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Abstract
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data relevant to these tasks into a minimal neural network.
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 signal. As the output, the network orients toward one of the two objects. We subdivide the
architecture of the network into two levels, buthufwhthembadymmmm&umﬂm-
roanatomy in a simplified form. Level 1 consists of a sensory-motor loop with modifiable
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infants, or adults with prefrontal lesions. In particular, the systematic AB error can be repro-

duced. With level 2 on top of level 1, the network acquires systematic rules of behavior by
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takes place by selection among a repertoire of possible rules. The properties of the model
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‘mental predictions are presented. In particular, m:ﬁrmﬁeimwofpm&mulﬁmcmu,
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Introduction

The brain can be viewed as a non-equilibrium system
in evolution which constantly undergoes changes in its
internal organization as a consequence of interactions
with its environment. The general “Darwinian” scheme
of variation-selection has often been used 1o model such
epigenetic modifications, though on the basis of diverse
elementary principles (Taine 1870; Jerne 1967; Changeux
etal. 1973; ].Z. Young 1973; Changeux and Danchin 1976;
Edelman 1978, 1987; Piatelli-Palmarini in press). To ad-
equately relate a given function to the relevant neural
structure, any model must deal with the hierarchy of lev-
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els that may be delimited within the nervous system, from
molecules and cells up to the cognitive levels (Changeux
and Dehaene in press). Several of the selectionist mod-
els concerned lower-level circuits such as the epigene-
sis of the neuromuscular junction (Gouzé et al. 1983),
the development of afferent innervation of sympathetic
ganglia (Purves and Lichtman 1980), or the evolution of
the climbing fiber contacts on Purkinje cells (Mariani and
Changeux 1981a, 1981b). Others dealt with higher brain
functions on both theoretical (Edelman 1978, 1987) and
ermnpirical (Merzenich et al. 1988) grounds. Recently, at
the level of cell assemblies, the learning of stable con-
figurations of neuronal activities (Toulouse et al. 1986)
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and of temporal sequences (Dehaene et al. 1987) have
been modeled in terms of pruning an initial repertoire of
“prerepresentations” through interactions with the out-
side world,

In the present article, we examine the usefulness of the
notion of learning by selection at a higher cognitive level,
namely the acquisition of elementary rules of behavior in
the prefrontal cortex. We examine first the relevant psy-
chological and neurobiological data and attempt to ac-
count for them by a minimal set of theoretical hypotheses;
cast in the form of a simple neural network. Two aspects

of this modeling are worth emphasizing. First, higher .

cognitive functions cannot be accounted for irrespective
of their relations with the lower levels; accordingly, we
will not model an isolated cortical area, but a highly sim-
plified “organism” containing a multilevel neuronal net-
work and interacting with its environment. Second, ac-
cording to Fodor and Pylyshyn (1988) and Pinker and
Prince (1988), high-level “rational” processes are not ad-
equately described by rules of association; rather, higher
cognitive functions like language seem to be modeled
better by rules of symbol manipulation. Accordingly, and
although we will deal with a much more primitive level
than that of language acquisition, our model has been
designed to address such general questions as the repre-
sentation of rules and variables in neural networks. We
will see that a simple selectionist model can acquire sys-
ternatic rules by mere reinforcement.

Biological Premises

We shall focus our discussion on a limited set of data con-
cerning the so-called delayed-response tasks,' for which a
number of psychological and neurobioclogical observa-
tions are available in the literature.

Description of Delayed-Response Tasks
Delayed-response tasks have been used with human
adults or babies and intact or lesioned monkeys (for re-
view see Diamond 1988: Fuster 1980, 1984; Milner and
Petrides 1984). The basic scheme is always identical.?
The subject is first presented with a cue object, followed
by a delay period of variable duration. Then, two ob-
jects are presented simultaneously at two separate loca-
tions and the subject must choose one of them. The rules
defining the correct choice may vary, and specific tasks
may be defined. In the AB and specific delayed response
(DR) tasks,! the rule is to choose the object that stands
at the position of the cue object before the delay. In de-
layed matching-to-sample (DMS), one must choose the
object identical 1o the cue, irrespective of its position.
Finally, a third task, delayed alternation (DA}, might be
considered to fall in the same framework (Fuster 1984):
here, one must alternate responses to one location and
the other; thus, the subject’s previous response can be
considered as the “cue” guiding behavior at the current
trial.
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Formally, many abilities are required in order to suc-
ceed in delayed-response tasks. First, all tasks are sensori-
motor in that they require the subject “ro perform motor
acts in accord with events in the recent past” (Fuster 1984,
p. 408). Second, they tax short-ferm memory, since char-
acteristic features of the cue must be memorized through-
out the delay period. Third, the tasks require the subject
to focus on one particular feature of the cue (e.g. color)
and to neglect the others (e.g. location); thus, some selec-
tive attention is necessary, at least in DMS and DA. In AB
and DR, selective attention seems less critical, since the
choice items vary only in location, not in the irrelevant
dimension of color. Fourth, during the test phase, a deci-
sion must be made on the basis of a comparison of the test
objects with the stored representation of the cue. Finally,
learning a task is a process of induction through time and
space: the subject must discover which features are rele-
vant and what rule governs the application of reinforce-
ment. Hence, despite their simplicity, delayed-response
tasks appear to involve several high-level cognitive func-
tions.

Behavioral Observations in Intact and Lesioned
Subjects

Piaget's AB task (Piaget 1954) has been extensively used
with human infants between 6 and 12 months. Like-
wise, Jacobsen's DR task (Jacobsen 1935) has become
a classical test of prefrontal function in primates, The
two rasks differ only minimally: the within-trial proce-
dures are identical, both requiring the subject to reach,
after the delay, at the location where the cue was first
presented. However, in DR, the location of the cue is
changed randomly from one trial to the next, whereas
in AB the location is changed only after a criterion of
success at that location has been reached.

Diamond has studied and compared these tasks ex-
tensively with human infants, infant monkeys, and intact
or lesioned adult monkeys (Diamond 1985; Diamond and
Doar 1989; Diamond and Goldman-Rakic 1989; Diamond
er al. 1989 for review, see Diamond 1988). In short, in-
fants older than 12 months and adult monkeys with pre-
served prefrontal conex can learn both tasks. In contrast,
human infants from 7 1/2-9 months, infant monkeys from
1 1/2—4 months, and frontally lesioned monkeys fail in
a similar manner. Although they succeed in the absence
of a delay, their performance deteriorates with delays as
brief as 1-2 seconds. In AB, the pattern of errors is pecu-
liar. At long delays, performance is essentially random;
but at an intermediare duration, a systematic error occurs:
the subject is able to reach the success criterion at the ini-
tial location (A), but he continues o reach to A even af-
ter the location has been switched to B. The duration of
delay for which this systematic AB error occurs increases
with age in human infants (Diamond 1985). Such perse-
veration is similar to the performance of human frontal
patients, as revealed by the Wisconsin Card Sorting test
(Milner 1963). This test requires subjects to sort cards ac-
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cording to a given criterion (e.g., color, shape, number).
Frontal patients learn to sort the cards, but persevere in
using the same criterion even afiter the sorting criterion
was changed without notice by the experimenter.

DMS and DA have not been the focus of such an ex-
tensive behavioral study. However, solid electrophysio-
logical evidence, examined in the next section, confirms
their similarity with AB and DR and their links to pre-
frontal conex.

