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According to a growing body of research, human adults are remarkably accurate at extracting intuitive
statistics from graphs, such as finding the best-fitting regression line through a scatterplot. Here, we ask
whether humans can also perform outlier rejection, a nontrivial statistical problem. In three experiments,
we investigated human adults’ capacity to evaluate the linear trend of a flashed scatterplot comprising
0–4 outlier datapoints. Experiment 1 showed that participants did not spontaneously reject outliers:
when outliers were not mentioned, their presence biased the participants’ trend judgments and regres-
sion line estimates. In Experiment 2, where participants were explicitly asked to exclude outliers, the
outlier-induced bias was reduced but remained significant. In Experiment 3, where participants were
asked to explicitly detect any outlier before adjusting their regression line, outlier detection was satisfac-
tory, but the detected outliers continued to bias the regression responses, unless they were quite distant
from the main regression line. We propose a simple model for outlier detection, based on the computa-
tion of a z-score that estimates how far a given datapoint is from the distribution of distances to the
regression line, and we show that this model closely approximates human performance. Detection is not
rejection, however, and our results suggest that humans can remain biased by outliers that they have
detected.

Public Significance Statement
In all fields of science, it is quite common that a handful of observations depart from the rest of a
dataset. In statistical jargon, such exceptional observations are known as outliers. In most cases,
they should be ignored in order to focus the analysis on the typical case—or at least they should be
analyzed separately. In our study, we tested whether human adults can perceptually detect and dis-
card outliers when attempting to intuitively extract the trend from a scatterplot. We find that, sponta-
neously, adults do not reject outliers and are therefore strongly influenced by them in their statistical
judgements. Furthermore, even when adults are told to detect and reject outliers, they continue to be
biased by them. We propose guidelines for graphics designers to facilitate outlier detection and
rejection.
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Every scientist regularly deals with outliers; i.e., anomalous
observations or measurements that appear very different from the
others. The dilemma is always the same: should we consider them
the result of normal variability (“noise”) inherent in the data, or
exclude them from the main analysis, because they “arise suspi-
cions that they were generated by a different mechanism” (Haw-
kins, 1980)? The answer is never straightforward and often
depends on the data format, the scientific field, the number of
observations and many other factors; as a consequence, several
methods for outlier detection exist, with their advantages and dis-
advantages (Smiti, 2020). They include distribution-based meth-
ods (defining outliers as a function of their variation from a
standard distribution), distance-based methods (which compute
the distances among all items in the dataset, and consider as out-
liers those items that do not have close neighbors), and density and
cluster-based approaches (which define outliers on the basis of
their local density and their belonging to a distinct data cluster).
Crucially, all of these methods depend on a threshold, a point
beyond which an outlier is considered as such—and once a thresh-
old has been fixed, they are only meant to detect outliers and do
not provide explicit guidance on their inclusion or rejection from
further analysis. A notable exception is represented by Bayesian
approaches, which will be discussed later in the article. Interest-
ingly, different graphical adaptations have also been proposed to
facilitate the perceptual identification of outliers in graphs by
human readers, through data visualization tools such as modifying
the size, color, and opacity of different data points (Micallef et al.,
2017).
One of the most intuitive (but still efficient) techniques to detect

outliers is to plot all observations in a bivariate visual format, the
scatterplot (Friendly & Denis, 2005), and to let a human viewer
decide on the presence of outliers. Indeed, researchers in psychol-
ogy consider scatterplots their elective tool in outlier detection
(Orr et al., 1991). Alternatives, such as bar plots, hide the com-
plexity of a dataset and may ultimately favor misleading conclu-
sions about the data (Godau et al., 2016; Pastore et al., 2017). For
example, scatterplots can be used to detect and reject response
times (RTs) that are either too fast or too slow relative to the aver-
age value. They can also be useful to detect the existence of a sec-
ondary pattern of data that should be analyzed separately or in
interaction (see Sunday et al., 2019 for an example).
These studies, however, raise an important and understudied

question: are humans really capable of spotting outliers when a
large dataset is displayed as a scatterplot? A growing body of
research on “intuitive statistics” indicates that human adults are
remarkably accurate at performing several different statistical
tasks on scatterplots, such as linear trend judgment, extrapolation,
and correlation estimation (e.g., Ciccione et al., 2022; Ciccione &
Dehaene, 2021; Reimann et al., 2020; Rensink & Baldridge, 2010;
Schulz et al., 2017). A recent study revealed that participants facing
a scatterplot can perform a mental regression in a manner resem-
bling a normative statistical model: they can judge the ascending or
descending trend of a linear graph, and even estimate its slope, with
a performance tightly correlated with the t value that a statistician
would compute to evaluate the correlation in the graph (Ciccione &
Dehaene, 2021).
The stimuli in those previous studies were always graphs with-

out outliers, whose data points were normally distributed around
the regression line. Only a few studies specifically investigated the

role of outliers in graph-based tasks. One study found that human
adults fail to fully reject outliers when asked to determine the
Pearson r of the dataset (Bobko & Karren, 1979; Meyer et al.,
1997). Similarly, correlation estimations are affected by outliers
independently of the participants’ statistical knowledge (Meyer &
Shinar, 1992). Even when asked to adjust the trend on a scatterplot
including outliers that are either extremely far or located at the
boundaries of the main dataset, participants perform a linear
regression that falls in-between a robust one (that excludes those
outliers) and the line predicted by an ordinary least squares (OLS)
algorithm (Correll & Heer, 2017; Liu et al., 2021). Taken together,
these results suggest that, in the presence of clear and extreme out-
liers, participants are affected by them in their correlation judg-
ments and regression estimations, although they assign them a
lower weight than that of other observations in the dataset. In other
words, participants attempt to reject outliers, but do not seem to be
completely successful in doing so.

Another line of research on so-called “ensemble perception,”
the human ability to automatically encode summary statistics of
the visual environment (for a review, see Whitney & Yamanashi
Leib, 2018), found that, with stimuli other than graphs, humans do
the exact opposite: they discard from their judgments all the items
that considerably deviate from the other elements in the set
(Epstein et al., 2020; Haberman & Whitney, 2010). This automatic
filtering of outliers might indeed be highly beneficial in real-life
contexts: avoiding deviant observations while focusing on the
most representative information, allows to overcome our atten-
tional limitations and to enhance our visual cognition (Alvarez,
2011).

Perceiving noisy graphical representations such as scatter-
plots might thus be a novel instance of ensemble perception
(since humans manage to quickly and accurately extract a sta-
tistical trend from noise). At the same time, however, it does
not seem robust to the presence of outliers, contrary to what the
literature on ensemble coding would predict. Unfortunately, all
past experimental investigations on outlier processing in graphs
do not resolve this discrepancy. Indeed, previous studies share
two fundamental limitations. First, they allowed participants to
slowly inspect the scatterplot before providing any correlation
judgment. Second, they always used outliers that diverged dra-
matically from the main distribution or that were located exclu-
sively at its boundaries, without experimentally manipulating
the strength of the outliers in terms of both their distance and
their number. These experimental choices can surely be praised
for their resemblance to ecological real-life situations: researchers
usually take their time to inspect a graph and they often tend to
reject only extreme outliers (Anscombe, 1960). However, they
do not allow to characterize humans’ spontaneous processing of
outliers and their role in affecting intuitive statistics. Further-
more, they do not clearly separate outlier detection from outlier
rejection, two processes that we suggest should be carefully dis-
tinguished—indeed, the above results suggest, but do not prove,
that humans may detect the presence of outliers, and yet con-
tinue to be dragged toward them in their mental regression
evaluations.

In the present series of three behavioral experiments, we aimed
to provide an in-depth psychophysical investigation of the
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perceptual processing of outliers in scatterplots. We tried to an-
swer five open questions:

1) Do subjects spontaneously reject outliers when asked to
perform a trend judgment or a regression estimation on a
graph, without being told that there might be outliers?
The aforementioned studies on ensemble perception
(Whitney & Yamanashi Leib, 2018) found that outlier fa-
cial expressions (Haberman & Whitney, 2010) and ori-
ented lines (Epstein et al., 2020) are spontaneously
excluded when participants are asked to evaluate the aver-
age value of a set. We tested whether those findings
extend to trend judgments and line fitting on scatterplots
or whether, in this case, outlier items are automatically
included.

