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Abstract

B Despite their lack of language, human infants and several
animal species possess some elementary abilities for numerical
processing. These include the ability to recognize thar a given
numerosity is being presented visually or auditorily, and, at 2
kater stage of development, the ability to compare wo nume-
rosities and o decide which is larger. We propose a model for
the development of these abilities in a formal neuronal net-
work. Initally, the model is equipped only with unordered
numerasity detectars. It can therefore detect the numerosity of

INTRODUCTION

Arithmetic is a fundamental conceprual achievement of
the human brain. Over the last decade, the roots of our
concepts of number have been traced experimentally to
their precursors in animals and in human infants (for
review see Gallistel & Gelman, 1992). In parallel, psy-
chological experiments with adults and brain-lesioned
patients have started to reveal the neuropsychological
architectures that underlie our ability to process num-
bers (for reviews see Dehaene, 1992; McCloskey, 1992).

Most human mathemarical achievements result from
the development and mastery of a complex nowation
systern. Yet a minimal set of principles of elementary
arithmetics, shared with several animal species, seems to
precede and perhaps guide these higher-level language-
based faculties (Dehaene, 1992; Dehaene & Mehler, 1992;
Starkey, 1992; Whymn, 1992). As will be described below,
many animals are sensitive to numerical regularities in
heir environments, can represent these regularities in-
iernally, and can perform elementary and approximate
computations with numerical quantities (reviews in Davis
& Pérusse, 1988; Gallistel, 1990). Similar abilities are
found in human infants in their first year of life, well
before they begin 1o produce language (e.g., Starkey &
Cooper, 1980). Finally, in a severely aphasic and acalculic
patient with an extensive lesion in the left hemisphere,
Dehaene and Cohen (1991) found a selective preserva-
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an input ser and can be conditioned 1o react accordingly. In a
later stage, the addition of a shori-term memory network is
shown to be sufficient for number comparison abilities to
develop. Our computer simulations account for several phe-
nomena in the numerical domain, including the distance effect
and Fechner's law for numbers. They also demonstrate thar
infants’ numerosity detection abilities may be explained with-
out assuming that infants can count. The neurobiological bases
of the critical components of the model are discussed. W

ton of elementary numerical abilities for representing
numerical quantities and for comparing them, while the
formal language-based calculation abilities were lost.

These converging lines of evidence suggest the exis-
tence, in the animal and human brain, of specialized
neural systems for processing numbers on a nonlinguis-
tic basis. The detailed implementation of these neuronal
systems, however, remains largely unknown. The aim of
the present paper is to describe a simple, yet plausible,
model for the implementation of elementary numerical
abilities in a formal neuronal nerwork. In this respect we
build upon a framework that we have progressively de-
veloped over the last years and that has been primarily
applied to the modeling of prefrontal cortex functions
(Dehaene & Changeux, 1985, 1991). Starting from be-
havioral and anatomical data, we try to delineate ele-
mentary principles of neural architecture thar give rise
to a defined function. We implement these principles
into a minimal formal model that provides a highly sim-
plified view of the relevant biological mechanisms, yet
incorporates plausible anatomical, cellular, or molecular
components {Changeux & Dehaene, 1988). In addition
to offering clues for the understanding of psychological
and neurcbiological data, the ultiimate goal of our ap-
proach is o generate precise and tesmble predictions
that might be examined experimentally using electro-
physiological or behavioral techniques.

Here we restrict ourselves to modeling the most ele-
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mentary of numerical abilities: the approximate recog-
nition of the numerosity of 2 set of objects and the
comparison of two numerosities. We shall also examine
the developmental sequence of these abilities in human
infants. The paper is organized in six main sections. The
first section briefly reviews the relevant experimental
data, Then we describe the functional architecture of the
model and the main principles on which it is based.
Finally we describe detailed simulations of our model in
an incremental fashion, starting with the most elementary
abilities common to all species and progressively moving
to higher abilities that develop in human infants during
the first year of life,

EXPERIMENTAL DATA RELEVANT TO
ELEMENTARY NUMBER PROCESSING

In this section, we briefly review the main dawa (D) on
elementary number processing in animals, human in-
fants, and adults, that we consider relevant to our meodel.

D1. Infant Numerosity Detection

Four-day-old to 7-month-old human infants can discrim-
inate sets Of visual objects of varied shapes and sizes on
the basis of their numerosity alone (Antell & Keating,
1983; Davis & Ashmead, 1991, Starkey & Cooper, 1980,
Strauss & Curtis, 1981; Treiber & Wilcox, 1984; van Loos-
broek & Smitsman, 1990). Discrimination is reliable for
numerosities of 1 vs. 2 and 2 vs. 3. It is less often observed
with 3 vs. 4 and 4 vs. 5, and it systematically fails for 4
vs. 6. In the auditory modality, 4-day-old infants discrim-
inate bisyllabic from trisyllabic words, even when their
durations are equalized (Bijeljac-Babic, Bermoncini, &
Mehler, 1991). These data have been taken to suggest
that newborn infants are innately equipped with “nu-
merosity detectors” (Cooper, 1984) at least for numeros-
ities up to 3 or 4.

D2. Cross-Modal Infant Studies

Cross-modal matching experiments suggest that, in 6- 1o
B-month-old infants, numerosity detection occurs regard-
less of the input modality. For instance when hearing
three drumbeats, 6- to 8-month-old infants preferentially
lock at a visual display with three objects than at a display
with two objects (Starkey, Spelke, & Gelman, 1983, 1990,
see also Moore, Benenson, Reznick, Peterson, & Kagan,
1987).

D3. Adult Subitizing and Estimation

Human adults are fast and accurate at judging the nu-
merosity of small sets of visual objects, a faculey called
subitizing (Chi & Klahr, 1975; Kaufman, Lord, Reese, &
Volkmann, 1949; Mandler & Shebo, 1982; Taves, 1941).
Data from Trick and Pylvshyn (1991), among others, sug-

gest thar subitizing is distinct from verbal counting and
is a low-level ability of the preanentive visual system.
Human adults can also rapidly approximate large nu-
merosities without counting (Klahr & Wallace, 1973; Man-
dler & Shebo, 1982).

D4. Animal Numerosity Discrimination

Several animal species can be conditioned to act in a
specific way when confronted with a given numerosity
(for review see Davis & Pérusse, 1988, Gallistel, 19900,
For instance, rats have been conditioned to press one
key when a sequence of two tones was presented, and
another key when a sequence of four tones was pre-
sented {Meck & Church, 1983; Church & Meck, 1984; see
also Davis & Albert, 1984, for discrimination of 3 vs. 2
or 4). Such discrimination is not be confined to small
numerosities, although it becomes less precise with in-
creasing numerosity (Weber's Law). Thus pigeons have
been trained to discriminate sequences of 45 vs. 50 pecks
(Rilling & McDiarmid, 1965). Some animals can also be
raught to use arbitrary labels, such as arabic digits or
verbal labels, to refer 0 numerosity (Matsuzawa, 1985,
Pepperberg, 1987), :

D5. Asymmetry in Generalization

When rats are trained o discriminate between 2 and 8,
their indifference point for generalization is not 5 (the
arithmetical mean of 2 and 8}, but 4 {the geometric mean
of 2 and 8) (Church & Meck, 1984).

Dé. Spontaneous Extraction of Numerosity

in Animals

Numerosity is often spontaneously extracted by animals,
This can be seen in their natural behavior (see Gallistel,
1990 for numerous examples), as well as in more formal
conditioning experiments. For instance Meck and Church
({1983) conditioned a rat to press one lever in response
to a short auditory sequence of two tones, and another
lever in response to a longer sequence of eight tones.
Duration discrimination was therefore sufficient o suc-
ceed in this task. Nevertheless the rats subsequently gave
evidence of generalizing on the basis of numerosity
alone.

D7. Cross-Modal Numerosity Discrimination
in Animals

A few experiments have demonstrated cross-modal nu-
merosity generalization in animals (for discussion see
Davis & Pérusse, 1988). For instance, in Church and
Meck's (1984) study, rats were initially trained to press
lever A when a sequence of two sounds or two lights
was presented, and to press lever B when a sequence of
four sounds or four lights was presented. Subsequently
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the animals generalized appropriately to the synchron-
ous presentation of sounds and lighes.

D8. Same-Different and Larger—Smaller
Relations

The ability to recognize a relation between wo nume-
rosities is another elementary numerical faculty that does
not depend on language. Fourteen-month-old human
infants spontaneously choose the larger of rwo sets of
toys (Sophian & Adams, 1987). In adult animals of several
species, spontanecus use of the larger—smaller relation
is frequent (eg., Mitchell, Yao, Sherman, & O'Regan,
1985; Rumbaugh, Savage-Rumbaugh, & Hegel, 1987). In
human adults, response time data suggest that arabic
numbers are compared by accessing a nonverbal rep-
resentation of quantities (Moyer & Landauer, 19657). De-
haene and Cohen (1991) found a selective preservation
of numerical comparison and other number approxi-
mation abilities in a severely aphasic and acalculic patient
whose formal calculation abilities were deficient. Such
data suggest the persistence, in adult cognition, of ele-
mentary comparison and approximation processes, in
parallel with more sophisticated language-based calcu-
lation abilities (Dehaene & Cohen, 1991; Dehaene, 1992).

