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The study of the mechanisms of conscious processing has

become a productive area of cognitive neuroscience. Here we

review some of the recent behavioral and neuroscience data,

with the specific goal of constraining present and future

theories of the computations underlying conscious processing.

Experimental findings imply that most of the brain’s

computations can be performed in a non-conscious mode, but

that conscious perception is characterized by an amplification,

global propagation and integration of brain signals. A

comparison of these data with major theoretical proposals

suggests that firstly, conscious access must be carefully

distinguished from selective attention; secondly, conscious

perception may be likened to a non-linear decision that ‘ignites’

a network of distributed areas; thirdly, information which is

selected for conscious perception gains access to additional

computations, including temporary maintenance, global

sharing, and flexible routing; and finally, measures of the

complexity, long-distance correlation and integration of brain

signals provide reliable indices of conscious processing,

clinically relevant to patients recovering from coma.
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Introduction

Consciousness is the only real thing in the world and the

greatest mystery of all

Vladimir Nabokov, Bend Sinister (1947)

What brain mechanisms underlie our capacity to become

aware of a specific piece of information, while many
Current Opinion in Neurobiology 2014, 25:76–84 
others remain non-conscious? Considerable empirical

and theoretical progress has been made lately in answer-

ing this deceivingly simple question. This research

gained leverage when it was recognized that visual illu-

sions [1–3] and a great variety of other normal and

pathophysiological conditions such sleep, anesthesia,

blindsight or hemineglect provided empirical windows

into this phenomenon, by providing minimal contrasts

between conscious and non-conscious brain states [4].

Here we review the recent advances made possible by

this contrastive approach. We specifically focus on how

these findings inform present-day theories of conscious

processing. At present, there is no accepted compu-

tational theory of this function. Our hope is that the

present review may point to the key ingredients that will

lead to one.

Defining the terms
It is useful to start by separating the diversity of concepts

that the everyday term of ‘consciousness’ can refer to.

The content of consciousness refers to the specific infor-

mation that I am aware of at a given moment. For

instance, I am currently aware of reading these words,

but not of the music playing in the background (until I

attend to it). Conscious access is the process by which a

piece of information becomes a conscious content. Con-
scious processing refers to the various operations that can be

applied to a conscious content (as when multiplying two

numbers mentally). Conscious report is the process by

which a conscious content can be described, verbally or

by various gestures. Such reportability remains the main

criterion for whether a piece of information is or is not

conscious: by hypothesis, I can report something if and

only if I am aware of it.

A great variety of representations can be consciously

accessed, including perceptual states, abstract knowl-

edge, memories, plans, and other internal states (e.g.

feelings, confidence, and errors). Self-consciousness is a

particular instance of conscious access where the con-

scious ‘spotlight’ is oriented toward internal states.

The state of consciousness, associated with fluctuations in

wakefulness or vigilance, finally, refers to the brain’s very

ability to entertain a stream of conscious contents. During

normal wakefulness, any information may be consciously

accessed, but this ability is continuously modulated

according to the level of vigilance, and ultimately

vanishes during coma, vegetative state, anesthesia or

deep sleep. Although this review concentrates primarily

on the mechanisms of conscious access and conscious
www.sciencedirect.com
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processing, in a final section, we consider how what has

been learned about conscious access in normal subjects

generalizes to the detection of the state of consciousness

in brain-lesioned patients.

The boundaries of non-conscious processing
To clarify the nature of conscious processing, a first step

consists in delineating what it is not. Using masking [5],

crowding [6], inattention [7] or binocular rivalry [8],

images can be presented under conditions such that they

remain strictly invisible. Behavioral priming and brain

imaging can then reveal how deep these stimuli are

processed. Studies of non-conscious processing play an

instrumental role in refuting specific theories of con-

sciousness. The logic is simple: if a cognitive computation

or neural marker, proposed by some theory to be uniquely

associated with conscious processing, can be observed

under demonstrably non-conscious conditions, then that

theory is severely undermined.