2) Do the number of outliers and their distance from the
main dataset modulate the bias that participants exhibit in
estimating the slope or in judging the direction of the
data’s linear trend? Previous research (Bobko & Karren,
1979; Correll & Heer, 2017; Meyer & Shinar, 1992;
Meyer et al., 1997) showed that correlation judgments
and regression estimates are not robust to the presence of
outliers, but this result could vary with the number and
distance of the outliers. We thus measured if human per-
formance in intuitive statistics is parametrically affected
by those factors.

3) If outliers do bias participants’ performance, is this bias
modulated by the level of attention toward them? Across
our three studies, we varied the level of attention to out-
liers by either not providing any information about their
presence (Experiment 1: no attention); telling participants
about their presence and inviting them to discard them in
their judgments (Experiment 2: medium attention); or ex-
plicitly asking them to detect the presence of any outlier,
on every trial, before estimating the line through the
remaining data points (Experiment 3: high attention).
There is very little prior research on this topic. Attention
toward deviant stimuli has been shown to bias ensemble
average estimations in the direction of the deviant item,
but participants were never asked to discard outliers (de
Fockert & Marchant, 2008). Our manipulation of partici-
pants’ attention toward outliers thus provides a first test
of the role of attention in outlier rejection.

4) How does outlier detection work? In Experiment 3, we
asked participants to detect as fast as possible the pres-
ence (or absence) of any outlier in the dataset. In this
manner, we could directly investigate the variables that
affect outlier detection and, ultimately, to propose a
model of how humans decide whether a given data point
is an outlier or not.

5) If outliers are correctly detected, does this mean that they
can also be rejected? In Experiment 3, we tried to disen-
tangle outlier detection and rejection. On every trial, par-
ticipants performed a task of outlier detection followed
by slope estimation, thus allowing us to examine the

contingencies between them. Participants might be well
aware of the presence of outliers and the need to discard
them, but still fail at doing so, thus suggesting that per-
ceptually rejecting outliers is an ability impenetrable to
cognition, as is the case for many visual phenomena
(Stokes, 2013).

Method

Stimuli

All stimuli included two unlabeled lines denoting the x and y
axes, which remained on screen for the duration of the experiment
(Figure 1). Each line was marked with three small ticks at loca-
tions corresponding to the values 0, .5, and 1 (those numbers were
arbitrary and not shown to participants). Within the area com-
prised by those two axes, the stimuli were scatterplots comprising
18 white dots on a black background. The x coordinates of the 18
points were fixed and separated by an equal distance on the x axis.
Each stimulus was the graphical representation of a dataset gener-
ated on the basis of three experimental factors, whose values were
combined in a full factorial design. First, we varied the slope of
the line (the “main slope”) around which the main datapoints
(except outliers) were located; the main slope could take value:
�.5, �.25, þ.25, or þ.5. Second, we independently varied the
slope of the line around which the outliers were located; this “out-
liers’ slope” could take value: �.5, �.25, þ.25, or þ.5. Third, we
varied the number of outliers (n = 0, 1, 2, 3, or 4). In detail, the
stimulus generation algorithm worked as follows. First, the y coor-
dinates of all points were determined according to the following
equation: yi = main_slope 3 xi þ ei, where the xi are 18 numbers
equally spaced between 0 and 1, and the ei are random numbers in-
dependently drawn from a normal distribution centered on zero
and with standard deviation of .1. Afterward, the desired number
of outlier points (0, 1, 2, 3, or 4) were selected at random among
all points in the dataset, excepting the six central ones, and their y
coordinates were changed according to the following equation:
yi = outliers_slope 3 xi þ ei, again with ei [ N(0, .1). Because of
the added noise, the OLS regression slope of the nonoutliers dots
could depart slightly from the prescribed one (“main slope”). To
compensate for this, a small linear component was added to the
main datapoints, calculated such that their final slope corresponded
precisely to the prescribed one, and always passed through the
center of the screen (see Figure 1B for an example with a main
slope of .5, an outliers’ slope of �.5 and four outliers. Examples
of stimuli are provided in online supplementary materials). When
the main slope was identical to the outlier slope, all data points
were generated around a single slope, thus resulting in no outlier
being presented (and such condition was considered equivalent to
the one with 0 prescribed outliers).

We generated outliers using a secondary process (namely
another regression line with the outlier slope) because it offered a
means to finely control their average distance from the main data-
set, while still avoiding to impose an exact location to them. A dif-
ferent choice would have been to manipulate the distance factor by
using different standard deviation distances from the main regres-
sion line but, in this case, all outliers would have had, for a given
distance condition, exactly the same deviance, likely making the
stimuli easily recognizable over trials.

OUTLIER DETECTION AND REJECTION IN SCATTERPLOTS 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xhp0001065.supp


Participants

Thirty participants (10 per experiment) were recruited (age:
26.2 6 2.1, 16 females, 14 males). The sample size was the same
as in previous studies that used the same type of stimuli (Ciccione
& Dehaene, 2021). We computed a power analysis (using the
G*power software; see Faul et al., 2007) for our main ANOVAs
of error rates and response bias with three within subjects’ factors
(slope, noise, and number of points), three groups, and five
repeated measures per subject and condition. We used an a level
of .05, a power of .9, an effect size (partial h2) of .1 (i.e., the small-
est effect size found in our previous studies of graph perception),
and a conservative expected correlation between repeated meas-
ures of .1 (in order to account for a possible large variability in
responses across trials). This power analysis resulted in a recom-
mended sample size of 27 participants, which we rounded to 30.
All participants had normal or corrected-to-normal vision, no med-
ical history of epilepsy, were right-handed, and did not take psy-
choactive drugs. The experiment was advertised through the
mailing list of the first author’s university. In order to ensure the
homogeneity of the sample in terms of participants’ cultural back-
ground, only participants with at least a master’s degree were
recruited. They all signed an informed consent and were paid 5
euros for their participation. The experimental sessions lasted
approximately 30 minutes and were approved by the local ethical
committee (under the reference CER-Paris-Saclay-2019-061). All
experimental sessions took place in 2021. One participant was
excluded from Experiment 2 analyses since he failed to perform
the task appropriately (his performance was at chance level).

It is worth noting that, given the recruitment method and the
desire to maintain a homogenous sample, the results might not
generalize to younger or older populations and/or to people
with a lower or higher expertise and familiarity with graphical
representations.

Experimental Procedure

Participants were invited to sit on a fixed chair with their head
at a distance of 50 cm from the screen. Each experimental session
was divided into five blocks of 80 trials; the duration of each block
was �4 minutes. After each block, participants could take a short
break. Before starting the actual experiment, 25 practice trials
were run under the researcher’s supervision, in order to control for
the correct execution of the task (i.e., maintaining the correct dis-
tance from the screen, correctly placing their hand and fingers;
familiarizing with the rapid presentation of the stimuli. No feed-
back on performance was provided). On each trial, as illustrated in
Figure 1A, a fixation cross first appeared for 1,000 ms, immedi-
ately followed by a scatterplot flashed for 100 ms. The stimuli
were flashed in order to promote spontaneous and fast responses
and thus to avoid any possible explicit strategy, calculation, or
complex eye movement patterns. The experimental procedure var-
ied depending on the experiment.

