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A B S T R A C T

Most artificial grammar tasks require the learning of sequences devoid of meaning. Here, we introduce a learning
task that allows studying the acquisition and processing of a mini-language of arithmetic with both syntactic and
semantic components. In this language, symbols have values that predict the probability of being rewarded for a
right or left response. Novel to our paradigm is the presence of a syntactic operator which changes the sign of the
subsequent value. By continuously tracking finger movement as participants decided whether to press left or
right, we revealed the successive cognitive stages associated with the sequential processing of the semantic and
syntactic elements of this mini-language. All participants were able to understand the semantic component, but
only half of them learned the rule associated with the syntactic operator. Our results provide an encouraging first
step in elucidating the way in which humans acquire non-verbal syntactic structures and show how the finger
tracking methodology can shed light on real-time artificial language processing.

1. Introduction

Infant and adult humans are able to extract and compress the in-
formation present in their rich environment. From a small number of
samples, they can identify the abstract hierarchical rules that govern
the structure of the incoming information (Amalric et al., 2017). This
ability lies at the heart of the human ability to acquire the syntactic and
semantic structures of human language. It has therefore been proposed
that humans, contrary to other animals, possess the specific ability to
acquire recursive rules (Fitch, 2004; Hauser, 2002; ten Cate & Okanoya,
2012).

To study this ability in the laboratory, researchers have used mini-
languages involving minimal lexicons and grammatical rules. This ar-
tificial grammar approach (Reber, 1969) has led to important advances
in understanding the mechanisms of rule acquisition and generalization
in infants. For instance, it showed that infants can use transition
probabilities to identify the chunks that form words and the abstract
patterns that govern sequences of syllables or tones (Marcus et al.,
1999; Saffran, Johnson, Aslin, & Newport, 1999). The comparison of
such data with formal models of children’s learning (Frank &
Tenenbaum, 2011) is currently being used to clarify the statistical
learning mechanism and the language primitives that drive human

language learning.
To understand which rule learning abilities allow humans to acquire

and use complex languages, many studies compare them with their
closest phylogenetic relatives, non-human primates, in similar tasks of
sequence processing and artificial grammar learning (Wilson, Marslen-
Wilson, & Petkov, 2017). Several of the mechanisms involved in se-
quence processing seem to be shared by human and non-human pri-
mates and could reflect domain-general abilities contributing to rule
learning and language acquisition in humans. For instance, a recent
study suggests that primates may process sequential relationships in a
way strikingly similar to human infants (Milne et al., 2016). Moreover,
non-human primates have been shown to extract the statistical prop-
erties of syllable transition probabilities in a continuous speech stream
in a manner comparable to humans (Hauser, Newport, & Aslin, 2001).
Furthermore, when processing the order relationships between non-
sense words in rule-based sequences, frontal brain regions activate si-
milarly in macaques and humans (Wilson, Kikuchi, et al., 2015).

However, primates’ grammatical abilities seem to diverge from
those of humans whenever embedding and recursion are needed to
process the sequences (Penn, Holyoak, & Povinelli, 2008). For instance,
human and non-human primates have been shown to master simple
grammars devoid of embedding. Yet only humans succeeded to do so
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when the grammar contained center-embedded sequences (Fitch,
2004). Furthermore, both macaques and humans showed sensitivity to
adjacent relationships, but significant sensitivity to the non-adjacent
relationships of a mixed-complexity artificial grammar was found only
in a subgroup of humans (Wilson, Smith, & Petkov, 2015). We note that
both humans and monkeys failed to learn the nonadjacent de-
pendencies using a similar paradigm but with different stimuli (Milne,
Petkov, & Wilson, 2018). Other works seem to show that non-human
primates can process nonadjacent dependencies in some artificial
grammar learning tasks (e.g. see Newport, Hauser, Spaepen, & Aslin
2004; Ravignani, Sonnweber, Stobbe, & Fitch, 2013; Sonnweber,
Ravignani, & Fitch, 2015; Milne et al., 2016). Finally, a recent fMRI
study suggested that both humans and macaques are capable of re-
presenting the number and sequence patterns underlying simple audi-
tory sequences, but that only humans possess an integrated re-
presentation of those two features in the inferior frontal gyrus (Wang,
Uhrig, Jarraya, & Dehaene, 2015).

One issue with such artificial grammar studies is that they typically
require only the learning of the surface structure of sequences (their
‘syntax’, i.e. the rules governing the valid or invalid arrangement of
their elements), but the sequences do not convey any meaning. Indeed,
in these artificial grammars, no semantic component is present and only
a minimal form of syntax, often reducible to a finite-state automaton, is
needed in order to detect grammatical violations (for rare exceptions,
see Friederici, Steinhauer, & Pfeifer, 2002; Moeser & Olson, 1974;
Mueller, Hahne, Fujii, & Friederici, 2005). As the primary role of syntax
is to convey meaning, these studies may fail to engage some crucial
mechanisms involved in semantic processing and language acquisition
in humans. Our goal in the present work was to fill this gap. To do so,
we designed a simple language with elementary syntactic and semantic
features and studied its learnability in human adults. Such a study is a
first step prior to comparing its learnability by human and non-human
primates.

We designed an artificial mini-language reminiscent of elementary
symbolic arithmetic, and studied whether it could be learned by trial-
and-error, in the absence of explicit instructions. Each ‘sentence’ of the
language was a sequence of semantic and syntactic elements, re-
presented by visual symbols. The first part of the experiment was very
similar to Yang and Shadlen (2007): on each trial, participants saw a
sequence of 1, 2 or 4 symbols (sampled randomly out of a set of six
symbols) and had to point to a left or right response button. The re-
warded response was determined by merging all symbols: each symbol
was associated with a certain weight of evidence (herebyWOE) favoring
a decision to the right or to the left, and the probability of the rewarded
response being left or right was determined by summing the WOEs of
all symbols in the sequence (Fig. 1a, b). For instance, if symbol A
strongly favored a rightward response and symbol B slightly favored a
leftward response, then participants had to compute that the sequence
AB still slightly favored a rightward response (according to a precise
quantitative equation, see Section 2.2). Note that the syntax here is
essentially non-existent, because the semantics is order-independent: all
symbol sequences are meaningful, and their meaning is simply the sum
of the weights attached to each symbol, which is a commutative op-
eration. Previous work by Yang and Shadlen (2007) demonstrated that
even rhesus macaques could learn such a language: they acquired a
lexicon of 10 symbols, learned their weights, and learned how to sum
these weights for decisions – yet with training that required more than
130,000 trials. In the first part of this study, we will see that humans
can learn this language too, within about an hour and ∼1,000 trials.

