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Abstrace—\We report the case of an aphasic and acaleulic patient with selective preservation of
approximation abilities. The patient’s deficit was so severe that he judged 24-2=35 to be correct,
illustrating a radical impairment in exact calculation. However, he easily rejected grossly false
additions such as 2+ 2 =9, therefore demonstrating 4 preserved knowledge of the approximate result.
The dissociittion between impaired exget processing and preserved approximation was identified in
several numerical tasks: solving and verifying arithmetical aperations, number reading, short-term
memaory, number comparison, parity judgement, and number knowledge. We suggest the existence of
lwa distinct number-processing routes in the normal subject. One route permits exact number
representation, memory and caleulation using symbolic notaton. The other route allows for
approximate computations using an analog representation of quantities.

INTRODUCTION

[N THE RECENT yeurs, detailed case studies have significantly increased our comprehension of
acalculia. On the joint basis of studies with normal subjects and with patients, models of the
normal architecture for number processing have been proposed [6, 15, 28], the lesioning of
which predicts the typology of impairments found in acalculic patients. According to
McCroskey's influential model [27], separate components of number comprehension and
number production interfuce with an abstract semantic representation, on which the various
calculation routines operate. The various patterns of number production deficits have been
explained by different types and loci of damage within the production module [27]. Likewise,
various calculation deficits have been described, resulting either from a failure to access
stored tables of arithmetical facts [29, 46], or to sequence correctly the successive elementary
operations [7], or even to process correctly the operation sign [L7].

If transcoding and calculation are well studied, the nature of the semantic representations
accessed in number comprehension remains a debated issue. DELOCHE and SeroN [15]
attempt to model number processing without even resorting to an intermediate level of
semantic representation. On the contrary, McCrLosKEY [7, 27, 28] sustains that numbers are
necessarily translated into an amodal semantic representation. However, in the current
formulation of the model, this semantic representation is so similar to Arabic notation that
labelling it ‘semantic’ seems somewhat artificial, Finally for CaMPBELL and CLARK [6],
numbers evoke an ‘encoding complex’ in which multiple representational codes are
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activated, including ‘semantic’, "unalogue’ and ‘imaginal® ones. However, in the absence of a
more precise definition for these codes. this proposal is difficult to evaluate or to falsily. In
brief, none of these models have provided satisfactory accounts of how we access the meaning
of a number in a given context {e.g. Is this a reasonable price for this article? Does this
operation look correct? Which of these two quantities is the smallest?).

The numerical quantity that 2 number represents is an important aspect of the semantic
information to be recovered during comprehension. Experiments with normal subjects have
suggested the existence of an analogical representation for numerical quantities [11, 12, 37].
After translation from, say, the Arabic notation, numbers would be represented mentally in
the same way as physical magnitudes like size or weight (analogical encoding). Data from the
number comparison task support this hypothesis [32, 33]. Subjects behave identically
whether they have to choose the larger of two objects [34] or the larger of two numbers [3].
In both cases. comparison limes decrease with increasing distance between the stimuli,
suggesting that in some sense numerical distance is directly analogous to physical distance,
This distance effect extends to 2-digit numbers. For instance it takes longer to compare 49 to
55 than to compare 41 to 35, despite the fact that in both cases the response ‘smaller’ is
determined by the decades digits [11, 12, 23]. The numerical comparison results can be
explained by supposing that each number activates a fuzzy region on a mental number line
[37]. Numerically close numbers such as 49 and 535 would activate overlapping regions,
hence they would take longer to compare. The hypothesized mapping of numbers onto the
number line has been studied by various psychophysical techniques, and is assumed to obey
Fechner's Law: for equal numerical distance, the larger the two numbers, the closer they are
on the internal representation [3, 11. 25].

Several animal species, including rats and pigeons. are capuble of processing and
comparing approximate numerical quantities [10]. Human infunts, well before they acquire
language, can discriminate small numerosities [42], match them across the auditory and
visual modalities [43] or select the larger of two small numerosities [8, 40]. GALLISTEL and
GeLmaN [19] postulate that approximate numerical quantities are handled by a preverbal
system, availuble to animals and infants, and which, in humans only, serves as a foundation
for the acquisition of language-based counting and calculation abilities. In adulthood, this
representation of approximate quantities would keep a central role in conveying the meaning

of numbers processed in Arabic or verbal notation.

~ We report here the case study of a severely aphasic and acalculic patient, N.A.U., who lost
all precise knowledge of numbers and arithmetical operations, and could only operate with
approximate numerical quantities. For instance N.A.U. could not rapidly solve an addition
like 2+ 2, nor reject 2+2=3 as [alse, but he recognized 2+2=9 as incorrect. A similar
dissociation was found for several cognitive [unctions, including short-term memory which
was good for approximate quantities but poor for exact digit identities. We suggest that
N.A.U. lost most of his acquired language-based number processing abilities, but that his
analog representation of approximate quantities was intact.

CASE REPORT

N.A.U, a 41-year-old executive salesman, suffered a severe head trauma and underwent
surgery for a left extradural hematoma. Post-surgery, he showed aphasia, right hemiparesis
and right hemianopia. CT-scan disclosed a large temporo-parieto-occipital hypodensity
(Fig. 1). Testing was carried out 3 yeurs after the trauma. At that time, a French version of
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Fig. 1. Reconstruction of N.AUSs brain on the basis of CT sean using templates from Daxiasio and
Dastagior [9]. The lesioned lefi-hemisphere is represented on the right side of transversal sevtions,
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the Boston Diagnostic Aphasia Examination (BDAE) [21, 26] revealed a moderate
impairment of oral language. affecting both comprehension and production. N.A.U. was
much more severely impaired with written language, failing to read or write most of the
stimuli. His digit span was also severely reduced (forward: 3; backward: 2).

A closer analysis of the BDAE data revealed that in several subtests, performance wus
better with number words than with other words. For instance in the word reading subtest,
the only word that N.A.U. could read was ‘dix-huit’ (18). [n the word picture-matching
subtest, he succeeded only in matching ‘dix-huit” (18) and "sept cent trente’ (730) with their
Arabic counterpart. In dictation, he was approximately correct with numbers, writing 7, 43,
198 and 1985 in response to the stimuli 7.42, 193 and 1865; by contrast he completely ailed in
dictation of letters and words. These preliminary results therefore suggested a relative
sparing of number-related abilities, which is further documented below.

CLINICAL ASSESSMENT OF READING

Several further tests were performed to clarify N.A.U.s abilities in reading words and
numbers. N.A.U. correctly read only 2 out of 12 frequent mono- and bisyllabic words, and
made semantic reading errors akin to deep dyslexia, for instance saying ‘viande’ (meat) for
‘jambon’ (ham). He could not read a single non-word or nonsense syllable, aund out of the 26
letters of the alphabet he could only read A, B. D and Z.