D9. Development of a Linear Ordering

In children, preliminary developmental data suggest that
the concept of "same" vs, "different” appears around 10~
12 months of age, and the concept of “larger” wvs.
“smaller” around 14 months of age (Cooper, 1984). In a
nonnumerical context, the acquisition of a linear order-
ing has been swudied experimenually in both children
and animals (e.g., Bryant & Trabasso, 1971; McGonigle
& Chalmers, 1977; von Fersen, Wynne, Delius, & Staddon,
1991). In a typical experiment, the child or animal is first
trained on pairs of items (e.g., color rods and random
shapes). It is taught to select the appropriate member of
the pair: A for the pair A-B, B for the pair B-C, C for the
pair C-D, etc. In a second phase generalization is tested
with untrained pairs. Choosing for instance B in the pair
B-D is interpreted as demonstrating that the subject ac-
quired a linear ordering over the series A-B-C-D-E. . .
and could generalize from B>C and C>D to B>D (tran-
sitive inference). Four-vear-old children, monkeys, and
even pigeons have been shown to pass this test In ad-
dition, von Fersen et al. (1991) have shown that pigeons
seem compelled 1o using a linear representation of the
stimuli and cannot acquire a circular order of the form
AZB=C>D=A

D10. Universality of the Distance Effect

When the numerical distance berween two numerosities
increases, they become easier to discriminate and can
be compared more rapidly. This distance effect is a uni-
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versal characteristic of animal and human elementary
number processing abilities (Fig. 1). In pigeons, perfor-
mance in discrimination of two long sequences of pecks
improves as the difference in the number of pecks of
the two sequences increases (Rilling & McDiarmid, 1965;
Fig. 1A). Chimpanzees have more difficulties choosing
the larger of two sets when their numerosities are close
in magnitude (Washburn & Rumbaugh, 1991; Fig. 1B},
In humans, the time to choose the larger of two numer-
als, or to decide that rwo numerals are different, svstem-
atically decreases as the numerical distance between the
two numerals increases (Moyer & Landauer, 1967; Dun-
can & McFarland, 1980; Fig. 1C and D). This effect extends
to two-digit numerals (Dehaene, 1989; Dehaene, Du-
poux, & Mehler, 1990), resists training (e.g., Polirock,
1989), and is present at 6 years of age, the earliest age
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Figure 1. Universality of the distance effect. (A) Pigeon data, error
rate in discriminating berween 50 and another numerosity (daa from
Rilling & McDiarmid, 1965). (B) Chimpanzee data, percent choice of
the smaller of two arabic numerals (dara from Washbum & Rum-
baugh, 1991); the chimpanzees were allowed 10 et 2 number of
pellets corresponding o the chosen numeral, and preferentially se-
lected the larper number. (C) Human data, reaction time and error
rare 10 decide whether a two-digit number is larger or smaller than
65 (dara from Dehaene et al, 1990). (D) Human dam, reaction time
to decide if an addition is true or false as a funcion of the disance
from the proposed result to the correct result. (Redrawn from Erue-
ger & Hallford, 1984.)
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at which it has been tested (Duncan & McFarland, 1980
Sekuler & Mierkiewicz, 1977).

D11. Fechner's Law for Numbers

Numerical comparison is more difficult for 8 vs. 9 than
for 2 vs. 3, even though the numerical distance is iden-
tical in both cases. This decrease of discriminability with
larger magnitudes has been observed in animals (eg,
Rumbaugh et al., 1987) as well as in humans (e.g., Buck-
ley & Gillman, 1974; Dehaene, 1989). A variety of psy-
chophysical experiments have indicated that the same
objective numerical difference looks subjectively smaller,
the larger the numbers against which it is contrasted (for
review see Krueger, 198%; Dehaene, 1992). Therefore the
suggestion has been made thar the internal representa-
tion of numerical magnitudes, or aumber line (Restle,
1970), is compressive, for instance logarithmic (Moyer &
Landauver, 1967; Buckley & Gillman, 1974; Dehaene, 1989;
Dehaene & Mehler, 1992). An equivalent formulation is
that the standard deviation in the internal representation
of numerosity increases linearly with numerosity (Meck
& Church, 1983; Gallistel & Gelman, 1992),

L

D12. Neuropsychological and
Neurobiological Data

In spite of the availability of excellent animal models,
litle is known on the localization and neuronal bases of
elementary numerical abilities. In humans, acalculia
often results from lesions in the occipitoparietal areas of
the left hemisphere (Hécaen, Angelerpues, & Houillier,
1961). However acalculia is not a homogeneous syn-
drome, and more elementary numerical abifities such as
approximation and comparison might well have a right-
hemispheric basis (e.g, Dehaene & Cohen, 1991; Assal
& Jacor-Descombes, 1984), At the neuronal level, Thomp-
son, Mayers, Robertson, and Patterson {1970} recorded,
in the association cortex of anesthetized cats, cells that
responded preferentally o a given numerosity, for in-
stance, a sequence of three sounds or three light flashes.
This finding has vet to be replicated,

Summary

In brief, we wish to design a formal neuronal model for
elementary numerical abilities that would account for (1)
the ability to detect visual and auditory numerosities and
o represent them internally, (2) the capacity 1o leamn by
reinforcement behaviors based on the input numerosity,
and (3) the discrimination of numerosity according 10 a
law of increasing difficulty with increasing numerosity
(Fechner's Law) and with decreasing distance (distance
effect), with a characteristic break around 3 or 4 (subi-
tizing). We shall then show how the addition of another
level of neuronal architecrure suffices to account for the

development of same—different and larger—smaller com-
parison from a system initially equipped only with nu-
merosity detectors.

OVERVIEW OF THE FUNCTIONAL
ARCHITECTURE OF THE MODEL

We shall first describe the main principles (P) of func-
tional architecture of the model (Fig. 2). A detailed
neuronal implementation and a comparison with exper-
imental and neuroanatomical data shall be provided later
on.

P1. The Numerosity Detection System

The first fundamental component of our model is a
wired-in numerosity detection system comprising three
distinct modules: (1) an input “refing” on which objects
of various sizes and locations can be presented, (2) an
intermediate topographical map of object locations in
which each object, regardiess of its size, is represented
by a fixed pool of neurons (normalization for size and
location), and (3) a map of rumerosity detectors that
sums all outputs from the location map, thereby provid-
ing a quantity highly correlated with numerosity and
sufficient to approximare it. This architecture solves the
computational problem of enumerating objects that may
vary widely in size

We suggest that, in addition to the main input from
visual normalization processes, numerosity detectors
also receive and combine inputs from an echoic auditony
mermory (Fig. 2). As a result, the numerosity detector for
two, for instance, will react identically to two visual ob-
jects, o two auditory objects, or 0 the simultaneous
occurrence of one object in both modalities. The nu-
merosity detection system therefore constructs an amo-
dal representation of number.

P2. Motor Qutput and Conditioning

We postulate that the numerosity detection system sends
numerasity information o a motor owipet system (Fig.
2). The mapping from a given numerosity to a given
motor action is learned by selection from an external
reward input. We assume that the formal organism con-
stantly tries to produce outpur actions when presented
with visual or auditory inputs. Positively rewarded actions
are stabilized and negatively rewarded actions are elim-
inated.

P3. Development of Same-Different and
Larger-Smaller Comparison

The numerosity detection system corresponds to the ini-
tial state of human and animal numerical cognition. To

account for a subsequent stage of human development
during which comparison abilities appear, we introduce
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Figure 2. Functional description of the proposed model.

an additional memory module (Fig. 2). This device per-
mits the emporary maintenance of an active represen-
tation of the previous numerosity while a new one is
being processed. A pointto-point matching module
monitors the points of similarity between the past and
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present representations. Connections from the memo-
rized and poini-to-point matching systems t0 a motor
output module enable the system to learn 1o react sys-
tematically to specific abstract relations between two nu-
merosities. For instance, the system with shor-term
memory will be able 1o react to a sequence of two
numerosities only when the second is larger than the
first, or only when the second is identical to the first.

P4. Self-Organization of Elementary
Numerical Abilities

Human infants do not have to be overtly trained 1o ac-
quire concepts of “more” or “less.” Accordingly, in the
most elaborate version of our model, reward is not pro-
vided by an external teacher, bur is internally generated
by a covert muoevaluation loop when the system dis-
covers regularities in its environment (Fig. 2). The formal
organism “plays” with a set of objects by randomly choos-
ing one of two possible actiorns: adding one object or
deleting one object. The ensuing modification of nu-
merosity is noted by the numerosity detection system.
On the basis of the memorized and present numerosities,
the system atempts to reconsiruct the selected action.
An internal action-matching module evaluates the simi-
larity of the reconstructed and actual actions, and sends
a pasitive or negative internal reward signal accordingly.
Eventually the system discovers that an increase in nu-
merosity implies addition, and that a decrease implies
subtraction.

THE NUMEROSITY DETECTION SYSTEM

The numerical capacities of our model rest mainly on
the postulate of wired numerosity detectors that can
abstract numerosity independently of the size and ar-
rangement of the input objects. We shall now describe
in detail our implementation of the numerosity detection

system.

Network Structure

Figure 3 shows a schematic diagram of the numerosity
detection nerwork. For simplicity, physical objects are
represented as one-dimensional blobs of various sizes
on a simulated “retina.” Up to five objects can be pre-
sented simultanecusly for input. Each object is coded as
a local Gaussian distribution of activation over a topo-
graphically organized sheet of 50 simulated input neu-
ronal clusters. As in previous publications (Dehaene &
Changeux, 1989, 1991; Kerszberg, Dehaene, & Changeusx,
1992), each cluster is taken to simulate several hundred
or thousand neurons with common response properties,
as for instance the cortical "columns” (e.g., Mountcastle,
1978; Goldman-Rakic, 1984). The detiled connectivity
and internal activity of a given cluster are not explicidy
formalized. Rather, each cluster is implemented as a sin-
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Figure 3. Structure and function of the proposed numerosity detec-
tion network. Objeas of different sizes ag the input are first normal-
ized 1o a size-independem code. Acivations are then summed 0w
yield an estimate of input numerosity.

gle McCulloch—Pius sigmoid unit, with an autoexcitatory
connection simulating the various synapses linking in-
dividual neurons within each cluster. The output of the
unit represents the average number of active neurons
within the cluster.

