
THE YEAR IN COGNITIVE NEUROSCIENCE 2009

Origins of Mathematical Intuitions

The Case of Arithmetic

Stanislas Dehaenea,b,c

aINSERM, Cognitive Neuro-imaging Unit, IFR 49, Gif sur Yvette, France
bCEA, NeuroSpin center, IFR 49, Gif sur Yvette, France
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Mathematicians frequently evoke their “intuition” when they are able to quickly and
automatically solve a problem, with little introspection into their insight. Cognitive
neuroscience research shows that mathematical intuition is a valid concept that can
be studied in the laboratory in reduced paradigms, and that relates to the availability
of “core knowledge” associated with evolutionarily ancient and specialized cerebral
subsystems. As an illustration, I discuss the case of elementary arithmetic. Intuitions of
numbers and their elementary transformations by addition and subtraction are present
in all human cultures. They relate to a brain system, located in the intraparietal sulcus of
both hemispheres, which extracts numerosity of sets and, in educated adults, maps back
and forth between numerical symbols and the corresponding quantities. This system is
available to animal species and to preverbal human infants. Its neuronal organization
is increasingly being uncovered, leading to a precise mathematical theory of how we
perform tasks of number comparison or number naming. The next challenge will be to
understand how education changes our core intuitions of number.
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What then is mathematics if it is not a unique, rigorous,

logical structure? It is a series of great intuitions carefully

sifted, and organized by the logic men are willing and able

to apply at any time.

—Morris Kline, Mathematics: The Loss of Certainty

(p. 312)

Introduction

All great mathematicians appeal to their
“intuition.” One of the most famous propo-
nents of this concept was the French mathe-
matician Jacques Hadamard, who published a
systematic inquiry into his fellow mathemati-
cians’ practices (Hadamard 1945). Hadamard
reported that many major mathematical dis-
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coveries were preceded by long periods of un-
conscious “incubation” followed by sudden in-
sight. He also quoted Einstein’s well-known
introspection: “Words and language, whether
spoken or written, do not seem to play any
role in my thinking mechanisms. The mental
entities that serve as elements of my thought
are certain signs or images, more or less clear,
that can ‘at will’ be reproduced or combined.”
Henri Poincaré saw intuition as the foundation
upon which the mathematical enterprise was
based. Davis and Hersh, in their description
of “the mathematical experience,” went even
further (and probably too far) by viewing intu-
ition as the single faculty that allows us to do
mathematics: “In the realm of ideas, of mental
objects, those ideas whose properties are repro-
ducible are called mathematical objects, and
the study of mental objects with reproducible
properties is called mathematics. Intuition is the
faculty by which we can consider or examine
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these (internal mental) objects” (Davis, Hersh,
& Marchisotto 1995, p. 399).

The problem with these statements is that
they fail to define what an intuition is. Indeed,
the concept, like many other theoretical con-
structs of folk psychological origin (“attention,”
“association,” “consciousness,” and others) re-
mains suspect in present-day cognitive neuro-
science because it is unclear whether it corre-
sponds to a well-characterized mental entity or
process. I would like to argue, however, that
recent research in numerical cognition fleshes
out the concept of intuition, at least within the
small domain of elementary arithmetic. The
results indicate that a sense of number is part
of Homo sapiens’ core knowledge, present early
on in infancy, and with a reproducible cerebral
substrate. It permits a rapid evaluation of (1) ap-
proximately how many objects are present in a
scene, (2) whether this number is more or less
than another number, and (3) how this num-
ber is changed by simple operations of addition
and subtraction. Its operation obeys three crite-
ria that may be seen as definitional of the term
“intuition”: it is fast, automatic, and inaccessi-
ble to introspection. These properties, far from
implying that this intuition is inaccessible to
scientific understanding, constitute a decipher-
able signature of intuition, and we shall see that
a simple but precise quantitative mathematical
model can be proposed for some of the simplest
aspects of their operation.

It will be important, in the following, to
clearly distinguish symbolic and nonsymbolic
aspects of elementary arithmetic. Symbolic
arithmetic deals with how we understand and
manipulate numerals and number words such
as “five” or “twenty.” Nonsymbolic arithmetic
is concerned with how we grasp and com-
bine the approximate cardinality or “numeros-
ity” of concrete sets of objects (such as visual
dots, sounds, and actions). Our core knowl-
edge of arithmetic is essentially nonsymbolic—
the availability of number symbols varies across
cultures and arises late in human development.
Nevertheless, number symbols, once available,
become strongly attached to the corresponding

nonsymbolic representations of numbers and,
thereafter, a form of “second-order intuition”
seems to develop, as the links between symbols
and quantities themselves become fast, auto-
matic, and unconscious. In the second part of
this chapter, we shall review current evidence
concerning this symbol grounding problem.

Arithmetic Intuition: A
Cross-Cultural Universal

A recently discovered effect of numerical
adaptation (Burr & Ross 2008) provides an ex-
cellent introduction to nonsymbolic numerical
intuition. Stare at the fixation point in Figure 1,
which has 10 dots at left and 100 dots at
right. Then after 30 sec of adaptation, shift to
Figure 2. You should have the strong impression
that the left display is more numerous than the
right one, although both have exactly 40 dots.
You may also have the erroneous impression
that there are much less than 40 dots in both
cases (see Izard & Dehaene 2008). Both adap-
tation and underestimation effects have been
found to resist extensive manipulation of the
non-numerical parameters of the display, thus
evading simple explanations in terms of size,
density, or contrast.

At the moment of this writing, why adap-
tation can have such a profound effect on
numerosity estimates remains largely unex-
plained. Yet the fact that numerical percepts
impose themselves upon us so immediately,
automatically, and without conscious control
(even if we know that the numbers are equal)
points to the operation of a special and largely
automatic processing system. As noted by Burr
and colleagues, “Just as we have a direct visual
sense of the reddishness of half a dozen ripe
cherries, so we do of their sixishness.”

Cross-cultural research suggests that this
ability is present in humans without mathe-
matical training. Although number words fig-
ure among the most frequent lexical items and
are present in many languages, it is still possi-
ble to find aboriginal, Amazonian or African
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Figure 1. Numerosity adaptation. Stare at the fixation cross for 30 sec, then see Figure 2.

Figure 2. Numerosity adaptation. After staring at Figure 1 for 30 sec, you should experi-
ence the strong impression that the left display is more numerous than the right, although they
are actually identical (after Burr & Ross 2008).

cultures with a reduced lexicon for number,
sometimes as limited as to include only words
for “one,” “two,” and “many.” In spite of this
linguistic limitation, and of their frequent lack
of access to education, these people exhibit a
remarkable nonverbal competence for elemen-
tary arithmetic—keeping in mind that their
knowledge is approximate rather than exact.
Peter Gordon (2004) observed how the Pi-
rahã, whose lexicon stops at two, could approx-
imately match two numerosities. They could
not perform an exact match, however (appar-
ently not even with the smallest numbers, 1 and
2), leading Gordon to claim that their numeri-
cal cognition was “incommensurate” with ours.
This terminology appears misleading, however,
because on average their matching responses

were almost perfectly linearly correlated with
the true numerosity—with a standard devia-
tion that also increased in direct proportion to
the inferred numerosity.

Pierre Pica, Véronique Izard, Cathy Lemer,
and I studied the Mundurucu, another Ama-
zonian group that has number words up to five
(Pica, Lemer, Izard, & Dehaene 2004). We dis-
covered that Mundurucu adults and even chil-
dren possess an excellent capacity to discrim-
inate two sets based on their number, decide
which is more numerous, or even approxi-
mately add or subtract two such numerosities–
even with numerosities up into the 50s and
more, way beyond their naming range. Their
psychophysical behavior was qualitatively sim-
ilar to that of Western students: both were
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determined by Weber’s law, which states that
the minimal difference between two numbers
that leads to a fixed level of discrimination
varies in direct proportion to the size of the
numbers. Weber’s law has been observed with
a great variety of perceptual continua such as
pitch, loudness, or brightness. Its observation in
the number domain further strengthens the hy-
pothesis that arithmetical intuition starts within
a basic perceptual system for estimating ap-
proximate number. Obviously, then, intuitions
concerning the cardinality of sets are available
to isolated adults, even in the absence of formal
education and a sophisticated mathematical
language.

Recently, Brian Butterworth and his col-
leagues extended this cross-cultural research
to a group of 4- to 7-year-old indigenous Aus-
tralian children (Butterworth, Reeve, Reynolds,
et al. 2008). Using one-to-one matching tasks
similar to Gordon’s, but extended to include
cross-modal addition and sharing conditions,
they observed a high level of performance that
was indistinguishable from that of English-
speaking children. Somewhat controversially,
they concluded that concepts of exact number
are already available to both groups, regardless
of language. The data, however, indicate only
approximate performance, subject to Weber’s
law, with a rather sharp drop for numbers above
three, suggesting a contribution from both
estimation and subitizing (Butterworth et al.
2008, Figs. 3 and 4). It is true that cross-modal
matching performance remained relatively
high even with numbers 5 and above, but in
the absence of more knowledge about the chil-
dren’s education and the availability of finger or
body pointing symbols in this culture, it is hard
to reach a firm conclusion as to whether the re-
sults reflected a genuine grasp of exact number
in the absence of education, especially given
that the matching task lends itself to a variety
of spatial cueing strategies. Uncontroversially,
however, all cross-cultural studies point to the
fact that approximate number is an intuition
available to humans regardless of language and
education.