In order to assess number reading, 137 digits or multidigit numbers were presented
visually in Arabic script or as written verbal numerals. with cither unlimited or 1-scc
presentation time, Response time was unlimited and wuas recorded manually by the
experimenter. For numbers under 20. N.A.U. counted on his lingers and/or verbally, from |
up to about the correct value. a strutegy that has been deseribed in the context of ‘right-
hemisphere reading’ in a lelt-hemispherectomized patient [36]. Reading time was thus
lincarly related to number magnitude (on the range 1-9: r*=99.6%, P <0.001 for Arabic
digits; r? =64.6%, P <0.01 for verbal numerals; sec Fig. 2). Errors, though less numerous
with Arabic notation and with unlimited presentation time. always respected the
approximate magnitude of the number read. Apparently, N.A.U. had an intact knowledge of
the canonical counting sequence and used it to retrieve number names. Consistent with this
analysis, N.A.U. could recite the overlearned number sequences 1,2,3.4.. .and 2,4,6,8. . ..
and used this knowledge to count sets of objects, but he could not count by 2 starting with
digit 1 (1, 3.5 ...) nor count backwards (9, 8, 7 . . .). He also had considerable difficulties
reading large 2-digit numbers. He attempted to read them by counting separately for the tens
and units digits, but made many errors. Furthermore, the counting strategy was of no help
when N.A.U. was confronted with the complex structure of some French 2-digit numbers
(e.g. 73 ="soixante-treize’, literally *sixty-thirteen’). Nevertheless, when he could not read a
number, N.A.U. always proposed number names with plausible magnitude.

Since N.A.U. was perfect in reciting other automatic series such as months or days of the
week, we expected that he might be ab'e to read the corresponding words using the same
strategy as with numbers [14]. Indeed N.A.U. made no error in reading twice the 7 days of
the week presented in random order (median RT 3.7 sec). On each trial, he overtly recited the
series starting with ‘Monday’ up to the word to be read. Reading time was linearly related to
Lthe rank in the series (Kendall's 1 =0.714. P=0.0243; sce Fig. 2). N.A U, was slower reading
names of months (median RT 11.9 sec). and his response time was not correlated with the
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“Fig. 2. Patient N.A.U."s reading time for Arabic numerals, verbal numerals. and days of the week.

rank of the month. Still, his performance of 3 errors out of 12 trials was far better than with
ordinary words.

"CLINICAL ASSESSMENT OF NUMERICAL PROCESSING

N.A.U.’s preserved knowledge of the series of number words enabled him to count
accurately when cards with 1-9 dots were presented for an unlimited duration. Even when
the cards were displayed for about 1 sec. he was still able to provide a fair estimation of
numerosity. However these abilities should not mask N.A.U.’s major acalculia. N.A.U.
could not perform even the simplest arithmetical calculations. whether the problems were
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presentcd orally or visually. For instance he readily produced "3 in answer to "2+ 2" In the
course of his rehabilitation, he progressively developed a counting strategy for selving simple
additions. He first counted up to the first operand, both verbally and on his fingers; then he
resumed counting on his fingers from one up to the second operand, while continuing to
recite the verbal series at the same pace, therefore reaching the correct sum. However this
strategy was slow and painful. Tt was of no help for subtraction or multiplication problems.
Even with additions, N.A.U. never used counting when he was urged to respond as fast as
possible in the timed experiments 2—3 described below.

Number-related deficits were clearly not restricted to calculation. For instance when
N.A.U., was asked several questions about common numerical facts, he made about 50%
errors. He stated that January has 13 or 20 days, that a quarter of an hour is 10 or 20 min,
that 1 hris 50 min, that there are 5 seasons in the year, or that a year comprises 330 days. He
even said that a dozen eggs was 6 or 10. despite the obvious similarity of the French words
‘douzaine’ (dozen) and ‘douze’ (12). In some cases he initially gave an erroneous response,
such as that a hand has 4 {ingers. or a horse 2 legs. and later corrected himsell by counting.

N.A.U.was asked to name and sort a complete set of French coins and banknotes, Though
his sorting was perfect, he had severe difficulties in naming. He even occasionally proposed
numbers that are never used in coins or banknotes, such as 30 for a 20 F bill, or 15 far a
20 centimes coin. Nevertheless. N.A.U. never produced aberrant or bizarre numbers, as
frontal patients sometimes do [38. 39]. As illustrated in the above examples, his responses
were always approximately correct. N.A.U.'s preserved understanding of the adequacy of
number to a given situation was confirmed using a questionnaire originally designed by
G. Deloche. N.A.U. was asked to judge whether a given number of items was adequale, (0o
small, or too large, for a proposed real-world situation (e.g. *Nine children in a school’ = (oo
small). He scored 9/9 correct in this test.

Thus, despite his severe alexia and acalculia, N.A.U.s performance seemed correct as far
as approximate numerical quantities were concerned, The suggested dissociation between
exact and approximate number processing will now be evaluated in controlled experimental
situations.

EXPERIMENT 1: ORAL AND WRITTEN ADDITIONS
“Method

M.AU. was presented with 13 additions using the digits 1-9, with totals ranging from 3 to 16, printed horizontully
in Arabic digits. Fifteen ather similar additions were also read aloud to him. N.A.U. was asked 1o produce verbully
the result of each addition. When he hesitated or self-corrected, only his final response was considered.

Results and discussion

N.A.U. scored 14/15 correct with visually presented additions. He achieved this good
performance by counting on his fingers in a low voice while fixating the digits. His only error
could be accounted for by a failure of counting (5+6>12).

This counting strategy was apparently not available to N.A.U. for orally presented
additions. He produced the correct result to only 4 of the 15 additions. However, his
responses were always close to the correct result. Ten of his 11 errors were wrong by 1,2 or 3
units. The remaining error was 6+ 7. to which he responded 8. He erred by larger amounts
for larger additions, as attested by a significant correlation between the correct sum and the
magnitude of his crrors (r=0.497, 13 d.f., one-tailed P<0.03). Nevertheless, even small
additions yiclded some errors (c.g. 2+ 2> 3).
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EXPERIMENT 2: MULTIPLE CHOICES IN ADDITION, SUBTRACTION AND
MULTIPLICATION

Experiment 1 disclosed a dissociution between written additions, which were solved
accurately by counting, and orally presented additions, for which N.A.U. apparently did not
count and produced an approximate result. Experiment 2 was designed to evaluate the
patient’s preserved abilites and to compare his performance in addition, subtraction, and
multiplication. An operation was presented and two results were proposed, one slightly
incorrect and the other grossly incorrect. We assessed whether N.A.U. could find out the
most plausible result.

Adwethend

Twenty-seven problems were presented visually in horizontal form with two propesed results, one false by 1 or 2
units and the other grossly incorrect. The palient had to eircle with a pen the most plausible result for euch problem.
The following problems were used:

Additions: 4+5=10/20; 1+2=49; 7+3=17/00 3+5=49 [2+6=20/10; 15+35=28/48; 9+9=13/19;
0+9=31.41: 3 +8=9:3

Subtractions: 4=1=29: 6=3=44; F-2=206: 16-0=39; [3—-4=10/20; 13-1=12/19; 30-0=28/20:
I A4=19/12;9-8=2;7

Mubtiplicntions: 3 3=10;18; 5= d=1911 2 xd=20,10; 3 x 6=20/40; 6 x 0=49/19; Tx 5=03/43: 9= 2= 17/11;
dx8=1929:5:3=52:12

The patient performed this test twive with o [0-month interval.