Electrophysiological Recordings

Single-unit recordings in the behaving monkey have re-
vealed several types of prefrontal units that are active dur-
ing delayed-response tasks (review in Fuster 1980, 1984).
Many units are driven by sensory aspects of the cue (Niki
and Watanabe 1976a). However, they appear not to re-
spond passively to sensory features. Rather, stimuli cause
prefrontal firing only if they draw attention because they
are relevant to behavior; cells have even been reported to
respond to the presence (or the absence) of an expected
reinforcement (Niki and Watanabe 1979). A second type
of units codes for intended movements, responding dif-
ferentally to a cue depending on the direction of the
movement it elicits (Niki 1974; Niki and Watanabe 19706a,
1976b, 1979).

Both sensory and movement types of cells may or may
not keep a sustained firing during the delay period, when
no stimulus is physically present. Some sensory units
show a steady or slowly decreasing firing rate during the
delay, suggesting they are involved in short-term mem-
ory for the characteristics of the cue (Niki 1974). Other
cells discriminate the direction of the planned movement
and show a progressive increase in activity during the
delay (Niki and Watanabe 1976a; Fuster et al. 1982); they
appear to be involved in response anticipation, and their
activity predicts occasional errors that the animal makes
(Niki and Watanabe 1976a; Watanabe 1986).

Limited information is available about the anatomical
organization of these units in prefrontal cortex. The cells
described above are found essentially in the principal sul-
cus (during spatial delayed-response tasks) and in the in-
ferior convexity and the orbital prefrontal cortex (during
delayed identity-matching tasks) (Goldman-Rakic 1988).
These regions show a segregation of afferents and effer-
ents into separate modules (Goldman-Rakic and Schwartz
1982; Goldman-Rakic 1984) and some hints of a columnar
organization (Fuster et al. 1982; Goldman-Rakic 1984).
However, their subdivision into smaller functional terri-
tories has not yet been achieved.

In short, a significant amount of behavioral and neu-
robiclogical data is available about the delayed-response
tasks; this justifies an attempt to embody the two sets of
data into a minimal model which will now be presented
in formal terms. The goals of the model are twofold:
first, to provide a simple, coherent and biologically plau-
sible (even if simplified) account of the available data,
and second, to lead to critical predictions that may be
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tested experimentally and may open new avenues for
future research.

Description of the Model

This section is divided into four parts. First, we describe
the environment of the “formal organism” and the tasks
that it must learn. We then describe the basic components
of the neuronal nerwork, its architecture, and the leaming
rule used.

. Environment of the Formal Organism

L. Objects: The environment consists of objects defined
by their features along a number of dimensions, such as
position, color, shape, and size,

Limitations:

1. Inthis minimal model, only two dimensions are con-
sidered, with two features values along dimension 1
and three along dimension 2. Dimension 1 may be
likened to position, with left and right as possible
features, and dimension 2 to color, with three pos-
sible hues.

2. Since only two positions are used, the model does
not take into account experiments where the relative
position of objects is varied (e.g. Niki 1974) or AB
experiments with multiple hiding wells (e.g. Cum-
mings and Bjork 1983).

3. Two objects at most can be presented at a given
time.

II. Reinforcement Signal: Positive reinforcement or
punishment is provided to the system under conditions
defined in paragraph V.

Formalization:

A reinforcement parameter r belongs to the interval
[=1,+1]. 0 is neutral (no reinforcement). +1 and —1 cor-
respond respectively to maximal positive reinforcement
and maximal punishment.

II. Tasks: Obijects and reinforcement are presented in
tasks composed of several trials. A trial in a task involves
four steps: (1) presentation of one object (cue period);
(2) delay period without any object presented; (3) pre-
sentation of two objects; if the organism chooses one
of them, the appropriate reinforcement or punishment is
delivered (choice period); (4) inter-trial period.

IV. Rules Defining the Correct Choice: During the
choice period, the organism is given an oppertunity to
choose one of the two objects presented. Which object
should be chosen depends on the type of tral. In a
type 1 trial, the correct object is the one whose feature
along dimension 1 matches the object presented during
the cue period. In a type 2 trial, the correct object is the
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one that matches the cue object along dimension 2. The
organism must discover which type of trial defines the
actual conditions for reinforcement.

Type 1 trials require choosing the object that stands
at the same position as the cue object, independent of
its color. Therefore, a sequence of type 1 trials may be
considered an analogue of AB or DR tasks.? The analogue
of DR is to present type 1 trials with a randomly varying
position for the cue object. The analogue of AB is to
present, first, type 1 trials with the cue always at position
1, until a success criterion is reached, then to present the
cue always at position 2.

Similarly, type 2 trals require the choice of the object
whase color matches the color of the cue, independent of
position. A sequence of type 2 trials can thus be consid-
ered an analogue of the DMS task. The organism can be
trained with only two colors for the cue and later tested
for generalization 1o a third color,

V. Conditions for Reinforcement: During the cue pe-
riod, when the organism orients toward the cue object,
small positive reinforcement is given.* During the choice
period, when the correct test object is selected, medium
positive reinforcement is given; strong punishment is pro-
vided if the wrong object is chosen,

Limitation:

The asymmetry between correct and wrong choices is re-
quired in order to ensure that the organism will always
seek an optimal choice strategy. When we treat cor-
rect and wrong choices symmetrically, we find that the
nerwork sometimes stabilizes into a suboptimal strategy
{e.g., a correct choice on 75% of trials only).
Formalization: During reinforcement, the parameter r
takes one of three possible values rymais, Tmedium+

Tlarge—-

Components of the Neural Network

We use the formalism developed by Dehaene, Changeux,
and Nadal (1987). At the lowest level, the network is
composed of formal neurons (threshold units) linked by
synapses. However, individual neurons and synapses are
not explicitly modeled, The functional units are clusters
of synergic neurons linked by bundles of synapses.

Units: The building blocks of the network are clusters
of neurons that are densely interconnected by excitatory
synapses. The activity of a cluster is defined as the frac-
tion of active neurons in the cluster, Due to the positive
feedback established by synapses within a cluster, each
cluster possesses two stable states of activity (most neu-
rons active or most neurons resting). Thus, in contrast to
isolated neurons, clusters can maintain a self-sustained
activity, providing an elementary form of memory or re-
manence in the nerwork (Dehaene et al. 1987).

Formalization: The activity of a cluster ¢ is represented
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by a continuous variable S;(f) between 0 (resting) and 1
(active).