Intuitions of Numbers in Infancy
and Early Childhood

Piaget’s influential research, summarized in
The Child’s Conception of Number (1952), initially
suggested that young children do not have any
stable, invariant representation of number, and
that knowledge of arithmetic emerges slowly
as a logical construction. Less than 30 years
later, Rochel Gelman and Randy Gallistel’s
work, summarized in The Child’s Understanding

of Number (1978), played an instrumental role in
overturning the Piagetian view. Gelman and
Gallistel showed that even preschoolers had
intuitions in arithmetic, since they could de-
tect unexpected changes in small numerosities
(the “magic” experiments) or violations in the
counting routine. From this point, it was only
a small leap to ask whether infants also have a
sense of number (Starkey & Cooper 1980). To-
day, a large set of behavioral studies using habit-
uation and violation-of-expectancy paradigms
has revealed a clear sensitivity to large num-
bers in 4- to 6-month-old infants. For instance,
infants discriminate when the numerosity of a
set unexpectedly changes from 8 to 16 dots or
vice-versa, even when non-numerical parame-
ters such as density and total surface are tightly
controlled (Xu & Spelke 2000). Infants also de-
tect violations of approximate addition and sub-
traction events. For instance, upon seeing five
objects being hidden behind a screen, then an-
other five objects being added, they appear to
expect 10 objects and express a form of sur-
prise through longer looking times when the
screen collapses and only five objects are re-
vealed (McCrink & Wynn 2004; Wynn 1992a).

In the range of small numbers one, two,
and three, the issue of numerical competence
in infancy has been subject to much more
debate. Initial observations suggested numer-
ical discrimination in infants and even in new-
borns (Antell & Keating 1983; Bijeljac-Babic,
Bertoncini, & Mehler 1991). Further studies
with tighter controls for non-numerical param-
eters, however, failed to replicate these findings
and suggested that performance was driven by
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low-level confounds such as the total amount of
stuff (Feigenson, Dehaene, & Spelke 2004; Mix,
Levine, & Huttenlocher 1997; Simon 1999;
Xu & Spelke 2000). A resolution of this de-
bate now seems to be in sight. The newer re-
sults indicate that infants can attend to either
numerical or non-numerical parameters, and
do so to a variable extent depending on the
experimental design and, particularly, on the
variability of these parameters in the stimu-
lus set. For instance, Feigenson (2005) demon-
strated that infants attend to visual numerosity,
even in the range from one to three objects, as
long as the sets comprise highly distinctive ob-
jects rather than identical replicas of the same
object. Extensive recent work by Sara Cordes
and collaborators now suggests that number is
indeed available to infants, even in the pres-
ence of variability in other cues. Cordes and
Brannon (2008) go as far as to suggest that,
for infants, using number is easier than using
continuous extent, in the sense that a smaller
proportional amount of change is required for
infants to detect changes in the former than in
the latter. A recent study using event-related
potentials, to be further detailed below, also
indicates discrimination of numbers 2 versus
3 in the absence of non-numerical confounds
(Izard, Dehaene-Lambertz, & Dehaene 2008).

To what extent are these demonstrations of
numerosity discrimination actually relevant to
subsequent mathematical intuitions? Although
it has long been proposed that infants’ numeri-
cal discrimination abilities provide a foundation
on which children base their subsequent un-
derstanding of the number domain (Dehaene
1997), until recently there was little direct em-
pirical support for this suggestion. Recently,
however, a behavioral study in preschoolers
demonstrated that early arithmetic intuitions
are translated into higher-than-chance perfor-
mance in school-relevant symbolic arithmetic
problems (Gilmore, McCarthy, & Spelke 2007).
Gilmore, McCarthy, and Spelke gave 5- and 6-
year-olds problems such as “Sarah has 21 can-
dies, she gets 30 more, John has 34 candies—
who has more?” The problems were simultane-

ously presented both orally, as spoken numer-
als, and in writing as Arabic numerals. How-
ever, note that the participants were preschool-
ers and had therefore received no training with
numbers of that size, nor with the concepts
of addition or subtraction. Nevertheless, they
spontaneously performed much better than
chance (60%–75%), regardless of their socio-
economic origins. Performance was approxi-
mate and depended on the ratio of the two
numbers, again a clear signature of Weber’s
law. Importantly, variability in performance
was predictive of achievement in the school’s
curriculum.

Similarly, Holloway and Ansari (2008) re-
cently reported, in slightly older children aged
from 6 to 8 years, that the variability in the dis-
tance effect during number comparison is pre-
dictive of mathematics achievement, but not of
reading achievement. Finally, Halberda et al.
(2008) showed a tight correlation between per-
formance in nonsymbolic number compari-
son and achievement scores in mathematics
(but not other domains) throughout the school
curriculum. Altogether, and although a direct
causal influence has not yet been demonstrated,
those results suggest that a grasp of approxi-
mate numerosity and of distance relations be-
tween numbers, grounded in Weber’s law, may
govern the subsequent understanding of sym-
bolic arithmetic.

The emphasis on the presence of early intu-
itions in young children should not be confused
with a naı̈ve nativist view of numerical devel-
opment, according to which the foundations of
arithmetic would all be present shortly after the
birth. Clear limits on intuitions of arithmetic
are evident around 2.5 to 4 years of age, when
children begin to acquire number words. For a
long period, children may know the meaning
of the word one (for instance showing an ability
to provide just one object or to name a set of
numerosity one), but not the meaning of other
numbers two, three, and above (for instance grab-
bing a random number of objects when asked
to provide two) (Wynn 1992). Children slowly
learn to map number words one, two, three, and
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four to their corresponding quantities one by
one, until suddenly they understand that each
word maps onto a different number. It may
take them at least another 6 months before
they understand that larger number words such
as “six,” “eight,” and “ten” map onto distinct
quantities, and begin to grasp their order rela-
tions (Le Corre & Carey 2007). It is not until
the age of five that they understand that a word
such as “eight,” if it applies to a set, continues
to apply after the objects are shuffled but ceases
to apply if the set is increased by one, doubled,
or halved (Condry & Spelke 2008; Lipton &
Spelke 2006; Sarnecka & Gelman 2004).

Exactly how children eventually acquire
higher-level intuitions of exact arithmetic re-
mains a matter of intense theoretical debate
(for specific proposals, see Gelman & Butter-
worth 2005; Le Corre & Carey 2007; Nunez &
Lakoff 2000; Rips, Bloomfield, & Asmuth 2008;
Spelke 2003). The intensity of this discussion
is inversely proportional to the quality of the
data: in truth, we know next to nothing about
the psychological or neural structures that un-
derlie our understanding of the basic principles
of formal arithmetic such as successor function,
commutativity, infinity, or induction. At the end
of this review, we will briefly consider a tenta-
tive proposal for how the acquisition of exact
number concepts (e.g., exactly six) is encoded
at the neural level. For present purposes, how-
ever, we focus of the consensus area, which is
that preschoolers and even infants, tested with
nonsymbolic displays of numerosity, exhibit ex-
cellent performance even in subtle tests of com-
parison, addition, and subtraction (Barth et al.
2006). This early ability points to a particular
cerebral substrate, to which we now turn.

Cerebral Networks
of Number Sense

Calculation and the Intraparietal Area

The first imaging studies of calculation, using
single photon emission computerized tomogra-

phy (SPECT), positron emission tomography
(PET), and functional magnetic resonance
imaging (fMRI), quickly pointed to a remark-
able fact: whenever adults calculate, a re-
producible bilateral parietal activation is ob-
served (Appolonio et al. 1994; Dehaene et al.
1996; Roland & Friberg 1985). The use of
single-subject fMRI demonstrated that, al-
though interindividual variability is somewhat
larger than in studies of reading or face per-
ception, the horizontal segment of the intra-
parietal sulcus (hIPS) is always consistently
activated whenever adults compute simple
comparison, addition, subtraction, or multipli-
cation with Arabic numerals (Chochon, Co-
hen, van de Moortele, et al. 1999). Figure 3
shows the location of this region relative to
other landmark areas of the human parietal
lobe.