Results and discussion

NLALU. was fast and accurate with additions (17/18 correct. ;{3 (1 d.f.)=14.2, P=<0.0002),
although he apparently did not count. In fact, he often thought that the result he circled was-
actually the correct result of the addition! With subtractions and multiplications, N.A.U.
hesitated more and sometimes said that he responded randomly. He indeed performed at
chance level with subtractions (10/18 correct}, but tended to do better with multiplications
(13/18 correct, z*(1 d.[.)=3.56, P=0.039). In brief, N.A.U. could apparently select a
plausible result for additions and perhaps also for multiplications, but not for subtractions.

EXPERIMENT 3: VERIFICATION OF WRITTEN ADDITIONS

The multiple-choice task used in experiment 2 permitted only a limited exploration of the
patient’s preserved abilities, since it did not easily allow for response time measurements, and
it did not strictly preclude counting. For these reasons, we moved to a timed verification task
in which the patient had to decide whether a given operation was true or false. Experiments 3,
4 and 5 explored N.A.U.’s addition abilities, and experiment 6 explored his multiplication
abilites.

Merhod

Presentation of visual stimuli and measurements of response times were performed using a portable computer.
Across severial sessions, a total of 173 additions were presented visually in horizontal form (e.z. 2+ 3=9"). Each
session starled with four training problems, the resulis of which were not analysed. N.AU. was asked to tilt a
joystick to the right if the addition was correct and to the left if it was false. Table 1 presents the design of the
additions problems. There were 24 additions with 1-digit operands and no carry (e.g. "3 +4 =T). In this sitvation,
the correct sum as well us the proposed sum were both 1-digit numbers. Seventy additions with 1-digit operands
were also presented in which a carry operation was required (e.g. "5+ 6=11"). In this situation, both the proposed
sum and the enrrect sum were 2-digit numbers. Finally, the remaining 84 additions comprised two 2-digit operands
fe.g. "234+ 15=37). did not involve carry computations. and the proposed sum was always a 2-digit number.



1052 S Depsese and L, Congs

Table 1. Veritfication of additions [experiment 3)

Proposed result

Addition False by
Lype Correct -2 39 MO-135 =40
1-digit TB%*  (J.11) 86% (29) 13% (2.0} _— —
no carry 9% 7 133 5) 3 {4: 3)
1-digit 60% (3.0 40% (2.8} 4% [4.2) 0% (1.00 =
with carry 25 10 13: 5) 23 (13; 13) 10 (10: 3)
2.digit 0% (4.3 46%  (+.3) 0% (3.7) 34%  (3.6) 0% (.3
no Carcy 27 13 [6: &) 13 (6: 6) 13 (5:6) 18 (10; 3)

*Per cent responses “the addition is correct”.

+Median response time (sec).

T Number of items.

$Mumber of items for which the proposed sum is karger than the correct sum,

INumber of items for which the parity of the proposed sum differs from the parity of the correct sum.

Owverall as well as within each testing session, about two-thirds of the additions (63 8% overall) were false. For
fulse additions, the degree of falschood was controlled by systematically varying the numerical distance between the
proposed sum and the correct sum (Table 1), Two other parameters were controlled as much as possible within each
cell of the design. First, half of the time. the proposed sum was larger than the correct sum, Sccond. the parity of the
proposed sum matched the parity of the correct sum in hall of the false problems. The exaet distribution of problems
with respect to these two parameters is given in Table 1,

Results

The overall median response time was 2,96 sec, and the error rate was high (30.3% errors).
The patient denied using a counting strategy, and indeed we did not observe his usual vocal
and manual counting behaviour. Median response time and percentage of additions that
N.A.U. thought to be correct appear in Table I. N.A.U. classified as correct 68.9% of the
correct additions, a performance significantly higher than chance (y* (1 d.f.)=8.67,
P=0.0032). But this actually reflected response bias, since he also classified as correct 33.3%
of the additions that were incorreer by 1 or 2 units. These two percentages did not differ (2
(1d.f.)=2.10, P=0.148; separate tests for each type of addition were also nonsignificant).
~ Hence, N.A.U. could not discriminate correct and slightly incorrect problems, an

observation which confirms his severe inability to compute additions.

However, N.A.U.’s performance was better when the proposed sum was more distant from
the correct sum. With the 1-digit problems with no carry, he classified as correct 86% of the
additions that were false by | or 2 units, but only 13% of those false by 3-9 units (3?
(1d.f)=537, P=0.021, Yates correction applied). He similarly showed an excellent
performance (100% correct) for the two other types of additions when the proposed sum was
the most remote from the correct sum (see Table 1). The effect of degree of falsehood was
significant for 2-digit problems (72 (3 d.[.)=12.9, P=0.0049), and marginally so for 1-digit
problems with carry (x* (2 d.f.)=4.73, P=0.094).

When the patient responded accurately, response times also tended to be faster (Table [).
This trend reached significance for 1-digit additions with carry (additions false by
10—15 units compared to the other three conditions: all one-tailed P <0.011) and for 2-digit
additions (correct additions compared to additions false by more than 40: 1(43)=1.96, one-
tailed P =0,028). For 2-digit additions. the linear trend on RTs across the five levels of degree
of falsehood was also significant [F (1. 67)=4.76, P=0.032].
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Discussion

Thesc results confirm those of experiments | and 2. N.A.U.’s performance deteriorated
greatly when he had to attend to small numerical differences; he treated identically correct
and slightly incorrect additions. However, he could rapidly and accurately reject grossly false
additions. We conclude that N.A.U. possess an algorithm for fast but approximate
evaluation of simple additions. The nature of this approximation process is explored in
experiments 4 and 3.

EXPERIMENT 4: PROBLEM SIZE EFFECTS IN ADDITION VERIFICATION

When compuling or verifying single-digit arithmetic operations, normal subjects are faster
and more accurate with small numbers than with large numbers [1, 35, 44]. This problem size
effect is very robust and is thought to reflect the time to access the relevant arithmetic facts in
a memorized addition or multiplication table. Similarly, the time to perform a multidigit
operation can be accurately predicted from the time to retrieve each of the elementary
arithmetic fucts required, plus some additional time for encoding and carry procedures 2,
20].

In experiment 4, we examine whether N.A . U.’s preserved ability to approximate additions
cun be accounted for by this model of normal processing. If N.A.U. computes additions by
accessing a table of arithmetic facts, he should exhibit a problem size effect. For instance
1 +2=13 should be faster und easier to verify than 4+ 5=9. Likewise for problems with
2-digit operands, 12425=37 should be faster and easier to verily than 454 32=87.
Furthermore, if N.AU. computes multidigit additions digit by digit, additions with 2-digit
operands should be about twice as slow as 1-digit additions. Such a trend was present in
experiment 3 (sce Table 1), and we wish to replicate it in a better controlled situation.

