 

beneficial in numerosity detection tasks: when the subgroups are equal, mental multiplication 

allows subjects to be faster and more accurate at determining the numerosity of the array but, in 

case of unequal subsets, this groupitizing advantage is reduced. 
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Tables 

 

 

Table 1. Mixed model repeated measures omnibus ANOVA. 

  

Effect df F p Partial η2 

Array size 3.27, 107.92 525.52 <.0001 .94 

Grouping cue 1,33 72.60 <.0001 .69 

Grouping pattern 2.01, 66.42 286.77 <.0001 .90 

Array size*Grouping cue 3.32, 109.61 2.94 .03 .08 

Array size*Grouping pattern 5.09, 167.85 27.15 <.0001 .45 

Grouping cue*Grouping pattern 2.39, 78.79 5.87 .003 .15 

Array size*Grouping cue*Grouping pattern 4.65, 153.37 3.77 0.7 .06 

Math knowledge 2, 33 8.43 .001 .34 

Math knowledge*Array size 6.54, 107.92 2.34 .03 .12 

Math knowledge*Grouping cue 2, 33 .69 .51 .04 

Math knowledge*Grouping pattern 4.03, 66.42 0.86 .49 .05 

Math knowledge*Array size*Grouping cue 6.64, 109.61 1.95 .07 .11 

Math knowledge*Array size*Grouping pattern 10.17, 167.85 1.88 .05 .10 

Math knowledge*Grouping cue*Grouping pattern 4.78, 78.79 0.56 .72 .03 

Math knowledge*Array size*Grouping pattern 

*Grouping cue 

9.29, 153.37 1.10 .37 .06 
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Figures 

 

 

 

Figure 1. Stimuli used in the present enumeration task. The figure shows examples of stimuli for a 

target numerosity of 9 dots. 
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Figure 2. Mean enumeration times in each condition. Each graph shows the mean response times 

for a given group of subjects and a given grouping cue (dots grouped by spacing or by color), as a 

function of the numerosity of the array (x axis) and the grouping pattern (color legend). Error bars 

indicate one standard error of the mean. 
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Figure 3. Influence of grouping order on enumeration speed. For numerosities 6, 8 and 12, which 

could be grouped in two different ways, response times were slower in the configuration LxS, with 

the largest number of groups and the smallest number of dots per group (e.g. 6 = 3 groups of 2 

dots) than in the configuration SxL, with the smallest number of groups, and the largest number of 

dots per group (e.g. 6 = 2 groups of 3 dots). Error bars indicate one standard error of the mean. 
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Figure 4. Mean error rates as a function of the numerosity of the array (x axis), the grouping 

pattern (color legend), and mathematical knowledge (3 groups of subjects). Error bars indicate one 

standard error of the mean. 
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Figure 5. Distribution of enumeration errors as a function of the grouping pattern (left graph: no 

groups and groups with different numbers; right graph: groups with the same or maximally similar 

number). Note how the distribution of errors changes with grouping: not only do errors massively 

decrease, but the distribution ceases to be dominated by nearest-neighbor errors (target ± 1) and 

many more multiplication table errors occur. 
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