Input clusters project onto a two-dimensional 9 x 50
sheet of neuronal clusters thar codes for the location of
objects and normalizes for their size (locaton map). The
input connections are set 50 thar each cluster functions
as a difference-of-Gaussians (DOG) filter on the input
retina, Each of 50 positions for the center of the filter is
represented over one dimension of the map, whereas
gach of 9 possible widths for the filiers is represented
over the other dimension. As a result, each cluster in the
location map reacts preferentally to an object that falls
within its receptive field and whose size approximately
matches its filter width. Lateral inhibition berween clus-
ters that respond to the same or to neighboring retinal
locations ensures that after updating activity for a few
time steps, only a few clusters will remain active at any
position on the location map. In this critical step of object
normalization, input objects of different sizes end up
being represented by a similar number of active clusters
on the location map. The locus of activity merely shifis
with object size (Fig. 3). At this stage, objea size, which
was initially coded by the number of active clusters on
the retina (quantity code), is now coded by the position
of active clusters con the location map (position code).

Eath cluster in the location map projects with equal
strength to every unit in an array of 15 clusters with
increasing threshold. Each of these “summation clusters”

therefore pools the total activity over all positions of the
location map, and is activated if this rotal activity exceeds
a threshold. Total normalized activity in the location map
correlates highly with numerosity. By responding when-
ever the otal activity exceeds a threshold, summation
clusters in effect respond whenever the input numerosicy
exceeds a centain limit.

Finally, summation clusters project topographically to
an array of 15 “numerosity clusters.” Connection
strengths are organized with central excitation and lateral
inhibition, and are set so that a given numerosity cluster
responds only if its corresponding summation cluster is
active and if summation clusters with a higher threshold
are inactive, As a result, numerosity clusters respond only
to a selected range of values for the total normalized
activity, and are therefore activated only when their pre-
ferred numerosity is presented, not when the input nu-
merosity is less or more.

An "auditory” input to the network is also simulated
(see Fig 2). At each moment in time, one of 15 input
clusters coding for a given auditory object can be acti-
vated. These input clusters project to an intermediate
layer where clusters with strong recurrent connections
keep a long lasting remanent activity, therefore providing
a shortterm “echoic™ memory of recent auditory stimuli.
Finally echoic memory aaivations project to the same
array of “summation clusters” with increasing thresholds
used in the processing of visual stimuli. The connection
strengths of auditory inputs are adjusted so that the pres-
entation of one auditory object gives rise to a similar
level of acivation as with one visual object.

Simulation Results

The nerwork was simulated on an Appollo DN-10000
workstation. From one to five distributions of activations
{Gaussian with variable width) were simultaneously pre-
sented at different locations on the input layer, symbol-
izing a set of cbjects of various sizes. Cluster activities
were then updated in parallel for 12 cycles, at which
point output activations had generally siabilized. Thresh-
olds, connection strengths, and other parameter values
are not listed here in detail for the sake of simplicity and
because different ranges of parameters resulted in sim-
ilar functioning,

The numerosity detection system was tested with 2500
sets of objects of random sizes and locadons (500 for
each numerosity between 1 and 5). As shown in Figure
4, repeated presentation of the same numerosity at the
input leads to the activation of the same numerosity
clusters, regardless of object size and location. Con-
versely, two distinct numerosities generally activared dis-
tinct clusters. Numerosity clusters therefore effectively
functioned as detectors of a specific input numerosity
(D1, D3, D4). Quite similar results were obtained when
auditory objects were presemed for input, or when 2

mixture of visual and auditory inpurs was used. Each
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Figure 4. Average activity of numerosity clusters when rmndom sets
of 1,2, 3, 4, or 5 objeas were presented for input. For each input
numerosity, only a small number of clusters were selectively activated
{eg., clusters 1, 2, and 3 responded only when a single object was
presented). The activity peaks were lower and wider for larger nu-
merosities, implying a decrease in discriminabiliny with increasing
numerosity (Frechner's law).

numerosity detector reacted to the total number of ab-
jects, regardless of input modality (D2,D7).

The intrinsic variability of our numerosity detection
system departs radically from the discrete symbolic rep-
resentations of number used in digital computers. The
activations evoked by different input numerosities often
overlapped, implying that the same cluster could be oc-
casionally activated when, say, either three or four objects
were presented (Fig. 4). This overlap decreased as the
wo numerosities became more distant, in agreement
with the experimentally observed distance effect (D10).
In addition, for equal numerical distance the overlap also
increased with numerosiry: it was greater berween 4 and
5 than between 1 and 2. This property is analogous o
the experimentally observed Fechner's law for numbers
(D11) and arises from the way numerosity is estimated
as a sum of approximarely constant activations associated
with each input object: the larger the number of terms
in the sum, the larger the variance of the result

CONDITIONING BY REINFORCEMENT

We have described how a model nerwork can detect
numerosity and represent it internally. To simulate be-
havioral experiments with animals or with infans, we
now elaborate further the model o simulate the acqui-
sition of a conditioned behavior. The objective is to con-
dition the simulated organism to select a given output
depending on the specific numerosity presented for in-
put,
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Network Structure

A number of output clusters (from two to five depending
on the behavioral task) are connected to numerosity
detectors via connections of modifable efficacy. Initially
this numerosity-to-output mapping is complete and the
connection strengths are set to a small random value. As
in our previous simulations (Dehaene & Changeux, 1989,
1991), the strengths are modified according to a Hebbian
rule modulated by reward.

Wy =(P-1)W, + a PrRS (25 —1)

where Wy is the connection strength for cluster 1 to
cluster f, 5; and §; are the acrivities of the pre- and
postsynaptic clusters, a is a random variable berween 1
and 2, B is a relaxation constant, and £ is a reward factor
between —1 and +1. The reward R represents another
input 1o the nerwork. Positive values of £, which are
provided when the performance of the network is cor-
rect, have the effect of stabilizing current activity, thereby
increasing the chances of selecting the same output again
in subsequent trials with the same context. Negative val-
ues of R, on the contrary, destabilize current activity and
therefore favor the selection of a different ourput on
subsequent similar trials.

Simulation Results

Mumerosity discrimination was taught to the nerwork by
presenting it with one of two alternative numerosities
for input. The formal organism had to produce one type
of response when the first numerosity was presented,
and another type of response when the second nume-
rosity was presented. When the network failed to activate
the appropriate output cluster in response to a given
input numerosity, negative reward was sent and the nu-
merosity-to-output connections were modified accord-
ingly.

We wained our nerwork in numerosity discrimination
six times with all possible pairs of numerosities between
1and 5(1,2; 1.3; 2,3; ewc.). Training involved the repeated
presentation of stimuli randomly selected from the two
possible numerosities, until the network responded cor-
rectlv on 20 trials in a row. This learning criterion was
adopted to provide a simple measure of total learning
time, but did not guarantee that optimal performance
had been achieved on all stimuli. We therefore checked
that further training did not significantly improve per-
formance, enabling us to refer to the percent success
after training as the “asymprotic performance.™

Figure 5 (top) shows the results for each pair. In all
cases It took fewer than 300 trials to reach the learning
criterion, and the asymprotic performance after training
ranged from 78.5% to 97.8% (D4). Two key aspects of
animal and human behavior were reproduced: the dis-
mnce effect (D10) and the Fechnerian property (D11).

As shown in Figure S5 (top), learning was faster and

Violume 5, Number 4



Discrimination of two numerosities
Asymplofic amor rxle (%) Trials 1o criterion

o O +0O
:0~0

ity O L) . 8.0

Ia.-u,

24+ O o o T8 O o O
[ D o R =] a tr D 0 o] D
f } } —f e -+ L T
1 2 3 . 5 ! F 3 " 5
O - 10 % e () =10
Larger-Smaller Comparison Same-Different Comparison
% errors Fe "SAME" rESpONSEs
[ by .o O slo o o O O
i R = Sl T s e e B 8 R
1+ 0 o O TG o
e+ O [+ R #r0 O 0O o @
i A O . . . 1 (o] o -] o
1I= al 3| . :I- 1 2 3 4 5
() e 25% anes () = chanca (a0

Figure 5. Distance effect and Fechner's baw tn a vartery of simulated
asks, Each box Elx'és the network's performance with a given pair of
numbers {eg., the top lefi circles give the percentage of errors made
by the network in discriminating sets of five objects from sets of one
ohject). Off the diagonal, the smaller the circle, the better the perfor-
mance. The distance effecs is reflected in the improvement of perfor-
mance a5 one moves away from the diagonal, Fechrer's law is
reflected in the degradation of performance with larger and larger
numerositles.

asymptotic performance improved with increasing nu-
merical distance between the two discriminated nume-
rosities; and for equal numerical distance, performance
was bener with small numerosites than with larger ones.
The two extremes were the discrimination of 4 vs. 5,
which took 285 trials to learn and in which asymprotic
performance was 78.5%, versus the discrimination of 1
vs. 4, which took only 81 trials to learn and in which
asymptotic performance was 96.8%,