Experiment 1

No information concerning the presence of outliers was given to
participants. They were merely asked to respond (as fast and accu-
rately as possible) by pressing with their left-hand ring finger on a

Figure 1
Experimental Design

Note. (A) Example trial. On each trial, participants were presented with a scatterplot and asked to judge, in Experiment 1 and 2, if its trend was
ascending or descending; or, in Experiment 3, if there were any outliers. Immediately after their response, they had to adjust the slope of a line on screen
by moving their finger on a trackpad, in order to provide an estimation of the regression line underlying the noisy scatterplot. In Experiment 1, partici-
pants were not informed of the presence of outliers. Experiment 2 differed from Experiment 1 only in that participants were informed that some outliers
could be present, and were asked to try to ignore them in their judgments. Experiment 3 further emphasized outliers by first asking for explicit outlier
detection before the slope adjustment task. (B) Illustration of the stimulus generation process. In each scatterplot, the majority of dots were noisy sam-
ples around a line with a main slope of either 0.5, 0.25, �0.25, or �0.5. Between zero and four dots were outliers (in this example, 4) generated as noisy
samples around another line, whose slope could also take the values 0.5, 0.25, �0.25 or �0.5. Different colors are used for illustrations purposes only:
outliers were not signaled in any way, since all stimuli were white dots on a black background. See the online article for the color version of this figure.
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key (signaled with a + sticker) if they thought that the trend in the
scatterplot was decreasing or, conversely, to press with their left-
hand index finger on another key (signaled with a * sticker) if they
thought that the trend in the scatterplot was increasing. Immedi-
ately after this first response, an adjustable line appeared in the
middle of the screen. The line was initially horizontal, but partici-
pants were asked to adjust it as accurately as possible by moving
their right-hand index finger on the computer trackpad. The center
of the line was kept fixed, so that moving the finger up or down
the trackpad resulted in a rotation of the line around its center,
whose angle was proportional to the finger displacement; moving
the finger up tilted the line in the counterclockwise direction,
whereas moving the finger down tilted it in the clockwise direc-
tion. For this second task, participants were invited to respond in-
dependently of their first trend judgment: they were explicitly told
that they could orient the line in a direction opposite to their trend
judgment, if they thought that they had made a mistake in the first
task. When the adjustment was completed, they pressed the track-
pad in order to confirm their answer and move to the next trial,
which was preceded by a 1-s fixation cross.

Experiment 2

Participants were asked to perform the exact same task as in
Experiment 1. The only difference consisted in the information
given to them before starting the experimental session: participants
were informed that one or more outliers, defined as points outside
the main dataset, could be present in some trials. They were
invited to try to exclude such outliers from their answers, and thus
to perform both tasks of trend judgment and slope adjustment only
on the main dataset.

Experiment 3

As in Experiment 2, participants were informed that one or
more outliers could be present in some trials. They were asked to
detect them, as fast and accurately as possible, by pressing with
their left-hand ring finger on a key (signaled with a “NO” sticker)
if they thought that the scatterplot did not include any outliers or,
conversely, to press with their left-hand index finger on another
key (signaled with a “YES” sticker) if they thought that the scat-
terplot included one or more outliers. Immediately after this detec-
tion response, they moved to the slope adjustment task, identical
to Experiment 2, with the explicit instruction to try to estimate the
slope of the main dataset only and, thus, to reject outliers.

Transparency and Openness

All data and scripts for the analyses are available on the Open
Science Framework at: https://osf.io/bfjsw/.

Results

Performance in Trend Judgment and Line Adjustment
in GraphsWithout Outliers

First, in an attempt to replicate our previous work (Ciccione &
Dehaene, 2021), we analyzed participants’ trend judgment per-
formance in the absence of outliers. Figure 2 (top) shows the per-
centage of trials classified as “increasing” as a function of the

main slope and of the t value associated with the scatterplot linear
regression. The t value we used is the one that a statistician would
calculate to test for the statistical significance of a positive or neg-
ative trend in a dataset and it has been previously shown to predict
human mental regression judgments (Ciccione & Dehaene, 2021).
As clear from the figures, in both Experiments 1 and 2, partici-
pants’ responses could be modeled as a sigmoid function of such

Figure 2
Performance in Trend Judgment (A, B) and Line Adjustment (C)
in Graphs Without Outliers

Note. In both experiments, the percentage of “increasing” responses (A)
and the response times (B) vary systematically with the t value associated
to the Pearson coefficient of correlation. The blue (black) lines in the mid-
dle row indicate the response times predicted by a simple accumulation-
of-evidence model (Gold and Shadlen, 2002). The plots in (C) show the
slopes reported by participants (black lines) and predicted by ordinary
least squares (OLS) regression (dashed gray lines), which corresponds to
the process by which the scatterplots were generated. Participants
responded with slopes exceeding those predicted by OLS, in agreement
with the use of Deming regression. All of these results replicate our previ-
ous findings with similar mental regression tasks (Ciccione & Dehaene,
2021). See the online article for the color version of this figure.
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t value. Both the sigmoidal shape of their response rates (Figure 2,
top) and the distance effect in their response times (i.e., slower
responses for stimuli with a t-value closer to zero; Figure 2, mid-
dle) could be jointly predicted by a classical decision-making
model, which assumes a noisy accumulation of evidence toward a
decision bound (Gold & Shadlen, 2002). In Figure 2, the blue
(black) lines show the performance predicted by that model. These
results replicate previous findings on human mental regression
(Ciccione & Dehaene, 2021; see that article for modeling details).

Influence of Outliers on Accuracy in the Trend
Judgment Task

We then looked at participants’ performance in the same trend
judgment task (“ascending or descending?”) when outliers were
present in the stimuli. Figure 3 shows the results from both Experi-
ments 1 and 2, which closely resembled each other. The average
error rates for stimuli without outliers are simply indicated as a
reference (the black dots). The top row indicates the error rate as a
function of the number of outliers as well as two other driving var-
iables: the absolute value of the main slope of the scatterplot
(steep: .5; or shallow: .25), and the outliers’ distance, quantified as
the absolute difference between the outliers’ slope and the main
slope. For a main slope of .5, the available outliers’ distances were
1, .75, and .25, which for simplicity are referred to, respectively,

as large, medium, and small. Similarly, for a main slope of .25, the
available outliers’ distances were .75, .5, and .25, which are again
referred to with the same labels.

As we can see, in both experiments, the error rate increased as a
function of the number of outliers and their distance from the main
dataset, indicating that the participants’ responses were attracted to-
ward the outliers. To test for the significance of these observations, we
conducted an ANOVA on participants’ error rates with the main slope,
the outliers’ distance and the number of outliers as within-subjects’
factors and the experiment number (1 or 2) as a between-subjects’ fac-
tor. While the experiment number had no significant main effect nor
any interaction (all related p values . .1), all other factors had main
effects (main slope: F(1, 17) = 101.15, partial h2 = .86, p, .001; out-
liers’ distance: F[1.5, 25.8] = 90.97, partial h2 = .84, p , .001; num-
ber of outliers: F[2.5, 42.9] = 39.55, partial h2 = .7, p , .001) and
interaction effects (main slope and outliers’ distance: F[1.6, 27.4] =
18.78, partial h2 = .52, p , .001; main slope and number of outliers:
F[2.3, 39] = 25.6, partial h2 = .6, p , .001; outliers’ distance and
number of outliers: F[3.2, 54.1] = 19.12, partial h2 = .53, p, .001; tri-
ple interaction of main slope, outliers’ distance and number of outliers:
F[3.9, 66.9] = 6.54, partial h2 = .28, p, .001).

Figure 3 clarifies the meaning of those interactions. First, error
rates generally increase with the number of outliers, but more so
when the main slope is shallow (.25), thus rendering the main de-
cision more difficult, than when the main slope is steep (.5).

Figure 3
Influence of Outliers on Performance in the Trend Judgment Task (“Is the Graph
Ascending or Descending?”)

Note. Results are plotted as a function of the number of outliers, separately for graphs with
steep (0.5) or shallow (0.25) main slopes. Both error rates (A) and response times (B)
increase as a function of the number of outliers, as well as of the distance of the outlier slope
from the main slope. When the graph has a shallower main slope (0.25), thus rendering the
task more difficult, the influence of outliers becomes correspondingly larger. Error bars indi-
cate one standard error of the mean across subjects. See the online article for the color ver-
sion of this figure.
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Second, similarly, for the same number of outliers, their impact is
larger when their distance to the main dataset is larger; i.e., when
they deviate more from the main regression line. Those findings
make sense: essentially, the more numerous the outliers, and the
more they push toward a line with a different orientation from the
main one, the more likely participants are to make an error.
Indeed, it is worth noting that the small outliers’ distance condition
(red [black] lines), with a main slope of .25, was the only experi-
mental condition in which the outliers’ slope was steeper than the
main slope: in this situation, outliers were not expected to make
the trend judgment harder to perform, since they made the overall
trend of the graph steeper. Indeed, the error rates in these condi-
tions did not increase as a function of the number of outliers (the
red [black] lines are essentially flat): this was confirmed by a non-
significant main effect of the number of outliers in two ANOVAs
restricted to those conditions (Experiment 1: F[1.1, 9.7] = .28, par-
tial h2 = .03, p = .62; Experiment 2: F(3, 24) = 1.73, partial h2 =
.18, p = .19).