Metfund

One-hundred-and-nine addition problems were presented Jor verifieation using the sume procedure and
apparitus as above, Two subtests were designed, separating problems with |-digit or with 2-digit results. In each
subitest, problem difficulty was manipulated by systematically varying the size of the operands,

Subtest 4. Operands. the correct sum, and the proposed sum, were all 1-digit numbers. Each operand could be
cither small (S) or large (L), resulting in four problem types: S+S (1 + L1 +2. 24+ 1,24+, L+5(5+1,6+ 1,542,
6+2LS5+L {1 =5 1+6.2+5,2+6)und L+ L (44 4,4+ 5, 5+4), Foreach problem type, one-quarter ol additions
were correct. The remaining false additions were incorrect by either 1, 2 or 3 units. Four problems were presented for
each combination of problem type and degree of falsehood, resulting in a total of 64 problems,

Subtest 8. The correct sum and the proposed sum were always 2-digit numbers. Three levels of problem size were
defined. For small problems (S). both operands were 1-digit numbers and a carry operation was needed. For
medium problems (M), both operands were 2-digit numbers ranging from 10 to 29. Finally for large problems (L),
the operands ranged from 30 to 59. M and L problems did not require carry operations. Within each set, one-third of
problems were correct. Another third were problems false by 3 or 4 units, with the lefimost digit of the proposed sum
always correct. Finally the last third were problems false by 13 or 14 units. Five problems were presented for each
combination of problem type and degree of falsehood, resulting in a total of 45 problems.

Results

Median response time and percentage of additions that N.A.U. thought to be correct
appear in Tables 2 and 3.

Subtest A. N.A.U.'s overall error rate was 34%, which is better than chance [7?
(1 d.[.)=6.25, P=0.012). Error rate did not differ across problem types [* (3 d.[.)=0.28; see
Table 3]. The tendency for larger problems to yield slower responses was far from significant.
On the other hand, the effect of the degree of falsehood was again replicated. The percentage
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Table 2. Effect of problem size in addition verification (experiment da)

Propused result

Addition False by
lype™ Crverall Caoreoct 1 & i
S+8 3|t (345 1003 (2.2) 75 {2.6) 30 $0) 25 1N
L+5 3l 138 75 (4.0} 75 13.7) 23 4. 0 (134
S+L it (A 30 (4.8 15 {3.3) I3 139 25 (36)
L+L 33 [4.6) 75 (3.0 50 4.8) 73 (5.2) 0 (6.3)
Qverall 4 (A9 75 (3. 36 (3.3) 44 (3.8 13 (348)

*S =small |-digit operand (1 or 2). L=1large 1-digit operand (4. 3 or 6).

TThe column marked ‘overall’ gives the percentage of errors for each addition type.
Median response time (sec).

§Other columns give the percentage of responses “the addition is correct’.

Table 3, Effect of problem size in addition verificalion texperiment 4}

Proposed result

Addition False by

type® Overall Correct 34 13-14
5 Wt (3.2%) 80§ (3.2) 40 (4 0 2.3
M 67 16.9) 40 {6.5] 30 16.9) &0 (7T
L 3} 6.5) 30 (103 a0 {6.3) 0 (4.3)
Overall 400 14.3) 67 (6.3) 6 (5.3) 2T Hn

*S=small (1-digit operands). M =medium (2-digit operands ranging from 1010 29),
L =large (2-digit operands ranging from 30 1o 39).

The column marked “overall” gives the percentage of errors for ench addition 1ype.

Filedian response time (sev), :

§Other columns give the percentage of responses ‘the addition is correct’.

of problems that N.A.U. judged to be correct smoothly decreased from 75 to 13% as the
degree of falsehood increased from 0 to 3 [#* (3 d.f.)=13.3. P=0.004].

Subtest B. The overall error rate of 40% did not differ from chance [3? (1 d.[.)=091).
However, error rate differed across problem types [7? (1 d.£)=7.22, P=0.027]. One-digit
problems (S set) were easier than M and L problems, and were the only set to be classified
significantly better then chance [3* (1 d.f.)=35.4, P=0.02]. S problems were also classified
faster then M and L problems [respectively F (1, 24)=11.7 and F (1, 24)=12.0, P <0.005].
The effect of degree of falschood was only marginally significant [¥* (2d.0)=35.51,
P=0.063]. N.A.U.’s response choices differed only between correct problems and problems
false by 13—14 units (67% vs 27%; »* (1 d.f.)=4.82, P=0.028).

Discussion

The effect of degree of falsehood was again replicated in experiment 4. However no effect of
problem size was found. First, for 1-digit additions without carry, neither error rate nor
reponse time seemed to be affected by the size of the first and of the second operands. Second,
if anything, |-digit additions with carry, though tested in a different experimental session,
tended to be even faster and more accurate than 1-digit additions with carry. Finally for
additions of 2-digits operands, large problems were slightly but not significantly faster and
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less error prone than small problems, a tendency opposite to the normal problem size eifect.
In brief, the procedure cnabling N.A.U. to reject grossly incorrect additions does not secem to
be uffected by problem size, and therefore differs f[rom the addition procedure used by normal
subjects.

The patient was however similar to normal subjects in at least one respect: as predicted, he
was about twice as slow [or additions of 2-digit operands than for additions of single digits
(Table 3). One possible interpretation is that whatever algorithm N.A.U. uses for single-digit
additions, he applies it twice when dealing with 2-digit operands. For instance when
presented with "12+45=357", he would separately evaluate | +4 and 2+ 5, thus taking twice
as long to respond.

Normal subjects, however, do not necessarily have to compute these two additions. They
generally adopt a self-terminating verification strategy by first computing the addition of the
rightmost digits, then checking the result against the rightmost digit of the proposed sum,
and moving to the leftmost digits only if this primarcy check fails [20]. There are indications in
Tables I and 3 that N.A.U. did not employ this strategy. For instance in subtest B of
experiment 4, N.A.U.'s performance dramatically improved from problems false by 34
(60% errors) to problems false by 13-14 (27% errors). The only difference between these two
sets of problems lics in the leftmost digit of the proposed sum which is correct in one case and
incorrect in the other. Similarly experiment 3 disclosed a large effect of the fulsehood of the
leltmost digit on N.AU.s judgements. This would suggest that N.A.U. bases his
computation only on the leftmost digits of the eperands and the proposed sum. For instance,
when presented with the problem *31 + 12 = 39", he would compare 3 + 1 with the proposed 3,
and would not take into account the units digits. This hypothesis is evaluated in
experiment 5.

EXPERIMENT 5: ROLE OF THE LEFTMOST DIGIT IN ADDITION
VERIFICATION

In experiment 3, we separatcly manipulated the falschood of the left and right digits in
additions of 2-dhigit numbers, I N.A. U, processed only the most significant digits in additions
of 2-digit numbers, then his performance should be affected only by the falsehood of the
teftmost digit. Alternatively, he might also be sensitive to the rightmost digit, in which case
his performance would depend on the global distance between the correct sum and the
proposed sum. We therefore defined and contrasted two different measures of the degree of
falsehood: D1 (numerical distance between the correct sum and the proposed sum) vs D2
(numerical distance between the leftmost digit of the proposed sum and the sum of the
leftmost digits of the operands).

Moethad

Across several sessions, 223 addition problems were presented for verification using the same procedure and
apparatus as in the previous experiment. Three subtests were designed in order to separate the effects of D1 and D2.