Initial studies probed the exact nature of the
contribution of this region to the processing
of numbers presented as Arabic numerals or as
number words. Intraparietal activation was ob-
served during a great variety of number-related
tasks, including calculation but also larger–
smaller comparison (Pinel, Dehaene, Riviere,
et al. 2001) or even the mere detection of a digit
among colors and letters (Eger, Sterzer, Russ,
et al. 2003). The intraparietal region seems to
be associated with an abstract, amodal repre-
sentation of numbers inasmuch as it can be
activated by numbers presented in various cul-
turally learned symbolic notations such as Ara-
bic numerals and spelled-out or spoken num-
ber words (Eger et al. 2003). Similar results
have been consistently observed in experiments
with adults from various countries and cultures
including France, UK, USA, Austria, Singa-
pore, China, and Japan. In a direct compar-
ison of Chinese and English speakers, Tang
et al. (2006) observed intraparietal activation
at a similar location in the IPS during calcula-
tion and comparison tasks. They did however
observe cultural variation in other surrounding
areas, particularly in left premotor cortex (more
active in Chinese subjects) and left perisylvian
areas (more active in English subjects).
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Figure 3. Anatomical and functional organization of human parietal lobe areas. (A) Activations reported
in a study of six parietal functions in the same subjects (calculation, language, saccades, attention, pointing,
and grasping tasks) (for details, see Simon et al., 2004; Simon et al., 2002). Calculation activates the
horizontal segment of the intraparietal sulcus (hIPS, shown in red). In all subjects, the hIPS lies posterior to
an area activated by grasping movements, thought to be a plausible human homolog of monkey anterior
intraparietal area AIP (hAIP, shown in green). The hIPS is also anterior to a set of areas activated by saccadic
eye movements (shown in blue, pink, and purple), one of which might be the human homolog of monkey
lateral intraparietal area (hLIP). (B) Finer-grained study of the relationship between calculation, saccades,
and multisensory motion in humans (Hubbard, Pinel, Jobert, et al. 2008). In macaque monkeys, tactile facial
motion, and visual flow fields activate neurons in the ventral intraparietal area (VIP), where neurons tuned to
number are also found. The same stimuli identify a plausible human homolog of VIP (hVIP), which overlaps
partially with the hIPS activation observed during symbolic calculation, but is consistently mesial to it.

Linguistic and Nonlinguistic Networks
for Arithmetic

It is likely that some of these additional, ex-
traparietal activations relate to spoken or writ-
ten language networks that are thought to sup-
plement the core intraparietal system in order
to perform exact symbol-based calculations or
to retrieve arithmetic facts from linguistic mem-
ory. fMRI studies have indeed demonstrated
that the intraparietal sulcus is most activated
during tasks that call upon quantity manip-
ulations, particularly approximation of addi-

tions or subtractions, whereas another set of
areas involving the left angular gyrus and/or
surrounding perisylvian cortices shows greater
activation during operations of exact calcula-
tion that depend on explicit education and of-
ten rely on language-specific rote memorizing
(Dehaene, Spelke, Pinel, et al. 1999; Lee 2000;
Venkatraman, Siong, Chee, & Ansari 2006;
Zago et al. 2008). During training with a given
set of arithmetic facts, activation progressively
shifts from the intraparietal region to the an-
gular gyrus as subjects commit these facts to
verbal memory (Delazer et al. 2003; Ischebeck
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et al. 2006). Altogether, therefore, those results
mesh well with the notion of a core system of
number, associated with the bilateral intrapari-
etal cortex and invariable across culture and
education, and a distinct perisylvian circuit as-
sociated with language- and education-specific
strategies for storing and retrieving arithmetic
facts (Dehaene & Cohen 1995). Double disso-
ciations following brain lesions further support
this basic distinction: focal intraparietal lesions
can cause drastic impairments in number sense,
often affecting operations as simple as addition,
subtraction, comparison or numerosity estima-
tion, while lesions to perisylvian cortices or left
basal ganglia generally impact on rote opera-
tions such as the multiplication table (Cipolotti,
Butterworth, & Denes 1991; Lee 2000; Lemer,
Dehaene, Spelke, et al. 2003).

Instrumental in characterizing the role of
the intraparietal sulcus in core number sense
have been neuroimaging studies that relied on
nonsymbolic presentations of number as sets
of dots or as series of tones (Castelli, Glaser, &
Butterworth 2006; Piazza, Izard, Pinel, et al.
2004; Piazza, Mechelli, Price, et al. 2006;
Piazza, Pinel, Le Bihan, et al. 2007) Attending
to the numerosity of such stimuli suffices to
induce a strong bilateral activation of the IPS
(Castelli et al. 2006; Piazza et al. 2006). Even
passively looking at a set of dots suffices to
encode its numerosity and adapt to it, so that
the intraparietal sulcus later shows a rebound
fMRI response when the number is changed
by a sufficient amount (Piazza et al. 2004).
This fMRI adaptation method has also been
used to demonstrate a convergence of symbolic
and nonsymbolic presentations of numbers
toward a common representation of quantity
in the IPS (Piazza et al. 2007).

Early Parietal Response to Number
in Infancy

When in development does the parietal cor-
tex first begin to respond to number? fMRI
and event-related potentials (ERPs) have shown
that number-related parietal activations, par-

ticularly in the right hemisphere, are already
present in 4-year-old children as they attend
to the numerosity of sets (Cantlon, Brannon,
Carter, et al. 2006; Temple & Posner 1998).
Thus, the parietal mechanism of numerosity
extraction seems to be already functional prior
to arithmetic education in humans. As noted
above, behavioral studies of numerical discrim-
ination imply the presence of a functional nu-
merosity processing system at an even ear-
lier age, during infancy. Indeed, Berger et al.
(2006) measured ERPs in 7-month-old infants
as they viewed short movies depicting correct
and incorrect nonsymbolic arithmetic opera-
tions (1 + 1 = 2 vs. 1 + 1 = 1). The de-
tection of these arithmetic violations was ac-
companied by a clear negativity recorded over
anterior electrodes. This reaction was similar
to the classical error-related negativity, thought
to arise from the anterior cingulate cortex,
which indexes error detection and correction.
Presumably thus, this experiment reflected nu-
merical competence only indirectly, without di-
rectly pinpointing to the cortical origins of this
competence.

To visualize more directly the brain’s re-
sponses to number in infants, we recorded
event-related potentials from 3-month-old in-
fants, while they were presented with a con-
tinuous stream of sets of objects (Izard et al.
2008). Within a given run, most sets had the
same numerosity and were made of the same
objects (e.g., repeatedly presented various im-
ages of three ducks). However, occasionally a
test image would appear that could differ from
the habituation images in either number, ob-
ject identity, or both. Across different groups
of subjects, the numbers involved ranged from
2 versus 3 to 4 versus 8 or 4 versus 12. In
all cases, event-related potentials revealed that
the infants’ brain detected the two types of
changes (number vs. object), yet with different
underlying circuitry. Source reconstruction, us-
ing an accurate model of the infant’s cortical
folds, suggested that the right parietal cortex
responded to numerical novelty, while the left
occipitotemporal cortex responded to object
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novelty. This ventral/dorsal double dissocia-
tion is similar to what has been observed in
adults and 4-year-olds (Cantlon et al. 2006;
Piazza et al. 2004): fMRI adaptation shows
that the fusiform gyrus reacts to changes in
object identity but not in number, and while
the parietal regions react to changes in num-
ber but not in object identity. Thus, the results
suggest that the well-known ventral–dorsal dis-
sociation between object identity (“what”), ver-
sus object location, size, and motor affordance
(“where” and “how”) (Goodale & Milner 1992)
may already be in place at 4 months of age,
and that number belongs to the parameters
that are quickly extracted by the dorsal parietal
pathway even in infants.

Specificity of the Intraparietal Region

An important and only partially resolved is-
sue concerns whether any part of the intra-
parietal is uniquely specialized for number. In
the present state of knowledge, the answer is a
nuanced one. The intraparietal sulcus clearly
contains a specialized subsystem for number
in the sense that its activation during calcula-
tion cannot be reduced to simpler sensorimotor
functions such as attention or response plan-
ning. However, there does not seem to be a sin-
gle, isolated piece of cortex that responds solely
to number—parameters of object size and lo-
cation also seem to be coded by intermingled
neuronal circuits distributed within the same
general area of IPS.

As far as the first point is concerned, the
parietal activation putatively associated with
core “number sense” occupies a fixed location
relative to other parietal areas involved in
sensory, motor, and attentional functions (see
Fig. 3). Our group used fMRI to study the
cerebral organization of six different functions
previously associated with parietal systems:
finger pointing, manual grasping, visual
attention orienting, eye movement, written
word processing, and calculation (Simon et al.
2004; Simon, Mangin, Cohen, et al. 2002). All
subjects showed a reproducible geometrical

layout of activations associated with these func-
tions. Most notably, activation uniquely evoked
by calculation was observed in the depth of
the intraparietal sulcus and was surrounded
by a systematic front-to-back arrangement of
activation associated with grasping, pointing,
attention, eye movement, and language-related
activations. The systematicity of this organi-
zation was confirmed by subsequent research
using more selective experiments specifically
designed to isolate grasping, saccade, and
attention-related functions (for review, see
Culham, Cavina-Pratesi, & Singhal 2006).

As concerns the second point, several studies
have now contrasted intraparietal activations
during judgments of number versus other con-
tinuous dimensions such as physical size, loca-
tion, angle, and luminance (Cohen Kadosh &
Henik 2006; Cohen Kadosh et al. 2005; Fias,
Lammertyn, Reynvoet, et al. 2003; Kaufmann
et al. 2005; Pinel, Piazza, Le Bihan, et al. 2004;
Zago et al. 2008). The results indicate that IPS
activations do not cluster neatly into distinct
regions specific for a given quantitative param-
eter. Rather, the activations show considerable
overlap. This overlap is particularly strong for
number and location (Zago et al. 2008) and for
number and size (Kaufmann et al. 2005; Pinel
et al. 2004), although a partial subspecializa-
tion for number processing is occasionally re-
ported (Cohen Kadosh et al. 2005). There is
also considerable overlap between the activa-
tions induced number and letter comparisons
(Fias, Lammertyn, Caessens, et al. 2007).