The second part of this study aimed to examine how humans learn a
language with both syntax and semantics. To this end, we added to the
language above a syntactic operator, represented by another visual
symbol. Unlike the other symbols, this symbol did not have a fixed
value, but its function was to invert the sign of the WOE of the sub-
sequent symbol. For instance, if this symbol is denoted by the sign
and symbols A and B are defined as above (A→ right, B→ left), then

the sequence of the 3 symbols A B strongly favored a rightward re-
sponse, whereas the sequence B A strongly favored a leftward re-
sponse. The analysis of the participants’ responses to this order-de-
pendent (non-commutative) mini-language allowed us to determine
whether they were able to learn the meaning of the syntactic symbol. A
participant who fails to learn the symbol may come up with an alter-
native interpretation for it – e.g. assign a WOE to the syntactic symbol
just like to any other semantic symbol. Because this mini-language is an
extension of the language considered in Yang and Shadlen (2007),
which is learnable by monkeys, we reasoned that the extended lan-
guage, if easily learnable by humans, could pave the way to a future
investigation of syntactic abilities in non-human primates.

The present work was additionally designed to show that a purely
behavioral measure, namely continuous finger tracking, can be sensi-
tive to the covert mechanisms that are engaged in the sequential pro-
cessing of symbols. On each trial, we recorded the finger movement
while participants saw symbol sequences and pointed to one of two
response buttons on a touchscreen. Crucially, the participants had to
move their finger continuously without ever stopping. We also enforced
a minimal finger speed in order to encourage intuitive decisions and
dissuade explicit calculations. Previous research has repeatedly shown
that intermediate points in the pointing trajectory reflect the real-time
unfolding of internal decision processes (Berthier, 1996; Erb, Moher,
Sobel, & Song, 2016; Friedman, Brown, & Finkbeiner, 2013; Pinheiro-
Chagas, Dotan, Piazza, & Dehaene, 2017; Resulaj, Kiani, Wolpert, &
Shadlen, 2009; Song & Nakayama, 2009). We therefore hypothesized
that the continuous finger tracking would provide insights into the
online processing of the symbol sequence, without requiring invasive
neurophysiological recordings of single unit activity (Yang & Shadlen,
2007), which are typically not available in human subjects.

2. Methods

2.1. Participants

The participants were 30 French right-handed adults (this number
was determined based on past experience with similar paradigms
Dotan, Meyniel, & Dehaene, 2018). We excluded 3 participants who
performed poorly in the length-1 sequences of Day 1 (2 standard de-
viations below the mean). 27 participants (16 females, mean
age= 23.7 years, SD= 2.8 years) took part to the first day of the ex-
periment, and 25 returned on the successive day for the second part. All
participants gave informed consent prior to participating. The study
was approved by the local ethics committee.

2.2. Stimuli

On each trial, the participants saw 1, 2 or 4 symbols, presented
sequentially, and were instructed to point to one of two response but-
tons (Fig. 1). In most experimental blocks, one of the buttons was re-
warded by presenting correct/incorrect feedback at the end of the trial.
As explained above, each sequence of symbols was associated with a
certain probability that the rewarded response button would be the one
on the right (hereby Pright). There were 6 “content symbols”, each as-
sociated with a certain weight of evidence (hereby WOE), and the sum
of WOE, WOE , determined = +P (1 10 )right WOE 1 (Fig. 1a). The
sequences of stimuli were pseudo randomized, such that each “content
symbol” appeared the same number of times at each position. A 7th

symbol, denoted , was not associated with aWOE, but had a syntactic
role: it inverted the sign of the WOE of the subsequent symbol (but left
the WOE of the other symbols unchanged). Namely, the operator
acted locally, affecting only the symbol following it. Throughout this
article, ▲ denotes any content symbol and denotes the syntactic
operator. Specific content symbols are denoted according to theirWOE,
as< < < ,< < ,< ,> ,> > ,> > > .

An ideal observer should choose the response button corresponding
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Fig. 1. Experimental paradigm. On each trial, one, two or four symbols were presented sequentially on an iPad. Participants dragged their finger from the starting
point to either a left or a right response button. (a) Meaning of the symbols. Each of the 6 symbols was assigned a certain weight-of-evidence (WOE) that determined
the probabilities of reward. The symbol-WOE mapping was fixed for each subject. The 6 symbols are represented in the text according to their WOE as< < < ,
< < ,< ,> ,> > , and> > > . (b) Screen layout. Finger movement was continuously recorded. The onset of the first symbol was triggered by finger movement.
After touching a response button, feedback was provided. (c) Sample trial flow. The probability that the right or left button would be rewarded was a sigmoid
function of the sum of the weights of the symbols in the sequence. For the specific sequence of symbols shown here, the probability of obtaining a positive feedback
for a right response is 95%.

Table 1
The experiment design. The experiment took place during two consecutive days. There were 4 blocks in each
day, in increasing level of difficulty. In the first day, only semantic symbols were presented (each denoted here
by ▲). In the second day, the sequences also included the syntactic operator .
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to the side that agrees with sign WOE( ). Such a “maximizing
strategy” does not guarantee a reward, i.e. a positive feedback, because
even the highest WOE did not reach a Pright value of 1.0 or 0.0, but it
does maximize the chances of getting such feedback.

2.3. Trial flow

Touching the “start” rectangle (Fig. 1b) triggered the onset of a
fixation dot at the symbols’ intended location (top center, see Fig. 1b).
When the participant started moving their finger upwards, the symbol
sequence started appearing. Each symbol was presented for 100ms,
with a stimulus onset asynchrony (SOA) of 300ms. As soon as the finger
touched one of the response buttons, feedback was provided: the button
that should have been selected flickered in green, and a pleasant/un-
pleasant sound was played. A trial was considered as failed if the par-
ticipant lifted the finger before reaching the top of the screen, moved
the finger backwards, started the trial with sideways (rather than up-
ward) movement or moved too slowly (more than 3 s per trial or more
than 1.5 s to reach the first third of the screen, with linear interpolation;
except a grace period of the trial’s first 300ms). In such cases, the trial
immediately terminated and was presented again later in the experi-
ment.

2.4. Training

To get acquainted with the motor aspects of the task, the partici-
pants initially performed a similar task in which the stimulus was a
single arrow pointing left or right, which unambiguously indicated the
response button that would be rewarded.

2.5. Experiment stages

The experiment was organized in two sessions, held on two con-
secutive days. Each session lasted approximately 90 minutes and was
organized in 4 parts (see Table 1). During the first day, only the 6
content symbols were presented; in the second day the operator was
added.