Subtest A. DI was systematically varied while D2 remained equal to zero. Only additions of 2-digit operands, with
no carry, and whose sum was less than 40 were used. The leftmost digit of the proposed sum was always correct
(D2 =0). Ten additions were correct (D1 =0;e.g. 10+ 11 =21), 10 were false by I-2 units (e.g. 25+ 14=138),and 10
were false by 6-9 units (e.g. 14 +25=231). As appears in the above examples. false problems were paired across the
two categories, with reversal of the order of the operands.

Subtest B. D1 was systematicaily varied while D2 remained equal to 1. Only additions of 2-digit operands, with no
carry and whose sum was less that 70 were used. Fificen additions were correct (21 =0: ¢.g. 25+ 34=39). Thirly
other problems were false with D2 = 1. Fificen of these were false by 13 units (1 D1 < 4:e.g. 25+ 34 =6l ).and |5
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athers were Gilse by 16-19 units (16 5 01 = 19 2.0 34+ 25=41). As appears in the above examples, Talse prablems
were paired across the two categorics. with reversul of the arder of the operands, and conservation of the one-digit of
the proposed sum, Finally parity and magnitude relutions between the proposed and the correct sums were
counterbalanced within each set of problems.

Subtest C. D2 was svstematically varied for false additions. while D1 was kepl approximately constant. Additions
of 2-digit operands, with carry, and whose sum was less than 40 were vsed. Ten additions were correct (D1 =0; 2.2,
16+ 15=131), and 20 were false. Ten of these had the leltmost digit of the proposed sum equal to the sum of the
leftmost digits of the operands (D2=0: e.g. 18 +17=24); for the other 10. the lelimost digit of the proposed sum
exceeded the sum of the leflmost digits of the operands by 2 units (D2=2; e.g. 17+ 18=46). In both sets, the
problems were paired, with reversal of the order of the operands, and D1 was approximately cqual to 10 (range
g-12).

Subtests A and C Wvere run three times each, whereas subtest B could only be run once.

Results

Median response time and percentage ol additions that N.A.U. thought to be correct
appear in Table 4,

Table 4. Role of leftmost digits in addition verification (experiment 5)

Proposed result
Carreel Slightly false Very lalse

Falsehood defined globally (O1* varied, D2 constant)

Subtest A: 66.7%% (3.05) 30.0% (9.5) 43.3% (1.8}
26+ 1= i+ =38 144+25=31
Sublest B: 26.7% (4.7} 13.3% (1.9} 26.7% (4.3)
N+ =32 11+21=249 H+1l=49

Falsehood defined on the lelimest digit (D1 constant. 22 varied)
Subtest C: 63.3% [6.3) 46.7% (8.4) 6.7% (3.1}
B+ 17=42 16+28=33 M+ 16=33

=01 is the numerical distance between the correct sum and the proposed sum,

tD2 s the numerical distance between the leftimost digit of the proposed sum and the
sum of the leftmost digits of the operunds,

#Per cent responses ‘the uddition is correct”,

#Median response time (sec).

iSample verification problem.

Subtest A. These were problems where the leftmost digit of the proposed sum was always
correct. Hence, correct performance could only be attained by considering the ones-digits.
N.A.U.’s performance did not differ significantly across the three conditions of the test [u®
(2d.[.)=3.48, P=0.18]: correct, slightly incorrect and largely incorrect problems were
classified with 42.2% errors, a percentage not better than chance [? (1 d..)=2.18, P=0.14].
However, responses were significantly slower with slightly incorrect problems than with
correct ones [F (1, 58)=10.6, P <0.002]. This suggests that N.A.U. paid some attention to
the ones-digits, but that it did not influence his final decision as to the correctness of a
problem, '

Subtest B. These were problems where the leftmost digit of the propose d sum was false by
one unit, and the numerical distance between the correct sum and the proj osed sum (D1) was
cither small or large (e.2. 25+ 34 =61 vs 25+ 34 =41 ). [ N.A.U. attended only to the leltmost
digits, he should perform identically with these two sets of false problems, even though DI
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ditfered largely between them, Indeed. N.A .U s performance did not vary across conditions
[7* (2d.[)=1.03, =0.60]. Over correct and incorrect problems he made 37.7% errors, a
percentiage ugain not different from chance [ (1 d.[.)=2.69, P=0.101]. He had a systematic
bias towards responding that the problems were false (77.7% of his responses). Response
time did not differ significantly between conditions. Thus, N.A.U. apparently verified
additions with 2-digit operands on the basis of the leftmost digits.

Subtest C. This subtest was designed to provide positive evidence that N.A.U. relied
predominantly on the leftmost digits. In false problems, the leftmost digit of the proposed
sum was always false by one unit. But in half of the problems it was equal to the sum of the
leftmost digits of the opcrands (e.g. 18+ 17=24), whereas in the other half it was very
different (e.g. 17+ 18=46). If N.A.U. did not pay attention to the carry operation required
by the ones-digits of the operands, he would perform very differently with these two sets of
problems. [ndeced, N.A.U. made 46.7% errors in the former condition and only 6.7% in the
latter [7% (1 d.[.)=12.3, P<0.001]. He noticed the falsehood of the additions, and hence
performed better than chance (P <0.001), only when the leftmost digit of the proposed sum
differed from the sum of the leftmost digits of the operands. His response times were also
significantly faster with this set of problems relative to the correct problems [F (1, 58)=16.8,
P <0.001] and relative to the other set of false problems [F (I, 38)=25.1, P <0.001].

Diseussion

N.A.U. noticed the falschood of additions with 2-digit operands only when the leftmost
digit of the proposed sum differed from the one he expected. The falsehood of the rightmost
digit did not influence response choice, even though it apparently affected response time in
subtest A. Experiment 3 therefore indicates that when the leftmost digit of the proposed sum
is correct. N.A.U. may spend some time additionally considering if the rightmost digit is
correct or not. But when the proposed leltmost digit looks sutlici cntlv incorrect, N.A.U.
rapidly classities the addition as false.

GENERAL DISCUSSION OF ADDITION ABILITIES

Experiments 1--3 have documented a striking dissociation in patient N.A.U.’s addition
abilities. On the one hand, N.A.U. always provides numbers of correct magnitude in
response to an addition problem (experiment 1 ). He can choose the most plausible result for a
given addition (experiment 2), and he easily detects when a 1- or 2-digit addition is grossly
false (experiments 3-3). On the other hand, N.A.U. produces erroneous answers to even the
simplest additions (e.g. 2 + 2= 3, experiment 1},and he does not differentiate between correct
and slightly incorrect problems (e.g. 2+2=4 vs 2+ 2 =3; experiments 3-5).

Is N.A.U. s addition routine normal?