Influence of Outliers on Response Times in the Trend
Judgment Task

Response times in the trend judgment task for Experiments 1 and
2 are plotted in Figure 3 (bottom). Response times behaved in paral-
lel to error rates, thus indicating the absence of a speed/accuracy
tradeoff. They increased as a function of the number of outliers as
well as of the distance of the outliers’ slope from the main slope.
The same ANOVA as above, now on median response times,
again revealed no main effect or interactions involving the
experiment factor (all related p values . .1). It also indicated
that all within-subject factors had a significant main effect (main
slope: F(1, 17) = 53.67, partial h2 = .76, p , .001; outliers’ dis-
tance: F[1.1, 18] = 26.88, partial h2 = .61, p , .001; number of
outliers: F[1.6, 26.8] = 20.02, partial h2 = .54, p , .001) and
entered into significant interactions (main slope and outliers’ dis-
tance: F[1.4, 23.3] = 16.87, partial h2 = .5, p , .001; main slope
and number of outliers: F[2.4, 40.3] = 6.45, partial h2 = .28, p ,
.01; outliers’ distance and number of outliers: F[2.4, 39.9] =
15.04, partial h2 = .47, p , .001; no triple interaction of the
within-subjects factors was found). Again, those interaction
effects are easily observable in Figure 3: response times increased
significantly faster with the number of outliers as the distance of
the outliers increases, and also as the main slope gets shallower.
Like for error rates, the experimental condition in which the out-
liers’ slope was steeper than the main one resulted in no increase
of response times (as evident from the essentially flat red [black]
lines in the plots for a main slope of .25), which was confirmed by
two ANOVAs restricted to those conditions (Experiment 1: F[2.6,
23.4] = .7, partial h2 = .07, p = .54; Experiment 2: F[2, 15.7] =
.37, partial h2 = .04, p = .7).
Lastly, as we can see from the response time plots for a main

slope of .25, we found that the presence of a single outlier, at a
large enough distance from the main dataset (blue [light gray]
lines), induced a substantial increase in response times. Indeed, a
paired t-test on participants’ response times from both experiments
revealed a significantly slower median response time in the pres-
ence of one outlier than in the absence of outliers (t(18) = 2.78,
p, .01; respectively 550 versus 478 ms).

One could argue that a greater number of outliers simply made
the overall slope of the dataset closer to zero, thus making trend
judgment more difficult. Could participants’ slower response
times be explained by changes in slope rather than by the number
of outliers? To test for this, we performed a multiple linear
regression on response times with both the number of outliers
and the absolute Deming slope as predictors. Note that we used
Deming regression, which minimizes the orthogonal distance
of the points to the fit, instead of classic OLS regression,
because previous evidence (Ciccione & Dehaene, 2021)
showed that humans use this procedure in their intuitive mental
regressions (this is discussed further below). We found that
both were significant (bnumber of outliers = 20.7 ms/outlier, p ,
.0001; babsolute Deming slope = �822.5, p , .0001). We also com-
puted a linear regression on the residuals of the response times
as a function of the absolute Deming slope and found that the
number of outliers was still a significant predictor (b = 19.2 ms/
outlier, p , .0001). Thus, the results confirm that outliers influ-
enced response times over and above their indirect effect on the
overall trend, with a cost of �20 ms per outlier.

Overall, performance in the trend judgment task indicated that,
regardless of the instructions to exclude outliers, participants were
always strongly influenced by them, especially when (a) they were
more numerous; (b) their deviation was large; and (c) the decision
was difficult because the main slope was shallow.

Influence of Outliers on the Line Adjustment Task

The second task, which was run in Experiments 1, 2, and 3, con-
sisted of a slope adjustment: participants were asked to adjust the
line in order to best fit the scatterplot. As explained in the methods
section, the three experiments differed only in terms of the induced
level of attention about the presence of outliers in the stimuli: in
Experiment 1, no information about outliers was given; in Experi-
ment 2, participants were invited to exclude them in both their
trend judgment and slope adjustment; in Experiment 3, they were
explicitly invited to concentrate on them and detect their presence
(or absence) before performing the slope adjustment task (after
rejecting them).

We first examined the slope estimated by participants in the ab-
sence of outliers (Figure 2C shows the results for Experiments 1
and 2, which were similar to Experiment 3). Confirming previous
evidence (Ciccione & Dehaene, 2021), we found that the estimated
slopes closely tracked the actual slopes of the graphs, but were
steeper than the ones predicted by a classic ordinary least squares
(OLS) regression (the gray dashed lines in Figure 2C). Their val-
ues were compatible with the minimization of the orthogonal dis-
tance of the points to the best-fitting line, a procedure known as
Deming regression.

For each subject and each experimental condition, we then
evaluated the impact of outliers relative to this no-outlier base-
line. To this aim, we calculated “response bias” as the difference
between the median slope that they reported in the presence of
outliers and in their absence. For visualization and analysis’ pur-
poses, the sign of this difference was flipped such that a positive
value always indicated attraction toward the outliers (in practice,
this meant that we flipped the sign for all stimuli with an outliers’
slope lower than the main slope). Figure 4 shows the mean
response bias as a function of experiment, main slope, number of
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outliers, and outliers’ distance from the main dataset. We can see
that the outlier-induced bias increased with the number of out-
liers, but did so faster for a large outliers’ distance, and more so
in Experiment 1 than in Experiment 2 or, a fortiori, Experiment
3. We confirmed these observations through a repeated measures
ANOVA on participants’ median bias with experiment number
as between-subjects factor and main slope, number of outliers,
and outliers’ distance as within-subjects factors. All of the latter
had a significant main effect (main slope: F(1, 26) = 43.35, par-
tial h2 = .63, p , .001; number of outliers: F[1.57, 40.94] =
82.72, partial h2 = .76, p , .001; outliers’ distance: F[1.48,
38.53] = 22.08, partial h2 = .46, p , .001). Although the main
effect of experiment was close to significance (F(2, 26) = 3.20,
partial h2 = .2, p = .06), it entered in a significant interaction
with both the main slope (F(2, 26) = 4.99, partial h2 = .28, p =
.01) and the outliers’ distance (F[2.96, 38.53] = 5.76, partial h2 =
.31, p , .01). Indeed, as we can see from Figure 4, the outlier-
induced bias decreased across experiments, as the level of atten-
tion to outliers increased, and this effect was more pronounced
for a larger number of outliers and for larger outliers’ distances.
It is worth noting that the number of outliers had also a signifi-
cant interaction with both the main slope (F[2.17, 56.35] = 3.9,

partial h2 = .13, p = .02) and the outliers’ distance (F[4.15,
107.81] = 12.36, partial h2 = .32, p , .001). Thus, the results of
the line adjustment task (Figure 4) closely paralleled those of the
trend judgment task (Figure 3).

If, as we suggest, uninformed participants did not spontane-
ously reject outliers, but included them in their regression esti-
mates, then their response bias should be predictable by a global
regression performed on the entire dataset. To test this idea, we
examined whether the response bias from participants of Experi-
ment 1 (i.e., those who received no information about the pres-
ence of outliers) mirrored the theoretical predictions of Deming
regression. As with the actual data, we first computed the
response bias as the difference between the slope predicted when
the regression was applied to the entire dataset, and when it was
applied to a dataset without outliers. Figure 4 (bottom) shows the
predicted biases for each experimental condition, plotted in the
same way as the human data. Those predictions quantitatively
match the observed data (linear regression between predicted
and observed, R2 = .91, slope = 1.02 6 .07, intercept = .01). In
particular, Deming regression predicts that bias should increase
with the number of outliers and with their distance from the main
dataset, exactly as in human data.

