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Recent experimental studies and theoretical models have begun to address the challenge of establishing
a causal link between subjective conscious experience and measurable neuronal activity. The present
review focuses on the well-delimited issue of how an external or internal piece of information goes
beyond nonconscious processing and gains access to conscious processing, a transition characterized
by the existence of a reportable subjective experience. Converging neuroimaging and neurophysiological
data, acquired during minimal experimental contrasts between conscious and nonconscious processing,
point to objective neural measures of conscious access: late amplification of relevant sensory activity,
long-distance cortico-cortical synchronization at beta and gamma frequencies, and ‘‘ignition’’ of
a large-scale prefronto-parietal network. We compare these findings to current theoretical models of
conscious processing, including the Global Neuronal Workspace (GNW) model according to which
conscious access occurs when incoming information is made globally available to multiple brain systems
through a network of neurons with long-range axons densely distributed in prefrontal, parieto-temporal,
and cingulate cortices. The clinical implications of these results for general anesthesia, coma, vegetative
state, and schizophrenia are discussed.
Introduction
Understanding the neuronal architectures that give rise to

conscious experience is one of the central unsolved problems

of today’s neuroscience, despite its major clinical implications

for general anesthesia, coma, vegetative-state, or minimally

conscious patients. The difficulties are numerous. Notably, the

term ‘‘consciousness’’ has multiple meanings, most of which

are difficult to precisely define in a manner amenable to experi-

mentation. In this review, we outline recent advances made in

understanding the delimited issue of conscious access: how

does an external or internal piece of information gain access

to conscious processing, defined as a reportable subjective

experience?

We start with a brief overview of the relevant vocabulary and

theoretical concepts. We then examine the experimental studies

that have attempted to delineate the objective physiological

mechanisms of conscious sensory perception by contrasting it

with minimally different, yet nonconscious processing condi-

tions, using a variety of methods: behavior, neuroimaging,

time-resolved electro- and magneto-encephalography, and

finally single-cell electrophysiology and pharmacology. We crit-

ically examine how the present evidence fits or argues against

existing models of conscious processing, including the Global

Neuronal Workspace (GNW) model. We end by examining

possible consequences of these advances for pathological brain

states, including general anesthesia, coma, and vegetative

states.
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I. Vocabulary and Major Experimental Paradigms
Conscious State versus Conscious Contents

‘‘Conscious’’ is an ambiguous word. In its intransitive use (e.g.,

‘‘the patient was still conscious’’), it refers to the state of

consciousness, also called wakefulness or vigilance, which is

thought to vary almost continuously from coma and slow-wave

sleep to full vigilance. In its transitive use (e.g., ‘‘I was not

conscious of the red light’’), it refers to conscious access to

and/or conscious processing of a specific piece of information.

The latter meaning is the primary focus of this review. At any

given moment, only a limited amount of information is

consciously accessed and defines the current conscious

content, which is reportable verbally or by an intended gesture.

At the same time, many other processing streams co-occur

but remain nonconscious.

Major Experimental Paradigms

A broad variety of paradigms (reviewed in Kim and Blake, 2005)

are now available to create a minimal contrast between

conscious and nonconscious stimuli (Baars, 1989) and thus

isolate the moment and the physiological properties of

conscious access. A basic distinction is whether the noncon-

scious stimulus is subliminal or preconscious (Dehaene et al.,

2006; Kanai et al., 2010). A subliminal stimulus is one in which

the bottom-up, stimulus-driven information is so reduced as to

make it undetectable, even with focused attention. A precon-

scious stimulus, by contrast, is one that is potentially visible (its

energy and duration are such that it could be seen), but which,
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on a given trial, is not consciously perceived due to temporary

distraction or inattention.

Subliminal presentation is often achieved by masking,

a method whereby the subjective visibility of a stimulus is

reduced or eliminated by the presentation, in close spatial and

temporal contiguity, of other stimuli acting as ‘‘masks’’ (Breit-

meyer, 2006). For instance, a word flashed for 33 ms is visible

when presented in isolation but becomes fully invisible when

preceded and followed by geometrical shapes. Masked stimuli

are frequently used to induce subliminal priming, the facilitation

of the processing of a visible target by the prior presentation of

an identical or related subliminal prime (for review, see Kouider

and Dehaene, 2007). Subliminal presentation can also be

achieved with threshold stimuli, where the contrast or energy

of a stimulus is progressively reduced until its presence is unno-

ticeable. Binocular rivalry is another common paradigm whereby

the image in one eye becomes subliminal by competition with

a rivaling image presented in the other eye. Participants typically

report temporal alternations in the image that is consciously

perceived. However, a variant of binocular rivalry, the continuous

flash suppression paradigm allows an image to be made perma-

nently invisible by presenting continuously flashing shapes in the

other eye (Tsuchiya and Koch, 2005).

An equally large range of techniques allows for preconscious

presentation. In inattentional blindness, a potentially visible but

unexpected stimulus remains unreported when the participants’

attention is focused on another task (Mack and Rock, 1998;

Simons and Ambinder, 2005). The attentional blink (AB) is

a short-term variant of this effect where a brief distraction by

a first stimulus T1 prevents the conscious perception of a second

stimulus T2 briefly presented within a few hundreds of millisec-

onds of T1 (Raymond et al., 1992). In the related psychological

refractory period (PRP) effect (Pashler, 1994; Welford, 1952),

T2 is unmasked and is therefore eventually perceived and pro-

cessed, but only after a delay during which it remains noncon-

scious (Corallo et al., 2008; Marti et al., 2010). The ‘‘distracting’’

event T1 can be a surprise event that merely captures attention

(Asplund et al., 2010). The minimum requirement, in order to

induce AB, appears to be that T1 is consciously perceived

(Nieuwenstein et al., 2009). Thus, PRP and AB are closely related

phenomena that point to a serial limit or ‘‘bottleneck’’ in con-

scous access (Jolicoeur, 1999; Marti et al., 2010; Wong, 2002)

and can be used to contrast the neural fate of two identical

stimuli, only one of which is consciously perceived (Sergent

et al., 2005).

Objective versus Subjective Criteria for Conscious

Access

How can an experimenter decide whether his experimental

subject was or was not conscious of a stimulus? According to

a long psychophysical tradition, grounded in signal-detection

theory, a stimulus should be accepted as nonconscious only if

subjects are unable to perform above chance on some direct

task of stimulus detection or classification. This strict objective

criterion raises problems, however (Persaud et al., 2007;

Schurger and Sher, 2008). First, it tends to overestimate

conscious perception: there are many conditions in which

subjects perform better than chance, yet still deny perceiving

the stimulus. Second, performance can be at chance level for
some tasks, but not others, raising the issue of which tasks count

as evidence of conscious perception or merely of subliminal pro-

cessing. Third, the approach requires accepting the null hypoth-

esis of chance-level performance, yet performance never really

falls down to zero, and whether it is significant or not often

depends on arbitrary choices such as the number of trials dedi-

cated to its measurement.

For these reasons, recent alternative approaches emphasize

either pure subjective reports, suchas ratingsof stimulus visibility

(Sergent and Dehaene, 2004), or second-order commentaries

such as postdecision wagering (e.g., would you bet that your

response was correct?; Persaud et al., 2007). The wagering

method and related confidence judgements provide a high moti-

vation to respond truthfully and in an unbiasedmanner (Schurger

and Sher, 2008). Furthemore, they can be adapted to nonhuman

subjects (Kiani and Shadlen, 2009; Terrace and Son, 2009).

However, they can sometimes exceed chance level even when

subjects deny seeing the stimulus (Kanai et al., 2010).

Conversely, subjective report is arguably the primary data of

interest in consciousness research. Furthermore, reports of stim-

ulus visibility canbefinely quantified, leading to thediscovery that

conscious perception can be ‘‘all-or-none’’ in some paradigms

(Del Cul et al., 2007; Del Cul et al., 2006; Sergent and Dehaene,

2004). Subjective reports also present the advantage of assess-

ing conscious access immediately andon every trial, thus permit-

ting postexperiment sorting of conscious versus nonconscious

trials with identical stimuli (e.g., Del Cul et al., 2007; Lamy et al.,

2009; Pins and Ffytche, 2003; Sergent et al., 2005; Wyart and

Tallon-Baudry, 2008).

Although the debate about optimal measures of conscious

perception continues, it is important to acknowledge that objec-

tive assessments, wagering indices and subjective reports are

generally in excellent agreement (Del Cul et al., 2006; Del Cul

et al., 2009; Persaud et al., 2007). For instance, in visual masking,

the conscious perception thresholds derived from objective and

subjective data are essentially identical across subjects (r2 =

0.96, slope z 1) (Del Cul et al., 2006). Those data suggest that

conscious access causes a major change in the global avail-

ability of information, whether queried by objective or by subjec-

tivemeans, whosemechanism is the focus of the present review.

Selective Attention versus Conscious Access

Conscious access must be distinguished from the related

concept of attention. William James (1890) provided a well-

known definition of attention as ‘‘the taking possession by the

mind, in clear and vivid form, of one out of what seem several

simultaneously possible objects or trains of thought.’’ The

problem with this definition is that it conflates two processes

that arenowclearly separated incognitivepsychologyandcogni-

tive neuroscience (e.g., Huang, 2010; Posner and Dehaene,

1994): selection and access. Selection, also called selective

attention, refers to the separation of relevant versus irrelevant

information, isolation of an object or spatial location, based on

its saliency or relevance to current goals, and amplification of

its sensory attributes. Access refers to its conscious ‘‘taking

possession of the mind’’—the subject of the present review.

Empirical evidence indicates that selection can occur without

conscious processing (Koch and Tsuchiya, 2007). For instance,

selective spatial attention can be attracted to the location of
Neuron 70, April 28, 2011 ª2011 Elsevier Inc. 201
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a target stimulus that remains invisible (Bressan and Pizzighello,

2008; McCormick, 1997; Robitaille and Jolicoeur, 2006;

Woodman and Luck, 2003). Selective attention can also amplify

the processing of stimuli that remain nonconscious (Kentridge

et al., 2008; Kiefer and Brendel, 2006; Naccache et al., 2002).

Finally, in simple displays with a single target, conscious access

can occur independently of selection (Wyart and Tallon-Baudry,

2008). In cluttered displays, however, selection appears to be

a prerequisite of conscious access: when faced with several

competing stimuli, we need attentional selection in order to

gain conscious access to just one of them (Dehaene and Nacc-

ache, 2001; Mack and Rock, 1998). These findings indicate that

selective attention and conscious access are related but disso-

ciable concepts that should be carefully separated, attention

frequently serving as a ‘‘gateway’’ that regulates which informa-

tion reaches conscious processing.

II. Experimental Studies of the Brain Mechanisms
of Conscious Access
With this vocabulary at hand, we turn to empirical studies of

conscious access. The simplest experiments consist in present-

ing a brief sensory stimulus that is sometimes consciously acces-

sible, sometimes not, and using behavior, neuroimaging, and

neurophysiological recording tomonitor the depth of its process-

ing and how it differs as a function of conscious reportability.

Experiments Contrasting Visible and Invisible Stimuli

Behavioral evidence. A visual stimulus that is masked and

remains invisible can nevertheless affect behavior and brain

activity at multiple levels (for review, see Kouider and Dehaene,

2007; Van den Bussche et al., 2009b). Subliminal priming has

now been convincingly demonstrated at visual, semantic, and

even motor levels. For instance, when a visible target image is

preceded by a subliminal presentation of the same image, simple

decisions, such as judging whether it refers to an object or

animal, are accelerated compared to when the image is not

repeated. Crucially, this repetition effect resists major changes

in the physical stimulus, such as presenting the same word in

upper case versus lower case (Dehaene et al., 2001) or present-

ing the same face in two different orientations (Kouider et al.,

2009), suggesting that invariant visual recognition can be

achieved without awareness. At the semantic level, subliminal

extraction of the meaning of words has now been demonstrated

for a variety of word categories (e.g., Gaillard et al., 2006; Nacc-

ache and Dehaene, 2001; Van den Bussche et al., 2009a). At

evenmore advanced levels, a subliminal stimulus can biasmotor

responses (Dehaene et al., 1998b; Leuthold and Kopp, 1998).