N.A.U. generally produces incorrect verbal answers to simple additions. However, the
addition verification task, in which N.A.U. showed similar difficulties, does not require
verbal production. Therefore N.A.U.’s deficit cannot be explained solely by an impairment of
the number production system. Two other explanations might account for the observed
dissociation between impaired exact calculation and preserved approximation abilitics.
First, the deficit may concern only a comprehension component. N.A.U. may fail to access
the correct internal representation for the operands of an addition, but otherwise utilize
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intact classical addition routines on this noisy input. For instance the production of 3 in
response to 2+ 2 would result from the misperception of one of the operands for a 1. The
second possibility is that N AU 's addition algorithm itself is impaired, and that the addition
routine he utilizes provides only noisy responses. For instance for 24 2, this routine might
output sometimes a 3, sometimes a 4, rendering accurate calculation or addition verification
impossible.

The nature of N.A.U.’s addition routine was explored in experiment 4, As mentioned
earlier, normal adult subjects exhibit a problem-size effect: the larger the operands of an
arithmetic problem, the slower the time to compute the result. This robust effect is thought to
reflect the retrieval of the result from a memorized table of arithmetical facts. If N.A.U.’s
deficit is at a comprehension stage only, and if calculation itsell is intact, N.A.U.'s responsc
should obey the problem-size effect. However experiment 4 failed to disclose any effect of the
size of the operands on N.A.U.’s response times and errors, suggesting that NLA. U, was not
using a memorized addition table. In order to perform a more stringent test of this crucial
question, all the 173 trials of 1-digit addition verification in experiments 3-35 were submitted
to a stepwise regression analysis. Several variables that normally measure the problem-size
effects in adults were introduced: « (the first operand), b (the second operand), a+b (the
correct sum), ¢ (the proposed sum). a*b (the product of the operands), and ¢ (a dummy
variable coding whether the problem was a "tie™ (a =b) or not). Other variables included splir
(the absolute difference between ¢ and a + b), min (the minimum ol the two operands a and b).
carry (a dummy variable coding if & carry operation wus required or not), sup (a dummy
variable codinge>a+bvsc<a+b). purity (a dummy variable coding whether the parity of
¢ was equal or not to the parity of a+Db), truth (a dummy variable coding whether the
addition was true or false), and ]u --b! (the absolute diffcrence between a and b). Of all these
variables, only variable splir had a significant influence on response times (P=0.0016).
confirming that N.A. U, was faster with grossly false problems. But there was absolutely no
influence of the size of the operands or of their sum on responsé times.

A similar pattern of results was obtained in a stepwise regression on N.A.U.'s reponse
choices (‘this is a correct addition’ vs ‘this is an incorrect addition™). Only two variables had a
predictive value. The effect of split (P =0.0001) confirmed that N.A.U. noticed the falsehood
of an addition only when the proposed sum was distant from the sum. The effect of variable
sup (P=0.0053) demonstrated an additional bias for responding that an addition was false
when the proposed sum was larger than the correct sum (this can also be seen as a tendency to
underestimate addition results; see below). Strikingly, the actual true-false status of a
problem (variable truth) had no impact on N.A.U.’s judgements: he apparently judged the
correctness of an addition solely on the basis of the distance between the correct sum and the
proposed sum.

In brief, neither N.A.U.’s response times nor his errors showed the problem size effect so
common in normal performance. Tie problems (e.g. 2+ 2), which are among the easiest for
normal subjects, were not faster or more accurate for patient N.A.U. These results suggest
that N.A.U. was not accessing a memorized addition table. Similar arguments indicate that
he did not use counting either, His fast responses to grossly false problems such as 24+2=9
were at odds with his slow and easily recognizable counting behaviour. Indeed he denied
counting in such situations. Furthermore in stepwise regression analyses, performance
appeared not to be affected by operand size or by the minimum of the operands, as counting
models would predict. Therefore our first hypothesis about N.A.U.'s deficit—impaired
number comprchension with intact standard caleulation routines—must be rejected. The
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results indicate that N.A.U. is not using a standard addition routine based on retricval or
counting, but instead utilizes an approximation routine discussed below.

Addition by activation of a candidate set

Figures 3 and 4, which summarize N.A.U."s performance in addition verification pooled
over all trials of experiments 3-3, provide some insights into this approximate calculation
routine. Figure 3 gives the percentage of trials in which an addition was judged to be correct,
as a function of the distance between the proposed sum and the correct sum. [t is apparent
that across different trials, N.A.U. readily accepted several different results as correct. For
instance for single-digit additions without carry (‘fa+b=c’, where a, b, ¢ are 1-digit
numbers), the correct result c=a+b itself was judged as correct on 76% of trials, but
c=a+b—1 wasalso judged as correct on 84.6% of trials, and c=a+b—2 on 60% of trials.
This suggests that instead of accessing a single addition result, N.A.U. activated a whole set
of plausible candidates. The asymmetry of the curves in Fig. 3 suggests that this acceptable
set is slightly shifted in the direction of small numbers, and therefore that N.A.U. slightly but
consistently underestimates addition results.

Finally Fig. 3 also reveals an enlargement of the acceptable set for larger additions. The
enlargement for additions of 2-digit numbers can be attributed to the processing of leftmost
digits only. as demonstrated in experiment 3. For instance N.A.U. classified 43+ 21 =69 as
correct because he attended only to the decades-digits addition (4+2=§), and not to the
units-digits addition (3 4+ 1=9) which would have been classified as false if presented in
isolation. However the enlargement of the acceptable set [rom single-digit additions without
carey to single-digit additions with carry cannot be explained in the same way. [t seems that
the variance of N.A.U.'s approximation increases for instance from 2+ 2 to 6 + 7. This effect
should not be confounded with the problem size effect previously discussed. Total error rate
does not increase, nor do responses become slower. The effect bears more similarity to
Weber's law: internal variance increases with the magnitude of the addition processed.
Several psychophysical studies indicate that the representation of numerical magnitudes in
normals is ‘compressive’ and obeys Weber's law, i.e. larger numbers receive a coarser mental
representation than smaller ones (for review see [25]). Weber's law is also characteristic of
animal numerical cognition [18]. Therefore, although the observation of Weber's law in the
context of addition approximation is novel, this aspect of patient N.A.U.’s results is coherent
with several other reports.

For 1-digit additions, the response-time curves plotted in Fig. 4 confirm the suggestion
that N.A.U. accesses a whole cloud of potential candidates for the result of the addition.
N.A.U.'s fastest responses were to grossly incorrect additions like 2+ 2=9, but his slowest
responses were not for slightly incorrect additions like 2 + 2 =3, which he regularly classified
as correct. Rather, the slowest responses, which appear as sharp peaks in Fig. 4, were for
intermediate problems like 24-2=6 or 2+2=7. This pattern is easily understandable if
N.A.U. activated a whole set of plausible results. When the proposed results fell well within
the plausible set for a given addition, or conversely when it fell grossly outside this set,
N.A.U. rapidly responded accordingly. The real difficulty for him was, as it should be, when
the proposed result fell at the border between plausible and implausible results.