Twenty years of research indicates that subliminal pro-

cessing can be quite deep. Many cortical areas can be

activated by an unseen stimulus, including areas of the

visual ventral [9] and dorsal pathways [10]. The brain non-

consciously recognizes the abstract identity of pictures,

words and faces [9,11,12�], the quantity attached to a

number symbol [10,13], the fact that two words are

related or synonymous [6,14,15], the emotional meaning

of a word [16�,17], or the reward value of a coin or an

arbitrary symbol [18,19,20��].

In recent years, the frontiers of non-conscious processing

have been pushed further. For instance, in chess experts,

a brief non-conscious flash of a chessboard suffices to

determine whether the king is in check [21]. Within the

language domain, the grammatical fit of a masked word

with the preceding sentence can be determined non-

consciously [22�]. Transitive inferences can also be

deployed non-consciously: after non-conscious exposure

to arbitrary word pairs such as ‘winter-red’ and ‘red-

computer’, word association effects generalize to non-

adjacent pairs (‘winter-computer’), a transitive link

mediated by the hippocampus [23]. As another example

of high-level computation, the approximate average of

four masked numbers can be extracted non-consciously

[13]. There is even a suggestion that multi-step oper-

ations such ‘9 � 5 + 2’ may be mediated non-consciously

[24], although this conclusion will require better control

over the stimuli and the degree of non-consciousness.

All in all, these findings refute the idea that non-conscious

processing stops at an early perceptual level: meaning and

value can clearly be assigned non-consciously. There is

also considerable evidence that attention can be deployed

and enhance processing even if its target remains non-

conscious [25–27]. At the brain level, attending to a

stimulus and becoming conscious of it have distinct
www.sciencedirect.com 
signatures that occur on distinct trials and at different

times [28–30]. For instance, by orthogonally manipulating

visibility and attention (using masked images presented

at the threshold for conscious perception such that half

were visible and half were invisible, and preceding them

by valid or invalid attentional cues), Wyart and colleagues

[29] found a double dissociation: attention, but not visi-

bility, modulated early occipital activity, while visibility,

but not attention, modulated later temporal and parieto-

frontal activity. Under some circumstances, greater spatial

attention may even lead to a reduced visibility [31��].
These findings refute theories that conflate attention and

consciousness. William James’ classical definition of

attention (‘the taking possession by the mind, in clear

and vivid form, of one out of what seem several simul-

taneously possible objects or trains of thought’) mixes up

conscious access proper (‘taking possession of the mind’)

with selection (‘one out of several’) which can be fully

non-conscious. Selective attention may facilitate con-

scious access, even when the attentional cue comes long

after the stimulus is gone [32�], but it operates largely

non-consciously.

Recent findings also invalidate the idea that the central

executive, which controls our strategies and inhibits

unwanted behaviors, always operates consciously. A

series of experiments with the go/no-go paradigm indicate

that an unseen visual cue can trigger inhibitory control

circuits in the pre-supplementary motor area and anterior

insula [33,34,35�,36]. Error detection [37�,38��] and task

switching [39�,40], which are typical executive functions,

can be triggered non-consciously. Even the maintenance

of a stimulus in working memory may remain above the

chance level for subliminal stimuli [41�] — although this

recent finding will need to be reconciled with the more

frequent observation that subliminal priming drops to

chance level after a second or less [42–44].

Overall, these findings support the view that virtually any

cerebral processor may operate in a non-conscious mode.

They challenge theories that associate conscious proces-

sing with a specific cognitive processor. For instance, the

hypothesis that conscious perception coincides with the

ability to deploy higher-order thoughts or metacognition

(the brain’s ability to represent its own knowledge states)

[45] does not bode well with evidence that self-monitor-

ing, error detection and confidence assignment partially

operate non-consciously [38��,46�,47].

Findings from subliminal research also eliminate some

physiological theories of conscious processing. It is now

clear that early changes in gamma band power (>30 Hz),

once postulated as a marker of consciousness, can be

evoked by a non-conscious stimulus [48��,49��] and do

not faithfully track variations in subjective reports [50].