Connections: [ndividual synapses are grouped into
bundles which propagate activity from a given anterior
cluster to another postedor cluster, We distinguish two
types of such bundles, Static bundles have a fixed (exci-
tatory or inhibitory) efficacy which is not modified during
learning. Modulated bundles are bundles whose efficacy
can be modified, up to a given maximum, by the activity
of a third neuronal cluster called modulator; their maxi-

~mum efficacy is modified through learning. The mecha-

nism postulated for the modification of efficacy is an het-
erosynaptic modulation: a given synapse of neuron A on
neuron B can be influenced by the activity of a second,
neighboring synapse upon neuron B, originating from
the modulator neuron C; the triplet 4, B, C is called a
synaptic triad (Dehaene et al. 1987). Allosteric transitions
of post-synaptic receptor molecules at the 4-B synapse
provide a plausible molecular implementation of synap-
tic triads (Heidmann and Changeux 1982; Changeux and
Heidmann 1987),

Formalization: Static connections are represented by a
matrix (V;(t)), giving the efficacy of each connection
from cluster j to cluster ¢, Self-connections within clus-
ters are represented by the terms Vi3, which have a fixed
positive value. Synaptic triads b are triplets of clusters
(anteriot, posterior, and modulator); they have an instan-
taneous efficacy Wi(t), which varies berween 0 and a
maximum value W™ (t). The cluster activities are up-
dated according to

Sdt+1) = FIY Vi8S,
i

+ Y Wa®)8a®) + NI

b=(ad.m}

whete F is the sigmoid function

F(x) =

1+e=%

and N is a noise term with uniform distribution over
[—n,7n).% The instantaneous efficacies W () of each bun-
dle are themselves updated according to the level of ac-
tivity of the modulator cluster m:

ﬂ'pwrh{ﬂ“'
Wt + D= | (1= )W, if Sm® > 0.5
adw-b(t)s if Sm(f.:l < [}.5

where a, and oy are constants between 0 and 1.
Architecture of the Network

We distinguish two levels of organization in the net-
work (Figure 1). Each level is further divided imto two
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Figure 1. Outline of the formal neural network which

learns analogue of the AE, DR and DMS tasks. At the input,
the external world is coded along only two dimensions:

ition and color (top). The output of the network in-
%mwﬂwhkhuhjm:ﬁnmrkm. Level
1 input-output connections the model with a ca-
pacity for grasping any iso
modulates this grasping behavior according to specific
rules. Learning is by a reinforcement signal
which both the occurrence of random modifi-
cation of rule clusters activity and the modifications of

synaptic efficacies.

layers of neuronal clusters; level 1 is composed of the
input and output layers, and level Z contains a mem-
ory layer and a rule-coding layer. By analogy with
primate cortex, level 1 would correspond to a visuo-
mator loop linking secondary visual areas to motor or
premotor cortex, and level 2 to the prefrontal cortex.

Architecture of Level 1

Input Layer: Objects are decomposed into their fea-
tures at the level of the input layer. Each possible feature
along each dimension is coded by an individual neuronal

cluster.

Limitations:

1. In the present model there are only 2 clusters for
dimension 1 and 3 clusters for dimension 2. The
presentation of one object activates two clusters, one
along each dimension.
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2. No attempt is made to solve the feature-conjunction
problem. Thus when rwo objects are simultane-
ously presented, the network does not know how
to associate dimension 1 featres with dimension 2
features.

3. The issue of functioning and development of these

feature detectors is not addressed in this paper.

Output Layer: Activity among output units commands
the orientation of the organism toward one of the objects

" presented. Output code is isomorphic to input code:

direct commands exist for orienting toward objects with
any given feature. Output clusters inhibit each other in
a “winner-take-all” nerwork.

Limitations:

1. At the present abstract level of characterization, we
do not distinguish berween covert orientation of at-
tention and overt orientation with the eyes or with
the hand.

2. No distinction is made between orienting toward a
given position (dimension 1 feature) and orienting
toward a given color (dimension 2 feature), even
though the distinction appears psychologically rele-
vant (e.g., Tsal and Lavie 1988). However, our hy-
pothesis of a direct command for orienting towards
objects of a given color is consistent with psycholog-
ical observations of “pop-out” from color (Treisman
and Gelade 1980).

3. The mechanisms that convert such “orient-toward-

color” commands into a motor code are not consid-
ered here.

Connectivity of Level 1:

Input and output layers are connected by topographic
projections preserving the isomorphism of input and out-
put codes.

Limitation:
A simple one-to-one mapping is used in this minimal
maodel.

Architecture of Level 2

Memory Layer: This layer of self-excitatory, mutually
inhibitory, neuronal clusters is organized isomorphically
1o input and outputs.

Rule-coding Layer: In this layer, neuronal clusters
code each for a dimension of the input (why these clus-
ters may reasonably be called “rule-coding” will become
clear in the next section, where the behavior of the net-
work is analyzed).
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Connectivity of Level 2

1. The memory layer receives topographic projections
from the input layer. These projections consist of
bundles which are modulated by rule-coding layer
activity. Each rule-coding cluster, coding for dimen-
sion x, modulates all the connections corresponding
o the different possible features of dimension = (see
Figure 1.

2. The memory layer projects topographically and

modulates the inpur-output connections in a one-’

to-one fashion,

Learning

The reinforcement signal is internalized and plays two
roles: first, it enters into a Hebbian rule for the modifica-
tion of synaptic uriads; second, it increases the production
of spontaneous random changes of activity in rule-coding
clusters.

Internal Representation of Reinforcement: The dis-
crete input reinforcement r is internally averaged into a
parameter R representing the satisfaction of the organ-
ism,

Formalization:

R is a continuous variable ranging from —1 (fully dis-
satisfied) to +1 (fully satisfied). R is updated after each
phase (e.g., cue, delay) of each trial depending on the
value of the input reinforcement r:

(1+rR(WY+r frel=1,0
(1—)ft) = ifr=0
(1=rRE+r ifrel0,1]

Rit+1)=

where o is a small positive factor regulating the decay
of R toward —1 in the absence of positive reinforcement
(e = (.02 in the simulations).

Learning Rule for Triads: We use a Hebbian rule,
which is modulated by reinforcement. When R is pos-
itive, active triads are enhanced when the postsynaptic
neuron is active; their efficacy is reduced when the post-
synaptic neuron remains silent. When R is negative, the
rule reverses: active triads are enhanced when the post-
synaptic neuron is inactive and reduced in case of postsy-
naptic activity. The net effect of this rule is a stabilization
of ongoing activity when R is positive and a destabiliza-
tion when R is negative.

Formalization:
The maximum efficacy W)™(f) of each modulated bundle
(a, p,m) is updated according to

Wit

ryn -
WD = B R

8B [2 8,8 = 1]
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Activation of Rule-coding Clusters: Another form of
learning in the network relies on modifications of activity
in the rule-coding layer. Modifications occur only when
the organism is highly dissatisfied. Each modification re-
sets the self-sustained activity of rule-coding clusters to a
random value.®

Formalization: At the end of each trial, a modification of
the rule-coding layer activity occurs with probability

" B if B> =05
modification = | _no5 _ B if R < —0.5

A modification consists in resefting independently the ac-

tivity of the clusters equiprobably to 0 or o 1.
Functional Properties of the Model

The nerwork was implemented in a Pascal computer pro-
gram. We simulated its behavior under two conditions:
with level 1 units only, and with level 1 plus level 2 units.

Simulation with Level 1 Only

The behavior of the network is simulated assuming that
the efficacy of input-output bundles is not modulated by
the activity of other units, but can still be modified during
learning via the Hebbian rule. The model then reduces to
a mapping of visual featufes onto orientation responses,
with the following functional properties:

Grasping: The input-output connections have initially
the same efficacy. They provide a capacity for grasp-
ing an object: the network correctly orients toward any
object presented in isolation, whatever the value of its
features.

Behavior with Two Objects: Due 1o lateral inhibition
among output units, the nerwork randomly orients to-
ward one of the two abjects.