Two interpretations of these overlapping ac-
tivations have been proposed. Several authors
have proposed that the intraparietal sulcus ac-
tivation during arithmetic reflects a general
function that is not specific to numbers (Fias
et al. 2007; Shuman & Kanwisher 2004; Walsh
2003). Vincent Walsh, for instance, proposes
that the parietal lobe contributes to a “gener-
alized magnitude system,” which encompasses
representations of space, time, and number. Al-
ternatively, and while not denying that mag-
nitude manipulation and transformation may
be an overarching function of parietal-lobe
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areas, my colleagues and I have proposed that
the overlapping activation need not reflect a
lack of neural specialization. Rather, analog
quantities such as number, location, size, lu-
minance, or time may well be coded by neu-
ronal assemblies that are specialized, yet inter-
mixed within the same voxels (Pinel et al. 2004).
Under this interpretation, it may be wrong
to generalize to parietal cortex the model of
extreme specialization and discrete “modules”
with sharp boundaries that emerged from stud-
ies of the fusiform face responses (Kanwisher,
McDermott, & Chun 1997; Tsao, Freiwald,
Tootell, et al. 2006). Rather, neuronal popu-
lations coding for number would be highly dis-
tributed in the intraparietal sulcus and would
be intertwined and overlapping with represen-
tations of other quantitative parameters. Al-
though the specialization debate is still far
from being settled, as we shall now see, recent
monkey neurophysiology nicely supports the
concept of overlapping but specialized neu-
ral populations (Tudusciuc & Nieder 2007, see
below).

Neural Codes for Number
in the Macaque Monkey

Intraparietal Neurons Tuned
to Numerosity

Human neuroimaging studies predicted that
if a precursor of human numerical abilities
existed in monkeys it might lie in the depth
of the intraparietal sulcus, anterior to regions
involved in memorized eye movements (plau-
sibly relating to monkey lateral intraparietal
area LIP) and posterior to regions involved in
grasping objects (plausibly relating to monkey
anterior intraparietal area AIP) (Simon et al.
2002, see Fig. 3). Indeed, in the same year,
two independent groups of electrophysiologists
working in the awake macaque monkey iden-
tified number-coding neurons within and near
the intraparietal sulcus (Nieder, Freedman, &
Miller 2002; Nieder & Miller 2004; Sawamura,
Shima, & Tanji 2002). Although similar neu-
rons were also found in the prefrontal cor-

tex, PFC neurons responded with a longer la-
tency and showed greater delay-related activity,
suggesting that the parietal neurons constitute
a primary numerosity code, which prefrontal
neurons held on-line during the delayed match-
to-sample task.

The monkey intraparietal neural code for
numerosity may be the evolutionary precursor
onto which the human invention of arithmetic
encroached. First, the analogy in cerebral lo-
cation is striking. Numerosity-tuned neurons
are mostly found in the depth of the intra-
parietal sulcus and often show visual flow-
field responses, compatible with a location in
ventral intraparietal area VIP (Tudusciuc &
Nieder 2007). Likewise, human fMRI stud-
ies have located a plausible homolog of area
VIP (Bremmer et al. 2001; Sereno & Huang
2006) at a location close to and overlapping
with that of number-related responses (see
Hubbard, Piazza, Pinel, et al. 2005). Recently
our group further attempted to clarify the ho-
mologies between numerical processing regions
and macaque areas LIP and VIP (Hubbard
et al., submitted). To explore this question, we
used physiologically inspired localizer tasks of
saccadic eye movement, visual flow fields, and
tactile face stimulation to identify plausible hu-
man homologs of LIP and VIP (see Fig. 3). We
then examined the topographical relations be-
tween these activations and calculation-related
activations. We also measured voxel-by-voxel
correlations between these spots of activation.
The results indicate that the hIPS activation
during symbolic calculation overlaps partially
with the human homolog of area VIP (though
it is generally more lateral), suggesting a par-
tial homology between human and macaque
parietal regions (see Fig. 3).

The profile of response of these neurons also
fits with the code for numerosity inferred from
human studies. The neurons studied by Nieder
and Miller are tuned to a particular numeros-
ity (Nieder & Merten 2007; Nieder & Miller
2003, 2004). For instance it is possible to find
some neurons that show a peak of firing for
numerosity 1, another set for numerosity 2,
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3, . . . all the way to numbers in the 30s. Fur-
thermore, the tuning curves of these neurons
show Gaussian variability on a log scale. For
instance, neurons that show a firing peak when
four objects are present also respond to three
or five objects, and much less to one or to 10
objects. Collectively, these neurons form a dis-
tributed representation subject to Weber’s law:
each number is not coded in an exact manner,
but only approximately and with an impreci-
sion that increases linearly with number. The
log-Gaussian neural code that was identified by
Nieder and Miller in the macaque monkey is
identical to the representation thought to un-
derlie numerical judgments in human subjects,
as derived either from behavioral research, as
mentioned earlier, or from fMRI adaptation
studies (Piazza et al. 2004, 2007).

Recent studies from Andreas Nieder’s labo-
ratory have further clarified the extent to which
this code is abstract and specific to the number
domain. Initially studies used only visual sets
of simultaneously presented objects, but recent
research has shown that, in some neurons at
least, the code is abstract enough to respond
to both sequential and simultaneous presen-
tations of number (Nieder, Diester, & Tudus-
ciuc 2006). Furthermore, at this single-neuron
level, the code appears to be specific for num-
ber. Number neurons maintain their numeri-
cal selectivity in the face of considerable vari-
ation in the size, location, and nature of the
objects in the set (Nieder et al. 2002). Con-
versely, distinct populations of neurons code for
line length (Tudusciuc & Nieder 2007). These
two types of neurons are intermingled within
the same areas of the IPS, and can some-
times be recorded under the same electrode
tip. Again, this distributed overlapping organi-
zation of multiple neural codes for quantitative
dimensions is very similar to that inferred from
human fMRI (Pinel et al. 2004).

Multiple Codes for Number

Recently, Roitman et al. (2007) uncovered
another type of neural code for numerosity in

area LIP. Neurons in LIP behave differently
from the IPS neurons discovered by Nieder
and Miller in several respects. First, LIP neu-
rons are not tuned to number. Rather, their
firing rate varies monotonically with numeros-
ity, either increasing or decreasing sharply with
the logarithm of the number of objects in the
neuron’s receptive field. Second, these neurons
have limited receptive fields and thus respond
solely to the local numerosity within a certain
retinotopic area, not to the total numerosity
across the whole visual field.

Why would two quite distinct codes—
monotonic versus tuned cells—coexist in the
same individual? One possibility is that the
monotonic cells are needed in order to compute
the tuned-cell representation, so that mono-
tonic and tuned codes would constitute two
distinct stages in the computation of an in-
variant numerical representation. Jean-Pierre
Changeux and I have presented a theoreti-
cal model of how numerosity can be extracted
from visual displays (Dehaene & Changeux
1993), later elaborated by others (Verguts &
Fias 2004; Verguts, Fias, & Stevens 2005). Our
model illustrates how approximate numeros-
ity can be extracted from a retinotopic map
through three successive stages: (1) retinotopic
coding of object locations regardless of object
identity and size, thus yielding a normalized,
constant amount of activation for each ob-
ject; (2) summing of the activation on the ob-
ject location map, thus yielding a representa-
tion of approximate numerosity by accumula-
tion neurons; (3) thresholding of the activation
in accumulation neurons by neurons with in-
creasingly higher thresholds, yielding a bank
of numerosity detector neurons each tuned to
a specific numerosity. With only small mod-
ifications, the accumulation neurons may be
identified with the LIP monotonic cells, and
the numerosity detector cells with the VIP
tuned cells. Anatomically, indeed, LIP neu-
rons project directly to VIP. Furthermore, LIP
number neurons have receptive fields, whereas
VIP number neurons seem to respond to the
numerosity of the whole display, consistent



Dehaene: Origins of Mathematical Intuitions 243

with their receiving inputs from many LIP
neurons.

Thus, the Dehaene–Changeux model has
plausibility, but considerable neurophysiologi-
cal work will be needed to verify its key hy-
potheses about the role of LIP–VIP circuitry in
invariant numerosity extraction. An important
limit of the present data, which should be borne
in mind, is that at present the two types of nu-
merical codes (monotonic and tuned cells) have
been found by different labs, in different areas,
in different monkeys trained to perform differ-
ent tasks. Thus, it is not known whether these
two codes co-exist within the same animals.

It is interesting to note, however, that the
LIP numerosity code uncovered in monkeys
by Roitman et al. (2007) has all the properties
needed to account for the recently discovered
human numerosity adaptation effect discussed
in the introduction (Burr & Ross 2008). Hu-
man numerosity adaptation is retinotopic, and
it extends to across a large range of numbers:
adaptation to 30 dots changes the perception
of 400 dots, which would be impossible if num-
ber was encoded by cells tuned to these spe-
cific quantities, but makes sense if the adapted
representation is a monotonic code. Thus, it
is likely that humans also possess a monotonic
numerosity code.