Similarly, the views that recurrent interactions [51,52] and

information integration [53,54] are necessary and
Current Opinion in Neurobiology 2014, 25:76–84
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sufficient markers of conscious processing, although not

directly refuted, are made implausible by empirical find-

ings of non-conscious interactions between frontal and

occipital regions [55], non-conscious integration of

unseen visual contours [56�], unseen objects in an unseen

complex visual scene [57], or unseen words in the seman-

tic or syntactic context of other words [14,22�]. These

operations are slow (�220–260 ms for contour integration,

�400 ms for semantic integration), clearly involve integ-

ration of multiple sources, and are unlikely to occur in a

purely feedforward manner without recurrent inter-

actions, and yet they occur non-consciously. Similarly,

serial accumulation of evidence can occur without aware-

ness [58,59].

Conscious access as an accumulation of
evidence leading to an all-or-none ignition
What, if anything, remains unique to conscious proces-

sing? Although many cognitive operations can be partially

launched non-consciously, these operations rarely if ever

run to completion in the absence of consciousness. A

subliminal stimulus may induce above-chance perform-

ance, behavioral priming, and a small amount of brain

activity in narrowly defined brain networks, but these

measures often increase dramatically as soon as the sub-

ject reports seeing the stimulus, especially in high-level

areas [46�,60,61�]. Accumulation of evidence has been

demonstrated with non-conscious stimuli [59], but only

conscious stimuli cross the threshold beyond which an

overt strategy can be flexibly deployed [58].

Such findings vindicate the pre-theoretical idea that

consciousness possesses a threshold that separates sublim-

inal and supraliminal stimuli (limen is the Latin word for

threshold). Several theorists propose that conscious per-

ception occurs when the stimulus allows the accumu-

lation of sufficient sensory evidence to reach a threshold,

at which point the brain ‘decides’ whether it has seen

anything, and what it is [62,63]. The mechanisms of

conscious access would then be comparable to those of

other decisions, involving an accumulation toward a

threshold — with the difference that conscious percep-

tion would correspond to a global high-level ‘decision to

engage’ many of the brain’s internal resources, not just a

single effector [63]. The mathematical frameworks of

signal detection theory and Bayesian decision making

have been used to model subjective reports of seeing

in normal subjects and blindsight patients [64,65]. Neural

network models have also been proposed for how high-

order cortices might accumulate metacognitive evidence

about the state of other cortices, rather than about the

external world, leading to a confident feeling of seeing

[66].

Recurrent thalamo-cortical networks provide a simple

and generic implementation of elementary stimulus

categorization processes [67–69]. Recurrent NMDA
Current Opinion in Neurobiology 2014, 25:76–84 
connections impose slow accumulation dynamics and

multi-stable ‘all-or-none’ behavior, whereby the incom-

ing evidence either quickly dies out (corresponding to

subliminal processing) or is accumulated and amplified

non-linearly into a full-blown state of high-level activity.

This global ‘ignition’ has been proposed as a marker of

conscious perception [70]. Indeed, empirically, when

stimulus strength is varied, the early stages of non-con-

scious processing typically show a linear variation in

activation, whereas conscious access is often character-

ized by a late non-linear amplification of activation which

invades a distributed set of parietal, prefrontal and cin-

gulate areas [58,60,61, for extensive review, see 70–
72,73�,74]. In behavior, perceptual processing is continu-

ous for subliminal stimuli, but becomes categorical when

the stimulus is seen [75,76]. In EEG, MEG, and intra-

cranial recordings, conscious stimuli, compared to

matched non-conscious ones, induce a late (�300 ms)

and sudden increase in slow event-related potentials

(inducing a P3 wave on the scalp), gamma power and

long-range beta and gamma synchrony [48��,49��,77].

Specific components such as the error-related negativity

evoked after an erroneous motor response also follow this

‘all-or-none’ non-linear pattern [46�,78].

A direct relation between evidence accumulation and

conscious visibility was demonstrated in a recent MEG

experiment with gratings presented at threshold [79].