Figure 6C shows the connection strengths after learn-
ing numerical discrimination of 2 vs. 4. Numerosity de-
tectors that were often activated when a set of two objects
was presented for input developed an excitatory con-
nection with the appropriate outpur cluster for “2." Like-
wise, the numerosity detectors for 4 developed an
excitatory connection with the other output cluster.
These connections were not strictly restricted o the nu-
merosity detectors for 2 and 4, but extended to the
neighboring clusters, thus providing robustness and gen-
eralization. Indeed our network generalized its response

Connection strengths
Numerosity discrimination
A 1 2
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Figure 6. Connection strengths afier learming various discriming-
tion tasks. The wp graph (A; same as Fig. 4), used as a reference,
gives the average response of the 15 numerosity clusters 1o numeros-
ities berween 1 and 5. Vertical dashed lines group numerosity detec-
tors with the same preferred numerosity. (B) Swength of the
connections from each of 15 numerosity detectors {abscissa) 1o each
aof five output clusters trained to respond anly 1o & given numernosicy
berween 1 and 5. Each output cluster receives excliatory connections
anly from the adequate numerosity clusters, (C) Connection
strengths to each of o output dusters in a nerwork trained 1o dis-
criminate Z from 4. One output cluster connects mainly to clusters
responsive to Z, while the other connects mainly to clusters respon-
sive o 4, with some generalization to 3 and 5. (I», E, F) Same a5 in
{C), for nerworks mained 1o diseriminate respectively 2 from 3 (D}, 3
from 4 (E), and 3 from 2 and 4 (F),
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to 4 when presented with sets of three or five iterns, and
its response 0 2 when presented with only one item.
Note that generalization was asymmetric (D5): the indif-
ference point between 2 and 4 was displaced to the left
of the arithmetical mean (Fig, 6C). As a resuly, when
presented with sets of three items the network mostly
made the same response as if four had been presented.

For comparison Figure 6 also shows the synaptic effi-
cacies after the network learned to discriminate 2 from
3 (Fig. 6D) and 3 from 4 (Fig. 6E). Additionally, the
network was trained to discriminate 3 from 2 and 4 (D4),
with 88.7% success (Fig. 6F). We also simulated a task
analogous to Matsuzawa's (1985) or Pepperberg’s {1987)
experiments (see D4), which required to activate one of
five output clusters corresponding to the five possible
input numerosities (Fig. 6B). A criterion of 20 successes
in a row was reached after 460 wrials. The subsequent
asymptotic performance was 77.5% correct, but the er-
rors were not randomly distributed over the five possible
numerosities. From 1 to 5 the errors rates were respec-
tively 5, 2, 18, 23, and 32%, indicating a decrease of
performance with numerosity reminiscent of Fechner's
law (D11). For each numerasity, the errors followed a
distance effect (D10). For instance when the input nu-
merosity was 5 the network gave the response "4" on
23% of trials, "3" on 7% of wrials, and "2" on 1% of trials,

In all such simulations, cross-modal generalization was
obtained immediately afier training (D2,D7). For instance
when trained to discriminate sets of 2 vs. 4 visual objects,
the nerwork extended its correct responses o sequences
of 2 va. 4 auditory objects. It also responded adequately
to mixtures of auditory and visual objects, for instance,
activating the correct output cluster for “4" when pre-
sented simultanecusly with two visual and two auditory
objects (D7),

SAME-DIFFERENT AND
LARGER—SMAILLER COMPARISON

Animals and infants are able to choose the larger of o
sets (D8). This ability cannot be simulared in the previous
model because only one numeraosity is processed at any
given moment in time. To model numerical comparison,
we introduce in this section wo novel features: a short-
term memory for past numerosity, and 4 point-to-point
matching module for comparing the past and present
numerosities.

Network Structure

Two additional modules are connecied berween nume-
rosity detectors and output clusters. Both comprise 15
clusters, each corresponding point-to-point to a given
numerssity clusier. The first module, labeled suermerosiny
memery, consists of clusters with strong autoexcitatory
connections enabling them to maintain a sustained level
of activity after disappearance of the initial activating
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stimulus (see Dehaene & Changeux, 1989, 1991). Nu-
merosity memory clusters receive coarse topographical
projections from numerosity detectors, and therefore
preferentially memorize the activation level of their cor-
responding numerosity-detecting cluster. In addition, nu-
merosity memory clusters inhibit each other, thereby
ensuring that new stimulation erases old memories. Fi-
nally both numerosity detectors and numerosity memory
clusters project to all output clusters. These output con-
nections are modifiable according to the above-defined
Hebbian rule modulated by reward (Fig. 2).

With this connectivity alone, it is possible for the net-
work 10 leam a larger—smaller comparison task, ie., o
activate a given output cluster if and only if the second
numerosity is larger than the first. This problem is said
to be linearly separable and can therefore be learned
with the present one-layer architecture (see Appendix
for a mathemarical demonstration). However this archi-
tecture s not sufficient for learning a same-different
comparison task, where a given output should be acti-
vated if, and only if, the two presented numerosities are
identical. Same—different comparison is formally equiv-
alent to the wellknown exclusive-OR problem, which
cannot be solved with a perceptron architecture (see
Appendix). To simulate same-different comparison, an-
other module of pofnt-to-poirt matching clusters is also
added. Each point-to-point marching cluster receives
coarse ropographical projections both from numerosity
detectors and from numerosity memory clusters. Thresh-
olds and connection strengths are such thar simultaneous
activation of a pair of corresponding numerosity-detect-
ing and numerosity-memory clusters is required to ac-
tivate the associated pointto-point matching clusier,
These clusters therefore perform a point-to-point com-
parison, analogous w a logical AND operation. Strong
activity in the point-to-point matching assembly indicates
that the present and memorized numerosities are likely
to be identical. Again, point-to-point matching clusters
project to all ourput clusters with modifiable swrength
(Fig. 2).

Simulation Results
Same-Differerst Comparison

The nerwork was first trained in a same-different com-
parison task {D8). A set of numerosity N1 was first pre-
sented for input during 32 update cycles, then a second
ser of numerosity N2 was presented for an additional 16
cycles. At thar ime the network had to activate one output
cluster if N1 was equal to N2, and another output cluster
if N1 was different from N2 (both cases occurred equally
often). Appropriate negative or positive reward was pro-
vided and the efficacy of the connections onto output
clusters was modified accordingly.

Performance reached 70.3% correct after 300 trials,
and did not significantly improve with further training.
In spite of this relatively poor global score, two important
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effects emerged when the responses to all possible pairs
of numerosities were examined (Fig. 5, booom right).
First, performance was affected by a strong distance effect
(D10}: the more similar the two numerosities, the higher
the percentage of “"same” responses. For instance the
percentage of "same” responses was 85.1% for the pair
1:1, 36.8% for 1:2, and only 15.3% for 1:3. Second, per-
formance decreased with numerosity in 2 manner rem-
iniscent of Fechner’s law (D11). For instance the network
responded that 2 and 3 were the same in 38.2% of trials,
but it responded that 4 and 5 were the same in 63.5%
of trials. The laner percentage was significantly worse
than chance (p < 0.001) and therefore corresponds to a
systematic error of responding “same” when the wo
compared numerosities were different but numerically
close.

Figure 7 shows the connection strengths after learning
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Figure 7. Connection strengths afier learning the same-different
comparison task Circles and a continuous line indicate connections
1o the cutput cluster coding for “different” (n1 # n2). Squares and a
dashed line indicate connections 10 the output cluster coding for
“same” (nl = ni) Note the excitatory connecions from marching
clusters 10 the output cluster coding for “same.”

the same-different task. All matching clusters tended to
activate the output cluster for “same” and to inhibit the
output cluster for “different™ A “same” response was
therefore elicited only when there was activity in the
pointto-point matching assembly, signaling a match be-
tween the memorized and present numerosities. Con-
versely, the output cluster for “different™ received
moderate excitation from numerosity detectors and from
memory clusters. This cluster therefore received a con-
stant activarion, and was selectively inactivated only when
there was activity in the matching assembly.

Larger—Smaller Comparison

Similar inputs were used to train the network in a larger—
smaller comparison task (D8). The network had to acti-
vate one output cluster if the second numerosity N2 was
larger than N1, and another output cluster if N2 was
smaller than N1. Both situations were equally frequent,
and the simation where N1 is equal w N2 was never
presented.

Performance reached an asymptote of 88.9% correct
after about 300 wials. Again we found strong distance
and Fechnerian effects (D10 and D11; Fig. 5, boom left).
Performance was close to 100% correct for the pairs 1:3,
1:4, 1:5, 2.4, and 2:5. It was much worse for consecutive
numerosities, and in that case the percentage of errors
was highly affected by numerosity: it ranged from 15%
when comparing 1 with 2 1o 45% when comparing 4
with 5.

Figure 8 shows the connection strengths that enabled
the nerwork to perform larger—smaller comparison. The
connections from numerosity detectors to the first output
cluster were monotonically increasing with numerosity,
whereas for the second output cluster these connections
were monotonically decreasing. Exactly the converse was
true for connections from memory clusters. The sym-
metrical pattern of connections from numerosity detec-
tors and from memory clusiers enabled each output
cluster 10 perform the equivalent of a subtraction of the
mwo numerosities, and to compare the result of this sub-
traction with a threshold. In essence, the two output
clusters computed the two Boolean funcions “N1 —
N2 > 7" and "N2 = N1 > 02" which are of course
equivalent to determining if N1 is larger than N2 or the
converse.