Roggeman et al. (2006) also presented prim-
ing evidence in support of the co-existence of
two number codes in humans, compatible with
the notion of monotonic versus tuned cells.
They asked subjects to name, as quickly as pos-
sible, Arabic numerals or numerosities of sets of
dots. In both cases, numbers ranged from 1 to
5, and each target was preceded by a brief but
visible prime (83 ms), also from the same range,
masked by a random-line pattern (49 ms). For
Arabic numerals, priming depending symmet-
rically on the distance between the numbers,
as previously observed with purely subliminal
stimuli (Naccache & Dehaene 2001; Reynvoet,
Brysbaert, & Fias 2002). For numerosities pre-
sented as sets of dots, however, priming showed
an asymmetrical step function: nonsymbolic
primes did not just facilitate the nearby num-

bers but in fact caused priming for all smaller
numbers. This finding seems consistent with a
monotonic code, with the additional specific
property that increasing numbers of neurons
are recruited as the number of items increases
(Roggeman et al. 2006 term this a summation
code). Very interestingly, these results suggest
that the dominant code, which drives behav-
ioral priming in humans, differs for symbolic
versus nonsymbolic numbers: the tuned-cell
code would be used for symbolic numerals,
and some version of the monotonic cell code
for numerosities presented as sets of objects.
It remains to be seen, however, whether these
priming results are not just due to counting pro-
cesses deployed for small numbers, and how
they can be reconciled with the fMRI evidence
for tuned-cell priming with larger numerosities
of sets of dots (Piazza et al. 2004).

Subitizing and Estimation

It is likely, indeed, that small numbers receive
special treatment, implying that there must be
yet other codes for number that underlie our
strong arithmetic intuitions. For more than a
century now, the small numbers 1, 2, and 3
have been thought to involve a partially distinct
representational subsystem (Bourdon 1908;
Feigenson et al. 2004; Jevons 1871). In human
adults, the phenomenon of subitizing refers to
the fact that these small numerosities 1, 2, and
3, when presented as sets of dots, can be very
quickly and accurately identified and named,
without the need for a deployment of serial
attention in order to count (Piazza, Giacomini,
Le Bihan, et al. 2003). Until recently, it was
possible to maintain that this performance was
perhaps due simply to the lower end of the es-
timation range—with small numbers, Weber’s
law would ensure an excellent discrimination
of 1 from 2 and 2 from 3, thus resulting in an
apparent subitizing effect. This interpretation
was strengthened by Nieder and Miller’s
observation that, in the monkey IPS, all
numerosities in the range 1–30 are seamlessly
coded by cells with log-Gaussian tuning, and
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that this coding scheme, which does not exhibit
any discontinuity for small numbers, suffices
to explain the monkey’s behavior in numerical
same–different tasks (Nieder & Miller 2003).

My laboratory, however, recently tested and
rejected this interpretation of the human
subitizing effect in a recent behavioral study
(Revkin, Piazza, Izard, et al. 2008). We used a
masked forced-choice paradigm in which par-
ticipants named the numerosity of sets with ei-
ther 1–8 or 10–80 items, matched for discrim-
ination difficulty. The first case corresponds to
the classical subitizing task. The second case is
analogous in all respects, except that the num-
bers are all multiplied by 10. If Weber’s law
held, then participants should behave identi-
cally in the ranges 1–8 and 10–80, that is, they
should have no difficulty in “subitizing” 10, 20,
or 30 dots (once they know that only decade
numbers are presented). The results, however,
showed a clear violation of Weber’s law, with
a much higher precision over numerosities 1–4
in comparison to 10–40. These results argue
against the single estimation system hypothesis
and support the notion of a dedicated mecha-
nism for apprehending small numerosities—a
conclusion similar to that reached by devel-
opmental studies of infant numerical abilities
(Feigenson et al. 2004). Although we currently
have very little idea of how this system is or-
ganized at the neural level, it seems clear that
a very quick and automatic grasp of the nu-
merosities 1, 2, and 3 is part of the human
intuition of numbers.

The Sense of Ordinality

A final aspect of number representation that
seems to rely on a partially dissociable system
is the sense of ordinality—the knowledge of
which item in a fixed series comes first, sec-
ond, third, and so on. Elegant experiments by
Turconi and Seron have demonstrated that the
ordinality and cardinality meanings of num-
bers, although often associated, are not synony-
mous to human subjects (Turconi, Campbell,
& Seron 2006; Turconi, Jemel, Rossion, et al.

2004; Turconi & Seron 2002). Surprisingly,
judging whether 2 is smaller than 5 is a dif-
ferent task than judging whether 2 comes be-
fore 5. The function that relates response times
to numerical distance is distinct: it shows a
classical distance for cardinality judgements
(faster RTs with larger distances), but a par-
tially reversed effect with ordinal judgements
(fast RTs to consecutive pairs such as 4 and 5)
(Turconi et al. 2006). Event-related potentials
are also subtly different (Turconi et al. 2004),
and knowledge of ordinality and cardinality,
although often associated in brain-lesioned pa-
tients (Cipolotti et al. 1991), can be dissociated
in Gerstmann’s syndrome following a left pari-
etal lesion (Turconi & Seron 2002).

Few studies to date have attempted to iden-
tify the cerebral bases of ordinal knowledge, but
the available evidence suggests that ordinal and
cardinal knowledge may involve partially dif-
ferent neural circuits within overlapping pari-
etofrontal areas. Number comparison, which
involves the cardinal meaning of numbers,
and letter comparison, which involves ordinal
knowledge, activate very similar parietofrontal
networks in humans (Fias et al. 2007). Further-
more, during ordinal comparisons, the left in-
traparietal area shows a distance effect (smaller
activation for more distant rank orders) which
is very similar to that observed during num-
ber comparison (Marshuetz, Reuter-Lorenz,
Smith, et al. 2006).

While the same overall regions are involved,
recordings of single neurons in the IPS of
macaque monkeys suggest that the fine-grained
circuits are partially different (Nieder et al.
2006). When monkeys received either paral-
lel or serial presentations of sets of dots, specific
neurons tracked rank order during serial pre-
sentation, but very few of these neurons showed
a joint sensitivity to the numerosity of simulta-
neously presented sets of dots. However, acti-
vation ultimately converged toward the same
neural population for serial versus parallel pre-
sentations at the end of the sequence, when the
final number was known and had to be held
in working memory. Many other studies have



Dehaene: Origins of Mathematical Intuitions 245

recorded from neurons sensitive to rank order
in a variety of prefrontal, cingulate, frontal eye
field, or caudate areas (for review, see Nieder
2005). For instance, Jean-Paul Joseph and his
collaborators have repeatedly reported neurons
that fire either to the first, the second, or the
third action in a motor sequence, regardless of
the particular action being performed (Procyk,
Tanaka, & Joseph 2000). It remains unknown
whether these same neurons would also be in-
volved in cardinal number representation. All
in all it seems that one must add ordinal repre-
sentations to the list of number-relevant neural
codes that are available to humans and other
primates.

From Number Neurons
to Arithmetic Intuitions

The Nieder–Miller studies suggest that car-
dinal number is encoded by a bank of neurons
in area VIP, each tuned to a particular number.
Furthermore, these studies are precise enough
to quantitatively characterize, in a mathemat-
ical manner, the nature of the code. The fir-
ing rate of a numerosity-sensitive neuron that
responds preferentially to numerosity p, in re-
sponse to a range of stimulus numerosities n,
traces a bell-shaped curve which is Gaussian
on a log scale and has a maximal firing peak
at the location p. All neurons seem to have a
similar width of tuning (once plotted on a log
scale)–there seems to be a single neural Weber
fraction that defines the degree of coarseness
with which neurons encode numerosity.

This code, which I term log-Gaussian coding,
is remarkably similar to that postulated in the
Dehaene and Changeux (1993) neural network
model of numerosity processing. fMRI suggests
that a very similar code is available in humans,
in a plausibly homologous area (Piazza et al.
2004). I recently developed a detailed mathe-
matical theory of how humans take decisions in
number-related tasks, based on this underlying
log-Gaussian code (Dehaene 2007). Assuming
that this is the main neuronal code underlying

our sense of number, we can reconstruct, in
a mathematical manner, most if not all of the
properties of our intuitions of number during
simple numerical cognition tasks.