Figure 4
Influence of Outliers on the Adjusted Slope in the Line Adjustment Task

Note. Top panels: results of Experiments 1, 2, 3, separately for graphs with a steep (0.5)
and a shallow main slope (0.25). Response bias was calculated as the average difference
between the slope reported in the presence of a certain number of outliers (x axis) minus the
slope reported in the absence of any outliers. Data were flipped such that a positive value
always indicates attraction towards the outliers. Across experiments, the bias decreases, thus
suggesting an improved rejection of outliers. Error bars indicate one standard error of the
mean across subjects. Bottom panels: theoretical predictions of Deming regression.
Response bias was calculated as the average difference between the overall Deming slope
(including outliers) and the Deming slope in the absence of any outliers. The response bias
in Experiment 1 was almost identical to the response bias of Deming regression, thus con-
firming that participants, when not informed about the presence of outliers, performed a
Deming regression on the entire dataset. See the online article for the color version of this
figure.
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Performance in Outlier Detection

On every trial of Experiment 3, participants first performed an out-
lier detection task: immediately after the flashing of the scatterplot,
they had to decide whether they had seen at least one outlier or not, by
pressing one of two response keys as fast and accurately as possible.
This experimental procedure allowed us to directly investigate whether
and how humans detect the presence of outliers. Figure 5 shows the
percentage of “yes” responses as a function of the main slope, the
number of outliers and their distance. The results indicate that false
alarms were quite high (40–50% of trials without outliers), but that
correct detection increased as a function of the number of outliers,
especially for large and medium outliers’ distances. Those observations
were confirmed by an ANOVA on the percentage of “yes” responses
with the above factors as within-subjects’ factors (to obtain a full facto-
rial design, we excluded the conditions with 0 outliers, which are pre-
sented in Figure 5 only for reference). There was a main effect of both
the number of outliers (F[1.90, 17.13] = 11.52, partial h2 = .56, p ,
.001) and their distance (F[1.59, 14.28] = 52.61, partial h2 = .85, p ,
.001). The main slope had no main effect (p = .48) but entered in a sig-
nificant interaction with the outliers’ distance (F[1.79, 16.13] = 11.32,
partial h2 = .56, p = .001): in fact, as clear from Figure 5, for a steeper
main slope of .5, the difference in correct detections between the three
outliers’ distances was more pronounced than for a main slope of .25.
We ran a similar ANOVA on participants’ median response

times for correct detections and found only a significant main
effect of outliers’ distance (F[1.13, 10.17] = 5.99, partial h2 = .4,
p = .03) and its interaction with the main slope (F[1.81, 16.25] =
6.09, partial h2 = .4, p = .01).

Formulating and Testing a Theory of Outlier Detection
and Rejection

On what basis do participants decide on the presence of out-
liers? We formulated the hypothesis that, like a statistician, they

might base their judgments on an estimate of how much a given
data point departs from the rest of the cloud. A simple way of
measuring such a departure is to compute a z-score for each point;
i.e., a fraction with the numerator equal to the distance of that
point to the regression line, and the denominator equal to the
standard deviation of such distances. Such a z-score evaluates to
what extent the observed data point is out-of-distribution com-
pared to the other ones.

The specific model we propose is shown in Figure 6A. Two
choices were made. First, since we know from the present and past
research (Ciccione & Dehaene, 2021) that participants compute
their mental regressions by minimizing the perpendicular distance
of the points from the best-fitting line, as in Deming regression,
rather than the vertical distance as in OLS regression, we com-
puted the Deming regression of each scatterplot and postulated
that, for the numerator, participants use the perpendicular distance
to that line. Second, for the denominator, since our graphs all had
the same noise level (SD = .1), we postulated that subjects could
pool their noise estimates across trials and eventually converge to
a fixed value. Note that this hypothesis may be revised in a differ-
ent experimental setting—for instance if participants saw a single
graph, or if the noise level varied across trials; then their estimate
could be based on the observed graph. Here, however, we obtained
a better account by postulating a fixed value of the denominator
(as confirmed by a model comparison described later in this
section).

In the end, we therefore calculated, for each point, a z-score
equal to its perpendicular distance to the regression line divided by
.1 (Figure 6A). Our hypothesis predicts that this value is the deci-
sion variable on the basis of which participants decide whether
that point is an outlier. Since they had to decide whether any out-
lier was present, the percentage of “yes” responses in outlier detec-
tion should be a logistic function of the maximum z-score over all
18 data points. Figure 6B shows the corresponding psychophysical
curve (for visualization and analysis’ purposes, the responses were
binned according to the highest z-score). We ran a multiple logistic
regression on all participants’ responses with two regressors: the
highest z-score and the actual prescribed number of outliers; we
found that the former was an excellent predictor of “yes”
responses (b = 1.91, p , .0001), better than the actual prescribed
number of outliers (b = .1, p , .0001). Indeed, as we can see from
Figure 6B, when the highest z-score was low (�.8), the proportion
of “yes” responses dropped to 15%, lower than the average rates
of false alarms of 48% on trials where prescribed outliers were
genuinely absent (Figure 5). Conversely, at the opposite extreme,
when the highest z-score exceeded about 3, the detection rate was
close to 100%, higher than the average values of 65% when a sin-
gle outlier was actually present (Figure 5).

One could rightfully argue that the highest z-score in the dataset
does not take into account the number of other outliers. To focus
on the simplest cases, we thus restricted our logistic regression to
stimuli with either no prescribed outlier, or with a single pre-
scribed outlier—and in both cases, we found that the highest z-
score was still a significant predictor of the percentage of “yes”
responses (respectively: b0_outliers = 1.88, p , .0001; b1_outlier =
2.22, p, .0001). Figure 6B makes it clear that a single function of
the z-score provided an excellent account of the outlier detection
responses, regardless of the actual prescribed number of outliers.

Figure 5
Performance in Outlier Detection in Experiment 3

Note. The percentage of trials in which participants reported seeing at
least one outlier is plotted as a function of the true (i.e., “prescribed”)
number of outliers (0–4). This percentage increases as a function of the
number of outliers, as well as their distance between their slope and the
main slope. Error bars indicate one standard error of the mean across sub-
jects. See the online article for the color version of this figure.
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We tested several alternative ways of computing the z-scores.
First, the distances (numerator) could be computed using the
regression of all points (as we did) or the regression restricted to
the main dataset. Second, they could be based on the perpendicular
distance to the Deming regression, or the vertical distance to the
OLS fit. Third, the standard deviation (denominator) could use the
prescribed standard deviation of the distances (.1) or the actual
standard deviation, measured from the specific graph. We modeled
the logistic regressions of the percentage of “yes” responses as a
function of the highest z-score calculated through all eight combi-
nations of those three parameters and found that the model with
the significantly smallest Akaike Information Criterion (AIC), thus

the one more plausible to be correct (Akaike, 1998), was the
above-described model.

Given that the highest z-score accounted well for outlier detection
in Experiment 3, we next examined whether the same variable also
predicted the capacity for outlier rejection; i.e., the influence of out-
liers on mental regression slopes. To this end, we went back to
Experiments 1, 2, and 3, and plotted the participants’ response bias in
the line adjustment task as a function of the highest z-score in the
stimulus graph, separately for each experiment (Figure 6C). Interest-
ingly, for Experiment 1, the response bias increased monotonously as
a function of the highest z-score (R2 = .36, F(1, 98) = 57.21, p ,
.001): with no information concerning the presence of outliers,

Figure 6
Participants May Detect Outliers by Computing the Significance of Their Deviation From the
Principal Axis