The subjective reports of seeing or not-seeing could be

predicted on a single trial basis as a sum of gamma power

present before the presentation of the stimulus (�300 to

�100 ms) and long after it (+250 to +450 ms). Thus,

whether a stimulus is detected seemed to be determined

by an accumulation of pre-stimulus bias (‘prior’) and

stimulus-evoked activation (‘evidence’) [see also 80].

Late ignition seems to provide a robust signature of

conscious access. The contrast between an early linear

variation in brain activity and a very late non-linear

ignition has even been observed in 5, 12 and 15-

month-old infants [81], leading to the tentative sugges-

tion that infants too enjoy a conscious perception of visual

stimuli, albeit at a much slower pace.

It remains debated, however, whether ignition is a unified

process or whether it can be decomposed into a series of

stages that correspond to pre-conscious, conscious and

post-conscious processes [82�]. The P3 wave may partly

reflect processes that unfold after conscious access, such

as executive attention, working memory updating, or the

preparation of a behavioral report. When these processes

are eliminated by making the stimulus irrelevant to the

current task, its conscious perception may correlate solely

with a transient posterior negativity of moderate size,

peaking around �300 ms [56�,83], although other studies

continue to observe a large and long-lasting effect

[84,85].
www.sciencedirect.com
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Conscious processing as global information
sharing
Global Neuronal Workspace (GNW) theory [2,86,87]

proposes that conscious access stems from a cognitive

architecture with an evolved function: the flexible sharing

of information throughout the cortex [4]. While non-

conscious stimuli are processed in parallel by specialized

cortical processors, conscious perception would be

needed in order to flexibly route a selected stimulus

through a series of non-routine information processing

stages. Global information sharing and routing would rely

on a set of interconnected high-level cortical regions

forming a ‘global workspace’ and involving primarily

the dorsolateral prefrontal cortex, but also additional hubs

in inferior parietal cortex, mid-temporal cortex, and pre-

cuneus, and now described as forming a ‘rich club’ net-

work [88,89].

Behavioral research supports this idea in various ways. A

subliminal prime often facilitates performance in a single

task, but this non-conscious performance drops to chance

level when the task requires a series of novel operations

that involve ‘piping’ the output of one process to the

input of another [90,91]. Likewise, a series of subliminal
Figure 1
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primes can have cumulative non-conscious effects on a

behavioral decision, but only conscious primes allow for

the development of subsequent serial strategies

[58,92,93].

The brain’s routing system is capacity-limited, and this

feature may explain the frequent failure of conscious

perception in a dual-task setting. Conscious processing

of a first target T1 causes a bottleneck on the routing of a

subsequent target T2, either by dramatically postponing

its processing (a phenomenon known as the ‘psychologi-

cal refractory period’, PRP) or by preventing its conscious

perception altogether (‘attentional blink’, AB). Recent

evidence confirms that PRP and AB are tightly related

phenomena that may occur within the same experiment

[94]. Like AB, PRP causes a loss of conscious perception:

the second target T2 is not only delayed, but also tempor-

arily unperceived, such that its subjective onset is dis-

placed to the moment when T1 processing finishes [95�].
The minimal condition for creating these effects is that

T1 is consciously perceived [96,97]. These effects have

been related to a global parietal and prefrontal network

[94,98], and have been partially captured in simulations of

spiking neurons [69,99] (Figure 1).
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In order to be globally shared, conscious information

should be represented by a stable and reproducible

brain-scale assembly for a minimal duration. This stability

criterion was explicitly tested in an fMRI study where

brain activity patterns were more reproducible across

trials for perceived than for unperceived stimuli [100].

Electro-encephalography and magneto-encephalography

confirm that conscious processing causes sustained brain

activity, often extending for several hundreds of milli-

seconds [29,84,85,101,102]. In intracranial recordings,

conscious stimuli, but not non-conscious ones, trigger a

sustained activation and the formation of a metastable

state of long-distance phase synchrony in the beta band

[48��]. Nevertheless, a debate remains, as some data

suggest that local synchrony and reverberation may suf-

fice for conscious perception [49��,103], while other

experiments indicate that long-distance synchrony be-

tween prefrontal and occipital cortex may exist even

under non-conscious conditions [55].

