La dyscalculie développementale, un trouble primaire de la perception des nombres

Bien que moins connue que la dyslexie, la dyscalculie représente un des troubles de l'apprentissage qui perturbent les progrès scolaires. Il est parfois de bon ton dans certains milieux de se dire « nul en maths ». La dyscalculie n'est pas juste un « désamour » pour les mathématiques, lié parfois à un enseignement jugé rébarbatif, mais une réelle incapacité à comprendre ce que les nombres représentent et comment on peut les manipuler. Il manque au dyscalculique cette « intuition » du nombre sur laquelle se fonde l'enseignement des mathématiques. A-t-on besoin d'expliquer en maternelle que le plateau qui contient deux objets a moins d'objets que celui qui en contient cinq ? L'enfant normal ordonne naturellement ces quantités, pas l'enfant dyscalculique. Tous nos réflexes, comme celui de réaliser immédiatement que $15 + 7$ ne peuvent pas faire 53, ne sont pas disponibles chez lui. Il faut donc qu'il arrive à construire ce sens du nombre qui lui fait défaut et qui nous vient de nos lointains ancêtres. N'oublions pas que le calcul exact et la manipulation des opérations élémentaires (addition, soustraction, multiplication et division) qui nous semblent le $a-b$ des mathématiques est une acquisition culturelle qui a une longue histoire [1, 2] et que l'apprentissage de ces opérations constitue l'essentiel de l'enseignement des mathématiques en primaire. La dyscalculie n'est donc pas un problème mineur. Les progrès dans notre compréhension de comment le cerveau calcule permettent d'espérer des progrès dans la prise en charge des difficultés de ces enfants. G. Dehaene-Lambertz

Certains enfants, bien qu'ayant une intelligence normale, n'arrivent pas à répondre des opérations aussi simples que sept moins trois. D'autres ne parviennent pas à discriminer des petites quantités, même lorsqu’il n'y a que deux ou trois objets devant eux. En outre, ils ont le plus grand mal à comprendre qu'un nombre puisse être plus grand qu'un autre. Ce trouble est appelé dyscalculie développementale. Il se rapproche de la dyslexie, qui se manifeste par des difficultés d'apprentissage de la lecture. Comme cette dernière, il peut être détecté chez des enfants avec un QI normal ou supérieur à la moyenne et vivant dans un environnement social et familial sans problème majeur ; comme elle aussi, il peut être associé à d'autres déficits cognitifs (problèmes d'orientation dans l'espace, trouble de l'attention, etc.).

LA DYSCALCULIE,
UN TROUBLE SPÉCIFIQUE

Quelques cas remarquables de dyscalculie montrent que la dyscalculie peut exister de façon isolée sans déficit asso-
GÉNÉTIQUE, DYSLEXIE ET DYSCALCULIE
Les bases génétiques de la dyslexie commencent à être éclaircies. Il est maintenant bien établi que le risque de dyslexie augmente considérablement dans les familles où l’un au moins des parents est atteint ; les premiers gènes candidats ont été découverts ; et l’on voit même apparaître, en recherche, des indices d’activité cérébrale qui permettent d’identifier, dès la première année de vie, les enfants les plus à même de devenir dyslexiques. Dans le domaine de la dyscalculie, par contre, tout reste à faire.

Des progrès essentiels pourraient être réalisés si l’on parvenait à identifier des familles à risque, dont plusieurs membres sont affectés d’une dyscalculie sévère.

En collaboration avec le Dr David Cohen, pédiatre dans le service du Prof Mazzet à l’Hôpital de la Salpêtrière, Thomas Bourgeron, responsable de l’équipe Génétique humaine et fonctionnelle cognitives à l’Institut Pasteur, et le Prof Laurent Cohen, neurologue à l’Hôpital de la Salpêtrière, nous recherchons des familles dont au moins deux membres présentent un trouble isolé du calcul, sans que celui-ci puisse être attribué à un retard mental général, et en extrayant autant que possible les dyscalculies d’origine non génétique (prématurité, accident vasculaire, syndrome d’alcoolisme fetal...).