Note. (A) example of a scatterplot with three outliers and proposal of an outlier detection algorithm. The outliers
can be detected by calculating their individual z-scores, computed as their distance to the Deming regression line (i.
e., the principal axis), divided by an estimate of the standard deviation of those distances. Outliers tend to have large
z values. (B) the percentage of trials in which the subjects reported seeing at least one outlier (detection task in
Experiment 3) is well predicted by the highest z-score in the stimulus graph, regardless of the prescribed number of
outliers. Crucially, the highest z-score is a better predictor of outlier detection than the prescribed number of outliers,
(shown in Figure 5). (C) the bias in the slope adjustment task also varies as a function of the highest z-score in the
dataset. In Experiment 1, where participants were not told about outliers, the increase is essentially monotonic. In
Experiments 2 and 3, the bias starts decreasing when the highest z-score exceeds �2.8. In Experiment 3, the bias
returns to zero for larger z-scores, indicating that extreme outliers can be rejected when explicitly instructed. (D)
response times in trend judgment (Experiments 1 and 2) increase as a function of the highest z-score in the dataset;
response times in outlier detection (Experiment 3) peak for highest z-scores around 2, where the model predicts the
presence or absence of outliers to be most ambiguous. Error bars indicate one standard error of the mean across sub-
jects. See the online article for the color version of this figure.
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participants included them in their estimations, and the greater their
deviance, the higher the bias they induced. However, for Experi-
ments 2 and 3, in which participants were explicitly asked to reject
outliers, a similar increase in response bias was seen only up to a
highest z-score of �2.8, after which the bias started to decrease.
Indeed, in Experiment 3, which required an explicit outlier detection
on each trial, the bias was statistically indistinguishable from zero for
z-scores higher than 3.6 (mean bias = .001; t-test on all responses
against zero: t(173) = .09, p = .93).
These observations were confirmed by a repeated-measures

ANOVA on the outlier-induced bias with experiment (1, 2, or 3)
as between-subjects factor and the highest z-score in the dataset
as within-subjects factor: both had a significant main effect
(Experiment: F(2, 26) = 4.94, partial h2 = .28, p = .02; highest z-
score: F[3.17, 82.53] = 8.56, partial h2 = .25, p , .0001) and
entered into a significant interaction with each other (F[6.35,
82.53] = 2.57, partial h2 = .17, p = .02). Crucially, the main effect
of the experiment and its interaction with the highest z-score van-
ished when the ANOVA was computed only on stimuli with a high-
est z-score limited to values at or below 2.4 (both p values. .47).
In summary, the data in Figure 6 suggests the existence of two

ranges. For highest z-scores below roughly 2.4, participants miss
many of the outliers, while their influence on regression responses
increase with z; and for highest z-scores above that value, outlier
detection approaches 100%, and their influence on mental regres-
sion starts to decrease—but only if subjects are told to reject them.
This conclusion seems to suggest that, on average, outlier rejec-

tion closely parallels outlier detection. However, this was not true
on a single-trial basis. We restricted the analysis to those trials of
Experiment 3 in which (a) a single outlier was prescribed; (b) that
point had the highest z-score; and (c) the participant responded
that he had detected an outlier (most likely the prescribed one). On
such trials, if outlier detection automatically led to outlier rejec-
tion, there should be no outlier-induced bias on the participants’
slope estimates. This was true for scatterplots with one prescribed
outlier with a z-score higher than 2 (t(84) = �.31, p = .62) but not
for scatterplots with one prescribed outlier with a z-score at or
below 2: for these stimuli, the bias was still significantly higher
than zero (t(49) = 2.75, p , .01). This finding shows that partici-
pants could remain influenced even by outliers that they have
detected.
Lastly, we looked at whether the response times could also be

predicted by the z-score of the datapoints (Figure 6D). First, we
considered the trend judgment task used in Experiments 1 and 2,
where we previously found that RT increased with the prescribed
number of outliers, and examined whether it could be explained
by the actual number of outliers. To estimate the latter, we calcu-
lated, for each graph, the number of outliers passing a threshold of
z . 2, and we included it as a predictor in a multiple regression on
response times, together with the absolute Deming slope and the
absolute main slope of the dataset. All predictors were significant
(bnumber of outliers higher than z=2 = 25.3 ms/outlier, p , .0001;
babsolute Deming slope = �1185.3, p , .0001; bmain slope = 579.2, p ,
.0001). We then calculated the residuals of the regression with the
two mentioned slopes as predictors and computed a linear regres-
sion on such residuals as a function of the number of outliers with
a z-score higher than 2, finding it was still a significant predictor
(b = 13.9, p , .01). Crucially, such a linear regression had an AIC
of 112,289, which was significantly smaller than the one calculated

on the residuals as a function of the prescribed number of outliers
(AIC = 112,456, DAIC = 167, p , .0001), suggesting once more that
the z-score of the datapoints was a better predictor of participants’
performance than the prescribed number of outliers. This is evident
when comparing Figure 5 to Figure 6B: if the prescribed number of
outliers is taken into account (Figure 5), outliers are falsely detected
at a very high rate (�40–50% when no outliers were present); how-
ever, when the actual distance of those outliers is considered (Fig-
ure 6B), the false detection rate turns out to be much lower (�20–
30% for trials with a low z-score).

Next, we considered the response times in outlier detection
(Experiment 3). Our model predicts that participants take that de-
cision by evaluating whether any point has a z-score above a
threshold value, close to z = 2. Thus, the decision variable should
be the difference between the highest score and this threshold, and
response times should be increasingly slower as this difference
approaches zero. To test this prediction, for each graph, we calcu-
lated the absolute distance between its highest z-score and 2, and
we used such value as a predictor in a linear regression of response
times. The effect was significant (b = �70.8, p , .0001), and a
plot of RTs indicated that indeed, RTs decreased with the distance
from the putative decision boundary (Figure 6D).

Comparing Human PerformanceWith an Optimal
Bayesian Model

As explained in the introduction, formal methods of outlier
detection share two fundamental aspects: they possess a threshold
beyond which a datapoint is dichotomously considered an outlier
or not, and they do not provide any explicit indication on whether
the outlier should be included or excluded from the analysis—and
thus do not directly speak to our data, which are primarily about
how participants’ regression estimates vary in the presence of out-
liers, and of instructions to reject them.

An exception is given by Bayesian approaches, which compute
the posterior probability that each observation is an outlier; such
probability can be seen as the “weight” that each item has in the
regression (a lower probability/weight has a smaller influence on
the regression). How does this approach perform in comparison
with our participants? In order to answer this question, we com-
puted, for each trial used in our experiments, the posterior proba-
bility of each item being an outlier, as formalized by Chaloner and
Brant (1988). Then, for each such trial, we ran 1,000 iterations, in
which the points in the dataset were excluded depending on their
probability to be an outlier (e.g., a point with a probability of .8
being an outlier, was excluded, on average, 80% of the times). We
then calculated the Deming regression slope of each iteration (i.e.,
on the items that, on that occasion, were not considered outliers)
and took the median of the 1,000 iterations. This algorithm pro-
vided us with the regression slope predicted by the weighted
Bayesian approach for each trial in each experimental condition of
our experiments. Next, we calculated the response bias of such a
model (Figure S3 in the online supplemental material) in the exact
same way we did for our participants. For comparison, we also
plotted in Figure S3 the bias shown by a classic Deming regression
algorithm. Indeed, Deming regression is also thought to be more
robust to outliers than ordinary least squares, because outlier data
points affect (i.e., “pull”) the regression line to a smaller extent
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when they are orthogonally projected to it (as in Deming) than
when they are vertically projected to it (as in OLS).
The results show that Deming regression, once again, nicely

mimics participants’ performance in Experiment 1, where partici-
pants were not explicitly told about outliers, but not Experiments 2
and 3. In other words, even if Deming regression is partially robust
to outliers, its robustness is modest and both participants (Figure
6C) and Deming do not automatically exclude even distant out-
liers. However, we can see that the Bayesian model (set to proba-
bilistically detect outliers beyond a threshold of z = 2) is much
more robust to outliers and shows a behavior partially similar to
humans in Experiments 2 and 3: for highest z-scores larger than
2.8, its bias stops increasing. Crucially, however, a difference
remains: whereas in humans such bias ultimately decreases as the
z-score becomes very large (Figure 6C), the bias for the model
remains essentially flat for increasing values of z-scores. The
results indicate that the Bayesian model, while close to humans,
still differs from them in that it misses a mechanism to sharply
reject obvious outliers.