Consciousness as integrated information
According to Information Integration Theory (IIT)

[53,54], global synchrony and re-entry may be needed,

not just to globally share or broadcast a conscious

stimulus, but, more essentially, to create an integrated

representation of its various features. A precise math-

ematical formula (F is proposed to quantify the amount of

integration of a system composed of multiple parts). High

levels of F would be indicative of a conscious device

(whether biological or artificial). Any system would pos-

sess a small amount of F and therefore some degree of

consciousness (panpsychism). This formal framework is

however limited in its ability to make specific behavioral

and biological predictions. Indeed, F is impossible to

compute in practice (only approximations exist [104]).

Furthermore, this theory does not offer any neurophy-

siological mechanisms for why conscious perception fol-

lows a non-linear profile or why highly integrative

semantic processes can be triggered non-consciously, as

reviewed above.

A more modest proposal is that F and related quantities

provide one of many possible signatures of the state of

consciousness [104,105], simply because they reflect the

brain’s capacity to broadcast information in the global

neuronal workspace, and therefore to entertain a cease-

less stream of episodes of conscious access and conscious

processing [70]. Experimentally, mathematical measures

of the complexity and global integration of brain signals

do provide solid markers of the state of consciousness,

particularly when contrasting wakefulness with sleep or

anesthesia. Intracranial recordings in humans undergoing

propofol anesthesia indicate a dramatic and sudden frag-

mentation of neural activity, which remains locally orga-

nized but globally disintegrated [106��, see also 107],

possibly because prefrontal cortices are invaded by an

alpha-like rhythm [108]. Some of these effects of
Current Opinion in Neurobiology 2014, 25:76–84 
anesthetics are captured by a simple neuronal network

model [109,110].

Most importantly, integration and long-distance cortical

communications provide signatures of residual conscious-

ness that are clinically applicable to patients recovering

from coma. From behavior alone, the presence of con-

sciousness may be quite difficult to detect, and functional

MRI has revealed that a few patients in apparent vege-

tative state may, in fact, be fully conscious and ‘locked-in’

[111]. An exciting study indicates that the complexity of

EEG waves evoked by a single TMS pulse to the cortex

provides a strictly quantitative measure of the state of

consciousness, with a bimodal distribution separating the

awake state from sleep, anesthesia, coma or vegetative

state [112��]. Similarly, an EEG measure of the amount of

information shared by distant cortical sites provides a

highly sensitive discrimination of patients in vegetative

versus minimally conscious states, regardless of etiology

and time elapsed since injury [113��]. Both observations

suggest that global cortical communication provides an

excellent index of conscious processing, and are in agree-

ment with both GNW and IIT theories.

Conclusion
Consciousness research has truly come of age. Empiri-

cally, several candidate markers of conscious processing

are now available. Theoretically, we reviewed three

specific theoretical proposals that tentatively relate con-

scious processing, respectively, to global ignition, long-

distance broadcasting, and information integration.

These ideas are not necessarily incompatible. On the

contrary, considerable convergence exists to suggest that

firstly, conscious access triggers an all-or-none change in

the state of distributed cortical networks; secondly, con-

scious processing corresponds to a massive cortico-cortical

exchange of information, allowing flexible routing and

therefore the slow serial performance of novel and arbi-

trary tasks; and finally, the state of consciousness, that is

the brain’s very ability to host a ceaseless stream of such

all-or-none conscious episodes, rests upon the integrity of

long-distance cortico-cortical exchanges, which can be

continuously modulated by lesions or anesthetics and is

reflected by electrophysiological indices of brain-wide

information sharing.

Future research should investigate whether the proposed

markers of conscious processing are generic and valid in

all conditions, or whether some are more diagnostic than

others. Above all, more detailed computational theories,

framed as large-scale simulations of spiking neurons, will

be needed to understand the conditions of their emer-

gence in experimental recordings.
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