Analogical encoding of numerical magnitudes

ResTLE [37] has proposed a model of mental addition in which the operands are encoded
as line segments on a mental *‘number line' and are added by mental juxtaposition of the
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Fig. 3. Patient N.A.U.’s performance in verification of additions and multiplications. The X-axis scale
is identical on all four plots and gives the log distance between the proposed result and the true result
of the operation (0=correct; positive values indicate that the proposed result was too large). The
peaks in the addition curves show that N.A.U. was unlikely to classily as correct a grossly false
addition. A flat curve indicates random performance in multiplication verification.

seaments. Although this model does not describe well the data from normal subjects
performing exact addition [30], it can account for N.A.U.’s approximate evaluation of
additions. The hypothesis that numbers are encoded analogicaly, in the same manner as
purely physical magnitudes like line length, may explain the impossibility for N.A.U. 1o
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Fig. 4. Patient N.A.U.’s response times in verification of additions and multiplications. The slowest
RTs roughly coincide with the distances for which N.A.U.'s response choices were the most variable
(see Fig. 3). Same scale as in Fig. 3.

reach a perfectly accurate addition result. The intrinsic variability associated with the
digital-to-analog transduction at the encoding would only allow for the representation and
manipulation of approximate numerical magnitudes, not of exact numbers. Further, if
number magnitude is mentally represented just like other physical dimensions, then it should
obey Weber's law, and thus the internal variability is expected to increase for larger numbers.
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This provides a simple interpretation of the decreasing precision with which NLA.U. can
approximate larger and larger additions.

Approximation abilities und the analogical code in normals

Do N.A.U.'s approximation abilities represent a compensation strategy acquired after the
loss of his exact calculation skills? Or do such approximation routines prevail covertly in
most normal subjects, and were merely unveiled in N.A.U.’s case by the loss of all other
numerical faculties? The split effect so prominent in N.A.U.'s addition data, also appears
with normals: in addition verification, the more distant the proposed result is from the
correct results, the faster the subjects classify the addition as incorrect [1, 2, 24, 47]. This
distance effect is classically interpreted within a two-step calculate and compare model:
subjects first determine the exact result. using standard symbolic algorithms, and then
compare it with the proposed result. It is the comparison stage, not calculation, that is
affected by the distance between the proposed sum and correct sum.

[n some cases however, grossly incorrect additions are classifed so rapidly that subjects
most likely do not have sufficient time to complete the exact calculation [2, 47]. This led
ASHCRAFT and STazyk [2] to suggest that "a global evaluation process operates in parallel
with (arithmetic fact) retrieval’ (p. 185). ZrroDOFF and LoGan [47] also proposed that
‘verification involves comparing the equation as a whole against memory' (p. 83), although
this comparison process remained largely unspecified. We believe that patient N.A.U's data
confer stronger plausibility to these proposals, and should prompt a more refined assessment
of addition approximation in the normal subject.

The exrent of patient N.A4.U.'s deficit

MN.A.U.'s addition performance suggests a complete loss of exact calculation routines, and
a reliance on an analogical representation of numerical magnitudes. In the ‘case report’
section, evidence was presented that N.A.U.'s deficit is not limited to calculation only. In
particular N.A.U. had an impaired memory for common numerical [acts, and could only give
approximate answers to queries about the number of eggs in a dozen, or the number ol days
in a month. In the following experiments, we assess the hypothesis that N.A.U. is completely
unable to process exact numbers in digital or verbal form. We postulate that only his
analogical number line is preserved, as well as the procedures which interface it with
symbolic number notation systems. According to this hypothesis, N.A.U. should pass
number-related tests only inasmuch as they require approximate number comprehension,
production, memorization or manipulation; exact number processing should be impossible.
Failure is therefore predicted for the following tasks tested below: verification of
multiplications (experiment 6), short-term memory for the exact identity of Arabic digits
(experiment 7), and parity judgement (experiment 10). Predictably feasible tests include
short-term memory for approximate magnitudes (experiment 7), pointing onto a numerical
scale (experiment 8), and comparison of Arabic numbers (experiment 9).

EXPERIMENT 6: VERIFICATION OF MULTIPLICATIONS

Following ResTLE [37], we supposed that N.A.U. was able to approximate additions by
mentally juxtaposing two segments on his mental number line. Since no such strategy seems
available for multiplication, we predict that N.A.U. should perform completely randomly in
verifying simple multiplications.
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Method

Across several sessiuns, a total of 120 multiplications of [-digit numbers were presented visually in horizontal
form {e.g. '8 x 4 =28"). Four additional training problems were presented at the beginning of cach session and their
results were not anulysed. NLAUL was asked 1o tilt the joystick to the right if the multiplication was correct und to
the left if it was fulse. Overall as well as within cach testing session. about two-thirds of the additions (71.7% overall)
were false. The degree of falsehood was controiled in two ways, First, for about haif of the false problems, the
proposed result did not belong to the multiplication table (e.g. "4 x 5= 22); {or the other half, the proposed result
belonged to the multiplication table {in 85% of cases it was a multiple of one of the two operands; e.g.'5x 9=10";
‘8 x T7=14"), Second, the preposed result could be either close to the correct result (absolute distance <8: eg,
"2 x 5=4), or distant [rom it (absolute distance > 23, average absolute distance =42.9; e.g.*7 x 2= 56"). As before,
two other parameters were controlled as much 2s possible within each cell of the design. First, half of the time. the
proposed result was larger than the correct result. Second. the parity of the proposed result matched the parity of the
correct sum in about hallof the false prablems. The exact distribution of problems with respect to these parameters is
given in Table 3.

Table 3. Verification of multiplications {experiment 6)

Proposed result

False by
Correct 1-§ =23
Proposed resuli 249%% (5.61) 44% [(4.5) 23% (4.7)
within luble ' 343 25 (134 13%) 30 (165 11)
Proposed result out 13% (4.2) 38% (5.5}
of 1able 15 (3: 5) 6 (10: 7)

*Per cent responses ‘the multiplication is correct’,

:edinn response time (sec),

INumber of items.

§Mumber of items lor which the proposed result is larger than the correct result.

i Number of items for which the parity of the proposed result differs from the parity of the
correct result.

Results

The overall median response time was 4.20 sec and the error rate of 43.3% did not differ
significantly from chance (72 {1 d.[.)=2.13, P=0.144). N.A.U. has a strong bias towards
responding that the multiplications were false (71.7% of his responses). However, the
percentage of problems that he judged to be correct did not vary across the five categories of
problems (z* (4 d.[.)=6.10, P=0.192; see Table 5). Nor was performance affected by the
distance between the correct and the proposed result [* (2 d.f.)=0.73] by the correctness of
the multiplication [¢* (1 d.f.)=0.54], or by the fact that the proposed result belonged to the
multiplication table or not [3* (1 d.f.)=0.45]. Similarly, response time did not differ across
conditions.

Stepwise regressions were performed on response time and response choice to each
individual problem. The independent variables used were a (the first operand), b (the second
operand), a*b (the correct product), ¢ (the proposed product), split (the absolute distance
between ¢ and a*b), sup (a dummy variable coding c>a*b vs c<a*b), parity (a dummy
variable coding whether the parity of ¢ was equal cr not to the parity of a*b), truth (a dummy
variable coding whether the multiplication was true or false), and table (a dummy variable
coding whether the proposed result belonged to the multiplication table or not). For
regressions on both response time and response choice, only variable ¢ had a significant
cffect: when the proposed result increased, the patient responded faster and decided more
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often that the multiplication was false. The abjective difliculty of the multiplication, as
measured by variables «, b and a®b, did not alfect N.A.U.'s performance.