Subliminal monetary incentives enhance subjects’ motivation

in a demanding force task, indicating that motivation is modu-

lated by nonconscious signals (Pessiglione et al., 2007). So is

task setting: masked shapes can act as cues for task switching

and lead to detectable changes in task set (Lau and Passingham,

2007). Even inhibitory control can be partially launched noncon-

sciously, as when a nonconscious ‘‘stop’’ signal slows down or

interrupts motor responses (van Gaal et al., 2008) (see Figure 1).

The above list suggests that entire chains of specialized

processors can be subject to nonconscious influences. Never-

theless, three potential limits to subliminal processing have

been identified (Dehaene and Naccache, 2001). First, subliminal
202 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
priming quickly decreases with processing depth, such that only

small influences are detectable at higher cognitive and decision

levels (Dehaene, 2008; van Gaal et al., 2008). For instance,

a subliminal number can enter into a single numerical operation,

but not a series of two arbitrary operations (Sackur andDehaene,

2009). Second, subliminal priming decreases with elapsed time,

and therefore typically ceases to be detectable after 500 ms

(Dupoux et al., 2008; Greenwald et al., 1996; Mattler, 2005).

For instance, classical conditioning across a temporal gap only

obtains when participants report being aware of the relations

among the stimuli (Clark et al., 2002) (although see Bekinschtein

et al., 2009b). Third, subliminal stimuli typically fail to yield lasting

and flexible modifications in executive control. Human subjects

generally excel in identifying strategies that exploit virtually any

statistical relation among stimuli, but such strategic control

appears to require consciousness (Posner et al., 1975/2004)

and is not deployed when the stimuli are masked or unattended

and therefore are not consciously detected (Heinemann et al.,

2009; Kinoshita et al., 2008; Merikle and Joordens, 1997; Van

den Bussche et al., 2008). For instance, under conscious condi-

tions, subjects typically slow down after a conflict or error trial

but may not do so when the error or conflict is nonconscious

(Kunde, 2003; Nieuwenhuis et al., 2001) (for two interesting

exceptions, see Logan and Crump, 2010; van Gaal et al., 2010).

Brain-scale neuroimaging. Functional magnetic resonance

imaging (fMRI) can provide a global image of the brain activity

evoked by a visible or invisible stimulus, integrated over a few

seconds. Grill-Spector et al. (2000) first used fMRI to measure

visual activity evoked by masked pictures presented below or

above the visibility threshold. Activation of the primary visual

area V1 was largely unaffected by masking, but the amount of

activation in more anterior regions of lateral occipital and fusi-

form cortex strong correlated with perceptual reports. A year

later (Dehaene et al., 2001), a similar contrast between masked

and unmasked words, now at the whole-brain level, again re-

vealed a strong correlation of conscious perception with fusiform

activity, but also demonstrated extended areas of activation

uniquely evoked by conscious words, including inferior pre-

frontal, mesial frontal, and parietal sites (Figure 1). In more recent

fMRI work, using a masking paradigm where conscious reports

followed a characteristic U-shaped curve as a function of the

target-mask delay, fusiform and midline prefrontal and inferior

parietal regions again closely tracked conscious perception

(Haynes et al., 2005b). An important control was recently added:

participants’ objective performance could be equated while

subjective visibility was manipulated (Lau and Passingham,

2006). In this case, a correlate of visibility could only be detected

in left dorsolateral prefrontal cortex.

Some authors have found correlations of fMRI activation with

visibility of masked versus unmasked stimuli exclusively in

posterior visual areas (e.g., Tse et al., 2005). However, in their

paradigm, even the unmasked stimuli were probably not seen

because they were unattended and irrelevant, which can prevent

conscious access (Dehaene et al., 2006; Kouider et al., 2007;

Mack and Rock, 1998). Overall, fMRI evidence suggests two

convergent correlates of conscious access: (1) amplification of

activity in visual cortex, clearest in higher-visual areas such as

the fusiform gyrus, but possibly including earlier visual areas
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Figure 1. fMRI Measures of Conscious
Access
(A) An early fMRI experiment contrasting the fMRI
activations evoked by brief presentations of words
that were either readable (left) or made invisible by
masking (right) (adapted fromDehaene et al., 2001).
Nonconscious word processing activated the left
occipito-temporal visual word form area, but
conscious perception was characterized by (a) an
intense amplification of activation in relevant
nonconscious processors, here the visual word
form area (left occipito-temporal cortex; see middle
graph); (b) an additional spread of activation to
a distributed, though restricted set of associative
cortices including inferior parietal, prefrontal, and
cingulate areas.
(B) fMRI study of threshold-level noises, approxi-
mately half of which were consciously detected
(Sadaghiani et al., 2009). Bilateral auditory areas
showed a nonconscious activation, which was
amplified and spread to distributed inferior parietal,
prefrontal, and cingulate areas (for similar results
with tactile stimuli, see Boly et al., 2007).
(C) fMRI study of inhibitory control by a visible or
invisible cue (van Gaal et al., 2011). Subjects were
presented with masked visual shapes, at the
threshold for conscious perception, some of which
occasionally required inhibiting a response (go/
no-go task). Small activations to the nonconscious
no-go signal were detected in the inferior frontal
and preSMA cortices, but inhibitory control by
a conscious no-go signal was associated with fMRI
signal amplification (see the difference between no-
go and go signals in middle graphs), and massive
spread of the activation to additional and more
anterior areas including prefrontal, anterior cingu-
late, and inferior parietal cortices.
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(e.g., Haynes et al., 2005a; Polonsky et al., 2000; Williams et al.,

2008); (2) emergence of a correlated distributed set of areas,

virtually always including bilateral parietal and prefrontal cortices

(see Figure 1).

Time-resolved imaging methods. Event-related potentials

(ERPs) and magneto-encephalography (MEG) are noninvasive

methods for monitoring at a millisecond scale, respectively, the

electrical and magnetic fields evoked by cortical and subcortical

sources in the human brain. Both techniques have been used to

track the processing of amasked stimulus in time as it crosses or

does not cross the threshold for subjective report. In the 1960s
Neuron
already, ERP studies showed that early

visual activation can be fully preserved

during masking (Schiller and Chorover,

1966). This early finding has been sup-

ported by animal electrophysiology

(Bridgeman, 1975, 1988; Kovács et al.,

1995; Lamme et al., 2002; Rolls et al.,

1999) and by essentially all recent ERP

and MEG studies (Dehaene et al., 2001;

Del Cul et al., 2007; Fahrenfort et al.,

2007; Koivisto et al., 2006, 2009; Lamy

et al., 2009; Melloni et al., 2007; Railo

and Koivisto, 2009; van Aalderen-Smeets

et al., 2006). Evidence from the attentional

blink also confirms that the first 200 ms of
initial visual processing can be fully preserved on trials in which

subjects deny seeing a stimulus (Sergent et al., 2005; Vogel

et al., 1998) (see Figure 2).

In ERPs, the most consistent correlate of visibility appears to

be a late (�300–500ms) and broadly distributed positive compo-

nent called P3 or sometimes P3b (to distinguish it from the focal

anterior P3a, which is thought to reflect automatic attention

attraction and can occur nonconsciously [e.g., Muller-Gass

et al., 2007; Salisbury et al., 1992]). A similarly slow and late

waveform is seen in MEG (van Aalderen-Smeets et al., 2006).

The generators of the P3b ERP have been shown by intracranial
70, April 28, 2011 ª2011 Elsevier Inc. 203



Figure 2. Electro- and Magneto-encephalography Measures of Conscious Access
(A) Time course of scalp event-related potentials evoked by an identical visual stimulus, presented during the attentional blink, as a function of whether it was
reported as seen or unseen (Sergent et al., 2005). Early events (P1 and N1) were strictly identical, but the N2 event was amplified and the P3 events (P3a and P3b)
were present essentially only during conscious perception.
(B) Manipulation of visibility by varying the temporal asynchrony between a visual stimulus and a subsequent mask (Del Cul et al., 2007). A nonlinearity, defining
a threshold value for conscious access, was seen in both subjective visibility reports and the P3b event amplitude. Source modeling related this P3b to a sudden
nonlinear ignition, about 300 ms after stimulus presentation, of distributed sources including inferior prefrontal cortex, with a simultaneous reactivation of early
visual areas. Note the two-stage pattern of fusiform activation, with an early linear activation followed by a late nonlinear ignition.
(C) Magneto-encephalography correlates of the attentional blink (Gross et al., 2004). On perceived trials, induced power and phase synchrony increased in the
low beta band (13–18 Hz), in a broad network dominated by right inferior parietal and left prefrontal sites.
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recordings and ERP-fMRI correlation to involve a highly distrib-

uted set of nearly simultaneous active areas including hippo-

campus and temporal, parietal, and frontal association cortices

(Halgren et al., 1998; Mantini et al., 2009). The P3b has been

reproducibly observed as strongly correlated with subjective

reports, both when varying stimulus parameters (e.g., Del Cul

et al., 2007) and when comparing identical trials with or without

conscious perception (e.g., Babiloni et al., 2006; Del Cul et al.,

2007; Fernandez-Duque et al., 2003; Koivisto et al., 2008;

Lamy et al., 2009; Niedeggen et al., 2001; Pins and Ffytche,

2003; Sergent et al., 2005) (however, this effect may disappear

when the subject already has a conscious working memory

representation of the target: Melloni et al., 2011). The effect is

not easily imputable to increased postperceptual processing or

other task confounds, as many studies equated attention and

response requirements on conscious and nonconscious trials

(e.g., Del Cul et al., 2007; Gaillard et al., 2009; Lamy et al.,

2009; Sergent et al., 2005). For instance, Lamy et al. (2009)
204 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
compared correct aware versus correct unaware trials in

a forced-choice localization task on a masked stimulus, thus

equating for stimuli and responses, and again observed a tight

correlation with the P3b component.

Human ERP andMEG recordings also revealed that conscious

perception is also accompanied, during a similar timewindow, by

increases in the power of high-frequency fluctuations, primarily in

the gamma band (>30 Hz), as well as their phase synchronization

across distant cortical sites (Doesburg et al., 2009; Melloni et al.,

2007; Rodriguez et al., 1999; Schurger et al., 2006; Wyart and

Tallon-Baudry, 2009). In lower frequencies belonging to the alpha

and low beta bands (10–20 Hz), the data aremore ambiguous, as

both power increases (Gross et al., 2004) anddecreases (Gaillard

et al., 2009;Wyart and Tallon-Baudry, 2009) have been reported,

perhaps due to paradigm-dependent variability in the deploy-

ment of dorsal parietal attention networks associated with

decreases in alpha-band power (Sadaghiani et al., 2010). Even

when power decreases in these low frequencies, however, their
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Figure 3. Intracranial Potentials during Conscious Access
Intracranial local-field potentials were recorded during stimulation with masked or unmasked words from a total of ten patients implanted with deep intracortical
electrodes (Gaillard et al., 2009). Four intracranial signatures of conscious access were identified.
(A) Although invisible words elicited event-related potentials, mostly early (<300 ms) and at posterior sites, only visible words elicited massive and durable
voltages in a late time window, particularly from the few available frontal electrodes.
(B) Gamma-band power increases were detectable for invisible words, but in a late time window (>300 ms) gamma power was massively amplified when the
words were visible, particularly in the high-gamma range (50–100 Hz). Reduced power was seen in the alpha and lower beta bands.
(C) Phase synchrony increased for invisible words in a late time window (300–500 ms) in the beta frequency range (13–30 Hz).
(D) Causal relations across distant electrodes, assessed by Granger causality gain due to word presence, increasedmassively during the same timewindow. The
bottom row shows causal gain for a particular electrode pair as a function of time. Increases were bidirectional but dominant in the bottom-up direction (e.g.,
occipital-to-frontal), compatible with the idea of posterior information ‘‘accessing’’ more anterior sites. All time scales are relative to stimulus onset.
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long-distance phase synchrony is consistently increased during

conscious perception (Gaillard et al., 2009; Gross et al., 2004;

see also Hipp et al., 2011). The globally distributed character of

these power and synchrony increases seems essential, because

recent results indicate that localized increases in these parame-

ters can be evoked by nonconscious stimuli, particularly during

the first 200msof stimulus processing (Fisch et al., 2009;Gaillard

et al., 2009;Melloni et al., 2007). Thus, short-lived focal increases

in gamma-band power are not unique to conscious states but

track activation of both conscious and nonconscious local

cortical circuits (Ray and Maunsell, 2010). However, their signifi-

cant enhancement on consciously perceived trials, turning into

an all-or-none pattern after 200 ms, appears as a potentially

more specific marker of conscious access (Fisch et al., 2009;

Gaillard et al., 2009).