Numerosity Discrimination
and Comparison

The first and simplest set of tasks consists
in deciding whether a certain number, pre-
sented as a set of dots, is equal to, larger
than or smaller than a fixed numerical refer-
ence. The assumption that numerosity is rep-
resented by a random, Gaussian distribution of
activation over an internal continuum (in this
case the log of the input number) brings nu-
merosity judgement within the realm of classi-
cal psychophysics and signal detection theory.
It readily predicts that discrimination of two
numerosities, as measured by d-prime, should
improve linearly with distance on the logarith-
mic internal continuum (i.e., with the logarithm
of the ratio of the two numbers), with the slope
of that effect reflecting the Weber fraction (i.e.,
the degree of precision of the numerosity repre-
sentation). Van Oeffelen and Vos (1982) tested
this model against human numerosity discrim-
ination data, and found it to be quite accurate.
Manuela Piazza and I also verified this model
in human adults during larger/smaller and
same/different numerosity judgements (Piazza
et al. 2004). Interestingly, the precision of dis-
crimination varies during human development.
Ratio-dependent performance has been ob-
served during numerosity discrimination in hu-
man infants as early as 6 months of age (Lipton
& Spelke 2003), but the Weber fraction ap-
pears to decrease with age: 6-month-old ba-
bies discriminate numerosities in a 2:1 ratio
(Weber fraction of 1.0), but fail to discriminate
numerosities in a 3:2 ratio (Weber fraction 0.5),
while 9-month-old babies can (Lipton & Spelke
2003). Adults can discriminate numbers that
are within 10%–15% of each other (Halberda
& Feigenson 2008; Piazza et al. 2004; Pica et al.
2004). A recent study indicates that between 3
and 6 years of age, the Weber fraction decreases
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smoothly with age, yet without achieving adult
levels (Halberda & Feigenson 2008).

Recently, with Manuela Piazza and Marco
Zorzi, we titrated the evolution of the Weber
fraction using an identical numerosity compar-
ison task in normally developing kindergart-
ners, 10-year-olds, and young adults as well as
dyslcalculic children (Piazza et al., submitted).
The log-Gaussian model provided an excellent
fit to performance curves at all ages. Note that
for kindergartners, the task was very difficult
because the numbers to be compared were al-
ways within 25% of each other, and hence per-
formance never exceeded 80% correct, even
at the largest numerical distances. In this task,
indeed, as in many psychophysical tasks, partic-
ipants often have an impression of responding
using only their “intuition,” but performance
curves demonstrate that this intuition is not at
all random and can be captured in great detail
by our knowledge of numerosity coding in the
parietal lobe. Furthermore, the Weber fraction
decreased exponentially from about 0.40 at age
3 to 0.25 at age 10 and 0.15 in adults (results
quantitatively similar to Halberda & Feigen-
son 2008). Most importantly, it was higher in
dyscalculic children aged 8–12 years with se-
vere deficits in arithmetic (mean Weber frac-
tion = 0.34, comparable to kindergartners).
Indeed, the Weber fraction predicted the sever-
ity of these children’s impairment in sym-
bolic arithmetic tasks, but not in other do-
mains such as word reading. Similar results by
Halberda and Feigenson (2008) confirm that
the psychophysics of numerosity discrimination
can be a sensitive quantitative estimator of nu-
merical understanding across development.

Response Times in Number Comparison

Signal detection theory is an idealized de-
scription and does not take into account the
time taken to reach a decision. To simulta-
neously model decision times and error rates,
more sophisticated models of accumulation
of evidence have been proposed (for reviews,
see Gold & Shadlen 2002; Link 1992; Smith

& Ratcliff 2004; Usher & McClelland 2001).
These models assume that, in order to reach a
decision, the brain needs to sequentially accu-
mulate evidence toward each of the available
response alternatives. Due to the inescapable
presence of sources of noise in the nervous sys-
tem (either in the input, in its internal repre-
sentation by noisy neurons, or in the decision
mechanism itself), the accumulated evidence
will vary in time as well as from trial to trial,
forming a “random walk.” Most current mod-
els assume that a firm decision is reached, and
the motor response is launched, only once the
accumulated evidence in favor of one of the
alternatives has reached a critical threshold.

Assuming a log-Gaussian internal coding
of number, it is possible to derive mathe-
matical equations relating response time, er-
ror rate, and numerical distance in simple
numerical tasks of larger/smaller comparison
and same/different judgements (for details and
equations, see Dehaene 2007). As already noted
by Link (1975, 1990, 1992), the accumulation
of evidence or diffusion-to-bound model pro-
vides a compact account of many aspects of the
number comparison data. For error rates, the
model predicts a logistic function of distance
on the internal continuum, which is virtually
indistinguishable from the error function (inte-
gral of a Gaussian) predicted by signal detection
theory. For response times, however, the model
correctly predicts a dependency on numerical
distance that is less peaked than the error curve
and is well approximated by an inverse func-
tion. The model also predicts a specific linear
relation between response times and a trans-
formed function of error rates.

For the sake of illustration, Figure 4 plots
data from an experiment by Cantlon and Bran-
non (2006), in which the very same behav-
ioral task of numerosity comparison was ap-
plied to macaque monkeys and adult humans.
Two monkeys and 11 human subjects were pre-
sented with arrays of dots ranging from 2 to 30
dots, and had to select the smaller array or, in
other blocks, the larger array. Figure 4 shows
the averaged data and fits of the accumulation
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Figure 4. Mathematical modeling of response
times and error rates during a numerosity compari-
son task (data from Cantlon & Brannon 2006). For
both monkeys and humans, panels illustrate the de-
pendency of RTs (top left) and errors (top right)
on distance between the numbers, measured by
the log of their ratio (i.e., the distance between
their logarithmic internal representations). The bottom

of evidence model. The accumulation of ev-
idence model has only three free parameters
(nondecision time, slope of accumulation as a
function of the difference in logs of the two
numbers, and decision boundary). Although
the quantitative fit is not perfect, this model
clearly suffices to capture many qualitative fea-
tures of performance, including the shape of
RTs, error rates, and their interrelations.

It should also be noted that, with only one
additional hypothesis, the accumulation of evi-
dence model can also account for how perfor-
mance changes when the number-comparison
task is performed concurrently with another
task in a dual-task or “psychological refractory
period” setting. The only new hypothesis is that
the decision stage creates a serial bottleneck
in processing, while predecision (sensory) and
postdecision (motor) stages can operate in par-
allel for the two tasks (for details, see Sigman &
Dehaene 2005, 2006).

Numerosity Labeling and Naming

A more complex task consists in asking sub-
jects to label numerosities using a set of sym-
bols, either Arabic numerals or number words.
For instance, one may ask human subjects to
name sets of dots ranging from 10 to 100 with
round numbers such as the decade names “ten”
to “ninety” (Izard 2005). As exemplified in
Figures 1 and 2, this is not necessarily an easy
task, but once again, subjects are ready to ven-
ture an “intuitive” response, which turns out to
be tightly correlated with the actual numeros-
ity. Even chimpanzees can be trained to label
numerosities using the Arabic digits 1 through

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
left panel shows the relation between mean RT and
transformed error rates predicted by the accumula-
tion of evidence model (for details, see Dehaene
2007; Link 1992). The bottom right panel shows
how the amount of evidence accumulated at each
time step, inferred from a fit of the accumulation of
evidence model, varies linearly with log ratio, as
was expected according the log-Gaussian coding
scheme.
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9 (Matsuzawa 1985; Tomonaga & Matsuzawa
2002).

The theory for such numerosity labeling
tasks, developed by Véronique Izard (2005;
Izard & Dehaene 2008), assumes that sub-
jects simply map segments of their internal
log-Gaussian continuum onto the requested re-
sponse labels. Humans, of course, can deploy
more complex counting strategies, but these
can be discouraged by fast stimulus presenta-
tion times and avoidance of very small num-
bers. In animals, and perhaps also in human
cultures with few number words and no overt
counting system, the assumption that subjects
do not count serially, but merely apply symbolic
labels to their mental representations of ap-
proximate numerosity, seems realistic (Dehaene
& Mehler 1992; Gordon 2004; Pica et al. 2004;
Tomonaga & Matsuzawa 2002). The theory
therefore assumes that, for each target nu-
merosity n, subjects generate an internal dis-
tribution of activation on the log-Gaussian in-
ternal continuum and respond with the verbal
label r whose position on the number line Log(r)

falls closest to Log(n). This strategy implies that
the number line continuum is divided into dis-
tinct response domains according to a set of
response criteria forming a response grid.

One difficulty is that subjects’ responses are
often poorly calibrated and underestimate the
true numerosity. For instance, as you may judge
for yourself in Figure 1, it is quite common
to respond “fifty” to a set of 100 or 200 dots
(Krueger 1982; Minturn & Reese 1951). While
the origins of this illusion remain unknown,
Véronique Izard showed that it could be cap-
tured by a simple assumption: subjects use an
affine rescaling of their response grid, referring
to location a Log(r)+b instead of Log(r) for re-
sponse r. The above model provided a remark-
ably good fit to human subjects’ numerosity
naming data in the range 10–100 (Izard & De-
haene 2008). All subjects were initially miscal-
ibrated and severely underestimated numeros-
ity. In those cases, the model predicts a power
law relation between the presented numerosity
and the subject’s mean response, which is ex-

actly what was observed. A single example of a
numerosity–name pairing was sufficient to re-
calibrate the responses to a quasilinear relation,
a process that was well captured by a change in
the parameters a and b.