Systematic AB Error: When type 1 trials are presented
with the cue always at the same position, the network
rapidly abandons its random behavior and always suc-
cessfully reaches this particular position. For example, a
criterion of success in five successive trials (with the cue
at location A) is reached in five to eight trials. This is
because the Hebbian rule progressively enhances the ef-
ficacy of the corresponding connection. As a result, the
network develops a strong bias toward always choosing
the same position when two objects are presented simul-
tanecusly (although it remains able to orient toward an
isolated object at any given location). A systematic er-
ror of the AB type is then observed when the location
of the cue is changed to B: the organism continues to
orient toward 4. It takes about five trials to stop making
this systematic error and return to random behavior and
another five to ten trials to reach criterion with the new
location B (Figures 2 and 3).7
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| error behavior
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Figure 2. Sequence of actions taken by the network with level 1 only during a AR task. Each column represents
a trial. The top two lines indicate the objects that were presented ar each position, respectively during the cue
and choice periods, Letters code for color (R = red, G = green, B = blue). In each row, the uppercase letter,
if any, indicates the object toward which the network oriented. The two bottom rows give the sign of the rein-
forcement obtained at the end of the trial and the evolution of the satisfaction of the organism (parameter ).

In this of trials, the cue object was first presented always at the same location A. After a criterion of
five succ trials, location of the cue was switched to B. Examination of the second row reveals that the network
continued to orient toward location A, even though it was strongly reinforced. Eventually, this systematic

error stopped. Following a period of random behavior, the criterion of success at location B was reached. Location of
the cue was again switched, and the systematic error resumed. Without level 2, the network is never able to succeed at
both locations at the same time,

Table 1

ACTIVITY IN MEMORY UNITS PREDICTS PERFORMANCE IN AB

State of the Memory Unit Performance after Delay
at the End of the
Delay Period® Correct™ Failure**
active &0 6
inactive 17 17

Notes: 100 trials of AB were passed while the nerwork was stabilized in the “location” rule. Activity of the memory
unit coding for the location of the cue was recorded. Due to internal noise, activity could drop (Figure 4) or
remain stable (Figure 4) during the delay. The table gives the number of correct and failed rests as a function of

internal activity.

“The unit was scored as active if its activity parameter {ranging berween 0 and 1) was above (.5 and inactive
otherwise.

** A correct trial was scored if the output cluster coding for the correct location was the most active and its activity
was above 0.5. Otherwise, a failure was scored.
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In brief, the model accounts for the AB error by sup-
posing that during initial learning, the reinforced loca-
tion A comes 1o elicit quasi-automatic responses via a
low-level, slow-to-reverse association. According to this
account, location does not play a critical role in the sys-
tematic AB errar. Indeed, a systematic error of perse-
veration also obtains in the DMS task, where the rele-
vant dimension is color. When the network is trained
with a single color for the cue, correct performance is

rapidly reached, but if the color of the cue is changed, -

the network systematically errs and continues to choose
the initially reinforced color.

Simulation - Level 1 only
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Figure 3. Performance of the network with level 1 only in
AB, compared with the performance of 7 1/2-9-month-
old human infants (from Diamond 1985). Trials are
sorted de g on (a) whether the previous trial was
succe or not, and (b) whether location was changed
between the previous trial and the present one. In both
human infants and the simulation, the percentage of er-
rors is significantly higher following a change in cue loca-
tion than when the previous trial was correct and at the
same location (=: p < .03 #=% p < 001; #« % p < 0001
Following an error, trials at the same location also yield
a high percentage of error. This shows that errors tend
to occur in rows following a switch in location; howewver,
both the infants and the network eventually succeed at
the new location.
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_Selective Extraction of Features:

Performance in DR and DMS Tasks: In general, the
nerwork without level 2 units is simply unable to reach a
performance above chance level in DR and DMS. Tem-
porary response biases may appear, but they are rapidly
erased by the anti-Hebbian rule as the internal state pa-
rameter B becomes more and more negative.

Simulation with Levels 1 and 2
The full nerwork exhibits a much more complex behav-
ior, the characteristics of which are described below,

The input-to-memory
connections are modulated by the activity of the rule-
coding layer. Thus, at a given time, only a fraction of
these connections will be potentiated and functional. De-
pending on the state of rule-coding units, only some fea-
tures of the cue will be transmitted to the memory layer.
For example, if only the rule-coding unit corresponding
to color is active, then only the color of the target will be
rransmmitted, not its position,

Memorization During the Delay: Via the potentiated
inpur-to-memory connections, some memory units be-
come activated during the cue period. During the delay,
the activated units are able to maintain their activation
thanks to excitatory self-connecrions. Thus, some fea-
tures of the cue are memorized during the delay. The
duration of retention will depend on the level of noise in
the system (Figure 4).

Performance During Choice Period: Again, only
some of the input-output connections are potentiated
when the choice period begins. Their potentiation is
commanded by the active memory units. Thus, the or-
ganism orients toward the object, if any, which possesses
the feature which has been memorized during the delay.

As Table 1 shows, the activity of memory units pre-
dicts which object will be chosen. One hundred type
1 trials were simulated, with values of noise and delay
such that in one third of the trials, the relevant memory
unit for location became inactive before the end of the
delay period. When the unit remained active (66% of
trials; Figure 4A), performance was correct 90% of the
time. However, when the unit became inactive (34% of
trials; Figure 4B), performance was at chance leve] (508
correct).

Rule-coding Layer Activity: The sequence of events
just described shows that the object which will be se-
lected during the choice period depends eventually on
the activity of rule-coding units, If only the rule-coding
unit corresponding to position is active, the organism will
always select the object that stands at the same position
as the cue; this will ensure correct choice in type 1 tri-
als (i.e., in DR and AB tasks), Similarly, activation of the
rule-coding unit for color will yield correct performance
in type 2 trials (DMS task), The population activity of the
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Figure 4. Records of the activity of the memory unit for
location B during AB. Top: The unit detects the location
of the cue, memorizes it through the delay period, and
mmmandn:;j::mﬂunmrﬂthmlocaﬂmdudngth:tut
pericd. In trial, performance was correct. Bottom:
The unit detects the location of the cue, but activity dro
during the delay due to internal noise. In this trial,
network failed to reach toward the correct location.

rule-coding layer thus determines the rule followed by
the organism during the choice period.

Learning a rule consists in a search for the correct pat-
tern of activation of the rulecoding layer. This search
is implemented by the frequent random modifications of
activity which occur as long as the satisfaction of the or-
ganism remains low. This allows the network to escape
wrong patterns of rule-coding layer activation, which are
signaled by punishment. Indeed, in simulations, the net-
work always reaches perfect performance in AB, DR, and
DMS tasks (see Figures 5 and 6).

Fast Relearning: In the network, rules of behavior are
coded in patterns of activity, which allows for a fast re-
action 1o a change in the reinforcement schedule. With
the set of parameters chosen, two errors in a row suffice
to change the current strategy (Figure 5). The network is
immediately ready to adapt to the new situation, without
going through a long series of systematic errors.

252 Journal of Cognitive Neuroscience

Systematicity: Systematicity is defined as the capacity
of a learning system to immediately generalize an ac-
guired rule 1o a whole class of objects. According to
Fodor and Pylyshyn (1988), human thought processes are
systematic, since a human mind does not exist that can
represent “John loves Mary” but not “Mary loves John.”
A system cannot be said to acquire a rule if it does not
exhibit systematicity.

The issue of systematicity arises in the present model
because the organism must respond in a regular way to
a whole class of configurations. For instance in the DMS

. task, on each type 2 trial, the cue and test objects can be

presented at two different locations and can take on three
different colors, resulting in a large variety of experimen-
tal configurations. It would have been possible to learn
which response is appropriate separately for each con-
figuration. However, such an input-output associationist
learning scheme would not be systematic, since the net-
work would learn the correct response to each configura-
tion at different moments in time. In contrast, systematic-
ity requires the network to learn the high-level rule that
“the colors of the cue and test objects must match” and
to apply this rule correctly to all possible configurations,
even those it encounters for the first time.