The high spatial precision and signal-to-noise ratio afforded by

intracranial recording in epileptic patients provides essential
data on this point. Gaillard et al. (2009) contrasted the fate of

masked (subliminal) versus unmasked (conscious) words while

recording from a total of 176 local sites using intracortical depth

electrodes in ten epileptic patients. Four objective signatures of

conscious perception were identified (Figure 3): (1) late (>300ms)

and distributed event-related potentials contacting sites in

prefrontal cortex; (2) large and late (>300 ms) increases in

induced power (indexing local synchrony) in high-gamma

frequencies (50–100 Hz), accompanied by a decrease in lower-

frequency power (centered around 10 Hz); (3) increases in

long-distance cortico-cortical synchrony in the beta frequency

band 13–30 Hz; (4) increases in causal relations among distant

cortical areas, bidirectionally but more strongly in the bottom-

up direction (as assessed byGranger causality, a statistical tech-

nique that measures whether the time course of signals at one

site can forecast the future evolution of signals at another distant

site). Gaillard et al. (2009) noted that all four signatures coincided
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Figure 4. Human Single-Cell Recordings
during Conscious Access
Single cells were recorded from the human medial
temporal lobe and hippocampus during presen-
tation of masked pictures, with a variable target-
mask delay (Quiroga et al., 2008). The example at
left shows a single cell that fired specifically to
pictures of theWorld Trade Center, and did so only
on trials when the patient recognized the picture
(dark blue raster plots), not on trials when recog-
nition failed (red raster plots). Graphs at right show
the average firing rate across all neurons. Although
a small transient firing could be seen on unrec-
ognized trials, conscious perception was charac-
terized by a massive and durable amplification of
activity (for complementary results using electro-
corticography (ECoG) in human occipito-temporal
areas, see also Fisch et al., 2009).
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in the same time window (300–500 ms) and suggested that they

might constitute different measures of the same state of distrib-

uted ‘‘ignition’’ of a large cortical network including prefrontal

cortex. Indeed, seen stimuli had a global impact on late evoked

activity virtually anywhere in the cortex: 68.8%of electrode sites,

although selected for clinical purposes, were modulated by the

presence of conscious words (as opposed to 24.4% of sites

for nonconscious words).

Neuronal recordings. A pioneering research programwas con-

ducted by Logothetis and collaborators using monkeys trained

to report their perception during binocular rivalry (Leopold and

Logothetis, 1996; Sheinberg and Logothetis, 1997; Wilke et al.,

2006). By recording from V1, V2, V4, MT, MST, IT, and STS

neurons and presenting two rivaling images, only one of which

led to high neural firing, they identified a fraction of cells whose

firing rate increased when their preferred stimuli was perceived,

thus participating in a conscious neuronal assembly. The propor-

tion of such cells increased from about 20% in V1/V2 to 40% in

V4, MT, or MST to as high as 90% in IT and STS. This finding

supports the hypothesis that subjective perception is associated

with distributed cell assemblies whose neurons are denser in

higher associative cortices than in primary and secondary visual

cortices. Surprisingly, fMRI signals correlated quite strongly with

conscious perception during rivalry in area V1 (Haynes andRees,

2005; Polonsky et al., 2000) and even in the lateral geniculate

nucleus of the thalamus (Haynes et al., 2005a; Wunderlich

et al., 2005). The discrepancy between fMRI and single-cell

recordings was addressed in a recent electrophysiological study

(Maier et al., 2008; see also Wilke et al., 2006): within area V1 of

the same monkeys, fMRI signals and low-frequency (5–30 Hz)

local field potentials (LFPs) correlated with subjective visibility

while high-frequency (30–90 Hz) LFPs and single-cell firing rate

did not. One interpretation of this finding is that V1 neurons

receive additional top-down synaptic signals during conscious

perception compared to nonconscious perception, although

these signals need not be translated into changes in average

firing rate (Maier et al., 2008).
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The masking paradigm afforded

a more precise measurement of the

timing of conscious information progres-
sion in the visual system. In area V1, multiunit recordings during

both threshold judgments (Supèr et al., 2001) and masking para-

digms (Lamme et al., 2002) identified two successive response

periods. The first period was phasic, was time-locked to stimulus

onset, and reflected objective properties such as stimulus orien-

tation, whether or not they were detectable by the animal. The

second period was associated with a late, slow, and long-lasting

amplification of firing rate, called figure-ground modulation

because it was specific to neurons whose receptive field fell on

the foreground ‘‘figure’’ part of the stimulus. Crucially, only this

second phase of late amplification correlated tightly with stim-

ulus detectability in awake animals (Lamme et al., 2002; Supèr

et al., 2001) and vanished under anesthesia (Lamme et al.,

1998). Thus, although different forms of masking can affect

both initial and late neural responses (Macknik and Haglund,

1999; Macknik and Livingstone, 1998), the work of Lamme and

colleagues suggests that it is the late sustained phase that is

most systematically correlated with conscious visibility. A similar

conclusion was reached from earlier recordings in infero-

temporal cortex (Kovács et al., 1995; Rolls et al., 1999) and

frontal eye fields (Thompson and Schall, 1999, 2000).

Only a single study to date has explored single-neuron

responses to seen or unseen stimuli in human cortex (Quiroga

et al., 2008). Pictures followed at a variable delay by a mask

were presented while recording from the antero-medial temporal

lobe in five patients with epilepsy. A very late responsewas seen,

peaking around 300 ms and extending further in time. This late

firing reflected tightly the person’s subjective report, to such an

extent that individual trials reported as seen or unseen could

be categorically distinguished by the neuron’s firing train (see

Figure 4). Such a late categorical response is consistent with

the hypothesis that conscious access is ‘‘all-or-none,’’ leading

either to a high degree of reverberation in higher association

cortex (conscious trial) or to a vanishing response (Dehaene

et al., 2003b; Sergent et al., 2005; Sergent and Dehaene, 2004).

Single-cell electrophysiology has also contributed to a better

description of the postulated role of synchrony in conscious
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perception (Rodriguez et al., 1999; Varela et al., 2001). Within

a single area such as V4, the degree to which single neurons

synchronize with the ongoing fluctuations in local-field potential

is a predictor of stimulus detection (Womelsdorf et al., 2006).

Across distant areas such as FEF and V4 (Gregoriou et al.,

2009) or PFC and LIP (Buschman and Miller, 2007), synchrony

is enhanced when the stimulus in the receptive field is attended

and is thus presumably accessed consciously. Consistent with

human MEG and intracranial studies (e.g., Gaillard et al., 2009;

Gross et al., 2004), synchronization involves both gamma and

beta bands, the latter being particularly enhanced during top-

down attention (Buschman and Miller, 2007). During the late

phase of attention-driven activity, causal relations between

distant areas are durably enhanced in both directions, but

more strongly so in the bottom-up direction from V4 to FEF (Gre-

goriou et al., 2009), again similar to human findings (Gaillard

et al., 2009) and compatible with the idea that sensory informa-

tion needs to be propagated anteriorily, particularly to PFC,

before becoming consciously reportable.

Experiments with Perceived and Unperceived Stimuli

outside the Visual Modality

Although vision remains the dominant paradigm, remarkably

similar signatures of conscious access have been obtained in

other sensory or motor modalities (see Figure 1).

In the tactile modality, threshold-level stimuli were studied

both in humans with fMRI and magneto-encephalography

(Boly et al., 2007; Jones et al., 2007) and in awake monkeys

with single-cell electrophysiology (de Lafuente and Romo,

2005, 2006). In the monkey, the early activity of neurons in the

primary somatosensory area S1 was identical on detected and

undetected trials, but within 180 ms the activation expanded

into parietal and medial frontal cortices (MFC) where it showed

a large difference predictive of behavioral reports (high activation

on detected trials and low activity on undetected trials, even for

constant stimuli). In humans, a similar two-phase pattern was

identified within area S1 (Jones et al., 2007). According to the

authors, modeling of these S1 potentials required the postulation

of a late top-down input from unknown distant areas to supra-

granular and granular layers, specific to detected stimuli. Thus,

as in the visual modality (Del Cul et al., 2007; Supèr et al.,

2001), tactile cortices may be mobilized into a conscious

assembly only during a later phase of top-down amplification,

synchronous to the activation of higher association cortices.

In the auditory modality, similarly, stimuli that are not

consciously detected still trigger considerable sensory process-

ing, including 40 Hz steady-state responses (Gutschalk et al.,

2008) andmismatch negativities (MMN), i.e., electrophysiological

responses that arise primarily from the temporal lobe in response

to rare, deviant, or otherwise unpredictable auditory stimuli (Allen

et al., 2000; Bekinschtein et al., 2009a; Diekhof et al., 2009; Nää-

tänen, 1990). Once again, conscious and nonconscious stimuli

differ in a late (>200 ms) and global P3 wave arising from bilateral

prefronto-parietal generators, with joint enhancement of

temporal auditory cortices (Bekinschtein et al., 2009a; Diekhof

et al., 2009). These localizations are confirmed by an fMRI study

that contrasteddetectedversusundetectednear-thresholdnoise

bursts (Sadaghiani et al., 2009) (Figure 1). Similarly, an fMRI study

of speech listening at different levels of sedation showed partially
preserved responses in temporal corticesbut the total disappear-

ance of activation in the left inferior frontal gyrus during deep

sedation (Davis et al., 2007). A study by Hasson et al. (2007)

further suggests that the content of what we consciously hear

does not dependon earlymodality-specific responses in auditory

cortex, but rather on late fronto-parietal cross-modal computa-

tions. Using the McGurk illusion (perception of a syllable ‘‘ta’’

when simultaneously hearing ‘‘pa’’ and seeing a face saying

‘‘ka’’), they dissociated the objective auditory and visual stimuli

from the subjective percept. Using fMRI repetition suppression,

they then showed that early auditory cortices coded solely for

the objective auditory stimulus, while the perceived subjective

conscious contentwas reflected in the activation of the left poste-

rior inferior frontal gyrus and anterior inferior parietal lobule. In this

instance, at least, PFC activation could not be attributed to

a generic process of attention, detection, or memory but demon-

strably encoded the specific syllable perceived.

Turning to the action domain, several studies have demon-

strated that the awareness of one’s action, surprisingly, is not

associated with primary or premotor cortices but arises from

a higher-level representation of intentions and their expected

sensory consequences; this representation involves prefrontal

and parietal cortices, notably the angular gyrus (AG) (Desmurget

et al., 2009; Farrer et al., 2008). Using direct cortical stimulation,

Desmurget et al. (2009) observed a double dissociation: premo-

tor stimulation often led to overt movements that the subject was

not aware of performing, while angular gyrus stimulation led to

a subjective perception of movement intention and performance

even in the absence of any detectable muscle activation. In

normal subjects, disrupted sensori-motor feedback has also

been used to define a minimal contrast between subliminal

versus conscious gestures. For instance, when a temporal delay

or a spatial bias was introduced in the visual feedback provided

to participants about their own hand movements, they continu-

ously adjusted their behavior, but these motor adjustments

were only perceived consciously when the disruption exceeded

a certain threshold (Farrer et al., 2008; Slachevsky et al., 2001).

fMRI revealed that this nonlinearity related to a bilateral distrib-

uted network involving AG and PFC cortices (Farrer et al., 2008).

Perhaps the clearest evidence for a two-stage process in

action awareness comes from studies of error awareness (Nieu-

wenhuis et al., 2001). In an antisaccade paradigm, participants

were instructed to move their eyes in the direction opposite to

a visual target. This instruction generated frequent errors, where

the eyes first moved toward the stimulus and then away from it.

Many of these erroneous eye movements remained undetected.

Remarkably, immediately after such undetected errors, a strong

and early (�80 ms) ERP component called the error-related

negativity arose from midline frontal cortices (anterior cingulate

or pre-SMA). Only when the error was consciously detected

was this early waveform amplified and followed by a massive

P3-like waveform, which fMRI associated with the expansion

of activation into a broader network including left inferior

frontal/anterior insula activity (Klein et al., 2007).