Discussion

Across three experiments manipulating the number and distance
of outliers in scatterplots and the level of attention toward them,
we probed the human capacity for intuitive statistics in tasks of
trend judgment, line fitting, and outlier detection, investigating
whether outlier items are spontaneously included (as suggested by
the literature on graph perception) or rather excluded from any sta-
tistical judgment (as predicted by the literature on ensemble per-
ception). We now examine how the results provided answers to
the five research questions presented in the introduction. We also
try to integrate our findings, both with previous findings in the nar-
row domain of scatterplot perception and with the larger literature
on ensemble and outlier perception (which did not use graphs as
stimuli); indeed, as argued by Rensink (2021), studies on graphical
representations can provide fruitful insights not just for graph per-
ception but also, more broadly, for vision sciences.
First, do subjects spontaneously reject outliers when asked to

perform a trend judgment or a regression estimation on a graph,
without being told that there might be outliers? Experiment 1 is
quite clear: participants do not spontaneously reject outliers and
they integrate these deviant points in both their trend judgments
and their regression estimations. As summarized in the introduc-
tion, recent studies on ensemble perception (e.g., Epstein et al.,
2020; Haberman & Whitney, 2010) showed that, on the contrary,
deviant items are easily discarded when participants are asked to
provide an estimate of the average of a set. This contradiction
might suggest that the intuitive extraction of visual statistics from
a graph is not solely a form of ensemble perception. Indeed, when
asked to fit a line or extract a trend from a graph, our participants
performed a computation that goes beyond the simple “averaging”
of a value on a common scale, as is the case for the ensemble per-
ception of items of different hues or orientations. In these cases,
the averaging is over a factor that is already present in each indi-
vidual item: the average color of all items’ color, the average ori-
entation of all items’ orientations (Whitney & Yamanashi Leib,
2018). In the case of scatterplots, the average item location is use-
less when assessing a trend, which arises from the relations
between data points. Future research should try to disentangle the

commonalities and differences between graph and ensemble per-
ception (for a review: Cui & Liu, 2021). At the very least, our
studies prove that the two processes are not fully overlapping. It is
important to point out that, both in our stimuli and in the reviewed
papers on ensemble perception, when multiple outliers were pres-
ent, they were correlated with each other: more specifically, they
either had the exact same level of deviation from the average value
(Haberman & Whitney, 2010) or they were generated from a sec-
ondary value with the addition of random noise (Epstein et al.,
2020), as was also the case here. Future research should investi-
gate whether the same results hold (both for graph and ensemble
perception) if the outliers are fully uncorrelated.

Second, do the number of outliers and their distance from the
main dataset modulate the bias they induce? Our results from
Experiments 1 and 2 show that yes, participants’ errors and
response times in the trend judgment task increase for a higher
number of outliers and for a larger distance of these outliers from
the main dataset. Likewise, the participants’ slope estimates
become increasingly biased (i.e., attracted toward outliers) for
larger values of these factors. It is worth noting that those
increases in error rate, response time, and response bias were sig-
nificantly less pronounced for a main slope of j.5j than for a shal-
lower main slope of j.25j. In other words, when the main trend
was steeper, outliers were less likely to affect participants’
responses. This result makes sense: it is when the decision is most
difficult, because the main slope is less pronounced, that outliers
have the greatest influence. However, the effect of outliers on
response times was still significant even when slope was regressed
out, a finding that suggests a serial processing of outliers, with a
cost of �20 ms per item. Overall, our findings extend previous
research on outlier processing in scatterplots (Bobko & Karren,
1979; Correll & Heer, 2017; Meyer & Shinar, 1992; Meyer et al.,
1997) by showing that deviant points in a scatterplot affect the
human capacity for mental regression more if they are numerous
and further from the main dataset.

One might argue that the stimuli we used comprised a too small
number of observations (18), which may not be sufficient to allow
the viewer to form a reliable mental regression from which to
detect deviant points. However, the results from Figure 2 clearly
show that our stimuli comprised enough evidence for subjects to
accurately detect the regression slope. The reason we opted for 18
datapoints is double: first, we showed in previous research that
humans are able to reliably compute mental regressions with as
few as six datapoints, with a performance close to optimal for data
sets like the ones we used in the current study (i.e., with 18 points
generated from slopes steeper than .2; Ciccione & Dehaene, 2021);
second, we wanted to avoid conditions in which outliers could too
easily pop out, making the task trivial. Future studies could investi-
gate the effects of the overall number of datapoints on outlier detec-
tion by parametrically varying this factor.

Third, can the outlier-induced bias be mitigated by drawing
attention to them? In the fast trend judgment (first task of Experi-
ments 1 and 2), devoting attention to outliers did not significantly
improve participants’ performance (Figure 2). This finding sug-
gests that an extraction of the overall trend (including outliers)
occurs fast and automatically—indeed, our hypothesis for outlier
rejection suggests that it could be a necessary step prior to outlier
detection and rejection. However, the comparison of the response
bias in the line adjustment task from the three conditions of
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attention deployment (Experiment 1: none; Experiment 2: me-
dium; Experiment 3: high) revealed that, yes, outliers are more
easily rejected when participants are aware of their presence and
invited to discard them. It is worth clarifying that this finding does
not imply that attention is needed for outlier processing itself:
indeed, our findings from Experiment 1 (no attention) clearly
show that deviant items affect trend judgments and slope estima-
tions even more if participants are not aware of their presence. In
agreement with this, several studies showed that attention is not
necessary for the perceptual processing of visual items (Kouider &
Dehaene, 2007), which can still attract spatial attention even when
subliminally perceived (Astle et al., 2010; Robitaille & Jolicoeur,
2006) and clearly deviating from the other items (Hsieh et al.,
2011). However, our results are congruent with the finding that
attention can modulate even subliminal processing (Kiefer &
Brendel, 2006; Naccache et al., 2002).
When attention was deployed toward outliers (but, crucially, no

rejection was asked), one study found that deviant items in size or
brightness were integrated in judgments of average size or bright-
ness and biased participants’ judgments toward the outlier value
(de Fockert & Marchant, 2008). Our findings show that this strong
attraction, exerted by both unattended and attended outliers, can
be reduced if participants are explicitly asked to exclude them, but
Experiment 3 suggests that it is hard to fully eliminate—even
when a single outlier was present, and it was explicitly detected, it
kept an influence on the participants’ estimates of regression
slopes. An interesting question for future studies is to what extent
this strong attraction is resistant to training: in fact, a recent study
showed that the estimation of correlation in a scatterplot improved
significantly following long perceptual training sessions with feed-
back (Cui et al., 2018).
Fourth, how does outlier detection work? In the first task of our

third experiment, we found that correct detection of outliers
improved for larger distances from the main dataset, but also for
more numerous outliers. The latter result might be due to at least
two different reasons: a larger number of outliers may increase the
probability for at least one of them to be seen; and/or it may make
them globally more salient and recognizable (Kinchla, 1977).
Future studies could try to disentangle these two hypotheses.
Interestingly, outlier detection exhibited considerably slower

response times than trend judgments on the whole set (Figure 3B;
Figure 6D for a direct comparison): this observation replicates pre-
vious evidence that visual judgments about the average value of
the items in a set are faster than the detection of deviant observa-
tions present in those sets (Hochstein et al., 2018). This finding
agrees with our model, according to which the extraction of the
scatterplot trend is a necessary step prior to outlier detection, since
the latter is based on their deviation from the main trend. Indeed,
the paradox of outliers’ detection (Epstein et al., 2020) is that an
outlier is defined as deviating from a summary statistic computed
on the entire set, meaning that it cannot be computed without also
extracting such a summary reference value. Therefore, the higher
response times observed for outlier detection might be the result of
a trend judgment phase followed by outlier detection per se. It
should, however, be noted that, perhaps as a consequence of those
successive stages, those response times were highly variable and
therefore any conclusion should be drawn with great caution.
We also formulated an explicit model of outlier detection, and