It is possible to demonstrate mathematically that the
system does not have be presented with all possible pairs
of numbers 10 acquire the larger-smaller relation. It is
sufficient thar all pairs of consecutive numbers be pre-
sented (see Appendix). The system then spontaneously
generalizes to pairs of nonconsecutive numbers, there-
fore accounting for transitve inference experiments
(D9).2 We verified that this property held not only in
theory but also in the simulation. After 300 training trials
on consecutive pairs only, asymptotic performance tested
on all pairs was 88.1% correct Networks trained on
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Figure 8. Connection strengths after leaming the larger—smaller
comparison sk Circles and a continuous line indicate connections
1o the output cluster trained 1o respond only when the memorized
numerosity was larger than the present numerosity (nl > n2).
Squares and a dashed line indicate connections to the other ourpa
cluster (m1 < n2), Nate the approximately monotonic curves for
connection strengths from numerosity detectors and from memory
clusters.

consecutive pairs only were indistinguishable from net-
works trained on all pairs of numbers, and their perfor-
mance was identical. In particular the distance effect was
again reproduced (D10)3

We have also simulated a condition similar to the
circular test developed by von Fersen et al. (1991), that
pigeons were not able to learn (see D9). One output
cluster was rrained 1o respond o the ordered pairs 1-2,
2-3, 34, 4-5, and 5-1, and the other output cluster was
trained 1o respond when these same pairs were pre-
sented in the converse order. The nerwork was never
able to artain a satisfactory level of performance on this
task (see Appendix for a theoretical account). In the
course of learning, a given pair could be classified cor-
rectly for a few trials, but on the long run performance
never rose beyond the chance level.
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SELF-ORGANIZATION OF ELEMENTARY
NUMERICAL ABILITIES

Reinforcement leamning, which was used in the above
simulations, provides a satisfactory account of condition-
ing experiments in rats or pigeons. However it cannot
explain the spontaneous development, in human and
other primates, of an ability to seleat the larger of two
sets in the absence of any training (D8). In this final
section we would like to show how an ordering over
numerosity deteciors (i.e., concepts of “larger” and
“smaller™) can self-develop without training from an ex-
ternal teacher. We replace the external teacher with an
internal autoevaluation loop (Dehaene & Changeux,
1991), which covertly evaluates the performance of the
system in representing the effect of additions and sub-
Lractions on numerosiy.

This concept is best illustrated by an example. Suppose
that a child, in the course of playing, adds one block 10
a set of three blocks and notices that the set now com-
prises four blocks. There are two ways in which the
observation of a regular association berween addition, 3,
and 4 can be used for the self-organization of numerical
abilities. First, the child may learn to predict the effects
of addition or subtraction on numerosity (a capacity that
we have chosen not w discuss; but see Starkey, 1992;
Wynn, 1992)4 Second, the child may recognize, across
different trials, that the relation between 3 and 4 is the
same as the reladon berween, say, 1 and 2. He may thus
discover that the ordered pairs, (1,2), (2,3), (3,4), ew., all
belong to the same class by virtue of their common
association to addition. If the mechanisms that learn this
association automatically generalize from consecutive
pairs 10 nonconsecutive pairs, as was shown in the pre-
vious section, then this class also extends to any pair in
which the first number is smaller than the second. In
this manner, the concept of smaller—larger can be ac-
quired.

Network Structure

The modified network with a capacity for self-organiza.
tion is shown in Figure 2 (bottom). It was naturally
impossible o simulate in any realistic way the motor
programs and mental sets that enable a child w “play”
with a set.of items. Rather, we added two "action” clusters
o code for the actions of addition or subtraction of one
object. Every 40 update cycles, one of these clusters is
activated at random (for a plausible neuronal and mo-
lecular implementation of such a “generator of diversity”
see Dehaene & Changeux, 1991). The physical effect of
the corresponding action is then computed, and one
object is added or subtracied 1o the inpurt set (subject o
the constraint that numerosity must remain in the interval
1-5). After a few cycles, this new input patern yields a
new pattern of activation over numerosity detectors. At
this stage, the network has the three crucial elements
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represented in different assemblies: the initial numeros-
ity is coded in the memory clusters, the operation of
addition or subtraction is coded in action clusters, and
the resulting numerosity is coded in the numerasity clus-
ters,

The goal of the nerwork is to reconstruct internally,
retrospectively, the action that was selected and gave rise
to the observed change in numerosity. To this end, the
output of the nerwork (now relabeled “reconstruction”
in the botom of Fig. 2) is compared with the actual
action that was just performed, If the two match, a covert
amoevaluarion loop sends positive reward 1o stabilize
the system. The comparison function is implemented by
two “action marching” clusters whose strengths and
thresholds have been adjusted to implement a logical
“AND" operation. "Action matching” clusters project onto
the previously defined reward cluster. High activity in
the "action matching” assembly indicates a good match
between the reconstruction and the actual action. In that
case, positive reward is sent and synaptic weights are
modified according to the above-defined rule. Low activ-
ity among “action matching™ clusters indicates a poor
match and prompts the sending of a negative internal
reward,

Simulation Results

Starting from a randomly selected input numerosity in
the range 1-5, the system was allowed to “play” with a
total of 300 additions or subtractions while modifications
of conpection strengths were allowed. Modifications
were then disabled and the system was tested on two
sorts of sequential inputs. First it was presented with
sequences of consecutive numerosities (e.g., 4 followed
by 3) to probe its ability o reconstruct internally the
corresponding addition or subtraction operation. The
appropriate “reconstruction” cluster was activared in
G2.3% of trials, which is significantly better than chance
[x*(1) = 73.9, p < 0.0001]. Second, the same test was
performed with sequences of nonconsecutive numeros-
ities. This 1ime the appropriate “reconstruction”™ cluster
was activated in 74.8% of trials (p < 0.0001). For instance
when presented with 4 followed by 1, on 99.4% of trials
the nerwork figured durt thar a subtraction operation had
been performed. In geperal the "addition” reconstruc-
tion cluster was activated whenever the second nume-
rosity was larger than the first, and the “subtraciion”
reconstruction clusier was activated whenever the sec-
ond numerosity was smaller than the first. This demon-
strates the self-organization of concepts of “larger”™ vs.
“smaller,” or “more” vs. “less,” in a system that interacts
with sets of objects. The connection strengths developed
by this self-organization procedure were similar to those
foond in the previous section, except for the presence
of a higher noise level that resulted in a lower perfor-
mancs Jevel,

DISCUSSION

We have presented a model to account for elementary
number processing abilities in humans and animals. In
the discussion, we shall first summarize the main features
and limitations of the model, and compare them with
other theoretical proposals. We shall then examine the
neurobiological plausibility of the model and its testable
predictions.

Numerosity Detection and the Subitizing/
Counting Issue

Gallistel (1990) states that “the only process for measur-
ing nurnerosity that is both well understood and gener-
ally applicable is counting” (p. 344). Our simulations,
however, demonstrate the feasibility of extracting ap-
proximate numerosity in parallel from a visual display,
without serial counting. Our maodel therefore illustrates
how one may account for animals’ and human infants’
numerical abilities without assuming that they can count
(Gallistel & Gelman, 1991, 1992).

Several ways in which fast numerosity apprehension
or “subitizing” could work have been previously pro-
posed (for review see Dehaene, 1992; Dehaene & Cohen,
1993), although none has ever been wurned into a work-
ing simulation. A popular hypothesis called the canonical
configuration model supposes that small numerosities
are recognized because a small number of objects always
form geometrically similar spatal configurations {eg.,
three = a rriangle; see Mandler & Shebo, 1982). However
a major difficulty with this view is that subitizing persists
even in the absence of any salient geometric information
(e.g., with linear arrays; Atkinson et al |, 1976). Our model
enumerates sets of objects arranged on its one-dimen-
sional “retina” without requiring any particular geomet-
ric arrangement of the input set.

Qur numerosity detection scheme is not limited o
small numbers of objects. However, since the variance
in the numerosity estimate increases with numerosity
itself (Fechner's law), there is a limit above which two
consecutive numerosities cannot be separated. For in-
stance, the performance of the nerwork in the same-
different task was close to chance for 3 vs. 4 and for 4
vs. 5 (see Fig. 5, bottom right). We believe that Fechner's
law suffices to explain the higher performance of human
adults and children with small numerosities, for instance,
the fact that 10-12-month-olds are better at discriminat-
ing 2 vs. 3 than 3 vs. 4 or 4 vs. 5 (Strauss & Curtis, 1981).
There may be no need to postulate a specific process
dedicared to the recognition of small numerosities (for
discussion, see Dehasne & Cohen, 1993).

in our model, therefore, the variance in the activarion
induced by each input object plays an important role in
explaining several fearures of numerical processing. Most
of this variance is due to the fact that the filters in the
location map provide only an approximate match to the

Debaene and Changeis 401



actual size of the input objects. As a result, 2 or 3 location
clusters may be activated by each inpur object From a
biological standpoint, it seems likely that the operation
of normalization for size and location cannot be per-
formed with arbitrary precision by real neuronal systems,
and that the numerosity estimates derived by the present
method will always be variable and obey Fechner's law.
Our model predicts, however, that the ability to estimate
numerosity may vary berween species and/or between
individuals of the same species, as a funcion of the
accuracy of their visuospatial normalization routines
(Klein & Starkey, 1987).

Limits of the Numerosity Detection System
The present network suffers from four major limitations:

1. Only up to five objects can be presented for input.
This limir is arbitrary and was chosen for compurational
convenience only. In principle, our scheme allows for
the parallel extraction of approximare numerosity from
an arbitrarily large set of objecs, provided the dimen-
sions of the input retina and the number of numerosity
clusters are increased.