Convergence with Studies of Inattention and Dual Tasks

The experiments reviewed so far considered primarily subliminal

paradigms where access to conscious reportability was modu-

lated by reducing the incoming sensory information. However,
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Figure 5. Recruitment of Global Fronto-
Parietal Networks in Effortful Serial Tasks
(A) Simulations of the original global neuronal
workspace proposal before, during, and after
learning of an effortful Stroop-like task (adapted
from Dehaene et al., 1998a). The figure shows the
activity of various processor and workspace units
as a function of time. Workspace units show
strong activation (a) during the search for a task-
appropriate configuration of workspace units; (b)
during the effortful execution of a novel task (but
not after its routinization); and (c) after errors, or
whenever higher control is needed.
(B–D) Example of corresponding global fronto-
parietal activations as seen with fMRI. (B) Strong
activation of a distributed network involving PFC
during effortful search for the solution of
a ‘‘master-mind’’ type problem, with a sudden
collapse as soon as a routine solution is found
(adapted from Landmann et al., 2007). (C) Acti-
vation of inferior PFC during dual-task perfor-
mance which diminishes with training (adapted
from Dux et al., 2009). (D) Activation of a distribu-
tion parieto-prefrontal-cingulate network on error
and conflict trials (adapted from the meta-analysis
by Klein et al., 2007).
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similar findings arise from preconscious paradigms where with-

drawal of attentional selection is used to modulate conscious

access (Dehaene et al., 2006), resulting in either failed (attentional

blink, AB) or delayed (psychological refractory period or PRP)

conscious access. In such states, initial visual processing, in-

dexed by P1 and N1 waves, can be largely or even entirely unaf-

fected (Sergent et al., 2005; Sigman and Dehaene, 2008; Vogel

et al., 1998). However, only perceived stimuli exhibit an amplifica-

tion of activation in task-related sensory areas (e.g., parahippo-

campal place area for pictures of places) as well as the unique

emergence of lateral and midline prefrontal and parietal areas

(see also Asplund et al., 2010; Marois et al., 2004; Slagter et al.,

2010; Williams et al., 2008). Temporally resolved fMRI studies

indicate that, during the dual-task bottleneck, PFC activity

evoked by the second task is delayed (Dux et al., 2006; Sigman

and Dehaene, 2008). With electrophysiology, the P3b waveform

again appears as a major correlate of conscious processing

that is both delayed during the PRP (Dell’acqua et al., 2005;

Sigman and Dehaene, 2008) and absent during AB (Kranczioch

et al., 2007; Sergent et al., 2005). Seen versus blinked trials are

also distinguished by another marker, the synchronization of

distant frontoparietal areas in the beta band (Gross et al., 2004).

William James (1890) noted how conscious attention and

effort are required for the controlled execution of novel nonrou-

tine sequential tasks but is no longer needed or even detrimental

once routine sets in. Thus, the comparison of effortful versus

automatic tasks provides another contrast that, although not

quite as minimal as the previous ones, should at least provide

signatures of conscious-level processing consistent with other

paradigms. Indeed, a broad network including inferior and

dorsolateral prefrontal, anterior cingulated, and lateral parietal
208 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
and intraparietal components is activated

whenever human subjects perform effort-

ful single or dual tasks (Marois and Ivan-
off, 2005), and its activation diminishes with training in parallel

to the reduction in behavioral cost (Dux et al., 2009). Strikingly,

it suddenly drops as soon as subjects move into a routine

mode of task execution (Landmann et al., 2007; Procyk et al.,

2000) (Figure 5). On the contrary, focal cortical regions associ-

ated with automatized processing of the relevant sensory or

motor attributes remain invariant or may even increase their acti-

vation in the course of routinization (e.g., Sigman et al., 2005).

Broad fronto-parietal networks also figure prominently among

the distributed networks of coactive areas that can be isolated

during spontaneous brain activity in the absence of an explicit

task goal (Beckmann et al., 2005; Fox et al., 2006; Greicius

et al., 2003; Mantini et al., 2007; Vincent et al., 2008). How this

activity relates to conscious processing remains debated, since

it can still be observed, to some extent, during sleep (He et al.,

2008), vegetative state (Boly et al., 2009), or sedation in both hu-

mans (Greicius et al., 2008) and monkeys (Vincent et al., 2007),

though interestingly with reduced functional connectivity

(Schrouff et al., 2011). To resolve this issue, a direct test consists

in identifying participants with a given spontaneous activity

patternandasking themwhether theywereexperiencingapartic-

ular conscious content (Christoff et al., 2009; Mason et al., 2007).

Such studies reveal a tight correlation between default-mode

network activity and self-reported ‘‘mind-wandering’’ into

episodic memory and self-oriented thought. Smallwood et al.

(2008) further demonstrated that, during such mind-wandering

periods, theP3waveevokedbyexternal events is reduced.Over-

all, these findings indicate that spontaneous activity, like external

goal-driven activity, invades large-scale fronto-parietal networks

and impose a strong limitation on the processing of external

events, with the same signature as the attentional blink.
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Figure 6. Historical Steps in the Development of Models of Conscious Processing
In the Norman and Shallice (1980) model (top left), conscious processing is involved in the supervisory attentional regulation, by prefrontal cortices, of lower-level
sensori-motor chains. According to Baars (1989), conscious access occurs once information gains access to a global workspace (bottom left), which broadcasts
it to many other processors. The global neuronal workspace (GNW) hypothesis (right) proposes that associative perceptual, motor, attention, memory, and value
areas interconnect to form a higher-level unified space where information is broadly shared and broadcasted back to lower-level processors. The GNW is
characterized by its massive connectivity, made possibly by thick layers II/III with large pyramidal cells sending long-distance cortico-cortical axons, particularly
dense in prefrontal cortex (Dehaene et al., 1998a).
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In conclusion, human neuroimaging methods and electro-

physiological recordings during conscious access, under

a broad variety of paradigms, consistently reveal a late amplifica-

tion of relevant sensory activity, long-distance cortico-cortical

synchronization at beta and gamma frequencies, and ‘‘ignition’’

of a large-scale prefronto-parietal network.

III. Theoretical Modeling of Conscious Access
The above experiments provide a convergent database of

observations. In the present section, we examine which theoret-

ical principles may account for these findings. We briefly survey

themajor theories of conscious processing, with the goal to try to

isolate a core set of principles that are common to most theories

and begin to make sense of existing observations. We then

describe in more detail a specific theory, the Global Neuronal

Workspace (GNW), whose simulations coarsely capture the con-

trasting physiological states underlying nonconscious versus

conscious processing.
Convergence toward a Set of Core Concepts for

Conscious Access

Although consciousness research includes wildly speculative

proposals (Eccles, 1994; Jaynes, 1976; Penrose, 1990), research

of the past decades has led to an increasing degree of conver-

gence toward a set of concepts considered essential in most

theories (for review, see Seth, 2007). Four such concepts can

be isolated.

A supervision system. In the words of William James,

‘‘consciousness’’ appears as ‘‘an organ added for the sake of

steering a nervous system grown too complex to regulate itself’’

(James, 1890, chapter 5). Posner (Posner and Rothbart, 1998;

Posner and Snyder, 1975) and Shallice (Shallice, 1972, 1988;

Norman and Shallice, 1980) first proposed that information is

conscious when it is represented in an ‘‘executive attention’’ or

‘‘supervisory attentional’’ system that controls the activities of

lower-level sensory-motor routines and is associated with

prefrontal cortex (Figure 6). In other words, a chain of sensory,
Neuron 70, April 28, 2011 ª2011 Elsevier Inc. 209



Neuron

Review
semantic, and motor processors can unfold without our aware-

ness, as reviewed in the previous section, but conscious percep-

tion seems needed for the flexible control of their execution, such

as their onset, termination, inhibition, repetition, or serial chaining.

A serial processing system. Descartes (1648) first observed

that ‘‘ideas impede each other.’’ Broadbent (1958) theorized

conscious perception as involving access to a limited-capacity

channel where processing is serial, one object at a time. The

attentional blink and psychological refractory period effects

indeed confirm that conscious processing of a first stimulus

renders us temporarily unable to consciously perceive other

stimuli presently shortly thereafter. Several psychological

models now incorporate the idea that initial perceptual process-

ing is parallel and nonconscious and that conscious access is

serial and occurs at the level of a later central bottleneck (Pash-

ler, 1994) or second processing stage of working memory

consolidation (Chun and Potter, 1995).

A coherent assembly formed by re-entrant or top-down loops.

In the context of the maintenance of invariant representations of

the body/world through reafference (von Holst and Mittelstaedt,

1950), Edelman (1987) proposed re-entry as an essential compo-

nent of the creation of a unified percept: the bidirectional

exchange of signals across parallel cortical maps coding for

different aspects of the same object. More recently, the dynamic

core hypothesis (Tononi and Edelman, 1998) proposes that infor-

mation encoded by a group of neurons is conscious only if it

achieves not only differentiation (i.e., the isolation of one specific

content out of a vast repertoire of potential internal representa-

tions) but also integration (i.e., the formation of a single,

coherent, and unified representation, where the whole carries

more information than each part alone). A notable feature of

the dynamic core hypothesis is the proposal of a quantitative

mathematical measure of information integration called F, high

values of which are achieved only through a hierarchical recur-

rent connectivity and would be necessary and sufficient to

sustain conscious experience: ‘‘consciousness is integrated

information’’ (Tononi, 2008). This measure has been shown to

be operative for some conscious/nonconscious distinctions

such as anesthesia (e.g., Lee et al., 2009b; Schrouff et al.,

2011), but it is computationally complicated and, as a result,

has not yet been broadly applied tomost of theminimal empirical

contrasts reviewed above.

In related proposals, Crick and Koch (1995, 2003, 2005) sug-

gested that conscious access involves forming a stable global

neural coalition. They initially introduced reverberating gamma-

band oscillations around 40 Hz as a crucial component, then

proposed an essential role of connections to prefrontal cortex.

Lamme and colleagues (Lamme and Roelfsema, 2000; Supèr

et al., 2001) produced data strongly suggesting that feedforward

or bottom-up processing alone is not sufficient for conscious

access and that top-down or feedback signals forming recurrent

loops are essential to conscious visual perception. Llinas and

colleagues (Llinás et al., 1998; Llinás and Paré, 1991) have also

argued that consciousness is fundamentally a thalamocortical

closed-loop property in which the ability of cells to be intrinsically

active plays a central role.

A global workspace for information sharing. The theater meta-

phor (Taine, 1870) compares consciousness to a narrow scene
210 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
that allows a single actor to diffuse his message. This view has

been criticized because, at face value, it implies a conscious

homunculus watching the scene, thus leading to infinite regress

(Dennett, 1991). However, capitalizing on the earlier concept of

a blackboard system in artificial intelligence (a common data

structure shared and updated by many specialized modules),

Baars (1989) proposed a homunculus-free psychological model

where the current conscious content is represented within

a distinct mental space called global workspace, with the

capacity to broadcast this information to a set of other proces-

sors (Figure 6). Anatomically, Baars speculated that the neural

bases of his global workspace might comprise the ‘‘ascending

reticular formation of the brain stem andmidbrain, the outer shell

of the thalamus and the set of neurons projecting upward

diffusely from the thalamus to the cerebral cortex.’’

We introduced the Global Neuronal Workspace (GNW) model

as an alternative cortical mechanism capable of integrating the

supervision, limited-capacity, and re-entry properties (Changeux

and Dehaene, 2008; Dehaene and Changeux, 2005; Dehaene

et al., 1998a, 2003b, 2006; Dehaene and Naccache, 2001).