To examine whether the participants genuinely understood the
syntactic operator , rather than just memorized specific symbol
combinations, we tested their ability to generalize the function of the
syntactic operator to untrained combinations. Thus, in all blocks with
feedback, the operator never occurred prior to the symbol< <
or> > . Such combinations of followed by< <or> >were pre-
sented only during the last stage in day 2 (with length-4 trials), for
which no feedback was provided.

2.6. Questionnaire

At the end of the second day, participants filled out a questionnaire
where they were asked for the meaning of each of the 7 symbols, i.e.
how each symbol contributed to their left/right decision. We used this
questionnaire to divide the participants into two groups – those who
managed to figure out explicitly the meaning of the syntactic operator
(G★+ participants) and those who did not (G★− participants).

2.7. Data encoding

The position of the finger was sampled at 60 Hz and resampled to
100 Hz using cubic spline interpolation. The x and y coordinates were
then separately smoothed with a Gaussian filter with =20ms. At
each time point, we calculated the implied endpoint (iEP) – the top-of-
screen position that the finger would reach if it kept moving in its
current direction. As a measure of the online decision, we used either
the actual horizontal position of the finger, denoted by x, or the implied
endpoint. The x coordinates and the iEP are measured on a scale ran-
ging from−1 (left end of screen) to +1 (right end), with x= 0 being at

the middle of the screen. The y coordinates use the same scale (1
unit= 9.84 cm).

2.8. Data analysis

We start by considering only the participants’ final responses (left or
right). Performance scores are given as the proportion of ideal responses,
i.e. responses where the participant chose the side that agrees with
sign WOE( ). Note that, because of the probabilistic nature of the task,
the rewarded button was not always the ideal response. However,
choosing the ideal response maximized the likelihood to obtain a re-
ward.

Logistic regressions were computed on the proportion of rightward
responses, with one predictor corresponding to each of the symbols in
the sequence.

The analysis of trajectories followed the method introduced in our
earlier publications (Dotan & Dehaene, 2013). The dependent variable
was the implied endpoint (iEP) and the predictors indicated the dif-
ferent symbols in the sequence (details about specific predictors appear
in the text below). One regression was run for each participant and time
point, in 30ms intervals. To determine whether a predictor had a sig-
nificant group-level effect at a specific time point, we compared, for
each time point and each predictor, the per-participant regression
coefficients to zero using a t-test.

3. Results

3.1. Day 1. Acquisition of the semantic elements of the mini-language

3.1.1. Analysis of the responses
During Day 1, the participants saw only content symbols. We first

analyzed the participants’ final decision, i.e. whether they ultimately
hit the left or right response button. When seeing length-1 sequences,
after only a few trials, participants learned to associate each symbol to
the corresponding response. The percentage of ideal responses in-
creased from 83% in the first half of Part 1 to 90% in the second half
(paired t(26)= 5.20, p < 0.001).

For length-2 and length-4 sequences, participants also quickly
learned to combine the content symbols. They favored the right re-
sponse button when the total WOE ( WOE) was positive and the left
response button when WOE was negative (Fig. 2a). The proportion of
ideal responses was higher in trials with larger WOE , but participants
still performed better than chance even on trials in which WOE was
close to zero. We fitted the proportion of ’right’ responses as a sigmoidal
function of WOE :

= + ×P
P

const b WOElog
1

right

right10

In this regression, the intercept reflects a general leftward or
rightward bias, and the slope measures the participants’ capacity to
accurately base their decision on WOE . The higher the slope, the
closer to optimality: a participant with infinite slope would base his
decision on sign WOE( ). As the slope of the sigmoidal fit was sig-
nificantly greater than 0, we conclude that they chose the ideal re-
sponse determined by sign WOE( ) more often for larger | WOE| (for
length-2 sequences, mean b= 0.67, t(26)= 9.93, p < 0.001; for
length-4 sequence, mean b=0.45, t(23)= 12.0, p < 0.001).
Furthermore, participants performed better for length-2 than for length-
4 sequences, as the slope was higher for length-2 than for length-4 se-
quences (paired t(23)= 4.7, p < 0.001). There was no left or right bias
– the intercepts were not significantly different from zero, neither for
length-2 nor for length-4 sequences (all p > 0.1).

To determine whether participants assigned a larger subjective
weight to the most reliable symbols (e.g. a larger weight to> > >
than to>), we performed a linear regression on the log odds of “right”
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responses. Unlike the previous analysis, in which WOE was the only
predictor, here there was one predictor for each of the 6 semantic
symbols. These predictors were defined as 1 when the corresponding
symbol was present in the sequence, and as 0 otherwise. The regression
coefficients thus reflect the contribution of each symbol to the partici-
pant’s final decision. Below, we refer to these regression coefficients as
the “subjective WOE” of the symbol. To determine whether the parti-
cipants based their decision on the WOE of each symbol, we examined
how well their subjective WOEs were correlated with the true WOE.
This was done with linear regression on the per-participant subjective
WOE as a function of the actual WOE (Fig. 2b). In this regression, the
intercept did not significantly differ from 0 (p > 0.3 both in length-2
and in length-4 sequences), meaning that there was no general leftward
or rightward bias. The slope was significantly higher than 0 (length-2
sequences: mean b=0.76, t(26)= 9.13, p < 0.001; length-4 se-
quences: mean b= 0.53, t(23)= 12.2, p < 0.001). The order of sub-
jective WOE agreed with that of the actual WOEs, indicating that par-
ticipants were able to attribute a higher weight to the symbols that were
more strongly associated with a reward. Furthermore, the participants’
behavior suggests that they estimated theWOE of the symbols better for
length-2 than for length-4 sequences: the slope was significantly closer
to 1 in the length-2 sequences than in the length-4 sequences (paired t
(23)= 3.50, p=0.002).

3.1.2. Analysis of the finger trajectories
Examination of the raw trajectories suggested that they contained

rich information on the processing of the sequences of symbols (Fig. 3a)
as they seemed to strongly depend on the presented sequences of
symbols. This effect can be seen in Fig. 3b, which shows the finger
horizontal position (x coordinate) as a function of time, separately for

each unique sequence of sign WOE( ) (e.g. the sequences> ,> >
and> > > ,>were averaged together into a single line in Fig. 3b,
and separately from the sequence> ,< <).