The numerosity labeling model supposes the
existence of a rapid association process that can
quickly convert a quantity to the correspond-
ing verbal or Arabic symbol, or vice versa. In-
deed, there is now considerable evidence that
such a conversion process exists and can be
extremely rapid and automatic (Piazza et al.
2007). Perhaps most relevant to the concept of
arithmetical intuition, there is evidence that ac-
cess to the quantity representation from num-
ber symbols is sufficiently efficient to occur
without consciousness. A flashed digit or num-
ber word, masked by letter or symbol strings
that make it subjectively invisible, can never-
theless prime a subsequent visible digit dur-
ing a number comparison task (Dehaene et al.
1998). In this paradigm, the bilateral IPS shows
fMRI repetition suppression when the same
number is presented twice, even when the in-
put notation differs (e.g., “ONE” followed by
1) (Naccache & Dehaene 2001). Behavioral
studies show that priming depends monoton-
ically on the numerical distance between the
prime and the target, being larger for the pair
ONE→1 than for TWO→1, THREE→1, or
FOUR→1 (Reynvoet et al. 2002). Altogether,
these findings suggest that the parietal quan-
tity representation can be contacted noncon-
sciously by the mere sight of a digit or number
word—there is, thus, a form of “second-order”
intuition for number symbols, which is created
by associating these arbitrary labels to mean-
ingful quantities.

Changes in Arithmetic Intuitions
Induced by the Acquisition of

Number Symbols

Does the acquisition of expertise with num-
ber symbols solely consist in the laying down
of a mapping with preexisting representations
of quantity? A recent neural network of the
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numerosity labeling process suggests otherwise
and implies that symbol acquisition may lead to
deeper changes in the quantity system (Verguts
& Fias 2004). Verguts and Fias used nonsuper-
vised learning in a network exposed either to
numerosity information alone or to numeros-
ity paired with an approximate symbol. When
nonsymbolic information alone was presented,
the network developed numerosity detectors
similar to Nieder and Miller’s neurons: they
exhibited tuning curves that had a Gaussian
shape with fixed width when plotted on a log-
arithmic numerosity axis. After pairing of the
nonsymbolic numerosity inputs with symbolic
information, the numerosity detector units be-
came tuned to symbols as well, but with two
keys differences. First, the tuning curves were
much sharper when symbolic inputs were pro-
vided: the simulated neurons essentially had a
discrete peak of firing at their preferred value,
with only a small distance effect for other num-
bers. Second, the tuning curves now exhibited a
fixed width for all the numbers tested (1 through
5). Thus, the network developed a new type of
representation, linear with fixed variability.

Verguts and Fias’s proposal has the poten-
tial to explain several aspects of human intu-
ition for number symbols. Once the mapping
is learned, there would be instantaneous trans-
fer across nonsymbolic and symbolic formats of
inputs—explaining for instance that preschool-
ers perform better than chance with additions
and subtractions of large numbers presented in
symbolic form (Gilmore et al. 2007). Because
the neurons’ tuning curve is narrower for sym-
bolic than for nonsymbolic inputs, calculation
would be much more precise with the former
than with the latter. For instance, errors in num-
ber comparison would be much more frequent
with nonsymbolic than with symbolic stimuli,
and performance should depend on the ratio
of the numbers in the former case and on the
linear distance in the latter—two predictions
that are upheld in actual data (for details, see
Dehaene 2007).

Manuela Piazza, Philippe Pinel, and I re-
cently used fMRI adaptation to test directly

the hypothesis of a common parietal code for
symbolic numerals and nonsymbolic numerosi-
ties (Piazza et al. 2007). For a whole fMRI run,
subjects attended to the repeated presentation
of an approximate quantity presented either as
a set of dots (e.g., 17, 18, or 19 dots) or as an
Arabic numeral (the numerals 17, 18, or 19).
As expected, within intraparietal regions iso-
lated using an independent subtraction task, the
fMRI signal adapted over the course of about
40 sec. We then introduced sparse deviants that
could be close or far from the adaptation value
(e.g., 20 or 50) and that appeared either in the
same or in a different notation. The intrapari-
etal cortex signal showed a distance-dependent
recovery from adaptation which, crucially, was
observed even when the numerical notation
changed from dots to Arabic and vice versa,
indicating that there must be populations of
numerosity detector neurons coding for numer-
ical quantity independently of the symbolic or
nonsymbolic format of input.

Interestingly however, in left parietal cortex,
the effect was asymmetrical. When adaptation
was to dots and the deviants were Arabic nu-
merals, there was recovery of adaptation to
far but not to close quantities. However, when
adaptation was to Arabic numerals and the de-
viants were dots, there was recovery of adapta-
tion to both close and far quantities (e.g., adap-
tation to 17, 18, 19, recovery to both 20 and
50). This finding suggests that the quantities
evoked by Arabic numerals may be more pre-
cise than those evoked by nonsymbolic sets of
dots. Hence, in the left hemisphere at least, the
neuronal populations adapted by Arabic stim-
uli may be narrower than those evoked by dots
presentations, as proposed in Verguts and Fias’s
(2004) model. The right-hemispheric intrapari-
etal region, perhaps because it is not in direct
interconnection with left-hemispheric language
areas, seems to exhibit a much lesser influence
of exposition to number symbols, if any.

The idea that acquisition of number sym-
bols improves the representation of numbers in
the left parietal lobe receives support from sev-
eral sources. First, developmental fMRI studies
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point to left parietal cortex as a crucial site
whose activity changes during arithmetic de-
velopment, compatible with the hypothesis that
this region serves as a hub where abstract quan-
tity information meets with left-hemispheric
codes for Arabic and verbal number symbols
(Dehaene & Cohen 1995). Ansari and Dhital
(2006) observed a greater effect of the distance
between numbers during a comparison task in
this region in adults compared to 10-year-olds,
suggesting an increasing involvement of this re-
gion with increasing age. By imaging children
of different ages during an identical arithmetic
task, Rivera et al. (2005) observed increasing
activation with age in the left parietal and
left lateral occipitotemporal cortex, compatible
with the hypothesis that these areas respectively
come to encode numerical quantities and num-
ber symbols with increasingly refined precision.

Language and arithmetic are jointly lateral-
ized to the left hemisphere in the majority of
right-handed adults. The above developmental
model suggests that this “colateralization” re-
flects a causal interaction during developmen-
tal, with language lateralization preceding and
causing a progressively increasing lateraliza-
tion of numerical representations in the parietal
lobe. Recently, Philippe Pinel and I put this the-
ory to a test using a large database of fMRI data
during spoken language processing and calcu-
lation (Pinel et al. 2009). We designed a “colat-
eralization analysis” over 209 healthy subjects,
investigating whether variations in the degree
of left-hemispheric asymmetry that character-
ize the brain organization for language are mir-
rored in the asymmetry of areas involved in
number processing. As predicted, we observed
that the degree of asymmetry in the activation
of the posterior superior temporal sulcus dur-
ing a sentence-reading task correlates strongly
and selectively with the degree of asymmetry of
calculation-induced activation in the intrapari-
etal sulcus. This finding is compatible with the
hypothesis that during childhood education,
hemispheric asymmetries for language partially
alter the organization of the brain networks for
arithmetic.

Very recently, the issue of how cultural sym-
bols modify the organization of the neural net-
works for number has become addressable in
the monkey. Diester and Nieder (2007) pre-
sented the first study of the cerebral mecha-
nisms of number symbol acquisition in non-
human primates. They trained two monkeys
on a symbolic match-to-sample task that re-
quired matching the shape of an Arabic nu-
meral, ranging from 1 to 4, to the correspond-
ing numerosity of a set of dots. In dorsolateral
prefrontal cortex, Diester and Nieder found
many neurons that coded for number indepen-
dently of the symbolic or nonsymbolic notation
used to convey it. Each neuron had a similar
tuning curve for number, regardless of the for-
mat of presentation. Surprisingly however, in
intraparietal cortex the vast majority of neurons
were specialized either for Arabic numerals or
for numerosities, but not both. Thus, only dor-
solateral prefrontal cortex seemed capable of
encoding the arbitrary relation between sym-
bols and their numerical meaning. In humans,
considerable training may ultimately lead to a
transfer to specialized posterior brain systems.
In the Rivera et al. (2005) fMRI study of arith-
metic development, indeed, a massive decrease
was observed in prefrontal activity as a func-
tion of age, suggesting that the automatization
of mental arithmetic is accompanied by a pro-
gressive transfer from anterior generic to pos-
terior specialized circuits.

Linking Numbers to Space

A final aspect of human numerical intuition
that seems to be heavily influenced by educa-
tion and cultural background is the linking of
numbers with space. This mapping plays an
essential role in mathematics, from measure-
ment and geometry to the study of irrational
numbers, Cartesian coordinates, the real num-
ber line, and the complex plane. In most hu-
man adults, the mere presentation of an Arabic
numeral automatically elicits a spatial bias in
both motor responding and attention orienting
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(Dehaene, Bossini, & Giraux 1993; Fischer,
Castel, Dodd, et al. 2003; Hubbard et al. 2005;
Zorzi, Priftis, & Umilta 2002): even when per-
forming a task as simple as deciding whether
a digit is odd or even, or whether it is larger
or smaller than 5, small numbers are automati-
cally mapped to the left side of space, and large
numbers to the right side Spatial-Numerical
Association of Response Codes, or (SNARC
effect).