Our proposal is that a subset of cortical pyramidal cells with

long-range excitatory axons, particularly dense in prefrontal,

cingulate, and parietal regions, together with the relevant thala-

mocortical loops, form a horizontal ‘‘neuronal workspace’’ inter-

connecting the multiple specialized, automatic, and noncon-

scious processors (Figure 6). A conscious content is assumed

to be encoded by the sustained activity of a fraction of GNW

neurons, the rest being inhibited. Through their numerous recip-

rocal connections, GNWneurons amplify andmaintain a specific

neural representation. The long-distance axons of GNW neurons

then broadcast it to many other processors brain-wide. Global

broadcasting allows information to bemore efficiently processed

(because it is no longer confined to a subset of nonconscious

circuits but can be flexibly shared by many cortical processors)

and to be verbally reported (because these processors include

those involved in formulating verbal messages). Nonconscious

stimuli can be quickly and efficiently processed along automa-

tized or preinstructed processing routes before quickly decaying

within a few seconds. By contrast, conscious stimuli would be

distinguished by their lack of ‘‘encapsulation’’ in specialized

processes and their flexible circulation to various processes of

verbal report, evaluation, memory, planning, and intentional

action, many seconds after their disappearance (Baars, 1989;

Dehaene and Naccache, 2001). Dehaene and Naccache (2001)

postulate that ‘‘this global availability of information (.) is what

we subjectively experience as a conscious state.’’

Explicit Simulations of Conscious Ignition

The GNW has been implemented as explicit computer simula-

tions of neural networks (Dehaene and Changeux, 2005; De-

haene et al., 1998a, 2003b; see also Zylberberg et al., 2009).

These simulations incorporate spiking neurons and synapses

with detailed membrane, ion channel, and receptor properties,

organized into distinct cortical supragranular, granular, infragra-

nular, and thalamic sectors with reasonable connectivity and

temporal delays. Although the full GNW architecture was not

simulated, four areas were selected and hierarchically intercon-

nected (Figure 7). Bottom-up feed-forward connections linked

each area to the next, while long-distance top-down



Feed-forward propagation
(subliminal processing)

Reverberating global neuronal workspace
(conscious access)

T1 T2

Area A1

Area B1

Area C

Area D

Feedforward connections 
(AMPA)

Feedback connections 
(NMDA)

Supra
granular

layer IV

Infra
granular

B

A

Thalamo-
cortical 
column Thalamus

neuromodulation

Propagation with failure of ignition Global workspace ignition

A

B

C

D

A

B

C

D

C

Time

S
im

ul
at

ed
 a

re
as

Figure 7. Schematic Representation of the
Hypothesized Events Leading to Conscious
Access According to the GNW Model
(A) Schema illustrating the main postulated differ-
ences between subliminal and conscious pro-
cessing (adapted from Dehaene et al., 2006).
During feed-forward propagation, sensory inputs
progress through a hierarchy of sensory areas in
a feedforward manner, successively contacting
diverse and nonnecessarily compatible represen-
tations corresponding to all probabilistic interpre-
tations of the stimuli. Multiple signals converge to
support each other’s interpretation in higher-level
cortical areas. Higher areas feedback onto lower-
level sensory representations, favoring a conver-
gence toward a single coherent representation
compatible with current goals. Such a self-con-
nected system exhibits a dynamical threshold: if
the incoming activity carries sufficient weight, it
leads to the ignition of a self-supporting, rever-
berating, temporary, metastable, and distributed
cell assembly that represents the current
conscious contents and broadcasts it to virtually
all distant sites.
(B) Architecture of an explicit neuronal simulation
model of a small part of the GNW architecture
(adapted from Dehaene and Changeux, 2005;
Dehaene et al., 2003b). The model contains
thalamic and cortical excitatory and inhibitory
neurons, organized in layers with realistic inter-
connections (inset). Stimuli T1 and T2 can be
presented at the lower level of a hierarchy of four
successive areas, linked by feedforward (AMPA)
nearest-neighbor connections and by global
feedback (NMDA connections).
(C) Simulation of two single trials in which a iden-
tical pulse of brief stimulation was applied to
sensory inputs for T1 (Dehaene and Changeux,
2005). Fluctuations in ongoing activity prevented
ignition in the left diagram, resulting in a purely
feedforward propagation dying out in higher-level
areas. In the right diagram, the same stimulus
crossed the threshold for ignition, resulting in self-
amplification, a global state of activation, oscilla-
tion and synchrony, and a late long-lasting wave of
late activation reaching back to early sensory
areas.
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connections projected to all preceding areas. Moreover, in

a simplifying assumption, bottom-up connections impinged on

glutamate AMPA receptors while the top-down ones, which

are slower, more numerous, and more diffuse, primarily involved

glutamate NMDA receptors (the plausibility of this hypothesis is

discussed further below). In higher areas, inputs competed with

each other through GABAergic inhibitory interneurons, and it

was assumed (though not explicitly simulated) that the winning

representation would be broadcasted by additional long-

distance connections to yet other cortical regions.

Initial simulations explored the sequence of activity leading to

conscious access. When sensory stimulation was simulated as
Neuron
a brief depolarizing current at the lowest

thalamic level, activation propagated ac-

cording to two successive phases (see

Figure 7): (1) initially, a brief wave of exci-

tation progressed into the simulated

hierarchy through fast AMPA-mediated
feedforward connections, with an amplitude and duration

directly related to the initial input; (2) in a second stage, mediated

by the slower NMDA-mediated feedback connections, the

advancing feed-forward wave amplified its own inputs in

a cascadingmanner, quickly leading the whole stimulus-relevant

network into a global self-sustained reverberating or ‘‘ignited’’

state. This ignition was characterized by an increased power of

local cortico-thalamic oscillations in the gamma band and their

synchrony across areas (Dehaene et al., 2003b). This second

phase of the simulation reproduces most of the empirical signa-

tures of conscious access: late, all-or-none, cortically distributed

potentials involving prefrontal cortex and other high-level
70, April 28, 2011 ª2011 Elsevier Inc. 211
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associative cortices, with simultaneous increases in high-

frequency power and synchrony (e.g., de Lafuente and Romo,

2006; Del Cul et al., 2007; Gaillard et al., 2009).

In GNW simulations, ignition manifests itself, at the cortical

level, as a depolarization of layer II/III apical dendrites of pyra-

midal dendrites in a subset of activated GNW neurons defining

the conscious contents, the rest being inhibited. In a geometri-

cally accurate model of the pyramidal cell, the summed postsyn-

aptic potentials evoked by long-distance signaling among these

distributed sets of active cells would create slow intracellular

currents traveling from the apical dendrites toward the cell’s

soma, summing up on the cortical surface as negative slow

cortical potentials (SCPs) over regions coding for the conscious

stimulus (see He and Raichle, 2009). Simultaneously, many other

GNW neurons are strongly suppressed by lateral inhibition via

GABAergic interneurons and define what the current conscious

content is not. As already noted by Rockstroh et al. (1992, p.

175), assuming that many more neurons are inhibited than acti-

vated, ‘‘The surface positivity corresponding to these inhibited

networks would then dominate over the relatively smaller spots

of negativity caused by the reverberating excitation.’’ Thus, the

model can explain why, during conscious access, the resulting

event-related potential is dominated by a positive waveform,

the P3b. This view also predicts that scalp negativities should

appear specifically over areas dense in neurons coding for the

current conscious content. Indeed, in a spatial working memory

task, all stimuli evoke a broad P3b, but when subtracting ERPs

ipsilateral and controlateral to the side of the memorized items,

negative potentials appeared over parietal cortex contralateral

to the memorized locations (Vogel and Machizawa, 2004).

Further GNW simulations showed that ignition could fail to be

triggered under specific conditions, thus leading to simulated

nonconscious states. For very brief or low-amplitude stimuli,

a feedforward wave was seen in the initial thalamic and cortical

stages of the simulation, but it died out without triggering the

late global activation, because it was not able to gather sufficient

self-sustaining reverberant activation (Dehaene and Changeux,

2005). Even at higher stimulus amplitudes, the second global

phase could also be disrupted if another incoming stimulus

had been simultaneously accessed (Dehaene et al., 2003b).

Such a disruption occurs because during ignition, the GNW is

mobilized as a whole, some GNW neurons being active while

the rest is actively inhibited, thus preventing multiple simulta-

neous ignitions. A strict seriality of conscious access and pro-

cessing is therefore predicted and has been simulated (Dehaene

and Changeux, 2005; Dehaene et al., 2003b; Zylberberg et al.,

2010). Overall, these simulations capture the two main types of

experimental conditions known to lead to nonconscious pro-

cessing: subliminal states due to stimulus degradation (e.g.,

masking), and preconscious states due to distraction by a simul-

taneous task (e.g., attentional blink).

The transition to the ignited state can be described, in theoret-

ical physics terms, as a stochastic phase transition—a sudden

change in neuronal dynamics whose occurrence depends in

part on stimulus characteristics and in part on spontaneous fluc-

tuations in activity (Dehaene and Changeux, 2005; Dehaene

et al., 2003b). In GNW simulations, prestimulus fluctuations in

neural discharges only have a small effect on the early sensory
212 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
stage, which largely reflects objective stimulus amplitude and

duration, but they have a large influence on the second slower

stage, which is characterized by NMDA-based reverberating

integration and ultimately leads to a bimodal ‘‘all-or-none’’ distri-

bution of activity, similar to empirical observations (Quiroga et al.,

2008; Sergent et al., 2005; Sergent and Dehaene, 2004). Due to

these fluctuations, across trials, the very same stimulus does or

does not lead to global ignition, depending in part on the precise

phase of the stimulus relative to ongoing spontaneous activity.

This notion that prestimulus baseline fluctuations partially predict

conscious perception is now backed up by considerable empir-

ical data (e.g., Boly et al., 2007; Palva et al., 2005; Sadaghiani

et al., 2009; Supèr et al., 2003; Wyart and Tallon-Baudry, 2009).

More generally, these simulations provide a partial neural imple-

mentation of the psychophysical framework according to which

conscious access corresponds to a ‘‘decision’’ based on the

accumulation of stimulus-based evidence, prior knowledge,

and biases (Dehaene, 2008; for specific implementations, see

Lau, 2008, and themathematical appendix inDel Cul et al., 2009).

Modeling Spontaneous Activity and Serial Goal-Driven

Processing

An original feature of the GNW model, absent from many other

formal neural network models, is the occurence of highly struc-

tured spontaneous activity (Dehaene and Changeux, 2005).

Even in the absence of external inputs, the simulated GNW

neurons are assumed to fire spontaneously, in a top-down

manner, starting from the highest hierarchical levels of the simu-

lation and propagating downward to form globally synchronized

ignited states. When the ascending vigilance signal is large,

several such spontaneous ignitions follow each other in a never-

ending ‘‘stream’’ and can block ignition by incoming external

stimuli (Dehaene and Changeux, 2005). These simulations

capture some of the empirical observations on inattentional

blindness (Mack and Rock, 1998) and mind wandering (Christoff

et al., 2009; Mason et al., 2007; Smallwood et al., 2008). More

complex network architectures have also been simulated in

which a goal state is set and continuously shapes the structured

patterns of activity that are spontaneously generated, until the

goal is ultimately attained (Dehaene and Changeux, 1997; Zyl-

berberg et al., 2010). In these simulations, ignited states are

stable only for a transient time period and can be quickly desta-

bilized by a negative reward signal that indicates deviation from

the current goal, in which case they are spontaneously and

randomly replaced by another discrete combination of work-

space neurons. The dynamics of such networks is thus charac-

terized by a constant flow of individual coherent episodes of vari-

able duration, selected by reward signals in order to achieve

a defined goal state. Architectures based on these notions

have been applied to a variety of tasks (delayed response: De-

haene and Changeux, 1989; Wisconsin card sorting: Dehaene

and Changeux, 1991; Tower of London: Dehaene and

Changeux, 1997; Stroop: Dehaene et al., 1998a), although

a single architecture common to all tasks is not yet in sight (but

see Rougier et al., 2005). As illustrated in Figure 5, they provide

a preliminary account of why GNW networks are spontaneously

active, in a sustained manner, during effortful tasks that require

series of conscious operations, including search, dual-task,

and error processing.
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In summary, we propose that a core set of theoretical concepts

lie at the confluence of the diverse theories that have been

proposed to account for conscious access: high-level supervi-

sion; serial processing; coherent stability through re-entrant

loops; and global information availability. Furthermore, once im-

plemented in the specific neuronal architecture of the GNW

model, these concepts begin to provide a schematic account of

the neurophysiological signatures that, empirically, distinguish

conscious access from nonconscious processing. In particular,

simulations of the GNW architecture can explain the close simi-

larity of the brain activations seen during (1) conscious access to

a single external stimulus; (2) effortful serial processing; and (3)

spontaneous fluctuations in the absence of any stimulus or task.