We looked for the time point where each symbol started affecting
the finger movement. First we ran, for each position in the sequence
(1st, 2nd, 3rd, or 4th symbol), a two-way repeated measures ANOVA with
the x coordinate as the dependent variable and with two within-parti-
cipant factors: the symbol’s sign WOE( ), and the specific sequence of
sign WOE( ) of the preceding symbols. One ANOVA was run for each
time point, in 10ms intervals. The onset time of a symbol’s effect on the
finger movement was defined as the first time-point in which this
ANOVA showed a significant main effect of sign WOE( ) (p < 0.05),
which remained significant for at least 50ms. This analysis revealed
that, for length-4 sequences, each successive symbol started affecting
the finger movement about 600ms after its onset (see Fig. 3b). The
average interval between the effects of consecutive symbols was
∼330ms, closely corresponding to the actual SOA of 300ms. These
results indicate that the symbols were considered one by one as they
appeared, and affected the finger movement even before the full se-
quence was presented. The finger movements were thus sensitive to
intermediate accumulation of evidence.

We next examined how the effect of each symbol developed during
a trial and affected the finger trajectory. For each time point and par-
ticipant, we ran a linear regression on the implied endpoint (iEP). There
was one predictor for each position – the WOE of the symbol at that
position. This analysis (Fig. 3c) showed that the effects of each symbol
built up gradually over the course of the trial. For length-4 sequences,
each symbol had a significant effect on the trajectory (p < 0.05 when
comparing the per-participant regression coefficients to 0) starting from
about 500ms after the symbol’s appearance. The average interval

Fig. 2. Evidence that the participants’ final decision in Day 1 resulted from a summation of the symbols’ WOEs. (a) Proportion of responses to the ‘right’ response
button as a function of the totalWOE . A sigmoidal fit was obtained for the average regression coefficients over participants. Error bars indicate the standard error on
the estimation of the mean (SEM). (b) Average subjective WOE as a function of the true WOE , as determined by regression. The positive regression slope indicates
that participants learned the WOEs and managed to combine them.
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between the effects of consecutive symbols was close to the actual SOA
(300ms). These results are consistent with the previous analysis of the
symbols’ effect onset times and indicate that evidence was accumulated
incrementally.

Remarkably, the asymptote values of the regression coefficients
decreased with symbol position (Fig. 3c), i.e. earlier symbols affected
the finger movement more than symbols that appeared later in the
sequence. The contribution of the symbols of the sequence to the in-
termediate decision, captured by these regression coefficients, probably
reflects the contribution of several mechanisms. First of all, this analysis
was run on all the length-2 trials of Day 1, while participants were still
learning the WOEs. The down-weighting of the late symbols in the

sequence may thus be partly due to the difficulty of memorization and
calculation with symbols that have an uncertain and noisy meaning.
However, this explanation may only partially account for this ob-
servation, as a similar effect was observed in an experiment where the
symbols were not arbitrary shapes but arrows clearly pointing left or
right (Dotan et al., 2018). Another explanation comes from the fact that
when the WOE of the first symbol is large enough, a decision can be
reached without considering the next symbols. Once enough evidence is
accumulated, an ideal observer may ignore the later symbols, which are
not going to change the outcome. For length-2 sequences, this situation
occurred 33% of the trials, so for an ideal observer knowing the WOEs
of the symbols, it should result in the second symbol’s regression

Fig. 3. Finger trajectories in Day 1 reveal a sequential accumulation of evidence. (a) Sample single-trial trajectories for one participant in length-2 sequences. The
stimulus is indicated on the top of each panel. The raw trajectories strongly depend on the WOEs of both symbols. (b) Mean x coordinate per time point. Each line
shows the average trajectory for trials with the same sequence of sign (WOE)s. The colored rectangles at the bottom show each symbol’s onset time and duration. The
colored vertical lines denote the times at which each symbol started having a significant effect on the trajectory. (c) The sequential accumulation of evidence is also
captured by regression results. The implied endpoint (iEP cf. Fig. 1c) were regressed against the WOE of each position. The regression coefficients were averaged over
participants and plotted as a function of time (filled markers indicate values significantly higher than 0). The plots show how, depending on their position in the
sequence, symbols successively contribute to the decision. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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coefficient being ⅔ the size of the first.
To determine if this strategy could explain the regression coeffi-

cients profiles, we ran the previous analysis on two subsets of trials:
those for which enough evidence was provided by the first symbol, and
those for which it was not. Fig. S2 shows that the regression coefficient
associated with the second symbol was higher when the second symbol
was necessary to determine the ideal response (two-tailed paired t-test
on second position regression coefficients depending on first-position
weight: p < 0.05 from 0.91 s on). Nonetheless, even when enough
evidence was provided by the first symbol, the last symbol still had a
sizable influence on the decision.

A logistic regression on the final decision confirmed these results:
the regression coefficient of the second position significantly decreased
as the evidence carried by the first symbol increased (paired t-test be-
tween the distributions of regression coefficients when |WOE| at posi-
tion 1 is 0.4 and when |WOE| at position 1 is 0.9: t(26)=−3.5,
p=0.0015; when |WOE| at position 1 is 0.6 and when |WOE| at po-
sition 1 is 0.9: t(26)=−3.7, p=0.001). The converse analysis did not
show any significant modulation of the first position regression coeffi-
cient as a function of the second symbol’s weight (p > 0.5), confirming
the importance of the temporal constrains of this task in the decision
process. To sum up, the participants’ behavior was logical (they as-
signed more weight to earlier symbols), but the degree of this under-
weighting was smaller than that expected from an optimal observer. It
is possible that participants did not manage to adopt an optimal
strategy due to the high presentation speed, which may have been too
fast to respond as soon as evidence sufficed to determine the ideal re-
sponse (conscious strategical stopping, de Lange, van Gaal, Lamme, &
Dehaene, 2011). Moreover, as this analysis captures the learning stages
of the semantic symbols, subjects may still have a noisy representation
of the WOE of the different symbols. In this context, the best strategy to
compensate for the uncertainty of the task would be to get a maximum
of information by waiting for more symbols, which is apparently what
participants do.

Finally, the results were remarkably similar to the ones obtained in
Dotan et al. (2018) where the stimuli were sequences of arrows
pointing left or right and the participants had to point according to the
majority of arrows. Even in Dotan et al.’s task, where the WOE of each
symbol in the sequence (+∞ or −∞, where ∞ denotes infinity) was
clearly indicated by the arrow, the earlier symbols in the sequence were
over-weighted relatively to later symbols.

3.2. Day 2: Acquisition of the syntactic operator

In the post-experiment questionnaire, 15 out of 25 participants re-
ported the correct interpretation of the operator , i.e. that it changes
the sign of the WOE of the subsequent symbol, thus inverting its
meaning. From now on, the syntactic operator will equivalently be
called inversion operator. This group of participants will be denoted as
G★+. In the complementary group, denoted as G★−, 8 participants
reported that the symbol was different from the other symbols but
said that the difference was that was not associated with any pre-
ferred direction of response (i.e. that it had WOE =0). The remaining
two G★− participants said that favored a certain direction of response
with a small weight, like the 6 other semantic symbols.