We recently reported a similar systematic in-
terference pattern during mental arithmetic,
which we termed “operational momentum,”
and which suggests that a spatial code and
a sense of motion are automatically activated
during mental arithmetic (Knops, Viarouge,
& Dehaene 2009; McCrink, Dehaene, &
Dehaene-Lambertz 2007). When subjects were
shown two successive sets of dots and asked
to approximate their sum or their difference,
their estimates always overshot the correct out-
comes, as if they moved “too far” toward large
numbers during addition, and too far toward
small numbers during subtraction. A small but
similar effect was found with symbolic addi-
tions and subtractions of two-digit Arabic nu-
merals. Furthermore, when picking one out of
several plausible results displayed on a com-
puter screen, participants were spatially biased
toward selecting choices that appeared on the
top right side of screen during addition, and on
the top left during subtraction.

These momentum and numerical–spatial in-
terference effects may originate from the fact
that the intraparietal region, which is active
during number processing and calculation, is
remarkably close and often overlapping with
areas engaged in the coding of spatial dimen-
sions such as size, location, and gaze direc-
tion (Hubbard et al. 2005; Pinel et al. 2004;
Simon et al. 2002). In particular, the putative
human homolog of area LIP is also active dur-
ing some number processing tasks (Dehaene,
Piazza, Pinel, et al. 2003), fueling the specula-
tion that the VIP–LIP circuitry is partially recy-
cled for mental arithmetic in humans (Hubbard
et al. 2005). We recently used fMRI to demon-

strate a numerical interference effect in the pu-
tative human homolog of area LIP (Hubbard,
Pinel, Jobert, et al. 2008): during the classi-
cal SNARC task (parity judgment), large num-
bers evoked slightly more activation in left LIP,
consistent with a rightward shift of attention
in space, while small numbers evoked slightly
more activation in right LIP.

Although there is considerable evidence that
number–space mappings are an integral part
of numerical intuition, the exact shape of this
mapping seems to be heavily influenced by cul-
ture and education. First, the direction of the
number–space association—small numbers to
the left, large numbers to the right—varies with
the cultural environment, particularly the di-
rection of reading, as it tends to be reduced,
canceled, or even reversed in right-to-left read-
ers (Dehaene et al. 1993; Shaki & Fischer
2008; Zebian 2005). Indeed, multiple map-
pings may co-exist in the same individual: Chi-
nese readers preferentially associate Arabic nu-
merals with the horizontal axis, and Chinese
number words with the vertical axis (Hung,
Hung, Tzeng, et al. 2008). Second, recent ex-
periments have documented a remarkable de-
velopmental shift in children’s conception of
how numbers map onto space (Booth & Siegler
2006; Siegler & Booth 2004; Siegler & Opfer
2003). When asked to point toward the cor-
rect location for a spoken number word on a
line segment labeled with 1 at left and 100 at
right, even kindergarteners understand the task
and behave nonrandomly, systematically plac-
ing smaller numbers at left and larger num-
bers at right. However, they do not distribute
the numbers evenly in a linear manner. Rather,
they devote more space to small numbers, thus
imposing a compressed and seemingly logarith-
mic mapping. For instance they will place num-
ber 10 near the middle of the interval 1 through
100. Beran et al. (2008) recently reported sim-
ilar logarithmic responding with a bisection
task in monkeys and 4- to- 5-year-old children.
A shift from logarithmic to linear mapping
occurs later in development, between first and
fourth grade, depending on experience and the
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range of numbers tested (Booth & Siegler 2006;
Siegler & Booth 2004; Siegler & Opfer 2003).
My colleagues and I recently showed that this
shift depends on culture and education: it does
not occur spontaneously in the Mundurucu,
even in adult subjects and even in the range of
numbers 1 to 10 (Dehaene, Izard, Spelke, et al.
2008). The Mundurucu do have strong intu-
itions of number–space mappings, since they
can systematically map numbers to a segment
bearing the numerosities 1 and 10 in a mono-
tonic manner. However, their responses are
logarithmically spaced. Even bilingual adults
who could count in Portuguese, although they
mapped Portuguese words onto the line seg-
ment in a linear manner, still mapped sets of
dots and Mundurucu number words using a
logarithmic scale.

This compressive, logarithmic response can
be easily explained by the log-Gaussian model.
One must merely assume that subjects report
a rating of the psychological distance of each
number to the endpoints of the segment. On
the log scale, distance covaries with numerical
ratio. For instance, 3 is equally distant from 1
and from 9 because these numbers are all in
a 3:1 ratio. Thus, it is natural or “intuitive”
for the Mundurucu and for young children to
place 3 in the middle of 1 and 9. The pro-
gressive replacement of this intuitive similar-
ity scale by a linear scale is compatible with
Verguts and Fias’s (2004) model, in which expo-
sure to number symbols sharpens neural tun-
ing until all neurons have a fixed width irre-
spective of the size of the numbers involved,
so that Weber’s law no longer applies to sym-
bolic numerals when they are represented at
this conceptual level. As discussed above, it
is tempting to speculate that this sharpening
and linearization effect only occurs in the left
but not in the right parietal cortex. Such a
co-existence of logarithmic and linear repre-
sentations of numbers, even within the brains
of educated adults, would explain why even
American adults continue to judge that 5 is
more similar to 9 than to 1, with a similarity
metric that is captured by a logarithmic scale

(Shepard, Kilpatrick, & Cunningham 1975). It
would also account for why adults are unable to
rate whether a sequence of random numbers is
spread equally across the number continuum—
they always rate as “most random” a sequence
that oversamples small numbers, as if they were
sampling from a compressive internal con-
tinuum (Banks & Coleman 1981; Viarouge,
Hubbard, Dehaene, et al. 2008).

The present emphasis on number–space in-
teractions should not be taken to deny that
other types of automatic associations also con-
tribute to our arithmetic intuition. Consider-
able behavioral evidence indicates a tight and
automatic link between number and the lo-
cation and size of hand movements (Andres,
Davare, Pesenti, Olivier, et al. 2004; Andres,
Ostry, Nicol, et al. 2008; Lindemann, Abolafia,
Girardi, et al. 2007; Moretto & di Pellegrino
2008; Song & Nakayama 2008). Fingers and
numbers are of course highly associated by
counting practices in the course of arithmetic
development, and this is reflected in auto-
matic number–finger associations in human
adults (Andres, Seron, & Olivier 2007; Di Luca,
Grana, Semenza, et al. 2006; Sato, Catta-
neo, Rizzolatti, et al. 2007), although number–
space interactions appear to dominate over
number–finger associations when the two are
in conflict (Brozzoli et al. 2008). Although the
neurophysiological basis of number–hand in-
teractions is currently unknown, it is tempt-
ing to speculate that it arises from interac-
tions between numerical representations in
the hIPS and representations of hand shape
during grasping in the nearby area AIP (see
Fig. 3). Indeed, activation is occasionally re-
ported at the location of the putative human
homolog of area AIP during number process-
ing (e.g., Fias et al. 2007; Hubbard et al. 2005).
Through its central location in the parietal
lobe and its high interconnectivity with the
surrounding regions, the hIPS certainly has
many opportunities for learning associations
of number with other spatial and movement-
related domains in the course of arithmetic
development.
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Figure 5. Number–space mapping task used in the Mundurucu (after Dehaene et al.
2008). Each target number was presented as a set of dots, a stream of tones, or a Mundurucu
or Portuguese number word (note that we used very rarely uttered Mundurucu expressions for
7 and 9). Participants were asked to point to the corresponding location on the number line.
The sample data shown at bottom illustrate that the Mundurucu participants understood the
task and mapped numbers systematically, yet with a logarithmic scale, which was not seen in
control American participants.
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Conclusion

Our arithmetic intuition consists of a com-
plex web of knowledge, ranging from the quick
assessment of the approximate numerosity of
30 dots to the realization that numerosity must
change when elements are added to a set, or
to the immediate realization that 8 is larger
than 3 and that 13 + 34 = 97 is false. Our
intuition is not even necessarily consistent, as
when we judge that 5 is more similar to 9
than to 1, yet falls in the middle of the 1–
9 interval. In the past 20 years, research has
consistently demonstrated that the core of our
intuition—a logarithmic sense of approximate
numerosity—finds its origin in an internal rep-
resentation of numbers that dates back to our
infancy, that we share with other animal species,
and that relates to a bilateral parietal cir-
cuitry. Much less clear is how this intuition
gets transformed and refined in the course of
education. Experience with number symbols,
counting, and measurement probably all con-
tribute to the “linearization” of our numerical
intuition—the shift from an informal logarith-
mic representation of approximate numerosity
to a formal, symbolic, linear representation of
number and arithmetic. In this chapter, I spec-
ulated that this transformation relates to the
progressive transformation of number codes,
particularly in the left parietal lobe, “recycling”
this region until it can be accessed automati-
cally through the arbitrary cultural symbols of
Arabic numerals (Dehaene & Cohen 2007). I
also proposed that a dormant logarithmic code
may remain present in right intraparietal cor-
tex. Future research should concentrate on the
empirical testing of these two hypotheses, but
also on the important issue of how arithmetic
intuition can be fostered by classroom practice
in normal as well as dyscalculic children.
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