Nous serions amenés à proposer à ces familles divers tests comportementaux, ainsi qu’une participation éventuelle à une étude génétique.

Les familles intéressées peuvent contacter Mr Baja, secrétaire de l’unité Inserm 362, service hospitalier Frédéric-Joliot, 4 place du Général-Leclerc, 91401 Orsay cedex (baja@inserm.uca.fr).

POURQUOI LA DYSCALCULIE EST-ELLE MÉCONNUE ?
Les cas de J.S. et de C.W. ne seraient pas exceptionnels. Plusieurs études aux États-Unis, en Europe et en Israël suggèrent que 5% des enfants ont des difficultés importantes dans l’apprentissage de l’arithmétique. Compte tenu de cette fréquence, il est paradoxal que la dyscalculie soit méconnue, notamment des milieux de l’enseignement et de la médecine. Ce paradoxe peut-être en partie lié à la notion populaire d’un lien entre les capacités en mathématique et le niveau d’intelligence. En effet, ce lien est l’hypothèse d’une affection qui toucheait spécifiquement les capacités en arithmétique sans retarder sur les capacités intellectuelles. C’est ainsi que les enfants étiquetés « nuls en maths » sont parfois catalogués comme peu intelligents ou faibles. L’exemple de notre patient J.S. démontre clairement que l’un peut être dyscalculique et avoir une intelligence normale. La méconnaissance de la dyscalculie peut ainsi provenir de la possibilité de commettre les difficultés en arithmétique grâce à l’utilisation de mécanismes fondés sur la mémoire (apprentissage par cœur des tables de multiplication), le comptage ou encore des stratégies d’évitement des calculs (utilisation de la calculatrice). Si la dyscalculie peut être ainsi partiellement compensée et peu handicapante, les stratégies alternatives ont souvent des limites dès que la complexité des calculs augmente. Certaines études tendent même à suggérer que les personnes avec des dyscalculies sévères rencontrent des difficultés plus importantes pour obtenir un travail et pour évoluer dans leur carrière professionnelle. Il est donc possible que les conséquences de la dyscalculie soient actualisées sous-estimées.

LES CAUSES DE LA DYSCALCULIE
La dyscalculie développementale se définit donc par des difficultés inhabituelles dans l’apprentissage de l’arithmétique qui ne peuvent pas être expliquées par un manque d’intelligence, une scolarité inappropriée ou un manque de motivation. Le plus souvent, aucune cause n’est retrouvée dans la dyscalculie, et l’hypothèse avancée est que, sous l’influence de facteurs génétiques et environnementaux, il existait une anomalie du développement des réseaux neuronaux impliqués dans la perception des nombres. Cette hypothèse reste encore speculative dans la dyscalculie, mais dans la dyslexie, une autre pathologie développementale, l’analyse microscopique post mortem des cerveaux de sujets dyslexiques a montré des anomalies de la migration neuronale et de la gyration corticale [4]. L’existence d’une contribution génétique, quelque non démontrée, est sug­gérée par les études de la dyscalculie chez les jumeaux homozygotes : dans ce cas, si l’un
des jumeaux est atteint, l'autre l'est aussi dans 70 % des cas [5], voir encadré. Cependant, la transmission génétique de la dyscalculie est complexe et largement méconnue, et d'autres facteurs, comme les facteurs environnementaux, occupent une place importante, en particulier dans les phases précoces du développement cérébral. Ainsi, on observe une fréquence élevée de dyscalculie chez les enfants nés prématurément [6] et chez ceux qui sont exposés pendant la vie foetale à l'incohexion alcoolique de leur mère [7].