3.2.1. Analysis of the responses
If the participant’s behavior was consistent with the questionnaire

answers, the G★− group should attribute =WOE 0 to the symbol,
whereas the G★+ group should treat as a inversion operator. To ex-
amine whether this was the case, we considered ‘critical trials’. These
are trials where correctly interpreting as changing the sign of the
subsequent WOE would lead to one response (the ideal response),
whereas interpreting as having =WOE 0 would lead to the opposite
response. In the G★+ group, the mean accuracy in the ‘critical trials’
(70.6%) was significantly better than chance (two-tailed t-test to chance

level, t(14)= 6.4, p < 0.001), indicating that these participants cor-
rectly interpreted as changing the sign of theWOE of the subsequence
symbol. Conversely, the G★− group performed on average at chance
level for such 2-symbol sequences (45%). Thus, consistently with their
explicit report, they did not treat as an inversion operator. However,
because their performance was not significantly lower than the chance
level of 50% (mean accuracy: 45.0%, one-tailed t-test to chance level, t
(10)=−1.23, p > 0.1), we cannot conclude that they adopted the

=WOE 0 interpretation consistently across the block. For length-4
trials, the G★− participants answered below chance, in agreement with
the =WOE 0 hypothesis (mean accuracy= 37.4%, one-tailed t-test to
chance level of 50%, t(9)=−5.1, p < 0.001). In contrast, the G★+

participants performed at chance level (mean accuracy 50.4%, t-test to
chance level of 50%: t(12)= 0.1, p > 0.1) – i.e. they did not fully treat
as an inversion operator. As we will elaborate in the Discussion, the

reason for this may be that long sequences were too hard for them to
apply the inversion operation.

To understand in more details how the participants interpreted the
syntactic operator, we investigated the contribution of each symbol to
the decision. This analysis was first run for length-2 sequences: with
logistic regression, the log odds of a rightward response were regressed
against 4 predictors: the presence of (coded as 0 or 1), theWOE of the
semantic symbol at position 1 (▲), theWOE of the symbol at position 2
when preceded by (denoted ★▲) and the WOE of the symbol at
position 2 when preceded by a content symbol (denoted ▲▲). For
participants who understand the symbols fully – the inversion operator,
the meaning of the content symbols, and how to combine them – we
expect regression coefficients b[▲▲] > 0 (i.e. processing the standard
WOE when the inversion operator did not appear), b[★▲] < 0 (i.e.
applying the inversion implied by the operator), and b[ ]= 0 (un-
derstanding that the syntactic operator does not have any weight of its
own). This was the case in the G★+ group, as shown in Fig. 4a. First, b
[ ] did not significantly differ from 0 (p > 0.3). Second, b[▲▲] was
higher than zero (mean b= 1.29, t(14)= 7.2, p < 0.001), indicating
that the change of sign of the WOE was specifically triggered by the
operator, and in its absence the participants accumulated the WOE
normally. Third, crucially, b[★▲] was lower than 0 (mean b= −0.6,
t(14)=−6.11, p < 0.001), indicating that these participants changed
the sign of the WOE of the symbol that appeared after . We re-
computed these regression coefficients on the second half of the block,
once the syntactic operator had been learned (cf learning curves in Fig.
S3). b[ ] still did not significantly differ from 0 (p > 0.9), b[▲▲] was
higher than zero (mean b= 1.78, t(14)= 4.29, p < 0.001) and b[★▲]
was even more negative (mean b=−1.17, t(14)=−6.34,
p < 0.001), confirming that subjects processed the syntactic operator
better in the second half of the block than in the first.

In the G★− group, interpreting as having =WOE 0 should lead to
b[ ]= 0, which was indeed the case (mean b[ ]=−0.25, t
(10)=−1.0, p > 0.3; Fig. 4b). Subjective WOE =0 should also lead
to b[★▲] > 0, because would simply be ignored. Fig. 4b shows that
this was not the case: b[★▲] did not significantly differ from 0 (mean b
[★▲]= 0.16, t(10)= 1.3, p > 0.1). This pattern suggests that the
participants in this group may have responded randomly for sequences
with rather than attributed =WOE 0 to the symbol.

A similar analysis was run on length-4 trials. In the G★+ group
(Fig. 4c), contrary to the predictions, b[★▲] was not significantly ne-
gative (mean b[★▲]= 0.036, t(12)= 0.44, p=0.7). Still, the op-
erator significantly decreased the weight of the subsequent symbol (b
[★▲] < b[▲▲], t(12)= 2.84, p=0.02). Thus, although the results
were not as clear as for the 2-symbol sequences, even here the G★+

group considered as affecting the subsequent content symbol in a
direction opposite to the content symbol’s WOE. In the G★− group
(Fig. 4d), no significant change of sign of the WOE of the next symbol
could be measured: b[★▲] was significantly positive (mean=0.37, t
(9)= 6.8, p < 0.001). Moreover, did not reduce the weight of the
subsequent symbol: b[★▲] was not significantly lower than b[▲▲] (t
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(9)= 0.58, p=0.6).

3.2.2. Analysis of the finger trajectories
3.2.2.1. Length-2 sequences, G★+ participants. We next analyzed the
finger trajectories, starting with the length-2 sequences. We ran linear
regressions on the implied endpoints (iEP) in each time point with 4
predictors: the presence of (coded as 0 or 1), the WOE of the symbol
at position 1 (▲), the WOE of the symbol at position 2 when preceded
by (★▲), and theWOE of the symbol at position 2 when preceded by
a content symbol (▲▲). This was done separately for the G★+ and
G★− groups.

The results for length-2 sequences are presented in the top part of
Fig. 5. For the subgroup G★+, b[ ] was not significantly different from
zero in any time point, confirming our earlier conclusion that the par-
ticipants did not treat as a semantic symbol having its own WOE.
Moreover, consistent with the results of the logistic regression, the re-
gression coefficient associated with ★▲ had a significantly negative
value starting from ∼400ms after the appearance of ▲. We note that
the onset of b[★▲]’s significant effect was ∼150ms after the onset of b
[▲▲]. This 150ms delay could be a rough estimation of the processing
time of the operator. To get a more precise estimation of the opera-
tor’s processing time, we fitted the regression coefficients to a common
exponential profile A t t(1 exp( [ ]/ ))0 for each participant and
estimated A t, ,0 for b[★▲](t) and b[▲▲](t). The parameter t0, which
represents the onset time of a symbol’s effect on the finger movement,
was significantly higher for b[★▲] than for b[▲▲]. This delay, which

is a measure of the processing time of the operator, was estimated as
140 ± 50ms. No difference was found between b[★▲] and b[▲▲] for
the parameter that represents the steepness of the slope ( = ±250 40
ms for both b[★▲] and b[▲▲]).