Our network exhibits systematicity in AB, DR, or DMS
rule acquisition. As soon as the activity of the rule-coding
layer settles into the corrett pattern, all instances of po-
sition or color are treated in the same regular fashion.
Systematicity arises from the capacity of this network o
represent elementary variables: rules are expressed in
terms of the color or the position of objects, but without
reference to particular instances.

Generalization: Patterns of activation of the rule-
coding layer where only one unit is active correspond
to “meaningful” rules. Another pattern, where both rule
units are active, is spurious; in the simulations, it yields
a random choice between “position” and "color” rules,
Unexpectedly, the last partern, where both units are in-
active (null rule), is also meaningful. In this pattern, the
memaory layer is not affected any more by inputs. Objects
are thus invariably chosen by the same criterion. For ex-
ample, if the memory unit for location A is active, then
the organism always orients toward location A. Such a
rule may yield perfect choices in the first stage of the AB
task. However, it is not systematic, since generalization
to location B fails to occur. In this situation, the organ-
ism still does not make the systematic AB error; rather,
learning resumes after two errors.

The coexistence of both systematic and nonsystematic
rules yields an interesting and desirable property: gen-
eralization to new instances of a variable depends on
how many different instances have been presented dur-
ing training. For example, in a DMS task with two pos-
sible colors for the cue, the “color” rule is always stabi-
lized, and generalization to a third color is perfect. 1f,
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Figure 5. Sequence of actions taken by the network with both levels 1 and 2 during an AB task and after switching to a
DMS task. The notation is identical to 2, except for the addition of the tuﬁn:rwwhich represents the configuration
of rule-coding chusters (' = color rule; P = position rule; 4 = all rule-coding clusters active; N = no rule-coding cluster

active). In the first part, the network received reinforcement if it oriented toward the object standing at the position of
the cue. The cue was first presented always at the same location 4. The top row indicates that the network started with
the wrong rule, but settled by chance in the correct position rule following two consecutive errors. Generalization to
position B was then perfect. At this stage (vertical line), the reinforcement schedule was suddenly changed to a delayed
matching-to-sample task: the network received reinforcement if it orfented toward the object bearing the color of the
cue, independent of position. The network made two consecutive errors, after which a modification of the activity of
the rule-coding layer occurred. The subsequent random search eventually converged to the correct color rule.

however, the cue can take only one color during train-  ification of these connections during learning may then
ing, in 10-20% of cases the “null rule” is stabilized; then,  destabilize the spurious patterns of activity, which would
generalization to the two other colors fails and learning  become inaccessible, We simulated the network with two
must resume. connections linking the two rule units, during alternated
When testing for generalization, one should remember ~ training in the AB and DMS tasks. The Hebbian rule
that what the experimenter defines as a correct general-  provoked mutual inhibition between rule units, because
ization may not always be the optimal strategy for the  the state with both units active was generally associated
network. Thus, a surprising phenomenon occurs when  with punishment. As a result, only the three meaning-
the system is trained at length with a DMS task where  ful rules remained accessible; learning was accelerated
the cue can take one of two colors, but where any of the  because the random search was restricted to only three
three colors can appear during the choice period. When  rules instead of four. In larger models, this process may
training is short, generalization extends to trials where  be crucial in reducing the combinatorial explosion in the
the cue takes the third color. However, when training  number of rules.
is long enough, generalization to the third color fails, as
the slow Hebbian learning rule progressively reduces the
efficacy of the connections that are associated to the third  Comparison with the Performance of Other Neural
color. We may call this a failure of generalization, How-  Networks
ever, a closer look suggests that this behavior is quite It is not straightforward to imagine how other, more
appropriate. Indeed, the third color is never a corect  classical neural networks might perform in delayed-
choice in the test phESE: the network has pl‘DSIESSiVEl}’ response tasks. First, most neural networks use super-
internalized the appropriate rule that “whatever you do,  vised learning, whereas we require learning by reinforce-
never choose the third color.” ment, which is more realistic from a neural point of view
(there is no teacher to tell the neurons explicitly what
they should do). Second, correct behavior requires the
Selection of Rules: As mentioned above, there is one  apprehension of relations between inputs that appear at
meaningless pattern of activity among rule-coding units  different periods in time; neural networks such as the
(all units active). An interesting extension of the network Hopfield (1982) model or mulilayer feedforward net-
is to add complete connectivity between rule-coding — works (Rumelhart and McClelland 1986} accept only si-
units, in the spirit of the Hopfield (1982) model. Mod-  multaneous inputs (at least in their classical versions).®
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Figure 6. Performance of the network with levels 1 and
2 in AR, compared with the of 12-month-
old human infants (from Diamond 1985%). Performance
is close 1o 100% correct, irrespective of a change in the
location of the cue,

For these reasons, one may say that delayed-response
tasks are beyond what classical neural nerworks can do.
This is not to say that these nerworks could not be
adapted to cope with these tasks. Indeed, what we have
done is simply to take the very same elements used in
most networks — threshold units — and design a spe-
cific architecture adapted to the task. The architecture
that we selected is clearly not unique. For example, all
the properties of our level 1 depend only on using a cor-
relational learning rule; any learning rule that can detect
the statistical correlation that exists between the choice
of a location and the obtention of reinforcement could
replace the particular Hebbian rule that we have used.

To rephrase this, the problem solved by our level 1
(“grasping™) is extremely simple and requires only a map-
ping of each inpurt to the appropriate output. In contrast,
the full task is not a simple input-output association but
requires a comparison of inputs over time. Thus, an inter-
nal representation of inputs is necessary. In that sense,
the clusters of level 2 are similar to the “hidden units”
of the classical layered nerworks (Rumelhart and McClel-
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land 1986), but the latter do not usually incorporate time
as a relevant dimension.

Interpretation of the Model in Terms of
Neurobiological and Psychological Data

in this section, we compare the architecture and the be-
havior of the network with neurobiclogical and psycho-
logical cbservations available from the literature.

Comparison with Neurobiological Data
Representational Units: In all layers of the network,
the representational units are clusters of neurons; these
may be identified with the groups or columns of neu-
rons which have been found in several areas of the
cortex (Mountcastle 1978; Edelman 1978, 1987; see
Goldman-Rakic 1984 for the prefrontal cortex). This
need not imply that all neurons in a cluster respond
in exactly the same conditions. Rather, it is likely
that each neuron in a cluster keeps some funcrional
“singularity™ (Changeux 1983). Similarly, it is not ab-
solutely necessary that any given neuron belong to
only one cluster, although this was found easier 1o
model. Totally distributed or holographic represen-
tations (Pribram et al. 1974; Hopfield 1982; Rumel-
hart and McClelland 1986), where single neuron ac-
tivity encode lide information, are not very plausi-
ble. However, recent experimental evidence (Heit et
al. 1988; Lee et al. 1988) supports limited “coarse-
coding” (Hinton 1981; Ballard 1986) better than absolute
selectivity.