PERDRE LE SENS DES NOMBRES À LA SUITE D'UNE LÉSION CÉRÉBRALE

Alors que la dyscalculie développementale apparaît dans l'enfance pendant l'apprentissage de l'arithmétique, certains patients perdent brutalement à l'âge adulte toute capacité de calculer à la suite d'une lésion cérébrale, le plus souvent un accident vasculaire cérébral. On parle alors d'acalculie acquise. La localisation des lésions cérébrales entraînant une acalculie acquise a permis de mieux comprendre les régions cérébrales impliquées dans le calcul. Ainsi M., un patient qui souffrait d'acalculie acquise, avait perdu brutalement la capacité de résoudre des opérations aussi simples que trois moins un [4]. De façon surprenante, et nous reviendrons sur ce point, M. parvenait encore à réciter les tables de multiplications. Le scanner cérébral de M. a montré l'existence d'une lésion dans la partie inférieure du lobe pariétal, suggérant formellement un rôle du lobe pariétal dans la perception des nombres. Depuis, l'étude de nombreux patients devenus acalculiques a confirmé que l'acalculie acquise était le plus souvent secondaire à une lésion du lobe pariétal. Dans certains cas, une lésion postérieure de lobe pariétal peut même entraîner un syndrome de Gerstmann (perte du sens des nombres mais aussi de l'espace, de la capacité de nommer les parties du corps, dysorthographie). Or il n'est pas rare que chez l'enfant la dyscalculie s'intègre assez dans un syndrome de Gerstmann développemental. La similitude des symptômes entre la dyscalculie développementale et l'acalculie acquise suggère que le développement anormal du lobe pariétal pourrait être à l'origine de la dyscalculie développementale.
LE SENS DES NOMBRES,
UN SENS LARGEMENT PARTAGÉ AU COURS DE L’ÉVOLUTION

Contrairement aux théories élaborées dans les années 50, suggérant l’apparition tardive des capacités numériques chez l’enfant, des tests non verbaux ont montré que le nourrisson, dès l’âge de six mois, a des capacités insoupçonnées à discriminer des petites quantités, à additionner ou soustraire des petites quantités. Il a été aussi démontré au travers de nombreuses études comportementales que de nombreuses espèces animales, comme le singe, le chauve-souris, les oiseaux et aussi les rongeurs ont un sens élémentaire des nombres similaire à celui présent chez l’enfant humain [1, 2]. Plus intéressant encore, les études de la perception numérique chez l’animal et l’homme suggèrent que la représentation mentale des nombres au cours de l’évolution partage des processus élémentaires communs suivant des principes généraux de psychologie sensorielle comme pour le vision ou l’audition avec un seul de discrimination entre deux stimulus qui augmente en proportion de l’intensité du stimulus [3]. Cette caractéristique de la représentation numérique est mise en évidence lors d’une simple tâche de comparaison de deux nombres (64 est-il plus grand ou plus petit que 65) en faisant varier la taille des nombres (« effet de taille ») et la distance qui les sépare (« effet distance »). Les humains, comme les animaux, ont une capacité à discriminer les quantités qui diminue quand la taille du nombre augmente (ainsi notre cerveau perçoit plus facilement la différence entre 4 et 5 que celle entre 64 et 65) et quand la distance qui sépare les nombres diminue (la différence entre 64 et 68 est plus facile à discriminer que celle entre 64 et 65). Enfin, il ne faut bien sur pas résumer les capacités numériques humaines à ce sens élémentaire des nombres, et il clair qu’il existe des capacités numériques spécifiquement humaines, notamment dans les raisonnements mathématiques abstraits et dans les calculs complexes.