2. The input retina is one-dimensional. Our scheme
would generalize readily 1o a two-dimensional retina,
provided the object normalization stage was exiended o
filter two-dimensional blobs of varied sizes.

3. The interaction berween the auditory and visual
modalities is not modeled beyond the simple summation
of numerosities in the two modalities. It seems likely
that preverbal organisms can recognize the presence of
a single object perceived simulaneously through two
modalities. Unlike our model, they would probably not
activate "27 if they saw a cow and heard a “moo™ The
fusion of auditory and visual modalities into amodal “ob-
ject files” prior to numerosity detection would be a useful
addition to the model.

4. No selection is performed on the nature of the
enumerated objects. Our model cannot enumerate, say,
only the red items and not the green ones, although
there is limited evidence for such behavior in animals
(Pepperberg, 1987). An implementation of selective ar-
tention is clearly bevond the scope of the present model.

Development of Numerical Abilities

We have described two major stages in the acquisition
of elementary numerical abilities: an initial stage in which
only numerosity detection abilities are present, and a
second stage, supposedly appearing at the end of the
first year of life, in which children become able .o com-
pare two numerosities and o understand ordinality. The
transition berween these two stages has been described
as a learning process in which the system progressively
comes to understand how variations in numerosity relate
to actions of adding to or subtracting from a set of
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objects, Initially, the numerosity detectors are not or-
dered. By exploring the effects of adding or subtracting
objets from a set, infants progressively discover the re-
lations between consecutive numerosity detectors. Ac-
cording to Cooper (1984, p. 166), “it is the relationship
between the numerosity detector states and the effects
of addition and subtraction that give rise to the notions
of more and less. From the child's point of view ‘more’
is invented in this process.” Our simulations provide a
concrete implementation of these views.

Limits of Our Developmental Account

Our model is volunarily restricted o the earliest stages
of numerical development. Subsequent important devel-
opmental steps that were not considered here include
the acquisition of counting (Gelman & Gallistel, 1978),
of a lexicon and grammar of number words (Fuson, 1988,
Power & Longuet-Higgins, 1978), of an explicit under-
standing of number conservation (Piaget, 1952), and of
arithmetical facts and procedures (Ashcraft, 1992; van
Lehn, 19290).

The adult number processing system is likely to be
composed of several cognitive layers {Dehaene & Cohen,
1991; Dehaene, 1992), only the most primitive and pre-
linguistic of which is captured by the present model. Our
simulation, for instance, was only 78.5% correct in dis-
criminating 4 vs. 5. While this may acwally represent a
quantitatively correct evaluarion of human performance
in speeded discrimination of tachistoscopic stimuli, it is
clearly far lower than what humans may achieve under
nonspeeded conditions. Likewise, our model was close
to chance level in judging which of 4 or 5 is the largest.
Normal humans, however, can compare digits with high
accuracy, presumably because they possess a number of
alternative verbal strategies in additon to the poswlated
preverbal representation. In general, the present model
will be most relevant to experimental situations in which
the use of such aliernative straregies is prevented, either
by experimental design or because verbal processes have
been disrupted by a cerebral lesion (e.g., Dehaene &
Cohen, 1991).

Neurophysiological and Neuropsychological
Predictions

Our developmental model predicts that elementary nu-
merical abilities rest on two main neuronal nerworks:

“the first one, the numerosity detection system, is func-

tional very early in life; the second, which underlies
number comparison abilities, develops at the end of the
first year. We now consider candidates for the corre-
sponding neuronal structures and outline some testable
predictions.®
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Numerosity Detection and the Parigtal Lobe

We attribute approximate numerosity detection to a par-
allel process that does not require the serial orientation
of visual amention toward each object. The postulate that
the numerosity detection system belongs o preatentive
vision has been tested and confirmed by Trick and Py-
tyshyn (1991). For instance, using reaction time methods
with normal subjects, they found that the position of the
attentional focus had much less influence on subitizing
performance than on countng performance, and that
factors that influenced preattentive vision also influenced
subitizing. Since counting, but not subitizing, requires
serial amentional movememts to specific locations, our
model also predicts that brain-lesioned parients with at-
tentional and/or location specificarion deficits might have
severe difficuldes in counting, but no problem with sub-
itizing and estimation. This prediction has recently been
borne out in five simultanagnosic patients (Dehaene &
Cohen, 1993).

Our model postulares a neuronal location map for the
parallel extraction of the location and size of visual ob-
jects regardless of their exact identity. This role might be
subsumed by areas of the parietal lobe, which have been
hypothesized to parnicipate in the coding of object lo-
cation (“where”) as opposed to object identity ("whar™)
{Ungerleider & Mishkin, 1982). Extraction of object lo-
cation and size is necessary to program the adequate
motor gesture for grasping an object, a process that
critically depends on the imtegrity of parietal cortex. The
initial object normalization stage that we postulate in our
model need not be dedicated entirely o numerosity
extraction. Rather, its primary use might be the preatuen-
tive labeling of object locations for guiding attemion
and motor behavior. In essence, numerosity estimation
would take advantage of an established visuomotor guid-
ing system.

At the neuronal level, a crivcal prediction of our model
concerns the existence of numerosity detectors, or neu-
ronal clusters that respond only 0 a given input nume-
rosity. Thompson et al, (1570) recorded from five such
“counting cells” in the associative cortex of anesthetized
cats. However, to our knowledge, the existence of nu-
merosity-detecting cells has not been replicated, perhaps
owing to the fact that numerosity is generally not con-
sidered as a relevant parameter in cortical activiry, We
hope that the wide availability of animal models of ele-
mentary numerical behavior will prompt a re-evaluation
of this noton. Our modsl tentatively predicts that nu-
merositv-detecting cells should be found within the pos-
terior parietal corex.

Nermber Comparison and the Prefronial Lobe

To go-beyond mere numerosity detection and 1o model
the developmemt of same—different and larger—smaller
comparison abilities ar the end of the first year of life,

we have had to supplement the initial structure of our
network with two neuronal assemblies: one for memo-
rizing past numerosities and another for the point-to-
point comparison of the memorized and present nu-
merosities. We would like to suggest that these structural
additions correspond to a stage of cortical maturarion in
which the prefrontal cortex becomes connected to other
brain areas. In humans, while numerosity detection is
present at birth (Bijeljac er al., 1991; Strauss & Curis,
1981), the ability to compare two numerosities seems o
develop only between 10 and 14 months (Cooper, 1984,
Sophian & Adams, 1984). This date fits remarkably well
with the known development of delayed-response abili-
ties {Diamond, 1988). Human infants before 9 months of
age fail on tests of shon-term memory such as Piager's
(1954) A-not-B test or the delayed-response test, even
with delays as shom as a few seconds. By contrast older
infants begin to succeed in the test and after 12 months
of age their memory can be sustained over periods of
several tens of seconds. In a systematic parallel with the
biehavior of monkeys, Diamond (1988) showed that ad-
equate performance in delayed-response tasks is criti-
cally dependent on the integrity of prefrontal cortex,
which gets connected berween 9 and 12 months in hu-
mans. Neuronal recordings in awake monkeys (Fuster,
1989), as well as modeling studies (Dehaene & Chan-
geux, 1989, 1991), have also confirmed the contribution
of prefrontal cortex in the temporary storage, in shon-
term memory, of a representation of relevant aspects of
the external world (Goldman-Rakic, 1987).

Our model shows that numerical comparison also re-
quires the development of similar shortterm memory
abilities. This parallel between delayed-response and
number development, in terms of both time scale and
of memory requirements, leads us to postulate a role for
prefrontal comex in the early development of elementary
numerical abilities. We predict that number development
should be impeded or delayed in infants or in animals
with prefrontal lesions. We also predict that cells with
long-lasting firing properties, similar to the long-lasting
activation of the numercsity memory clusters in our
model, may be recorded from the prefrontal cortex of
awake animals during numerical comparison tasks.

CONCLUSION

Although the present model concerned itself only with
the early development of numerical abilities, it has
broader implications for the nature of cognitive devel-
opment in humans and animals (Changeux & Dehaene,
1989). First, our work emphasizes the multiple levels of
organization that may underlie complex cognitive func-
tions such as number processing Eventually, the neu-
ronal architectures underlying different levels of
cognitive functioning should be untied. Second, we have
proposed a general selectionist mechanism for the wan-
sition from one level to the next in the course of devel-
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opment For each such transition, we postulate an initial
stage of diversification—due, for instance, to the parially
stochastic establishment of new connections within a
given neuronal architecture—followed by a second stage
of selection during which irrelevant connections are
pruned and the relevant funciion is stabilized. The se-
lection operation may be performed by a positve or
negative reward signal, which can be either externally
imposed, as in many animal conditioning experiments,
or covenly generated by the organism itself monitoring
its own success via an internal autoevaluation loop (De-
haene & Changeux, 1991). This mechanism departs sig-
nificantly from Piaget's (1952, 1954) sensorimotor
scheme in allowing for internal learning to take place
purely by mental experiment, without any overt action
of the organism on the external world. Such a process
is likely to be critical in mathematical development as
well as in other cognitive domains.®

APPENDIX: COMPARISON IN A SINGLE-
LAYER NETWORK

This appendix gives some simple mathematical results
concerning the learnability of same—different and larger—
smaller comparison tasks in a single-layer nerwork of the
perceptron type. Consider a network with 222 input units
with activation X; . . . X, and Xj . . . X7, one output unit
with activation A4, and 2 connection weights W, . . . W,
and W7 . . . W5 We assume that the numbers w be
compared are coded by single units ar the inputs. For
instance when a pair of numbers (n112) is presented
for input, the activation of input units is

Xm=1 X=40
1 Xn=20

for n # nl
for 11 # n2

n2
The resulting activation A of the output is
A=P(Wn + W — T)

where T is the threshold of the output unit and @ is its
input—output function. We assume that @ is a strictly
increasing function verifying ®(—=) = 0, ©0) = 0.5,
and @(+=) = 1. These assumptions are valid for the
particular case of the sigmoidal input-output function
used in most network simulations.