tested it against many alternative models. The model hypothesizes

that outliers are detected based on their elevated z-score; i.e., their
large distance to the regression line, relative to the typical distance
of other data points. Participants would compute a z-score for each
data point, and evaluate whether the highest of these z-scores
exceeds a threshold of about 2. This model was supported by both
response times and error analyses. In response times, we found a
distance effect, whereby outlier detection became increasingly
faster for stimuli whose highest z-score increasingly deviated from
2. This is exactly what the model predicts: for stimuli comprising
points with smaller z-scores, the absence of outliers is quickly
detected, whereas for stimuli with outliers with higher z-scores,
their presence is recognized increasingly fast. Likewise, we found
that the percentage of “yes” responses was best modeled as a func-
tion of the highest z-score, with a sigmoidal function showing an
inflection point around about 2. Importantly, the best fit was
obtained when the z-score was calculated as the ratio between the
orthogonal distance of the data point to the Deming fit, and the
prescribed standard deviation of the datasets (i.e., the “noise”
level). The explanatory advantage of the orthogonal distance over
the vertical distance from OLS replicates our previous results
showing that participants minimize the perpendicular euclidean
distance of each point to the best-fitting line when computing a
trend (Ciccione & Dehaene, 2021). On the other hand, the explan-
atory advantage of the prescribed standard deviation over the
actual standard deviation of each stimulus merits a brief discus-
sion. It might have been rational for participants to compute the
actual noise level in every individual scatterplot in order to deter-
mine if a point is or not an outlier. However, humans are remark-
ably accurate at encoding the variability in a set of items (Morgan
et al., 2008; Solomon, 2010) and they do so automatically, even
when not explicitly asked for it (Khayat & Hochstein, 2018). Fur-
thermore, the standard deviation of orthogonal distances from the
fit seems to be used by humans when asked to perform correlation
judgments (Yang et al., 2019). Therefore, it is reasonable to specu-
late that participants in our experiment computed the average noise
level across trials—i.e., the prescribed standard deviation—and
used it as their reference against which outliers were compared.

It is worth highlighting that we do not claim that humans are
using explicit mental calculation to compute the z-score of each
datapoint in the scatterplot. Indeed, the observed responses times
would be incompatible with such a slow procedure. Our data sim-
ply suggest that, during fast graph perception tasks, humans
deploy a fast process that tightly approximates a statistical model
computing z-scores. As reviewed throughout the article, the human
visual system is known to be able to compute complex summary
statistics over briefly presented sets of items: the automatic com-
putation of z-scores merely adds to this set of computational abil-
ities. However, whether or not the z-score hypothesis holds should
be more precisely studied. Future research could manipulate, for
instance, the noise level in successive graphs and asks (a) whether
the actual noise level (i.e., the denominator in the z-score formula)
can be computed on a trial-by-trial basis; and (b) whether an ap-
proximate division of dot distance by this noise estimate actually
occurs and what is its accuracy. A more parsimonious hypothesis
is simply that the human visual system recycles its ability to detect
objects’ contours and principal axes and applies it to graphs, by
extracting an estimation of the posterior distribution of all possible
graph’s contours (which would obviously depend on how noisy
the graph is). Each datapoint would then be perceived either as
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part of such distribution (and therefore included in the trend esti-
mation) or out of it (thus detected as an outlier).
Fifth, finally, if outliers are correctly detected, does this mean

that they can also be rejected? Experiment 3 concludes to the
negative: outlier detection does not necessarily lead to outlier
rejection. When we modeled participants’ bias as a function of
the highest z-score in the dataset (Figure 6B), we found that cor-
rect detection of the presence of outliers approached 90% for a
highest z-score of 2.8. However, the response bias in the subse-
quent regression estimation (in which participants were asked to
reject outliers; Figure 6C) showed that, although the bias was
reduced in Experiment 3 (high attention) as compared with the
two other experiments (none or medium attention), it was at its
peak for a highest z-score of 2.8. It is only for stimuli with a
highest z-score larger than 3.6 (i.e., with at least one extreme
outlier) that the bias disappeared.
Interestingly, we also showed that an optimal Bayesian model

that assigns a lower weight to outliers on the basis of their z-score
(therefore, without fully rejecting them) behaves somewhat simi-
larly to our participants, suggesting that human outlier detection
and rejection may be a probabilistic computation. However, in this
Bayesian model, the bias does not decrease sufficiently for large z-
scores, whereas the human bias almost disappears then. This dis-
crepancy may be due to the fact that the model uses the actual
noise in the dataset, rather than an estimate of noise averaged over
several trials (as used by humans). In fact, for larger highest z-
scores, when more than one outlier is present, the z-score of those
outliers necessarily decreases because high z-scores increase the
overall noise level and, as a consequence, decrease their weight in
the regression. On the contrary, humans seem able to calibrate
their rejections on the basis of the noise of the main generative
process, as already discussed in a previous section.
Taken together, these findings suggest that outlier rejection

depends on two factors: the degree of attention toward them, and
their deviation from the main dataset. Both factors seem to influ-
ence participants in placing a threshold past which they would be
more likely to consider a data point as an outlier, beyond the nor-
mal noise in the dataset. In other words, the same data point could
be seen either as the result of normal variability in the graph or as
a significantly deviant observation, depending on task instructions.
However, even when participants were maximally invited to pay
attention to outliers and to detect and reject them before perform-
ing any regression estimation (Experiment 3), nonextreme outliers
still biased their performance, even when they were correctly
detected. This finding suggests that, to some extent, mental regres-
sion may be cognitively impenetrable (Pylyshyn, 1999; Stokes,
2013); correctly detecting outliers does not prevent them from
influencing the participants’ mental regression estimates. We can
reasonably conclude that outliers in a graph are not treated as sets
of items, thus confirming that graph perception does not operate
identically to ensemble perception. We speculate that trend judg-
ment and regression estimation are fast and largely automatic and
that outliers, if present and detected, are rejected at a later time,
with cognitive effort and following a probabilistic computation. In
support of this hypothesis, a recent fMRI study on the neural bases
of outlier processing for sets of colored objects (Cant & Xu, 2020)
found that voluntarily discarding outliers led to activations that
were not confined to early visual areas but involved fronto-parietal
areas. Thus, two different types of processes (Kahneman, 2003)

seem to be deployed during graph perception. Visual perception,
including the automatic computation of the principal axes of an
object or a graph, seems to interact with higher level cognition,
including the deliberate rejection of outliers, with the second pro-
cess not always able to counteract the information coming from
the first (Pylyshyn, 1999).

Lastly, it is important to point out that our experimental tasks
focused solely on the psychophysical aspects of graph perception,
and did not include any specification of the names, characteristics
and meaning of the x and y variables, as one would expect from
“real” bivariate graphical representations. It seems likely that par-
ticipants would have behaved differently if the stimuli were refer-
ring to actual data; indeed, outliers are usually either included or
rejected from main analyses depending on several factors, includ-
ing the statistical framework adopted by the scientist (frequentist
or Bayesian), the experimental procedure of data acquisition, the
type of variables, and their meaning. While our studies investi-
gated the perceptual stages of outlier detection and rejection,
future work should also consider using more ecologically valid
stimuli in order to evaluate to what extent explicit knowledge of
the data affects participants’ biases and their probability to include
or reject outliers.

Evidence-Based Suggestions to Improve Data
Visualization of Outliers in Scatterplots

Based on the findings presented in this article, we conclude by
proposing a few suggestions to improve outlier detection and
rejection in data visualizations. Since these guidelines are specula-
tive, although evidence-based, future research should empirically
test their utility through appropriate behavioral studies.

1) Given that outliers are not spontaneously rejected, it
could be helpful to explicitly identify all datapoints that
exceed a predetermined z-score deviation from the overall
linear regression. For instance, they could be put in a dif-
ferent color or, preferably, a smaller size or luminance.
Such a manipulation of size and luminance was shown to
be successful at modifying people estimations in a bary-
center task (Hong et al., 2021).

2) Since human mental regressions tend to be performed on
the whole dataset, even when outliers are correctly
detected, scatterplots could include both the regression
applied to all points and the regression after exclusion of
the points that exceed a predetermined z-score. The direct
comparison of a robust regression with a nonrobust one
could help make the discrepancy between the two models
more salient to the reader.

3) Since outlier detection is better than outlier rejection,
interactive visualizations may help. A regression line
would first be calculated over the entire dataset, and then
the user would select potential outliers. The regression
slope would then instantly adapt to exclude those points,
which would allow for an interactive, online visualization
of how outlier rejection changes the regression. In this
manner, the defects of human intuition would be supple-
mented by human–machine interaction.
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