LE SILLON INTRAPARIÉTAL,
UNE RÉGION CENTRALE
À L’ORIGINE
DE LA PERCEPTION
DES NOMBRES

Les études les plus récentes en imagerie fonctionnelle chez l’adulte normal ont permis de préciser les régions cérébrales impliquées dans l’arithmétique et suggèrent l’existence de deux systèmes de calcul [8]. Le premier système est commun au mental calcul et au langage. Dans le gyrus angulaire, particulièrement à gauche, on observe des activations lorsqu’une personne effectue des multiplications, mais aussi lorsqu’elle écoute ou lit des mots. Cette région intervient dans la mémorisation des tables de multiplication, réalisée essentiellement par récitation automatique de séquences apprises par cœur. C’est par l’intermédiaire de ce système lié au langage que M. parvenait encore à réaliser certains calculs en l’absence de perception des quantités. De nombreuses opérations, comme la soustraction ou la comparaison, ne font pas appel à la mémoire excessive d’une table, mais demandent de réfléchir aux quantités correspondantes. Un second système de calcul, situé dans une région appelée le sillon intrapariétal, s’active automatiquement dans toutes les tâches qui nécessitent une manipulation des quantités (figure 1). C’est aussi dans le sillon intrapariétal, ainsi que dans le cortex prénal avec lequel il entretient des connexions privilégiées, que l’on a idéité, chez le singe macaque, des neurones qui répondent sélectivement à certaines quantités [9]. Un neurone donné répond à la présentation de trois objets, quelle que soit leur identité ou leur position spatiale. D’autres neurones répondent préférentiellement à un objet, deux objets, etc., avec une im-précision qui croît à mesure que le nombre augmente. Collectivement, ces neurones codent donc les quantités approximatives. Ces travaux suggèrent que la région intrapariétale humaine contient un code neuronal des quantités, qui serait hérité de notre histoire évolutive (voir encadré). Cependant, alors que les neurones des autres primates ne répondent qu’aux ensembles concrets d’objets, la région intrapariétale humaine peut être activée par les notations symboliques des nombres, par exemple les chiffres arabes. Elle fournit donc un sens quantitatif, une intuition numérique à des symboles, qui, sans cela, resteraient lettre morte. Nous pensons aujourd’hui que la dyscalculie est liée à un trouble primaire de la perception des nombres, en rapport avec une désorganisation du lobe pariétal, en particulier de la région intrapariétale.

UN DYSFONCTIONNEMENT
PARIÉTAL À L’ORIGINE
DE LA DYSCALCULIE
DÉVELOPPEMENTALE

Les études de neuro-imagerie fonctionnelle ont permis de bien caractériser les réseaux cérébraux impliqués dans le traitement des nombres chez le sujet normal. Mais il existe encore peu d’études qui se sont intéressées aux bases cérébrales de la dyscalculie. Le plus souvent, l’aspect macroscopique du cerveau ne montre aucune anomalie dans la dyscalculie développementale. Les anomalies cérébrales dans la dyscalculie seraient donc plus subtiles, en rapport avec une désorganisation anatomique au niveau microscopique, affectant possiblement la densité neuronale, le degré de myélinisation des axones ou les connexions neuronales. Les études récentes utilisant des techniques sophistiquées d’imagerie par résonance magnétique apportent les premiers éléments convergents pour incriminer une désorganisation du lobe pariétal. Revenons à notre patient J.S., ce jeune hom-
CONCEVOIR UNE RÉÉDUCATION PAR ORDINATEUR...

L'origine biologique de la dyscalculie n'implique pas que la dyscalculie est irréversible. Les premiers résultats obtenus dans la rééducation des enfants dyslexiques sont encourageants, avec une amélioration des performances après un entraînement soutenu avec des exercices de distinction phonétique. Les techniques de rééducation élaborées dans la dyslexie ont utilisé des approches novatrices fondées sur des logiciels informatiques. Ces logiciels sont conçus pour activer de façon optimale l'attention de l'enfant, avec un caractère à la fois ludique et motivant des exercices. De plus, l'ordinateur peut, plus facilement qu'un partenaire humain, s'adapter en permanence aux performances de l'enfant pour lui présenter des exercices ni trop faciles (pour éviter le désintérêt) ni trop difficiles (pour éviter le sentiment d'échec) et l'amener progressivement vers une performance normale. Nous avons élaboré une technique de rééducation similaire pour la dyscalculie. Si la région pariétale possède la même plasticité que les aires du langage, il devrait être possible d'améliorer les performances des enfants par un entraînement intensif mais ludique fondé sur des exercices de manipulation des nombres, comme par exemple dans le jeu de l'oeil. L'ordinateur module la difficulté des jeux proposée à l'enfant en manipulant des facteurs comme la distance entre les nombres à comparer, la grandeur des nombres et la vitesse de réponse. Ce logiciel est actuellement en cours d'évaluation.

Figure 2
Chez les patients avec un syndrome de Turner, on remarque un plissement anormal du sillon intrapariétal droit (zone verte). Cette désorganisation anatomi que suggère une anomalie précoce durant la gestation, lors de la formation des plissements corticaux, et pourrait expliquer les difficultés de ces patients en calcul.