Larger—Smaller Comparison

We want the output unit to be active, say, only when 71
is striactly larger than »2 (other cases can be treated
identically). This can be wrinen as

O(Wy + Wiz = T) > 05
P(Wo + Wiz — T <05

ifnl > n2
if nl = n2

First, we show that it is sufficient to train the nerwork
with numbers that are equal or consecutive, and that it
will then generalize to all pairs of numbers. Suppose
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that the above conditions hold for 21 = n2 and for n1 =
n2 + 1:

P(Woer + W, = T7) > 05
(W, + W, - T) <05

Letting Z, = W, — T2 and Z, = W}, — 772, it follows
from the definition of @ that

Znr1 T Zn >0 and Zn+ZL<0

This is equivalent to Z, << —Z; < Z,.. for all n (inter-
lacing condirion). It follows immediately that

for all p=0, Zn < Zpap

and

for all p=>0, —Zn < Zpip

and these conditions imply that the nerwork responds
correctly to all input numbers nl and n2.

Note that the actual presentation of cases where nl is
equal to 72 is vital 1o the above demonstration. Indeed,
suppose that a network had been trained to perform
correcthy with input pairs (1,2), (2,1}, (2,3), and (3,2), but
not with the pairs (1,13, (2,2), {3,3),(1,3), and (3,1). Then
in some “pathological” cases this network may fail 10
generalize correctly to the pairs (1,3) and (3,1). In our
simulations, however, this pathological situation never
occurred,

It is always possible to find connections weights that
will satisfy the interlacing condition Z, < —Zn < Znp4
for all n. Furthermore, it is easy to reverse the above
demonstration and show that the interlacing condition is
in fact necessary and sufficient. Larger—smaller compar-
ison is therefore learnable, and learning algorithms such
as the dela rule will always find a solution (Minsky &
Papert, 1969).

The interlacing condition implies that the weights from
the first input are monotonically increasing, whereas the
weights from the second input must be monotonically
decreasing. This is exactly the panern of connection
weights that was found in our simulation (Fig. 8). This
monotonicity of the weights implies a distance effect.
The activity A of the output unit will deviate more from
its resting level 0.5, the more distant the two compared
numbers. This derives direcily from the observation that
for all n,

Wy + Wy~ T < Wy + Woy = T < 05 < Waey
+ W= T < Waaa + Wo =T <

and

Wyt Waey —T<W, + W, —T<O05<W,+
Wi — T < W, +Wra — T <~

For instance if the threshold T is not fixed but subject 1o
noise, as in our simulations, then the probabiliry of an
erroneous response will decrease with increasing dis-
mance between the two compared numbers. Furthermore
if the output unit accumulates activation over time, as is
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the case for our self-connected autoexcitatory clusters,
then the response time of the unit will also decrease
with increasing distance.

Same-Different Comparison

We now want the output unit 1o be active, say, only when
nl is different from »2 (the symmetrical case can be
treated identically). This can be written as

PWo + Wiz — T) > 05 if p1#n2
(W, + W, — T =< 05 for all »

This problem is similar to the well-known XOR problem
and is therefore not learnable in a single-layer percep-
tron, To demonstrate this, suppose that the four follow-
ing equations are simultaneously satisfied for a given
pair {nl n2):

(W + W — T3 <05
DWW,z + Wy, — T) <05
PW,y + Wi — T) > 05
DWW, + W, —T) =05

This is equivalent o

Zy + Zm <05
Zna + Zpp <05
Fa + Z2 =05
an + Z;H - U-E‘

The first two equations are clearly incompatible with the
two others.
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MNotes

L. This level of performance was indeed asymptotic in that it
depended only on the representation used for numerasiry, and
not on the learning algorithem iself. For instance, it was im-
possible in principle for the nerwork to do bemer than 80%
success in discrimination of 4 vs. 5, because the internal rep-
resentations of 4 and 5 varied widely and often overlapped.

2. The possibility of accounting for “transitive inference” ex-
periments using classical reinforcement learning, such as the
Rescorla—Wagner rule, has been recognized by Couvillon and
Bitterman (1992).

3. In transitive inference experiments (D9}, the distance effect
has an interesting implication: performance is actually lower
with the frafrned pairs of consecutive numbers (75.4% correct)
than with the wnrraimed pairs of nonconsecutive numbers
(96.2% correct). Superior performance on untrained pairs has
been repeatedly found in transitive inference experiments (e.g.,
Bryant & Trabasso, 1971; McGonigle & Chalmers, 1977, von
Fersen er al., 1991). This counterintuitive observation indicares

that, contrary 1o what the name “transitive inference” sugeests,
more distant pairs do not require additional inferential steps.
Rather, all pairs, whether trained or untrained, are encoded
into the same representadion of linear order, the resoluton of
which improves for larger inter-item distances,

4. Wynn's (1992) results demonstrare knowledge of 1+1 and
2=1 in 5-month-old infants. This suggests that the abiliv 10
predict the result of additions or subtractions may develop
before the ability to compare two numbers, which Cooper
(1984) locares around 10—14 months. However contrary 10
Wynn (1992), »e do not think that such data demonstrate the
“innateness” of numerical abilities (see Changeux & Dehaene,
1989, for a selectionist approach o the innatefacquired debate .
5. Our discussion of the anatomical bases of numerical abilities
focuses on mammals, panmicularly primates. The anaromical
organization of birds is likely 10 be very different, even though
ar the computational level their numerical processes might be
isomorphic 1o those of mammals,

6, (Note added in proof) Anderson and his colleagues {An-
derson, Spoehr & Benner, in press) have proposed 2 somewhat
similar model, with special emphasis on modeling of human
adult’s arithmetical abilities,

REFERENCES

Anderson, J. A.,.Spochr, K T, & Bennett, D. J. (in press). A
study in numerical perversit: Teaching arithmetic to a
neural network In D, 5. Levine & M. Aparicio (Eds.),
Newral networks for knowledge represertation and infer-
erice. Hillsdale, NJ: Erlbaum,.

Antell, 8. E.,, & Keating, D. P. (1983). Perception of numerical
invariance in neonates. Child Development, 54, 695-701,

Asheraft, M. (1992). Cognitive arithmetics: A review of daa
and theory, Cogrition, 44, 75-1006.

Assal, G., & Jacor-Descombes, C. (1984), Intuition arithme-
tique chez un acaleulique, Revie Newrologique, 140, 374
375,

Atkinson, J., Francis, M. R, & Campbell, F. W. (1976}, The
dependence of the visual numerosity limit on orienwation,
colour, and grouping in the stimulus, Perception, 5, 335—
34z, .

Bijeljac-Babic, R, Bertoncini, J., & Mehler, J. (1991). How do
four-day-old infants categorize mulisyllabic unerances?
Manuscript submined for publication.

Bryant, P. E, & Trabasso, T. {1971). Transitive inferences and
memory in young children. Neatuwre (London), 232, 456—
458,

Buckley, P. B., & Gillman, C. B. (1974). Comparison of digits
and dot panerns. fowrnal of Experimerttal Psychology, 103,
(6), 1131-1136.

Changeux, |, P., & Dehaene, 5. (1989). Neuronal models of
cognitive funcions, Cogreition, 33, 63-109.

Chi, M. T. H., & Klahr, D. {1975). Span and rate of apprehen-
sion in children and adults. fowrnal! of Experimental Child
Psychology, 19, 434—439.

Church, R M., & Meck, W. H. {1984). The numerical arribute
of stimuli. In H. L Roitblar, T. G. Bever, & H. 5. Terrace
{Eds.), Arimal cogrition. Hillsdale, NJ: Erlbaum.

Cooper, K. G. (1984). Early number development: Discover-
ing number space with addirion and subtraction. In C. So-
phian (Ed ), Origins of cogririve skills (pp. 157-192).
Hillsdale, MJ: Erlbaum,

Couvillon, P. A, & Bitterman, M. E. (1992). A conventional
conditioning analysis of "Transitive Inference” in pigeons.
Journal of Experimenvtal Pychology: Arimal Bebawior Pro-
cesses, 18, 308-310

Davis, D. L, & Ashmead, D. H. (1991). fnfarnss’ memerical

Debaene and Changeux 405



discrimination between s2ty of sequentially presented fig-
ures. Preprint.

Davis, H., & Albert, M. (1986). Numerical discrimination by
rats using sequential auditory stumuli. Animal Learning
arnd Bebavior, 14, 57-59,

Davis, H. & Pérusse, R (1988). Numerical competence in ani-
mals: Definitional issues, current evidence and a new re-
search agenda. Bebavioral and Brain Sciences, 11, 561—
415.

Dehaene, 5. (1989). The psychophysics of numerical compari-
son: A re-examination of apparently incompatible data. Per
ception and Psychophysics, 45, 557-566.

Dehaene, S, (1992). Varieties of numerical abilities. Cogry-
ton, 44, 1-42.