IV. Present Experimental and Theoretical Challenges
The existing empirical data on conscious access still present

many challenges for theorizing. Indeed, the above theoretical

synthesis may still be refuted if some of its key neural compo-

nents were found to be implausible or altogether absent in

primate cerebral architecture, or if its predicted patterns of

activity (the late ‘‘ignition’’) were found to be unnecessary, arti-

factual, noncoding, or noncausally related to conscious states.

We consider each of these potential challenges in turn.

Connectivity and Architecture of Long-Distance Cortical

Networks

Pyramidal neurons with long-distance axons. The main anatom-

ical premise of the GNWmodel is that it consists of ‘‘a distributed

set of cortical neurons characterized by their ability to receive

from and send back to homologous neurons in other cortical

areas horizontal projections through long-range excitatory axons

mostly originating from the pyramidal cells of layers II and III’’

(Dehaene et al., 1998a) and more densely distributed in

prefrontal and inferior parietal cortices. Do these units actually

exist? The ‘‘special morphology’’ of the pyramidal cells from

the cerebral cortex was already noted by Cajal (1899–1904),

who mentioned their ‘‘long axons with multiple collaterals’’ and

their ‘‘very numerous and complex dendrites.’’ Von Economo

(1929) further noted that these large pyramidal cells in layers III

and V are especially abundant in areas ‘‘spread over the anterior

two-thirds of the frontal lobe, (.) the superior parietal lobule’’

and ‘‘the cingulate cortex,’’ among other cortical areas. Recent

investigations have confirmed that long-distance cortico-

cortical and callosal fibers primarily (though not exclusively) arise

from layer II-III pyramids. Furthermore, quantitative analyses of

the dendritic field morphology of layer III pyramidal neurons re-

vealed a continuous increase of complexity of the basal

dendrites from the occipital up to the prefrontal cortex within

a given species (DeFelipe and Fariñas, 1992; Elston and Rosa,

1997, 1998) and from lower species (owl monkey, marmoset)

up to humans (Elston, 2003). Layer IV PFC pyramidal neurons

have as many as 16 times more spines in PFC than in V1 and,

as a result, ‘‘the highly spinous cells in prefrontal areas may inte-

grate many more inputs than cells in areas such as V1, TE, and

7a’’ (Elston, 2000). These observations confirm that PFC cells

exhibit the morphological adaptations needed for massive

long-distance communication, information integration, and

broadcasting postulated in the GNW model and suggest that

this architecture is particularly developed in the human species.
Global brain-scale white matter networks involving PFC. The

GNW model further assumes that long-distance neurons form

brain-scale networks involving prefrontal cortex as a key node.

PFC indeed receives the most diverse set of corticocortical

inputs from areas involved in processing all sensory modalities

(Cavada et al., 2000; Fuster, 2008; Kringelbach and Rolls,

2004; Pandya and Yeterian, 1990; Petrides and Pandya, 2009).

In the monkey cerebral cortex, long-range connections link,

among others, the prefrontal cortex (area 46), the superior

temporal sulcus, parietal area 7a, and the hippocampus together

with the contralateral anterior and posterior cingulum, area 19,

and the parahippocampal gyrus (Goldman-Rakic, 1988). In addi-

tion, areas within PFC are multiply interconnected (Barbas and

Pandya, 1989; Preuss and Goldman-Rakic, 1991), and the

superficial layers in PFC are characterized by an abundance of

horizontal intrinsic axon projections that arise from supragranu-

lar pyramidal cells (Kritzer andGoldman-Rakic, 1995; Melchitzky

et al., 1998, 2001; Pucak et al., 1996), thus exhibiting themassive

and recurrent interconnectivity needed to sustain GNW ignition.

In humans, the course of cortical tracts can now be confirmed

by diffusion tensor imaging (DTI) and tractography algorithms

(Figure 8), yet with important limitations. Measurements typically

average over relatively large voxels (a few millimeters aside) that

contain a diversity of criss-crossing fibers. Even recent articles

claiming to study the entire connectome (e.g., Hagmann et al.,

2008) suffer for underestimation of the true long-distance

connectivity of areas 46, 6, FEF, and LIP, critical to GNW theory

and known from macaque invasive tracer studies and careful

human anatomical dissections dating from the end of the 19th

century (Dejerine, Meynert, Fleschig). In a still up-to-date

volume, Dejerine (1895) distinguished five main tracts of long

association fibers running deeply in the human white matter.

Consistent with the GNW hypothesis, four of them connect

prefrontal cortex with other cortical areas and are confirmed

by diffusion tensor tractography (Catani and Thiebaut de Schot-

ten, 2008) and by correlation of cortical thickness measures

(Bassett et al., 2008; He et al., 2009). The networks thus identi-

fied converge well with those extracted by fMRI intercorrelation

patterns during the resting state or by phase synchrony in the

beta band during either working memory (Bassett et al., 2009)

or attentional blink (Gross et al., 2004).

The importance of long-distance cortical projection pathways

in conscious perception was recently tested in patients at the

very first clinical stage of multiple sclerosis (MS), a neurological

disease characterized by extensive white matter damage

leading to perturbed long-distance connectivity (He et al.,

2009; Reuter et al., 2007; Reuter et al., 2009). As predicted,

MS patients showed abnormal conscious perception of masked

stimuli: they needed a longer target-mask delay before

conscious access occurred. Furthermore, this behavioral

anomaly correlated with structural damage in the dorsolateral

prefrontal white matter and the right occipito-frontal fasciculus

(Figure 8). Importantly, subliminal priming was preserved.

While recent results thus support the existence of massive

long-distance cortical networks involving PFC and their role in

conscious perception, two points should be stressed. First, the

PFC is increasingly being decomposed into multiple specialized

and lateralized subnetworks (e.g., Koechlin et al., 2003; Voytek
Neuron 70, April 28, 2011 ª2011 Elsevier Inc. 213
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Figure 8. Role of Long-Distance Connections in Conscious Access
(A) Diffusion-based tracking of human brain connectivity reveals long-distance fiber tracts, both callosal (left) and intrahemispheric (right), forming an anatomical
substrate for the proposed GNW (images courtesy of Michel Thiebaut de Schotten and Flavio Dell’Acqua).
(B and C) Pathologies of long-distance fiber tracts can be associated with deficits in conscious access. Spatial neglect patients (B) showing perturbed conscious
processing of left-sided stimuli exhibit impaired right-hemispheric communication between occipital and parietal regions and frontal cortex along the inferior
fronto-occipito fasciculus (IFOF), shown in yellow (image courtesy of Michel Thiebaut de Schotten; see Thiebaut de Schotten et al., 2005; Urbanski et al., 2008).
Multiple sclerosis patients (C) in the very first stages of the disease exhibit impairments in the threshold for conscious detection of a masked visual target,
correlating with impaired magnetization transfer, a measure of white matter integrity, in several long-distance fiber tracts (adapted from Reuter et al., 2009).
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and Knight, 2010). These findings need not, however, be seen as

contradicting the GNW hypothesis that these subnetworks,

through their tight interconnections, interact so strongly as to

make any information coded in one area quickly available to all

others. Second, in addition to PFC, the nonspecific thalamic

nuclei, the basal ganglia, and some cortical nodes are likely to

contribute to global information broadcasting (Voytek and

Knight, 2010). The precuneus, in particular, may also operate

as a cortical ‘‘hub’’ with a massive degree of interconnectivity

(Hagmann et al., 2008; Iturria-Medina et al., 2008). This region,

plausibly homologous to the highly connected macaque poster-

omedial cortex (PMC) (Parvizi et al., 2006), is an aggregate of

convergence-divergence zones (Meyer and Damasio, 2009)
214 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
and is tightly connected to PFC area 46 and other workspace

regions (Goldman-Rakic, 1999). In humans, the PMC may play

a critical role in humans in self-referential processing (Cavanna

and Trimble, 2006; Damasio, 1999; Vogt and Laureys, 2005),

thus allowing any conscious content to be integrated into

a subjective first-person perspective.

NMDA receptors and GNW simulations. GNW simulations

assume that long-distance bottom-up connections primarily

impinge on fast glutamate AMPA receptors while top-down

ones primarily concern the slower glutamate NMDA receptor.

This assumption contributes importantly to the temporal

dynamics of the model, particularly the separation between

a fast phasic bottom-up phase and a late sustained integration
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phase, mimicking experimental observations. It can be criticized

as both receptor types are known to be present in variable

proportions at glutamatergic synapses (for pioneering data on

human receptor distribution, see Amunts et al., 2010). However,

in agreement with the model, physiological recordings suggest

that NMDA antagonists do not interfere with early bottom-up

sensory activity, but only affect later integrative events such as

the mismatch negativity in auditory cortex (Javitt et al., 1996).

Thus, although GNW simulations adopted a highly simplified

anatomical assumption of radically distinct distributions of

NMDA and AMPA, which may have to be qualified in more real-

istic models, the notion that NMDA receptors contribute

primarily to late, slow, and top-down integrative processes is

plausible (for a related argument, see Wong and Wang, 2006).

Is Conscious Perception Slow and Late?

A strong statement of the proposed theoretical synthesis is that

early bottom-up sensory events, prior to global ignition (<200–

300ms), contribute solely to nonconscious percept construction

and do not systematically distinguish consciously seen from

unseen stimuli. In apparent contradiction with this view, certain

experiments, using both visual (Pins and Ffytche, 2003) or tactile

stimuli (Palva et al., 2005), have observed that the early incoming

wave of sensory-evoked activity (e.g., P1 component) is already

enhanced on conscious compared to nonconscious trials.

Lamme and collaborators (Fahrenfort et al., 2007) found amplifi-

cation in visual cortex, just posterior to the P1 wave (110–

140 ms). More frequently, at around 200–300 ms, surrounding

the P2 ERP component, more negative voltages are reported

over posterior cortices on visible compared to invisible trials

(Del Cul et al., 2007; Fahrenfort et al., 2007; Koivisto et al.,

2008, 2009; Railo and Koivisto, 2009; Sergent et al., 2005). Koi-

visto and collaborators have called this event the visual aware-

ness negativity (VAN).

Several arguments, however, mitigate the possibility that

these early or midlatency differences already reflect conscious

perception. First, they may not be necessary and sufficient, as

they are absent from several experiments (e.g., Lamy et al.,

2009; van Aalderen-Smeets et al., 2006) (although one cannot

exclude that they failed to be detected). Second, and most

crucially, their profile of variation with stimulus variables such

as target-mask delay does not always track the variations in

subject’s conscious reports (Del Cul et al., 2007; van Aalderen-

Smeets et al., 2006). Third, they typically consist only in small

modulations that ride on top of early sensory activations that

are still strongly present on nonconscious trials (Del Cul et al.,

2007; Fahrenfort et al., 2007; Sergent et al., 2005). Fourth, in

this respect they resemble the small electrophysiological modu-

lations that have been found to partially predict later perception

even prior to the stimulus (e.g., Boly et al., 2007; Palva et al.,

2005; Sadaghiani et al., 2009; Supèr et al., 2003; Wyart and Tal-

lon-Baudry, 2009). The timing of these events makes it logically

impossible that they already participate in the neural mechanism

of conscious access. Similar, early differences in sensory activa-

tion between conscious and nonconscious trialsmay reflect fluc-

tuations in prestimulus priors and in sensory evidence that

contribute to subsequent conscious access, rather than be

constitutive of a conscious state per se (Dehaene andChangeux,

2005; Wyart and Tallon-Baudry, 2009).
The evidence on this topic is still evolving, however, as a recent

study found strong correlation of visibility with the P3b compo-

nent when participants had no expectation of the stimuli, but

a shift to the earlier P2 component when they already had

a working memory representation of the target (Melloni et al.,

2011). This study suggests that the timing of conscious access

may vary with the experimental paradigm and that a Bayesian

perspective, taking into account the subject’s prior knowledge

at multiple hierarchical cortical levels (Del Cul et al., 2009; Kiebel

et al., 2008), may be an essential conceptual ingredient that still

needs to be integrated to the above synthesis.