Cortical Areas: In the network, units coding for sim-
ilar features or events are grouped in the same layer.
Separate parallel pathways are assumed for processing
identity and localization of visual objects, These aspects
are consistent with current views of cortical organization
(Ungerleider and Mishkin 1982; Rakic and Singer 1988;
Goldman-Rakic 1987, 1988). Tentatively, one may try to
identify the layers of the network with real cortical ar-
eas. The input layer would stand for secondary visual
areas and/or association areas such as temporal areas for
visual identification of objects and parietal areas for local-
ization. Level 2, with its memory and rule-coding layers,
would stand for prefrontal areas (centered on the prin-
cipal sulcus for spatial delayed-response tasks, and on
the inferior convexity and/or the orbital prefrontal cortex
for delayed identity-matching rasks; see Goldman-Rakic
1988). Finally, the output layer might stand for premotor
areas, the basal ganglia and the other areas involved in
motor control, to which the prefrontal cortex has numer-
Ous projections.

Topological Projections: In the network, ordered
projections between layers play a critical role in the pro-
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cess of choosing the correct object. This aspect is consis-
tent with the finding of topological maps (see Woolsey
1981 and the references therein} and ordered projections
throughout the cortex, even in prefrontal contex (e.g.,
Goldman-Rakic and Schwarz 1982). Obviously, these
features are very grossly encoded in the present model,
where we have used a perfect isomorphism between sen-
sory and motor codes,

Modulation and the Prefrontal Cortex: We have

postulated the existence of synaptic triads, in which the
efficacy of a given synapse from neuron A to neuron B
is modulated by the activity of a modulator neuron C,
which sends a neighboring synapse onto B. A biologi-
cally plausible implementation of this feature is a change
in the configuration of postsynaptic allosteric receptor
molecules at synapse A-B, triggered by chemical and/or
electrical messages originating from synapse C-B. Such
heterosynaptic modulation has been modeled by Heid-
mann and Changeux (1982), Changeux and Heidmann
(1987), and Dehaene et al, (1987),

Modulation of the efficacy of connections plays two
critical roles in the model. First, level 2 units do not
directly command behavior, but merely modulate or se-
lect actions from the repertoire of the lower level, in
agreement with old stimulation experiments (Stuss and
Benson 1986). Second, modulation allows level 2 of
the network to select its own inputs. As a result, only
features that are relevant to the current task are mem-
orized during the delay period. This is consistent with
Fuster's (1984) conclusion that “what determines the re-
action of many prefrontal cells to a sensory stimulus is
the value thar stimulus may have as a cue for behavior”
(p. 409

Electrophysiology of Prefrontal Neurons: Activity
in the memaory laver reproduces the observed pattern
of firing of some prefrontal neurons during delayed-
response 1asks:

1. Asalready mentioned, such cells respond to sensory
features of the cue (Niki and Watanabe 1976a); they
code only for features that are relevant to behavior
(location in the AB task, color in the DMS task).

2.  They remain active during the delay period (Fig-
ure 4). The mechanism that we propose for this
feature is excitatory connections within each cluster,

3. Their activity predicts the future behavior of the
monkey (Niki and Watanabe 1976a; Watanabe 1980)
and the occasional errors that it makes (see Table 10,
thus coding for its “intention.”

Connections with the Limbic System: We assume
that reinforcement is internally represented and com-
mands random modifications of the rule-coding units,
The entry of the reinforcement signal could be medi-
ated by the limbic system, which projects massively to
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the prefrontal conex (Stuss and Benson 1986; Goldman-
Rakic 1087).

Intervention of the Hippocampus: We have not ex-
plicitly included hippocampal neurons in our model, yet
it is possible that some components of the network,
e.g., the rule-coding neurons, are located within the hip-
pocampus (Gray 1982). Experimental data show that
hippocampal monkeys reach randomly in the AB task,
rather than making the systematic AB error (Diamond et
al. 1989), These dara can be accounted for by the model

. if one assumes that the integrity of the hippocampus is

necessary for leamning in the nerwork. Random behav-
ior is also observed in the simulation in the absence of
learning.

Comparison with Psychological Data

Initial Performance: From a behavioral point of view,
the performance of the network with level 1 only is anal-
ogous to the performance of 7 1/2-9-month-old babies,
1 1/2-2 1/2-month-old monkeys, or prefrontal monkeys
{Diamond 1988). Grasping an isolated object is possible,
but the organism cannot learn DR and DMS tasks, and
makes systematic errors in the AB task,

Diamond (1985) gives the percentage of errors made
by 7 1/2-89-month-old babies in an AB task depending
on (a) whether the previcus trial was successful or not,
and (b} whether location was changed between the pre-
vious trial and the present one. In order to provide a
direct comparison of network and babies performance,
we collected similar statistics for network performance
with level 1 only (Figure 3). Our criterion for changing
the location of the cue was three successes in a row (Di-
amond used a criterion of 2 correct reaches with infant
and adult monkeys and 1-3 correct reaches with human
infants), In both human infants and the simulation, the
percentage of errors was significantly lower following a
change in cue location than when the previous trial was
at the same location (AB error).?

Performance at a Later Stage: With level 1 plus level
2, the network becomes able to learn the AB and DMS
tasks, in & manner analogous to 12-month-old babies, 4-
month-old rhesus monkeys, and adults (Diamond 1988).
Figure & again shows a comparison of network and 12-
month-old babies performance in AB, as reported by Di-
amond (1985). There is no significant effect of changing
the location of the cue; performance is close o 100%
correct in all circumstances.

The nerwork shows an ability to switch rapidly from
one task to ancther (Figure 3); this ability crucially de-
pends on level 2 activity. Switching between tasks may
be viewed as an analog of the Wisconsin Card Sort-
ing Test (Milner 1263). As mentioned, this test requires
the subject to sort cards according to a given crite-
rion, which the experimenter may change without telling
the subject; it is considered a critical test of prefrontal
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damage (see also Lhermire 1983; Luria 1966; Shallice
1982).

Continuity in the Developmental Stages: We have
simulared two different states of the network: with level
1 only, and with levels 1 and 2. Yet success in delayed-
response tasks does not appear suddenly during devel-
opment; rather, performance improves continuously, At
least two psychological phenomena need to be discussed
in that respect. ' ’

(1) In AB tests Diamond (1985) reports that the baby's
gaze sometimes, although rarely, orients toward the cor-
rect location, even though the baby reaches incorrectly
with the arm. Similarly, by measuring the surprise of ba-
bies viewing diverse violations of the physical properties
of objects, Baillargeon (1986; Baillargeon et al. 1985) has
shown that even at five months of age, babies “know”
that an object remains at its Jocation after it has been oc-
cluded. Of particular relevance is a recent experiment by
Baillargeon and Graber (1988). They used a nonsearch
AB task, where the babies simply watch a toy being hid-
den at one of two locations and being retrieved afier
a delay of 15 seconds. According to Baillargeon and
Graber, 8-month-old babies look reliably longer when
the toy is retrieved at a location different from the one
it was initially hidden in than when the toy is retrieved
normally at its initial location. This longer looking time
is thought to indicate surprise, showing that the infants
remembered where the object was and expected it to be
retrieved there.

These observations suggest the existence of a stage in
which the location of the cue is remembered throughout
the delay, but this knowledge cannot be used to govern
motor behavior. In our network, this phenomenon can
be accounted for by postulating an intermediate stage of
connectivity between level 1 and levels 1 plus 2. In this
intermediate stage, the connections from input units to
level 2 would be functional, but the connections from
level 2, modulating the input-output lines, would not be
available. Simulations of this situation show that cor-
rect informarion about the cue is indeed memorized, but
cannot be used to guide behavior. The interpretation
of Baillargeon's experiments in our model thus leads to
a nontrivial neural prediction: afferent pathways to the
prefrontal cortex may become functional before the ef-
ferent pathways from prefrontal cortex to premotor and
motor areas.