De dix-huit ans à la scolarité brillante en dépit d'une séve dyscalculie. Alors que l'étude en imagerie conventionnelle de l'anatomie cérébrale de J.S. est normale, l'étude en spectroscopie par résonance magnétique montre des anomalies métaboliques dans la région pariétale inférieure gauche [8]. Une étude anatomi que en imagerie par résonance magnétique a montré une réduction de la densité de matière grise dans la région inférieure du lobe pariétal gauche chez des enfants nés prématurément et présentant une dyscalculie comparée à un groupe témoin d'enfants nés prématurément et nés dyscalculiques [9]. Enfin, nous avons mené dans notre laboratoire du service Frédéric-Joliot une étude anatomique et fonctionnelle dans une maladie génétique liée à la perte d’un chromosome X, le syndrome de Turner, associé fréquemment à une dyscalculie développementale. L'étude en imagerie fonctionnelle montre que, durant le calcul mental, le sillon intrapariétal droit des patientes avec un syndrome de Turner s'active anormalement quand la complexité des calculs augmente [10]. Cette étude a aussi révélé l'existence d'une anomalie du plissement du sillon intrapariétal droit, qui apparaît moins profond, plus court et plus marqué dans le syndrome de Turner (figure 2). Cette désorganisation anatomi que du sillon intrapariétal pourrait être en rapport avec un trouble précoce du développement cérébral, autour de la vingt-compingrième à la trentième semaine de gestation, lorsque le plissement du cerveau se réalise. Ces premiers travaux suggèrent que, chez de nombreux enfants, la dyscalculie pourrait être liée à une désorganisation primaire des réseaux neuronaux du lobe pariétal impliqués dans la perception des nombres. Si l'artémie est limitée aux réseaux neuronaux impliqués dans la perception des nombres, la dyscalculie apparaît isolée, et les autres fonctions cognitives sont préservées (comme dans le cas de J.S.). Les anomalies cérébrales développementales peuvent être plus diffuses, expliquant dans certains cas l'association de la dyscalculie à d'autres troubles cognitifs (dyslexie, troubles praxiques, etc.).

VERS UNE PRISE EN CHARGE SPÉCIFIQUE DE LA DYSCALCULIE ?

L'existence d'une anomalie biologique à l'origine de la dyscalculie n'est pas un message périssatif. La plasticité cérébrale de l'enfant étant considérable, il n'y a pas de raison de penser que la dyscalculie soit irréversible. En fait, comme dans la rééducation de la dyslexie, il devrait être possible de réduire les enfants dyscalculiques en développant leur sens élémentaire des quantités numériques. C'est pourquoi nous réalisons actuellement une tentative de réeduca-
d'entraînement intensif du sens élémentaire des nombres à l'aide d'un logiciel ludique, proche du jeu de l'oise, qui fait travailler les enfants directement sur les quantités, sans passer par le langage (voir encadré).

EN CONCLUSION

La dyscalculie développementale est un trouble spécifique de l'apprentissage de l'arithmétique qui peut survenir chez des enfants ayant une intelligence normale et sans autre difficulté par ailleurs. Ces difficultés d'apprentissage pourraient être secondaires à un trouble primaire de la perception des quantités et des nombres. Les premières études d'imagerie cérébrale dans la dyscalculie suggèrent l'existence d'un développement anormal du sillon intrapariétal, région à l'origine de la perception primaire des quantités et des nombres chez le sujet normal. Les recherches actuelles sur la dyscalculie n'en sont qu'à leurs débuts et de nombreuses questions sont encore sans réponse. S'il est établi que des facteurs génétiques et environnementaux peuvent être associés à la dyscalculie, ces facteurs restent à préciser. Des études récentes sur la rééducation de la dyslexie montrent qu'une rééducation ciblée peut être efficace et suscite beaucoup d'espoir pour la rééducation de la dyscalculie. Les études actualité tentent d'élaborer des critères diagnostiques précis de la dyscalculie et d'évaluer l'efficacité d'une rééducation ciblée de la perception des quantités et des nombres dans la dyscalculie.

Références