Initially, the operator was novel to the participants. It could be
argued that novelty, rather than syntactic function, was at the origin of
the observed delay. To provide insight into the learning dynamics of the
G★+ group, we analyzed separately the trials belonging to the first and
the second half of the length-2 trials of Day 2, the operator being
presented in half of the trials of this block (Fig. S4). We observed an
increase in the ability to process the syntactic operator, as b[★▲] was
much larger in amplitude in the second half of the block (p < 0.05
from 800ms on, uncorrected paired t-test). Moreover, novelty could not
account for the −induced delay because it was also observed in the
second half of the block (the delay is then equal to ±120 40 ms), when
G★+ participants had already learned the meaning of the operator (cf
learning curves in Fig. S3). These results suggest that it took the G★+

participants about 120ms to carry out the inversion indicated by the
operator.

3.2.2.2. Length-2 sequences, G★− participants. The same analysis was
ran for the G★− group and showed that b[ ] was not significantly
different from zero in any time point, meaning that these participants
did not assign the operator anyWOE of its own. Furthermore, there was
no significant difference between b[★▲] and b[▲▲] in any time point
(in one-tailed t-test, p > 0.1 in all time points), i.e. did not reduce

Fig. 4. Understanding of the operator, which changes the sign of the WOE of the subsequent symbol. Two groups of participants were distinguished according to
their explicit reports, at the end of the experiment, of understanding (G★ +) or failing to understand (G★−) the operator. Each panel shows the weights of a logistic
regression on the final decisions during Day 2 for the G★+ and G★− groups. The regression coefficients presented here are: the presence or absence of (coded as 0
or 1, denoted ), theWOE of the symbol at position 2 when preceded by a content symbol (denoted ▲▲), and theWOE of the symbol at position 2 when preceded by
(denoted ★▲). Horizontal segments represent the mean value. Shaded areas represent the range where the regression coefficients should fall for an observer that

understands the meaning of the syntactic operator. a. For G★ + participants in length-2 sequences, the operator was not assigned any WOE of its own, but it
significantly inverted sign(WOE) of the subsequent symbol ★▲. b. For G★− participants in length-2 sequences, did not invert sign (WOE) of the subsequent
symbol, and did not even reduce the WOE. c. For G★+ participants in the length-4 sequences, decreased significantly the WOE of the subsequent symbol ★▲, yet
without inverting its sign. d. For G★− participants in length-4 sequences, did not change the WOE of the following symbol.
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Fig. 5. Finger trajectories reveal how participants processed the syntactic operator. We ran linear regressions on the implied endpoint (iEP cf. Fig. 1c) on length-2 and
length-4 sequences for the G★+ and G★− groups (respectively left and right columns). The iEP was regressed against the presence or absence of the syntactic operator
★ and against the WOE of the content symbols at each position in presence or absence of the operator. The shaded areas represent the inter-subject SEM, and filled
markers indicate regressors significantly different from 0. For length-2 sequences (top), the regression coefficient b[★▲] changed its sign for the G★+ group but not
for the G★− group. Namely, consistently with their report, G★+ participants processed the operator as an inversion operation whereas G★− did not. Fitting with a
sigmoid the per-participant regression coefficients, we estimated the processing time of the -induced inversion operation as 140 ± 50ms. For length-4 sequences,
(bottom), in the G★+ group, but not in the G★− group, the operator significantly decreased the weight of the subsequent semantic symbol.

F. Al Roumi et al. Cognition 185 (2019) 49–61

57



the weight of the subsequent symbol. This confirms the results obtained
in the logistic regressions: G★− participants did not process the
operator as an inversion operator, neither did they consistently assign it
a left or right WOE.

3.2.2.3. Length-4 sequences. The analysis was extended to length-4
sequences. The dependent variable was the implied endpoint and the
8 predictors were the presence or absence of (coded as 1 and 0) and
theWOE of the content symbols at each position in presence or absence
of the operator (Fig. 5 bottom part). For participants in G★+, b[ ] was
not significantly different from zero for any position of . Similarly, b
[★▲] was not significantly different from 0 in any time point, except a
short time window when was in third position. Nonetheless, the
operator significantly decreased the effect of the subsequent semantic
symbol: b[★▲] was significantly lower than b[▲▲] (p < 0.05 in per
time-point one-tailed t-tests) for all positions of , starting from 1.35 s,
1.30 s and 1.40 s for in position 1, 2 and 3, respectively (Fig. 5a–c).

For the participants in the G★− subgroup, b[ ] was not significantly
different from zero in any time point, for any position of . Moreover,
did not significantly reduce the weight of the subsequent symbol: b
[★▲] and b[▲▲] did not significantly differ in any time point (one-
tailed paired t-test, p > 0.05).

The syntax of our mini-language was such that the operator ap-
plied only to the semantic symbol that immediately followed it. To
determine whether the G★+ participants inappropriately interpreted
as affecting the other symbols too, we examined their regression coef-
ficients for the content symbols that were at a distance of 2 or 3 from
the operator (Fig. S1). We could not observe any significant decrease
in the regression coefficients when the operator was present (all
p > 0.05), confirming that G★+ participants understood that acted
locally, i.e., only on the subsequent symbol.

3.2.3. Generalization of the operator
Two content symbols,< < and> > , were preceded by the

operator only in trials in which feedback was not provided (in Day 2
length-4 trials). This aspect of our design allowed examining whether
participants who learned the meaning of generalized it to previously-
unseen symbol combinations. Such a finding would rule out the possi-
bility that participants learned specific combinations of with certain
symbols, and would unequivocally show that the participants indeed
learned the syntactic meaning of .

Thus, we now restricted our analysis to trials in which was fol-
lowed by< <or> > . For the G★+ group (2 out of 15 participants
did not perform this block), we observed a significant difference b
[★▲] < b[▲▲] (paired t(12)= 2.45, p=0.03, mean b[★▲]= 0.04,
mean b[▲▲]= 0.38), i.e. decreased the weight of the subsequent
symbol. Furthermore, when examining the regression coefficient nor-
malized by the WOE, no significant difference was found between<
<and> >and the other symbols (paired t(12)= 1.4, t-test p=0.2).
Namely, the G★+ participants understood the true syntactic meaning of
and applied it to previously-unrewarded symbol combinations ex-

actly as they did with the explicitly-rewarded combinations.
For G★− participants, did not significantly decrease the weight of

the subsequent symbol (mean b[★▲]= 0.44, mean b[▲▲]= 0.41,
paired t(9)= 0.45, p > 0.5). No significant difference was found be-
tween the regression coefficients for< <and> >and the other
symbols (paired t(9)= 0.1, p > 0.5).