Whether it takes 200 ms, 300 ms, or even more, the slow and

integrative nature of conscious perception is confirmed behav-

iorally by observations such as the ‘‘rabbit illusion’’ and its vari-

ants (Dennett, 1991; Geldard and Sherrick, 1972; Libet et al.,

1983), where the way in which a stimulus is ultimately perceived

is influenced by poststimulus events arising several hundreds of

milliseconds after the original stimulus. Psychophysical para-

digms that rely on quickly alternating stimuli confirm that

conscious perception integrates over �100 ms or more, while

nonconscious perception is comparatively much faster (e.g.,

Forget et al., 2010; Vul and MacLeod, 2006).

Interestingly, recent research also suggests that spontaneous

brain activity, as assessed by resting-state EEG recordings, may

be similarly parsed into a stochastic series of slow ‘‘micro-

states,’’ stable for at least 100 ms, each exclusive of the other,

and separated by sharp transitions (Lehmann and Koenig,

1997; Van de Ville et al., 2010). These microstates have recently

been related to some of the fMRI resting-state networks (Britz

et al., 2010). Crucially, they are predictive of the thought contents

reported by participants when they are suddenly interrupted

(Lehmann et al., 1998, 2010). Thus, whether externally induced

or internally generated, the ‘‘stream of consciousness’’ may

consist in a series of slow, global, and transiently stable cortical

states (Changeux and Michel, 2004).

Can Nonconscious Stimuli Produce a Global Ignition?

Another pillar of the proposed theoretical synthesis is that global

ignition is unique to conscious states. This view would be chal-

lenged if some nonconscious stimuli were found to reproducibly

evoke intense PFC activations, P3b waves, or late and distrib-

uted patterns of brain-scale synchronization. Taking up this chal-

lenge, some studies have indeed reported small but significant

activations of prefrontal regions and a P3-like wave evoked by

infrequent nonconscious stimuli (Brázdil et al., 1998, 2001;

Muller-Gass et al., 2007; Salisbury et al., 1992). However, this

wave is usually a novelty P3a response, with a sharp midline

anterior positivity suggesting focal anterior midline generators,

rather than the global P3 or ‘‘late positive complex’’ response

evoked by novel stimuli. Similarly, van Gaal et al. (2011) used

fMRI to examine which areas contributed to subliminal versus

conscious processing of ‘‘no-go’’ signals—rare visual cues that

instructed subjects to refrain from responding on this particular

trial. Their initial observations suggested, provocatively, that

subliminal no-go signals evoked prefrontal potentials corre-

sponding to nonconscious executive processing (van Gaal

et al., 2008). Subsequent fMRI, however, indicated that the

generators of the subliminal response inhibition effect were

restricted to a small set of specialized processors in midline
Neuron 70, April 28, 2011 ª2011 Elsevier Inc. 215
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preSMA and the junction of the bilateral anterior insula with the

inferior frontal gyrus. Only conscious no-go signals triggered

a broad and more anterior activation expanding into anterior

cingulate, inferior, and middle frontal gyrus, dorsolateral

prefrontal cortex, and inferior parietal cortex—a network fully

compatible with the GNW model (see Figure 1).

Identifying the limits of nonconscious processing remains an

active area of research, as new techniques for presentation of

nonconscious stimuli are constantly appearing (e.g., Arnold

et al., 2008; Wilke et al., 2003). A recent masking study observed

that subliminal task-switching cues evoked detectable activa-

tions in premotor, prefrontal, and temporal cortices (Lau and

Passingham, 2007), but with a much reduced amplitude

compared to conscious cues. Another more challenging study

(Diaz and McCarthy, 2007) reported a large network of cortical

perisylvian regions (inferior frontal, inferior temporal, and angular

gyrus) activated by subliminal words relative to subliminal pseu-

dowords, and surprisingly more extended than in previous

reports (e.g., Dehaene et al., 2001). Attentional blink studies

also suggest that unseen words may cause surprisingly long-

lasting ERP components (N400) (see also Gaillard et al., 2007;

Vogel et al., 1998). A crucial question for future research is

whether these activations remain confined to specialized subcir-

cuits, for instance in the left temporal lobe (Sergent et al., 2005),

or whether they constitute true instances of global cortical pro-

cessing without consciousness.

Do Prefrontal and Parietal Networks Play a Causal Role

in Conscious Access?

Brain imaging is only correlational in nature, and leaves open the

possibility that distributed ignition involving PFC is a mere

epiphenomenon or a consequence of conscious access, rather

than being one of its necessary causes. Causality is a demanding

concept that can only be assessed by systematic lesion or inter-

ferencemethods, which are of very limited applicability in human

subjects. Nevertheless, one prediction of the GNWmodel is test-

able: lesioning or interfering with prefrontal or parietal cortex

activity, at sites quite distant from visual areas, should disrupt

conscious vision. This prediction was initially judged as so coun-

terintuitive as to be immediately refuted by clinical observations,

because frontal lobe patients do not appear to be unconscious

(Pollen, 1999). However, recent evidence actually supports the

GNW account. In normal subjects, transcranial magnetic stimu-

lation (TMS) over either parietal or prefrontal cortex can prevent

conscious perception and even trigger a sudden subjective

disappearance of visual stimulis during prolonged fixation (Kanai

et al., 2008), change blindness (Beck et al., 2006), binocularly

rivalry (Carmel et al., 2010), inattentional blindness (Babiloni

et al., 2007), and attentional blink paradigms (Kihara et al.,

2011). Over prefrontal cortex, bilateral theta-burst TMS leads

to a reduction of subjective visibility with preserved objective

sensori-motor performance (Rounis et al., 2010). We recently

made similar observations in patients with focal prefrontal

lesions (Del Cul et al., 2009): their masking threshold was signif-

icantly elevated, in tight correlation with the degree of expansion

of the lesions into left anterior prefrontal cortex, while subliminal

performance on ‘‘not-seen’’ trials did not differ from normal. In

more severe and diffuse cases, following traumatic brain injury,

bilateral lesions of fronto-parietal cortices or, characteristically,
216 Neuron 70, April 28, 2011 ª2011 Elsevier Inc.
of the underlying white matter, can cause coma or vegetative

state (Tshibanda et al., 2009). Frontal-lobe patients also suffer

from impaired conscious processing, in such syndromes as

hemineglect, abulia, akinetic mutism, anosognosia, or impaired

autonoetic memory, while they frequently exhibit preserved or

even heightened capacity for automatic action as indexed by

utilization and imitation behaviors (Husain and Kennard, 1996;

Lhermitte, 1983; Passingham, 1993). Indeed, spatial hemine-

glect, in which conscious access fails for stimuli contralateral

to the lesion, can arise from focal frontal lesions as well as

from impairments of the long-distance fiber tracts linking poste-

rior visual areas with the frontal lobe (Bartolomeo et al., 2007; He

et al., 2007; Thiebaut de Schotten et al., 2005; Urbanski et al.,

2008) (Figure 8).

While suggestive, these observations do not quite suffice to

establish that a frontal contribution is causally necessary for

conscious perception. Arguably, the above effects may not

necessarily indicate a direct or central contribution of PFC to

conscious access, but rather could be mediated by another

brain structure under the influence of PFC or parietal networks,

such as the thalamic nuclei. Also, it is difficult to exclude a contri-

bution of reduced top-down attention or enhanced distractibility

in frontal patients or TMS subjects—although some studies have

attempted to control for these factors by equalizing primary

task performance (Rounis et al., 2010) or by demonstrating

a preserved capacity for attentional modulation (Del Cul et al.,

2009). Ultimately, the crucial experiment would involve inducing

a change in the actual conscious content, rather than a mere

elevation of the reportability threshold, by stimulating PFC or

other components of the GNW networks. While we know of no

such experiment yet, microstimulation and optogenetic methods

now make it feasible, at least in nonhuman animals.

Does the Theory Lead to Clinical Applications?

A strong test for any theory of consciousness is whether it can be

clinically used. Conscious access is altered or reduced in three

clinicial situations: schizophrenia, anesthesia, and loss of

consciousness due to coma or vegetative state. Can the

proposed theoretical synthesis shed some light on these issues?

Schizophrenia. Friston and Frith (1995) first hypothesized that

schizophrenia results from a functional disconnection of long-

distance prefrontal cortex projection affecting primarily the

strength of N-methyl-D-aspartate receptor (NMDAR)-mediated

synaptic transmission (Niswender and Conn, 2010; see also

Roopun et al., 2008; Stephan et al., 2009). Bullmore et al.

(1997) further suggested a disruption of anatomical connectivity

possibly associated with an aberrant synaptic elimination during

late adolescence and early adulthood (Changeux and Danchin,

1976; McGlashan and Hoffman, 2000), a possibility consistent

with the fact that many potential risk genes are involved in

neuronal and connectivity development (Karlsgodt et al., 2008).

The volume or density of white matter tracks is, indeed, reduced

in a number of regions, including the temporal and prefrontal

lobes, the anterior limb of the internal capsule, and the cingulum

bundle (Lynall et al., 2010; Oh et al., 2009). The cingulate fascic-

ulus disconnection would, secondarily, impair the link to reward

and emotional systems (Holland and Gallagher, 2004), thus

possibly accounting for the known effect of dopaminergic neuro-

leptics.
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state activity in
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Reduced complexity of cortical signals during anesthesia

Figure 9. Cortical Measures of Loss of Consciousness in Sleep, Anesthesia, and Vegetative State
(A) Massive drops in cortical metabolism observed with PET rCBF measurements in slow-wave sleep (Maquet et al., 1997), anesthesia (Kaisti et al., 2002), and
vegetative state (Laureys et al., 2004).
(B) Reduced activity in a ‘‘resting-state’’ distributed cortical network in three vegetative state patients, as measured by independent component analysis of fMRI
data (adapted from Cauda et al., 2009).
(C) Sudden change in dimensional activation, a nonlinear dynamics measure of EEG complexity, at the precise point of loss of consciousness during anesthesia
(adapted from Velly et al., 2007). Signals were measured from the scalp as well as from the thalamus using depth electrodes (left). Only the scalp (cortical) EEG
showed a dramatic and discontinuous change accompanying loss of consciousness (right).
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Schizophrenia thus provides another possible test of the

hypothesis that disruption of PFC long-distance connections

impairs conscious access. Indeed, there is direct evidence for

impaired neural signatures of conscious access, together with

normal subliminal processing, in schizophrenic patients (De-

haene et al., 2003a; Del Cul et al., 2006; Luck et al., 2006). As

in frontal patients, the threshold for conscious access tomasked

visual stimuli is elevated in schizophrenia (Del Cul et al., 2006).

The P3b wave is typically delayed and reduced in amplitude, in

both chronic and first-episode schizophrenics (Demiralp et al.,

2002; van der Stelt et al., 2004) and their siblings (Groom et al.,

2008). Frontal slow waves associated with working memory

are similarly impaired (Kayser et al., 2006). Gamma- and beta-

band power and long-distance phase synchrony are drastically

reduced, even during simple perceptual tasks (Uhlhaas et al.,

2006; Uhlhaas and Singer, 2006). By applying graph-theoretical

tools toMEG recordings, Bassett et al. (2009) observed that acti-

vation in the beta and gamma bands failed to organize into long-

distance parieto-frontal networks that were ‘‘cost-efficient,’’ i.e.,
had close to the minimal number of connections needed to

confer a high efficiency of information transmission. In summary,

the neuronal processes of conscious access appear systemati-

cally deteriorated in schizophrenia.

Anesthesia. A classical question concerns whether general

anesthetics alter consciousness by binding to molecular target

sites, principally ion channels and ligand-gated ion channels (For-

man and Miller, 2011; Li et al., 2010; Nury et al., 2011) present all

over the cortex, in specific and nonspecific thalamic nuclei, or, as

suggested by intracerebral microinjections (Sukhotinsky et al.,

2007), localized to specific sets of brain stem neurons (for review,

see Alkire et al., 2008; Franks, 2008). Anesthetic-induced loss of

consciousness usually coincides with the disruption of activity in

extensive regions of cerebral cortex, particularly the precuneus,

posterior cingulate cortex, cuneus, localized regions of the lateral

frontal and parietal cortices, and occasionally the cerebellum

(Franks, 2008; Kaisti et al., 2002; Schrouff et al., 2011; Veselis

et al., 2004) (Figure 9). Consistent with these views, Velly et al.