Dehaene, 5., & Changeux, |. P. (1989). A simple model of
prefrontal cortex function in delayed-response tasks. forr-
nal of Cogrnitive Neuroscience, 1, 244-261.

Dehaene, 5., & Changeux, J. P, (1991). The Wisconsin Card
Sorting Test: Theoretical analysis and modelling in a new-
ronal network. Cerebral corvex, 1, 62-79.

Dehaene, 5., & Cohen, L (1991), Two mental calculation sys-
tems: A case study of severe acalculia with preserved ap-
proximation. Newropspchologia, 29, 1045-1074.

Dehaene, 5., & Cohen, L. (1993). Neuropsychological disso-
ciation between subitizing and counting in simultaneous
patens. (Submitted.)

Dehaene, 5., & Mehler, J. (1992). Cross-linguistic regularites
in the frequency of number words. Cogrefiion, 43, 1-29.

Dehaene, 5., Dupoux, E, & Mehler, . (1990). Is numerical
comparison digital: Analogical and symbolic effects in o
digit number comparison. Jowrma! of Experfmental Psp-
chology: Human Perception and Performance, 16, 626-
641,

Diamond, A (1988). Differences berween adult and infant
cognition: Is the crucial variable presence or absence of
language? In L Weiskrantz (Ed.), Thowught withour lan-
guage. Oxford: Clarendon Press.

Duncan, E. M., & McFarland, C. E. (1980). Isolating the effects
of symbolic distance and semantic congruity in comparative
judgments: An additive-factors analysis. Memory and Cogrii-
tomn, 8, 612-622.

Fuson, K C. (1988). Children's counting and concepes of
riember, New York: Springer-Verlag.

Fuster, J. M. (1989). The frefronral cortex (2nd ed.). New
York: Raven.

Gallistel, C. R (1990). The organization of learnirg. Cam-
bridge, MA: Bradford BooksMIT Press,

Gallistel, C. K., & Gelman, R {1991). Subitzing: The preverbal
counting mechanism. In W. Kessen, A Ornony, & F Craik
(Eds.), Festschrift for George Mandler. Hillsdale, MJ: Erl-
baum.

Gallistel, C. R, & Gelman, R (1992). Preverbal and verbal
counting and compuration. Cogrition, 44, 43-74,

Gelman, R, & Gallistel, C. B (1978). The childs understand-
ing of ruember, Cambridge, MA: Harvard University Press.
Goldman-Rakic, P. 5, (1984). Modular organization of prefron-

tl conex. Trends in Newroscience, 7, 419424,

Goldman-Rakic, P. 5. (1987). Circuitry of primate prefrontal
cortex and regulation of behavior by representational
knowledge, In E Plum & V. Mountcastle (Eds.), Handbook
of Physiolagy, 5, 373-417.

Hécaen, H., Angelergues, R, & Houillier, 5. {1961). Les var-
iétés cliniques des acaleulies au cours des 1ésions réro-
rolandiques: Approche statistique du probléme. Rerwee New-
rologique, 105, 85-103.

Kalfman, E. L, Lord, M. W, Reese, T. W, & Volkmann, ].
{1949, The discrimination of visual number. American
Jowrmal of Popchology, 62, 498525,

406 ®  Journal of Cognitive Neuroscience

Kerszberg, M., Dehaene, 5, & Changeux, J. P. (1992). Stabili-
zation of complex input-ouput functions in newral clusters
formed by synapse selection. Newral Networks, 5, 403413,

Kiahr, D, & Wallace, J. G. (1973). The role of quantification
operators in the development of conservation, Cognitive
Psychology, 4, 301-327.

Klein, A, & Starkey, P. (1987). The origins and development
of numerical cognition: A comparative analysis. In J. Slo-
boda & D. Rogers (Eds.), Cogritive processes in mathemal-
ics (pp. 1-25). Oxford: Clarendon Press.

Krueger, L. E. (1989). Reconciling Fechner and Stevens: To-
ward a unified psychophysical law, The Babavioral and
Brain Sciences, 12, 251-267.

Krueger, L. E,, & Hallford, E. W. (1984). Why 2+2=5 looks so
wrong: On the odd-even rule in sum verification. Memory
& Cognition, 12, 171-180,

Mandler, G., & Shebo, B, J. (1982). Subitizing: An analysis of
its component processes. Jowrnal of Experimerital Pgychol-
ogy: General, 111, 1-21.

Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Na-
ture (London), 315, 57-59.

McCloskey, M. (1992). Cognitive mechanisms in numerical
processing: Evidence from acquired dyscaleulia, Cognition,
44, 107-157.

McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logi-
cal? Nature (London), 267, 694-695,

Meck, W, H., & Church, R M. (1983). A mode control model
of counting and timing processes. Journal of Experimertial
Psychology: Animal Bebarior Processes, 9, 320-334.

Minsky, M., & Paper, 5. (1969). Percepirons: An frtroduction
to compraational geometry. Cambridge, MA: MIT Press,

Mitchell, B. W, Yao, P., Sherman, B. T., & O'Regan, M. (1985).
Discriminative responding of a dolphin (Tursiops trunca-
tus) to differentially rewarded stimuli Jotrral of Compear-
arive Psychology, 99, 218-225.

Moore, D., Benenson, J., Reznick, J. 5., Peterson, M., & Kagan,
J. (1987). Effect of auditory numerical information on in-
fant's looking behavior: contradictory evidence. Develap-
mental Peychology, 23, 665-670.

Mountcastle, V. B. (1978). An organizing principle for cerebral
function: The unit module and the distributed system. In
G. M. Edelman & V. B. Mountcastle (Eds.), The mindfid
brain, Cambridge: MIT Press,

Mover, B 5., & Landauver, T. K (1267). Time required for
judgements of numerical inequality. Mature (London), 215,
1519-1520.

Pepperberg, 1. M. (1987). Evidence for conceptual quantitative
abilities in the African grey parrot: Labeling of cardinal sers.
Ethology, 75, 37-61.

Piager, J. (1952). The childs conception of member. New York:
MNorton,

Pizger, 1. (1954). The comnstruction of reality in the child, New
York: Basic Books.

Poluock, 5. E (1989). A random walk model of digit compari-
son. Jowrnal of Mathernatical Psychology, 33, 131-162,

Power, R. J. ., & Longuet-Higgins, H. C. (1978), Learning o
count: A computational model of language acquisition. Pro-
ceedings of the Royal Society (London), B200, 391417,

Restle, . (1970). Speed of adding and comparing numbers.
Jowrnal of Experimental Psychology, 91, 191-205.

Rilling, M., & McDiarmid, C. {1965). Signal detection in fixed
ratio schedules, Sgerice, 148, 526-527.

Rumbaugh, D. M., Savage-Rumbaugh, 5., & Hegel, M. T.
(1987). Summation in the chimpanzee (Pan roglodyres).
Jowrnal of Experimental Psychology: Animal Bebaidor Pro-
cexses, 13, 107-113.

Sekuler, B, & Mierkiewicz, D. (1977). Children's judgments of
numerical inequality, Child Development, 48, 630-633.

Volume 5, Number 4



Sophian, C., & Adams, N. (1987). Infants’ understanding of
numerical transformations, British Journal of Develop-
merual logy, 5, 257-264.

Swarkey, P. (1992). The early development of numerical rea-
soning. Cogrition, 43, 93-126.

Starkey, P., & Cooper, R G, Jr. (1980). Perception of numbers
by human infants. Science, 210, 1033-1035.

Starkey, P., Spelke, E. 5., & Gelman, R (1983). Detection of
intermodal numerical correspondences by human infants.
Sclence, 222, 179-181.

Starkey, P., Spelke, E. 5., & Gelman, R (1990). Numerical ab-
straction by human infants. Cognition, 36, 97-127,

Strauss, M, 5., & Curis, L E. (1981). Infant perception of nu-
merasity. Chitd Developmert, 52, 1146-1152.

Taves, E. H. (1941). Two mechanisms for the perception of
visual numerousness. Archives of Psychology, 37, n® 265.
Thompson, R F., Mayers, K. 5., Roberson, R T, & Patierson,
C. J. (1970). Number coding in association cortex of the

cat. Science, 168, 271-273.

Treiber, F, & Wilcox, 5. (1984). Discrimination of number by
infants. /rfant Bebavior and Developmer, 7, 93-100,

Trick, L M., & Pylyshyn, Z W. (1991). A theory of enumera-

tion that grows out of a general theory of vision: Subitizing,
counting and FINSTs, University of Western Oniario
COGMEM #57.

Ungerleider, L G., & Mishkin, M. (1982}, Two cortical visual
svstems. In D ], Ingle, M. A Goodale, & R J. Mansfield
(Eds.), Analysis of visieal bebawior (pp. $49-58G). Cam-
bridge, MA: MIT Press.

van Lehn, K. (1990). Mind bugs. The origin of procedural
misconceptions. Cambridge, MA: MIT Press.

van Loosbroek, E., & Smitsman, A W, (1990). Visual percep-
tion of numenasity in infancy. Developmertal Paychology,
26, 916-922,

von Fersen, L, Wynne, C. D. L., Delius, J. D, & Staddon,

I E. B {1991). Transitive inference formation in pigeons.
Journal of Experimental Fsychology: Artfmal Bebavior Pro-
cesses, 17, 334-341

Washbum, D. A, & Rumbaugh, D. M. {1991). Ordinal judg-
ments of numerical symbols by macaques (Macaca mu-
latta). Psychologial Science, 2, 190-193.

Wynn, K {1992), Addition and subtraction by human infants.
Nature (London), 358, 749-750.

Debaene and Changetes 407