3.2.4. The origins of the differences between the G★+ and G★− groups
To understand why G★+ and G★− groups differed in their report

and processing of , we first compared their performance when pro-
cessing sequences of semantic symbols during Day 1. An inaccurate
representation of the WOE of the semantic symbols may make it diffi-
cult to learn the operator, because participants learn its meaning in
conjunction with semantic symbols. No significant difference between
the two groups was found in movement time (p > 0.1) and

performance for length-4 sequences of Day 1 (t(23)= 1.5, p > 0.1).
However, the G★− group had significantly fewer ideal responses than
the G★+ group for length-1 trials of Day 1 (t(23)= 2.2, one-tailed
p=0.02) and length-2 trials of Day 1 (t(23)= 2.0, one-tailed
p=0.03). To understand whether the lower accuracy for G★− group
was due to a difficulty in integrating the semantic symbols, we re-
gressed the iEP of the length-2 sequences in Day 1 against the weights
associated with each position, separately for each group of participants.
The G★− group assigned a much smaller weight to the second symbol
than the G★+ group (Fig. S5), suggesting a difficulty in integrating the
two symbols. This difficulty may be responsible for their failure to learn
the syntactic operator.

This conclusion is further supported by an additional result: we
examined whether a participant’s ability to integrate the WOE of the
semantic symbols correlated with their ability to process the syntactic
symbol as an inversion operator. The first ability was quantified as the
regression coefficient of the total WOE in a logistic regression on the
decision for length-2 sequences of Day 1. The second was quantified as
the regression coefficient of a semantic symbol preceded by in a lo-
gistic regression on the decision for length-2 sequences of Day 2. These
two measures correlated (r2= 0.27, p < 0.01), thereby showing a link
between WOE-integration and the processing of .

Additional differences between G★+ and G★− groups were revealed
by the evolution of accuracy while learning the meaning of . Here,
accuracy was defined as the average ideal responses over 30 con-
secutive ‘critical trials’ of the length-2 sequences of Day 2. We remind
that the ‘critical trials’ are the trials where interpreting * as a content
symbol of WOE =0 would lead to the non-ideal response . In the first
trials, the accuracy of the G★+ group did not differ from chance (mean:
47%, two tailed p > 0.1), whereas it was significantly below chance
for the G★− group (mean : 40% , t(9)=−3.0, one-tailed p < 0.01).
Namely, the G★− group did not answer randomly, but initially con-
sidered as a semantic symbol and consistently assigned it a null WOE.
For both groups, accuracy increased from the 30 first trials to the 30 last
trials (G★+: paired t(14)= 7.0, one-tailed p < 0.001, G★−: paired t
(9)=−3.5, one-tailed p < 0.01), but only the G★+ group ended the
block with accuracy above chance level (G★+ mean : 81% , t(14)= 7.9,
p < 0.01; G★− mean: 54%, p > 0.1). These results indicate that G★+

quickly grasped the syntactic function of , whereas G★− seem to have
initially considered it as a semantic symbol with null WOE. For a full
overview of the dynamics of performance, see Fig. S3.

4. Discussion

We used continuous tracking of finger movement to investigate the
covert stages of semantic and syntactic processing in an artificial mini-
language. During the first part of the experiment, we investigated how
human adults learned the meaning of semantic symbols associated with
different weights of evidence favoring left or right response buttons,
and the rules to combine sequences of such symbols. All participants
understood the semantic component of the artificial mini-language:
they understood whether each symbol favored a left or a right response,
and their decisions attributed higher weights to symbols that were more
predictive of a reward. After a short amount of training, all participants
based their decisions on the combined weights of the symbols presented
in the sequence. Just like the two rhesus macaques studied in Yang and
Shadlen (2007), our participants were able to combine theWOEs of the
symbols and figure out which response button was the most likely to be
rewarded. However, humans required only about an hour of training
and ∼1,000 trials – much faster than the monkeys, who needed several
months and ∼130,000 training trials.

Yang and Shadlen (2007) showed that the instantaneous firing rate
of LIP neurons in monkeys reflected the evidence accumulated so far,
indicating a continuous summation process. The present results show
that a similar on-line monitoring of evidence accumulation can be
achieved non-invasively, solely using finger trajectory monitoring.
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Furthermore, the trajectory data provided information about the effects
of discrete symbols at various points within the sequence: for instance,
participants assigned less weight to symbols presented later in the se-
quence, replicating the results from monkeys (Fig. S6 of Yang &
Shadlen, 2007). Similar to rhesus macaques, adult humans did not
behave ideally. The subjective WOE that they assigned to the different
symbols underestimated their real weights. Additionally, the weights
attributed to the positions in the sequence did not reflect the symbol’s
optimal contribution to the ideal response. The difficulty of accumu-
lating evidence from several symbols with uncertain meanings in a
short amount of time is likely to be at the origin of this non-ideal be-
havior.

In the second part of the experiment, to investigate the acquisition
of a syntactic rule, we incorporated a syntactic operator that reversed
the weight of the subsequent symbol. Only 15 out of the 26 participants
(the G★+ group) reported to have understood the meaning of this op-
erator. Their subjective introspection was confirmed by objective ana-
lyses: in the G★+ group only, left/right responses indicated that the
symbol was indeed interpreted as inverting the meaning of the sub-
sequent symbol. Finger trajectories showed that in this group, the
operator significantly affected the subsequent symbol, either changing
the sign of its WOE (in short sequences), or at least decreasing its
amplitude (in longer sequences). As for the G★− group, the analyses of
decision and of trajectories indicated that, on average, they did not
process as an inversion operator, but rather as a neutral semantic
symbol with =WOE 0.

Importantly, the G★+ group did not interpret the operator as a
global invertor of all subsequent symbols, but correctly applied it only
to the symbol following . Moreover, we ruled out the possibility that
the G★+ group learned the meaning of by memorizing all combina-
tions of with each content symbol: this group managed to generalize
the inversion induced by the operator to content symbols that were
not presented after during the learning stages, thereby showing that
they truly understood the syntactic meaning of .