(2007) found that during induction of anesthesia by sevofurane
Neuron 70, April 28, 2011 ª2011 Elsevier Inc. 217
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and propofol in human patients with Parkinson disease, cortical

EEGcomplexity decreaseddramatically at theprecise timewhere

consciousness was lost, while for several minutes there was little

change in subcortical signals, and eventually a slow decline

(Figure 9). These data suggest that in humans, the early stage of

anesthesia correlates with cortical disruption, and that the effects

on the thalamus are indirectly driven by cortical feedback (Alkire

et al., 2008). Indeed, in the course of anesthesia induction, there

is a decrease inEEGcoherence in the 20 to 80Hz frequency range

between right and left frontal cortices and between frontal and

occipital territories (JohnandPrichep,2005).Quantitativeanalysis

of EEG under propofol induction further indicates a reduction of

mean information integration, as measured by Tononi’s Phi

measure, around the g-band (40 Hz) and a breakdown of the

spatiotemporal organization of this particular band (Lee et al.,

2009b). In agreement with experiments carried out with rats

(Imas et al., 2005; Imas et al., 2006), quantitative EEG analysis in

humans under propofol anesthesia induction noted a decrease

of directed feedback connectivity with loss of consciousness

and a return with responsiveness to verbal command (Lee et al.,

2009a). Also, during anesthesia induced by the benzodiazepine

midazolam, an externally induced transcranial pulse evoked reli-

able initial activity monitored by ERPs in humans, but the subse-

quent late phase of propagation to distributed areas was abol-

ished (Ferrarelli et al., 2010). These observations are consistent

with the postulated role of top-down frontal-posterior amplifica-

tion in conscious access (see also Supèr et al., 2001).

Coma and vegetative state. The clinical distinctions between

coma, vegetative state (Laureys, 2005), and minimal conscious-

ness (Giacino, 2005) remain poorly defined, and even fully

conscious but paralyzed patients with locked-in syndrome can

remain undetected. It is therefore of interest to see whether

objective neuralmeasuresandGNWtheory canhelpdiscriminate

them. In coma and vegetative state, as with general anesthesia,

global metabolic activity typically decreases to �50% of normal

levels (Laureys, 2005). This decrease is not homogeneous,

however, but particularly pronounced in GNW areas including

lateral and mesial prefrontal and inferior parietal cortices

(Figure 9). Spontaneous recovery from VS is accompanied by

a functional restoration of this broad frontoparietal network (Lau-

reys et al., 1999) and some of its cortico-thalamo-cortical

connections (Laureys et al., 2000; see also Voss et al., 2006).

Anatomically, prediction of recovery from coma relies on the

comprehensive assessment of all structures involved in arousal

and awareness functions, namely, the ascending reticular acti-

vating system located in the postero-superior part of the brain-

stem and structures encompassing thalamus, basal forebrain,

and fronto-parietal association cortices (Tshibanda et al.,

2009). Lesion or inhibition of part of this system suffices to cause

immediate coma (e.g., Parvizi and Damasio, 2003). Studies on

traumatic coma patients with conventional MRI showed that

lesions of the pons, midbrain, and basal ganglia were predictive

of poor outcome especially when they were bilateral (Tshibanda

et al., 2009). In relation with the GNWmodel, it is noteworthy that

prediction of nonrecovery after 1 year could be calculated with

up to 86% sensitivity and 97% specificity when taking into

account both diffusion tensor and spectroscopic measures of

cortical white matter integrity (Tshibanda et al., 2009).
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The objective neural measures of conscious processing

demonstrated earlier in this review should be applicable to the

difficult clinical problem of detecting consciousness in noncom-

municating patients. Using fMRI, a few patients initially classified

as vegetative by clinical signs showed essentially normal activa-

tions of distributed long-distance cortical networks during

speech processing and mental imagery tasks (Owen et al.,

2006; Monti et al., 2010), and one patient proved able to volun-

tarily control them to provide yes/no answers to simple personal

questions, clearly indicating some degree of preserved

conscious processing (Monti et al., 2010). In an effort to isolate

a more theoretically validated scalp signature of conscious

sensory processing, Bekinschtein et al. (2009a) recorded ERPs

to local versus global violations of an auditory regularity. When

hearing a deviant tone after a sequence of repeated standard

tones (sequenceXXXXY), a localmismatch responsewas elicited

nonconsciously even in coma and vegetative-state patients, as

previously demonstrated (e.g., Fischer et al., 2004). However,

when this sequence XXXXY was repeatedly presented, such

that the final tone change could be expected, the presentation

of a deviant monotonic sequence (XXXXX) engendered a P3b

wave in normal subjects that was absent in coma patients and

in most vegetative-state patients but could still be observed in

minimally conscious and locked-in patients. This paradigm,

founded upon previous identification of the P3b component as

a signature of conscious processing, is now undergoing valida-

tion as a means of identifying residual conscious processing in

patients (Faugeras et al., 2011).

V. Conclusion and Future Research Directions
The present review was deliberately limited to conscious access.

Several authors argue, however, for additional, higher-order

concepts of consciousness. For Damasio and Meyer (2009),

core consciousness of incoming sensory information requires

integrating it with a sense of self (the specific subjective point of

view of the perceiving organism) to form a representation of how

the organism ismodified by the information; extended conscious-

ness occurs when this representation is additionally related to the

memorized past and anticipated future (see also Edelman, 1989).

For Rosenthal (2004), a higher-order thought, coding for the very

fact that the organism is currently representing a piece of informa-

tion, is needed for that information to be conscious. Indeed,meta-

cognition, or the ability to reflect upon thoughts and draw judge-

ments upon them, is often proposed as a crucial ingredient of

consciousness (Cleeremans et al., 2007; Lau, 2008) (although

see Kanai et al., 2010, for evidence that metacognitive judge-

ments can occur without conscious perception). In humans, as

opposed to other animals, consciousness may also involve the

construction of a verbal narrative of the reasons for our behavior

(Gazzaniga et al., 1977). Although this narrative can be fictitious

(Wegner, 2003), it would be indispensable to interindividual

communication (Bahrami et al., 2010; Frith, 2007).

Metacognition and self-representation have only recently

begun to be studied behaviorally with paradigms simple enough

to extend to nonhuman species (Kiani andShadlen, 2009; Terrace

and Son, 2009) and to be related to specific brainmeasurements,

notably anterior prefrontal cortex (Fleming et al., 2010). Thus, our

view is that these concepts, although essential, have not yet
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receivedasufficient empirical andneurophysiological definition to

figure in this review. FollowingCrick and Koch (1990), we focused

solely here on the simpler and well-studied question of what

neurophysiological mechanisms differentiate conscious access

to some information from nonconscious processing of the same

information. Additional work will be needed to explore, in the

future, these important aspects of higher-order consciousness.

In the present state of investigations, experimental measures

of conscious access identified in this review include: (1) sudden,

all-or-none ignition of prefronto-parietal networks; (2) concomi-

tant all-or-none amplification of sensory activation; (3) a late

global P3b wave in event-related potentials; (4) late amplification

of broad-band power in the gamma range; (5) enhanced long-

distance phase synchronization, particularly in the beta range;

and (6) enhanced causal relations between distant areas,

including a significant top-down component. Many of these

measures are also found during complex serial computations

and in spontaneous thought. There is evidence that they rely

on an anatomical network of long-distance connections that is

particularly developed in the human brain. Finally, pathologies

of these networks or their long-distance connections are associ-

ated with impairments of conscious access.

In the future, as argued by Haynes (2009), the mapping of

conscious experiences onto neural states will ultimately require

not only a neural distinction between seen and not-seen trials,

but also a proof that the proposed conscious neural state actu-

ally encodes all the details of the participant’s current subjective

experience. Criteria for a genuine one-to-one mapping should

include verifying that the proposed neural state has the same

perceptual stability (for instance over successive eye move-

ments) and suffers from the same occasional illusions as the

subject’s own report. Multivariate decoding techniques provide

pertinent tools to address this question and have already been

used to infer conscious mental images from early visual areas

(Haynes andRees, 2005; Thirion et al., 2006) and from inferotem-

poral cortex (Schurger et al., 2010; Sterzer et al., 2008).

However, decoding the more intermingled neural patterns ex-

pected from PFC and other associative cortices is clearly a chal-

lenge for future research (though see Fuentemilla et al., 2010).

Another important question concerns the geneticmechanisms

that, in the coure of biological evolution, have led to the develop-

ment of the GNWarchitecture, particularly the relative expansion

of PFC, higher associative cortices, and their underlying long-

distance white matter tracts in the course of hominization (see

Avants et al., 2006; Schoenemann et al., 2005; Semendeferi

et al., 2002). Finally, now that measures of conscious processing

have been identified in human adults, it should become possible

to ask how they transpose to lower animal species (Changeux,

2006, 2010) and to human infants and fetuses (Dehaene-Lam-

bertz et al., 2002; Gelskov and Kouider, 2010; Lagercrantz and

Changeux, 2009), in whom genuine but immature long-distance

networks have been described (Fair et al., 2009; Fransson et al.,

2007).
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and Melie-Garcı́a, L. (2008). Studying the human brain anatomical network via
diffusion-weighted MRI and Graph Theory. Neuroimage 40, 1064–1076.

James, W. (1890). The Principles of Psychology (New York: Holt).

Javitt, D.C., Steinschneider, M., Schroeder, C.E., and Arezzo, J.C. (1996). Role
of cortical N-methyl-D-aspartate receptors in auditory sensory memory and
mismatch negativity generation: Implications for schizophrenia. Proc. Natl.
Acad. Sci. USA 93, 11962–11967.

Jaynes, J. (1976). TheOrigin of Consciousness in the Breakdown of the Bicam-
eral Mind (New York: Houghton Mifflin Company).

John, E.R., and Prichep, L.S. (2005). The anesthetic cascade: A theory of how
anesthesia suppresses consciousness. Anesthesiology 102, 447–471.

Jolicoeur, P. (1999). Concurrent response-selection demands modulate the
attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 25, 1097–1113.

Jones, S.R., Pritchett, D.L., Stufflebeam, S.M., Hämäläinen, M., and Moore,
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Llinás, R.R., and Paré, D. (1991). Of dreaming and wakefulness. Neuroscience
44, 521–535.

Llinás, R., Ribary, U., Contreras, D., and Pedroarena, C. (1998). The neuronal
basis for consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1841–
1849.

Logan, G.D., and Crump, M.J. (2010). Cognitive illusions of authorship reveal
hierarchical error detection in skilled typists. Science 330, 683–686.

Luck, S.J., Fuller, R.L., Braun, E.L., Robinson, B., Summerfelt, A., and Gold,
J.M. (2006). The speed of visual attention in schizophrenia: Electrophysiolog-
ical and behavioral evidence. Schizophr. Res. 85, 174–195.

Lynall, M.E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller,
U., and Bullmore, E. (2010). Functional connectivity and brain networks in
schizophrenia. J. Neurosci. 30, 9477–9487.

Mack, A., and Rock, I. (1998). Inattentional Blindness (Cambridge, Mass: MIT
Press).

Macknik, S.L., and Haglund, M.M. (1999). Optical images of visible and invis-
ible percepts in the primary visual cortex of primates. Proc. Natl. Acad. Sci.
USA 96, 15208–15210.

Macknik, S.L., and Livingstone, M.S. (1998). Neuronal correlates of visibility
and invisibility in the primate visual system. Nat. Neurosci. 1, 144–149.

Maier, A., Wilke, M., Aura, C., Zhu, C., Ye, F.Q., and Leopold, D.A. (2008).
Divergence of fMRI and neural signals in V1 during perceptual suppression
in the awake monkey. Nat. Neurosci. 11, 1193–1200.

Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., and Corbetta, M.
(2007). Electrophysiological signatures of resting state networks in the human
brain. Proc. Natl. Acad. Sci. USA 104, 13170–13175.

Mantini, D., Corbetta, M., Perrucci, M.G., Romani, G.L., and Del Gratta, C.
(2009). Large-scale brain networks account for sustained and transient activity
during target detection. Neuroimage 44, 265–274.

Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Péters, J.M., Luxen, A., and
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