(2) Human infants do not suddenly succeed in AB
tasks; rather, a given infant will or will not make the
AB error depending on the duration of the delay period.
At short delays, performance is correct; at long delays,
performance is random and the subjects may fail to co-
operate and show oven signs of distress, such as crying.
It is only ar an intermediate value of delay that a sys-
tematic AB error is observed. The critical delay increases
with the age of the baby (Diamond 1985).

In the network, the continuity of developmental
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changes in AB may be accounted for by supposing that
the noise level in memory units slowly decreases with
age. In the simulations reported above, this noise level
was always very low; as a consequence, network per-
formance was close to 10086 correct independent of the
length of the delay. The results of simulations with a
large noise level are reported in Figure 7. A dependency
in the duration of the delay period is now observed. Per-
formance is essentially 100% for shont delays and drops
toward 50% at very long delays; at that time, memory
unit activity no longer reflects the characteristics of the

. cue: it is simply random. At an intermediate value for the

delay, a significant difference appears between reversal
and repeat trials. Performance is significantly worse fol-
lowing a change in the location of the cue. Thus, there
is a trend in the direction of an AB error, although it is
not as impressive as in simulations with level 1 only1?

Learnable Rules and Systematicity: There are serious
limitations on what the network can learn. Essentially,
only identity rules are learnable, where color or posi-
tion of the cue and the test objects have to be martched.
Many other tasks are not accessible, for example those
that involve planning and controlling a sequential behav-
ior (Shallice 1982; Joseph and Barone 1987). In fact, the
model gives an extreme example of systematicity. On the
one hand, this has the important advantage (Fodor and
Pylyshyn 1988) that not all arbitrary stimulus-response
associations are equally learnable; for example, the rule
“choose the green object only if the cue was red and
on the right” cannot be learned, and this matches our
intuitions. On the other hand however, the extreme reg-
ularity of the architecture impairs the learning of more
“natural,” yet still arbitrary rules, such as “go right if the
cue is green, and left if the cue is red.” In that respect,
the nerwork is clearly an extremely simplified and incom-
plete model] of prefrontal function.

Extension to Larger Networks

The two main limitations of our network, on neurobio-
logical and psychological grounds, are (1) its oversimpli-
fied architecture, and (2) the small size of its repertoire
of learnable rules.

With 17 nodes, our network represents only a sugges-
tive analog for prefrontal organization. Thus, a crucial
remaining problem is its extension to a much larger net-
work. Further work should include a more precise ac-
count of the known connectivity of prefrontal cortex and
related brain structures. Also, the extremely regular con-
nectivity of the proposed model should sooner or later be
replaced by a more plausible organization resulting from
complex processes of epigenetic development. An initial
variable set of connections would be pruned according
to mechanisms of selective stabilization (Changeux et al.
1973; Toulouse et al. 1986), leading to the emergence
of complex clusters that the model postulates (see also
Dehaene et al. 1987). Such diversification of the inirtial
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Figure 7. Evolution of performance in AT as a function of
delay length. At short delays, performance is perfect. At
long delays, it is essentially random. A significant trend
toward the AB error is perceptible at an intermediate value
of delay, roducing the experimental observations of
Diamond (1985).

connectivity, accompanied by an increase in the number
of neurons, may extend the capacities of the netwaork
to the learning of less systematic, more complex rules.
However, among the problems that render this extension
difficult, the most important one is the combinatorial ex-
plosion of the number of possible rules, which would
grow exponentially with the number of rule-coding clus-
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ters. The learning by random search through this space
would soon become very slow,

Such combinatorial explosion might be alleviated by
adding connections among rule units {and from input
units to rule units), which would destabilize patterns of
activity of the rule-coding neurons, thus reducing the
search to progressively fewer and fewer rules (this may
also lead to the storage of the repertoires of rules in
long-term memory). Another possibility would be to-im-
plement a hierarchy of rules. Each layer of rule-coding
clusters would itself be controlled by a higher-level layer

containing rules for the choice of rules at the lower

level (*metarules™. Finally, starting from a small set of
tules, more and more complex rules could be generated
by recombination of fragments of older ones. Holland,
Holyoak, Nisbett, and Thagard (1986) have developed a
program where initial rules are chosen at random, The
most successful ones are progressively selected, and new
rules are synthesized by mixing fragments of the former
ones. This feature accelerates the induction process by
focusing the search on some subspace of the enormous
space of possible rules.

The implementation of these ideas in large neuronal
networks is not straightforward and is in progress. Nev-
ertheless, the aim of the present nerwork was to give a
minimal description of prefrontal function, and its main
architectural principles wilk have to be preserved for fu-
ure extension to larger networks:

1. Separation into two levels of complexity is required
to describe the performance of infants or lesioned
patients. Prefrontal cortex merely selects or modu-
lates actions performed by a lower, more automatic
level.

2. The higher level must be able to memorize neuronal

activity by reverberant loops. In our network, self-

excitatory connections within clusters play this role.

To acquire systematic rules, the higher level must be

able 1o treat all instances of a variable (e g., color)

in the same way. Thus, some units (the rule-coding
clusters in our network) must gate all units corre-
sponding to a given feature dimension.

4. The whole system must learn by reinforcement, with
no explicit teacher. Feedback about the accuracy of
the unfolding of a plan of actions must be able to
modify the on-line neurcnal activities, not just the
synaptic efficacies.

E

Predictions and Perspectives

In addition to reproducing known psychological and
neurobioclogical facts, the model enlightens a number of
points and leads to some specific predictions.

Interpretation of Prefrontal Function

What insight into the functons of the frontal lobes can we
gain from the model? Reviewing her own experimental
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work, Diamond (1988) rejects the classical explanations
of frontal patients performance in terms of perseveration
or forgenting. She proposes instead that two abilities may
crucially depend on frontal cortex integrity: “(a) relating
information over space or time (...), and (b) inhibiton
of predominant action tendencies” (p. 360). These wo
aspects are indeed the key properties of our network.
To summarize them, one may say that the fronml cor-
tex enables inductions'! to be performed over time and
space and that it competes with a lower level capable
only of learning stimulus-response associations. The first

part of this statement implies that the frontal cortex em- |

bodies and updates representations of the environment
(Goldman-Rakic 1987) and is involved in planning the
interaction of the organism with the environment (Shal-
lice 1982; Luria 1966). The notion of competition implies
that if the frontal cortex is lesioned or not fully func-
tional (as in babies), then a lower level, “associationist,”
system takes over. The working of this lower-level sys-
tem would be revealed by the AB error, the Wisconsin
test (Milner 1963), or the “utilization behavior” described
by Lhermitte (1983).

Rule-coding Neurons

Despite its extreme simplicity, the model makes specific
predictions. We suggest the existence of a direct link be-
rween the rules of behavior followed by the animal and
the firing of some prefrontal cells. We call these predicted
cells rule-coding neurons. Patterns of activity among them
would code for hypotheses about the rule that governs
the stimuli. Their activity would correlate with the “ex-
pectancy” that is entertained by the monkey at a given
time during learning. Thus, changes in their firing rate
should be linked to errors (for instance, a change is likely
o follow two consecutive errors),

This prediction can be tested empirically. Two exper-
imental paradigms of neuronal recordings in the awake
monkey may reveal the predicted rule-coding neurons.
The first possibility would be to train a monkey to ac-
complish several different tasks on the very same ma-
terial, under the same conditions as our model. After
training, when recording any given unit, the tasks may
be alernated (as in the Wisconsin Card Sorting Test} and
neuronal responses examined during the search for the
correct rule. Rule-coding neurons should respond only
when a given rule is tested by the monkey. The sec-
ond possibility would be to train a monkey with only
one task (e.g., DR) but to record during the training
phase. Published reports on electrophysiological corre-
lates of DR hardly ever give details about training. It
becomes of importance to determine the various behav-
ioral phases through which the monkey passes and try to
correlate them with variations in the activity of neurons
from prefrontal cortex and/or hippocampus. Predicted
phenomena included the progressive tuning of neurons
1o specific events of the task (Dehaene et al. 1957), the
disappearance of responses to irrelevant features of the
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stimuli and the selection of patterns of activity that are
often associated with success in the task.