Within the G★+ group, the symbol had slightly different effects in
the length-2 and length-4 sequences. In the short sequences, it inverted
the weight of the subsequent symbol, but in the long sequences it only
decreased its weight. This could be explained by assuming two type of
trials: presumably, in some trials the participants were able to process
the operator, whereas in other trials they were not. The regression,
which averages the two types of trials, would show a reduced b[★▲]
rather than a strictly negative b[★▲]. This difference between short
and long sequences is likely to be due to an overall increase in task
difficulty as the sequence becomes longer. Even in the long sequences,
the participants’ performance would have probably improved had we
provided them with further training or longer SOA. However, longer
SOAs could have allowed for more explicit strategies, which we wanted
to avoid.

The trajectory analysis revealed that in the G★+ group, the op-
erator not only inverted the meaning of the subsequent symbol, but also
delayed the subsequent symbol’s effect on finger movement. Novelty of
the symbol could not account for this delay as it was still present and
estimated to 120 ± 40ms when we restricted the analysis to the
second part of the length-2 trials, i.e. when G★+ participants had al-
ready learned the meaning of the operator (cf Fig. S4). Furthermore,
this was a pure delay – we did not observe a transient activation of the
positive value of the symbol, followed by activation of its negative
value. Thus, participants who understood the meaning of the inversion
operator managed to apply it to the next symbol, but it took about
additional 120ms to invert the symbol before adding its value to the
ongoing accumulation of evidence. This finding predicts that, should
monkeys be able to learn this mini-language, the firing rate of LIP
neurons should also show an additional ∼120ms delay before re-
flecting the value with opposite sign. As currently designed, this task
does not allow us to determine to which extent the processing or
memory load associated with the syntactic symbol contributed to the

measured delay. Further experiments could explore this aspect by
varying the SOA between symbols. Indeed, a refractory period asso-
ciated to the comprehension of the syntactic operator itself should de-
crease for large SOA while any delay induced by the application of the
inversion operation to the next semantic symbol should stay constant.

By adding the non-commutative operator , we increased the
complexity of the artificial language. We could thus distinguish the
human participants that were able to represent syntactic functions, the
G★+ group, from those who were only able to attach quantities to
symbols, the G★− group, and who attached a null weight to the op-
erator symbol. Similar intra-species variability was observed in Wilson,
Smith, et al. (2015), where only some of the human participants
showed sensitivity to the longer-distance relationships present in se-
quences generated from an artificial grammar with mixed complexity.
In our case, the difference in learning the syntactic symbol can be partly
explained by differences in the acquisition of the semantic part of the
language, i.e. the meaning of the semantic symbols and the combina-
tion rule (Section 3.2.4): participants who did not learn the semantic
symbols well enough also had difficulty in learning the syntactic
symbol. In particular, these participants (the G★− group) seemed to
have initially considered the operator as a semantic symbol with null
WOE. Furthermore, although these participants did not perform above
chance even in the end of the length-2 block in Day 2, they still per-
formed better in the end of the block than in its beginning.

Why were these participants unable to understand the syntactic
operator? One possibility is that some minimal mastery of the semantic
symbols is required before the syntactic operator can be learned. This
suggests that, with additional time, even the participants of the group
G★− would have been able to sharpen their knowledge of semantic
symbols and then discover the meaning of . Another possibility is that
they failed to formulate a proper hypothesis about its meaning (e.g.
they kept trying to assign it a value rather than a syntactic function).
This hypothesis predicts that they would have been able to use this
symbol if they had been explicitly told its meaning.

One of the goals of this study was to create a paradigm that allows
comparing the mechanisms of syntax acquisition between humans and
monkeys, given that monkeys have been shown to be able to acquire the
semantic part of this artificial mini-language (Yang & Shadlen, 2007).
Nevertheless, we cannot exclude the possibility that our adult human
participants simply matched the syntactic operator to their pre-ex-
isting knowledge of the minus sign in arithmetic. Thus, even if an ad-
vantage is observed for human compared to non-human primates, such
advantage could reflect prior education rather than a human-unique
ability to understand the syntactic operator. This criticism could be
addressed by teaching the same language to adults with limited access
to formal schooling in mathematics (e.g. Mundurucu Indians; Amalric
et al., 2017; Dehaene, Izard, Pica, & Spelke, 2006) or to unschooled
children. Alternatively, the present study could be replicated with an-
other syntax unfamiliar to most human adults: the Postfix Polish no-
tation, in which operators follow their operands, may be a good can-
didate.

Contrary to most artificial grammar studies, our mini-language
contains both semantic and syntactic elements and may, as such, in-
volve brain networks similar to the ones of natural language processing.
However, the function of our syntactic operator is closer to an ar-
ithmetical minus sign (multiplication by -1) than to a linguistic op-
eration of negation (reversal of truth value; Grisoni, Miller, &
Pulvermüller, 2017; Kaup & Zwaan, 2003; Tettamanti et al., 2008). It
would therefore be interesting to determine, using functional MRI,
whether the underlying brain circuits involve classical language areas
(left-hemispheric superior temporal sulcus and inferior frontal gyrus) or
the distinct math-responsive regions (bilateral parietal, inferior tem-
poral and dorsal prefrontal cortices) (Amalric & Dehaene, 2016, 2017).

Moreover, our mini-language is extremely simple compared to
natural languages: it contains a single syntactic operator, whose effect
is limited to the subsequent symbol, and does not involve long-distance
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relations or embeddings of the kinds that exist in natural language. As
such, it may be learnable by non-human primates, since recent studies
suggest that they can master grammars that involve local sequential
regularities extending to neighboring units (Fitch, 2004; Wilson, Smith,
et al., 2015). Wilson, Kikuchi et al. (2015) suggest that the macaque
brain regions involved in the processing of such rule-based sequences
are the counterparts of the ones associated with the initial stages of
syntactic processing in humans (Uhrig, Janssen, Dehaene, & Jarraya,
2016). There is, however, a debate as to whether human-specific lan-
guage areas such as Broca’s area can be activated by simple artificial
languages such as the local-global paradigm (Wang et al., 2015) or
require more complex human-like center-embedded grammars
(Bahlmann, Schubotz, & Friederici, 2008). Indeed, TMS and fMRI stu-
dies suggest an involvement of Broca’s area (and its right-hemispheric
homologue) in complex motor tasks involving sets of hierarchical rules
(Alamia et al., 2016; Clerget, Andres, & Olivier, 2013; Clerget, Poncin,
Fadiga, & Olivier, 2011; Koechlin & Jubault, 2006). Further studies will
determine whether the present paradigm suffices to reveal important
differences between human and non-human primates, or whether it
should be extended to syntactical operators that act at distance and
involve embedding.
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