Induction, Inference, Systematicity, and Mental
Darwinism )

With respect to the more philosophical issue of learning
theories, our model introduces an original distinction be-
rween induction and inference. Although the network
clearly induces systematic rules, it does not perform any
inference on the various situations that it encounters. It
does not try to extract regularities from its environment
and synthesize the corresponding rule. Rather, it selects
rules produced at random uniil one is correct.

The induction of rules by random search illustrates
the notion of *mental Darwinism™ (Changeux and De-
haene in press). According to this view, the brain sponta-
neously produces transient and labile prerepresentations,
which constitute hypotheses about the world; they are
implemented here as the spontaneous activity of rule-
coding clusters which operate as “generators of diver-
sity” (Changeux et al. 1984). The prerepresentations may
be selectively stabilized or eliminated according to their
matching to the environment and/or to their adequacy
with the current goals of the organism. Learning by se-
lection is stimulating interest in cognitive science (Piatelli-
Palmarini in press), and our simulations further stress
its plausibility ar the high#r levels of cognition (see also
Edelman 1987),

Finally, our model shows that systematic rules of be-
havior may be acquired by reinforcement in a neural
network. As correctly predicted by Fodor and Pylyshyn
(1988), the price to pay for systematicity is a structured
architecture in the initial state. It is a well-taken point
for neurobiologists that learning is very unlikely to take
place from a tabula rasa or a fully connected network and
most certainly requires highly structured neuronal archi-
tectures that are laid down during development under
stringent genetic control (see Changeux 1983; Changeux
and Dehaene in press). However, we do not agree with
Fodor and Pylyshyn that the biological structures that
provide systematicity will necessarily be isomorphic with
classical computer architectures, and will bring no novel
insight into rational behavior. On the contrary, we feel
that simple neuronal parameters and architectures may
affect the higher functional levels (Changeux and De-
haene in press). Conjoint electrophysiological, behav-
ioral, and modeling studies now have the potential to
reveal such neuropsychological links,
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Notes

1. We use the term “delayed-response tasks" as a generic
name. Specific 1asks such as AB, delayed response (DR), de-
layed matching-to-sample (DMS), and delayed alternation (DA)
are referred to by their abbreviations,

2. Delayed-response tasks have been implemented in a variety
of ways. In with human infants, the experimenter often

hides a tov in one of two wells facing the infant; after the ’

infant has been distracted away, he is allowed to reach one
of them, With infant monkeys, the same implementation has
been used, except that food replaces the toy. With trained
adult monkeys, the tasks are often more abstract: two lights
of differenr colors are used; after the delay, the monkey must
press one of them, basing its response either upon the color or
upon the location of the cue; reinforcement consists in a drop of
juice. The differences owing to these various paradigms are not
taken imo consideration in this paper; indeed, the convergence
of the results seems striking.

3. In classical AB and DR tasks, location is the only distinguish-
ing feature of the two choice objects; in particular, color is kept
constant. Our type 1 trials are slightly different in that respect:
the rwo choice objects may differ in color, and the nerwork
has to detect that this variation is irrelevant for the task, This
fearure was adopted so that type 1 and type 2 trials became
symmetrical. We checked that the qualitative behavior of the
network was not affected when only one color was used for all
type 1 trials

4. Delivery of small positive reinforcement during the cue pe-
riod is not absolutely necessary, but we found that it slightly
accelerates learning.

5. The noise term N plays no role in information processing. It
is introduced solely to demonstrate the robustness of the simu-
lation to small perturbations, Also, variatons in the noise level
may account in part for behavioral modifications in the course
of development (see the section Comparison with Psychological
Data).

&, Burnod and Korn (1989) give evidence for an activity-
dependen: modulation of the synaptic noise level in the Maut
ner cell of the Ash. This may provide a plausible mechanism
for the reinforcement-dependent random modifications of nule-
coding layer activity that we have postulated. However, similar
evidence in the cornex is still lacking.

7. The durations of the phases of systematic error and random
behavior are only indicative. They are highly dependent upan
the cholce of parameters. For instance, when we use a large
value for the learning parameter 3, with boundary conditions
ensuring that the synaptic efficacies do not diverge, the phase
of random behavior may even disappear. Following a reversal
in cue location, the network then errs for 2 or 3 trials in a row,
and suddenly reaches correctly, Because of this dependency
upon the detzils of the model, real data may easily be fited
by the model, but such attempts would not necessarily lead to
a better understanding of the underlying processes. Tn addi-
tion, our network lacks mechanisms that may contribute to real
performance, such as the memory of previous errors.

8. Bamo, Sutton, and Anderson (1983 have successfully ap-
plied a powerful algorithm of learning by reinforcement 1o the
problem of dynamically balancing a pole standing on its tip, a
problem in which time is a crucial dimension. Their formal-
isim is quite powerful and it is likely that some version of their
algorithm can succeed in our tasks. However, extending the
pole-balancing network 1o our problem is not straightforward.
9. The slight difference in performance between network and
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infants in trials repeated at the same location following an error
can be amributed o the noisier perfformance of the network;
thus, a row of systematic AB errors is less frequent in the sim-
ularions than in real infant performance. Again, this is highly
dependent upon the choice of parameters,

10. Another complementary way to allow for a continuous
change berween the network with level 1 only and the ner-
work with levels 1 and 2 is 10 suppose that the memory units
come o modulate the inpul-outpul connections in a progres-
sive manner. In the above simulations, a given input-output
connection is 100% efficient if its corresponding memory wnit
is active; atherwise, its efficacy drops o 0. Intermediate maod-
ulation may he modeled by the following equation:

Wit
a s Wit
+minfl — a WY 0f 5,08 < 0.5

Wit + 1) = if Em(tj = 0.5

where the min parameter is assumed to vary from 1 to 0 in
the course of development. This equation implies that the ef-
ficacy of input-output lines never drops lower than a certain
percentage of the maximum efficacy. Simulations were run us-
ing this equation with min = 0.80 and a large noise level. A1
short delays, performance is perfect, and indeed, the nerwork
is functionally identical to the normal network with levels 1
and 2. At longer delays, noise erases the activity of memory
units; the network becomes equivalent to level 1 only, and a
systematic AB error is observed.

11. Very young infants and prefrontal monkeys succeed in AR
and DR when no delay is used, so it may be argued that pre-
froneal corex may not be required for the induction of behav-
ioral rules, but only for their memorization. Yet, we think that
in the absence of a delay, AB and DR become simple grasp-
ing tasks and do not require the learning of a specific rule.
On the opposite, the performance of prefrontal patients in rests
like the Wisconsin Card Sorting Test or the Towers of Hanoi
clearly demonstrates deficiencies in rule induction and/cr
application.
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