Discussion

The patient was at chance level for classifying multiplications. He was not even able to
reject grossly false results such as *3 x 3=96". He exhibited a similar bias in multiplication
experiments than in addition experiments, i.e. he tended to respond that an operation was
false when its proposed result was large. However this bias did not improve his results. We

may conclude that N.A.U.’s approximation abilities are limited to addition and do not
extend to multiplication.

EXPERIMENT 7; SHORT-TERM MEMORY

If the only representation that N A U. can access from the digital appearance of a number
is its approximate magnitude, then he should not be able to memorize the exact identity of
numbers over i certain time interval. We predict that he should only remember the
approximate quantity that was presented to him, not the exact value, In a pilot experiment,
we tested N A U.'s short term memory for a single Arabic digit. A digit in the interval [-9 was
presented for 600 msec, then the screcn was blunked during 2.5 sec in the first session and
during 10 sec in the second session. Finally a probe digit appeared and N.A.U. had to tell
whether it was identical to or different from the one he just saw. N.A.U. was excellent in this
task, scoring respectivelv 94.4 and 100% correct for the two sessions, and responding with
median response times of 874 and 746 msec.

Of course in such a simple same~different task, it is possible to respond accurately using a
low-level representation. for instance by comparing the visual appearance of the two digits.
To avoid such low-level strategies and to better probe N.A.U.'s representational memory, we
asked him to memorize scts of three consecutive digits. Since 3 wasthe value of N.A U s digit
span, we hoped that his short-term memory would be close to saturation. Indeed, N.A.U.
made a number of errors which shed further light on his preserved abilities in number
processing. :

Method

On each trial, N.ALU. was visually presented first with a set of three consecitive digits in the range 1-9. The three
digits appeared simultancously, horizontally aligned for 1.2 sec. After a blank screen of 2.3 sec, a probe digit
appeared and N.A U, tilted the joystick to the right if the probe belonged to the previous set, and the left otherwise.
Response time wus recorded from the onset of the probe digit. For one-third of the trials, the probe digit actually
belonged to the memorized set (e.g. 7,6,8 . . . 6). For another third, it was outside the memorized set by one unit {e.g.
7.6,8...9). For the remaining third, the probe digit was further away from the memorized set by at least four units
(e.2.7,6,8 ... 21 For outside’ trials, the probe digit was equally often smaller or larger than the memorized set.

N.A.U. was tested in three sessions, each including six initial training trials and six trials in each of the three
experimental conditions. The same trials were used in the three sessions, but the left-to-right order of the digits
composing the memorized set was varied: ascending for the first session (e.g. 6, 7, 8), random for 1he second session
(e.g. 7, 6, 8). and descending for the third session (e.g. 8. 7, 6).

Results

The overall median response time was 1954 msec, and the error rate was 42.6%. Response
latencies did not differ across conditions. N.A.U. also responded identically when the probe
was within the memorized set and when it was just outside the set. In both cases, he chose the
‘within® responsc in 61.1% (11/18) of trials, a performance not significantly different from
chance. However the percentage of “within’ responses fell to 27.8% (5/18) when the probe was
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lurgely outside the memorized set. In other words, performance improved significantly [*
(1 d.1.)=4.05, P=0.044], and was marginally better than chance [ (1 d.[.)=3.56,
P =0.059), when the probe was more distant {rom the set.

Discussion

[n the short-term memory task, as in previous addition verification experiments, N.A.U.
exhibited again a striking dissociation between exact and approximate number knowledge.
In addition verification, N.A.U."s performance was governed by the degree of falsehood of
the proposed sum. Likewise in the short-term memory task, his responses were determined
by the proximity of the probe digit to the memorized set. He treated identically probes falling
within vs slightly out of the set, but he rejected probes which were numerically more distant.
It is not clear why N.A.U. could not retain in memery the exact identity of three Arabic
digits, even for a duration as short as 2.5 sec. Either N.A.U. simply lacked the sufficient
short-term memory. or he was unable to accurately encode the three digits of the set during
the 1.2 sec display. Whatever the correct account, experiment 7 clearly demonstrated a
contrasting residual ability to rapidly encode and retain in memory the approximate
magnitude of a set of numbers.

[nterestingly, MoriN, DER0sA and StuLTz [31] report that normal subjects also show an
eflect of number magnitude in the same memory task. Error rates were low, but the effect
obtained on the response times. ‘Outside’ response times decreased with increasing
numerical distance between the probe digit and the memorized set. Furthermore, when the
set comprised consecutive numbers (e.g. 3, 4, 3, 6) and was stored on long-term memory,
DeRosa and Morm (1963, cited in Refl. [31]) found that *within' responses were also affected
by numerical distance: responses were slower to numbers in first and in fourth position (3 and
6 in our example) than to numbers in second or third position (4 and 5 in our example);
numbers occupying the centre of the set were faster, This suggests that normal subjects, like
patient N.A.U., are able to represent a memorized set as an activated region on the number
line. Probes are harder to classify when they fail close to the boundary of this activated
region. Naturally, normal subjects can also rely on symbolic memory to take their final
decision, a strategy which was no more available to patient N.A.U.

EXPERIMENT 8: POINTING ON A NUMERICAL SCALE

We have postulated that N.A.U. understands what quantity a given number represents by
activating an appropriate region on his mental number line. Therefore, given a number,
whether written in Arabic notation or read aloud by the experimenter, N.A.U. should be able
to point to its appropriate location on a vertical segment representing the interval 1-100.

Method

MN.A.U. was presented with numbers distributed over the interval 1-100. Ten numbers were presented visually in
Arabic notation, and ten others were read aloud by the experimenter. For each number, the patient was asked to
point to the appropriate location on a vertical axis, 17 ¢m long, labelled ‘1" at the bottom and 100" at the top. The
experimenter copied the chosen location onto a separate recording sheet, so that N.A.U. could not refer to his
previous responses during the test.

Results and discussion

N.A.U.’s responses were fairly accurate (Fig. 5). For both oral and written presentation,
the location to which he pointed was highly correlated with the correct location (respectively
r=0.963 and 0.971, and in both cases P<0.0001). Overall, he made an average absolute
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error of 7.9 units (13 mm). In this task, normal subjects would probably be very accurate
with numbers like 23, 50 or 75, which correspond to simple fractions of the scale range 100.
However N.A.U. was not better with such numbers. For instance he placed 10 at 1/4 of the
1-100 segment, and 75 at 9/10 of it. It is likely that divisibility relations (e.g. that 75 is 3/4 of
100) were not available to him because of his severe calculation impairment. That his
performance was nevertheless satisfactory is all the more striking and suggests a preserved
representation of the relations between numerical magnitudes.

Written Cral
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Fig. 5. The locations which patient N.A.U. indicated on a 1-100 scale in response to numbers
presented visually or auditorily.

EXPERIMENT 9: NUMERICAL COMPARISON OF - AND 2-DIGIT NUMBERS

N.A.U.'s representation of numerical magnitudes was [urther probed by asking him to
classify numbers as larger or smaller than a fixed standard of reference. In normal subjects,
numerical comparison is thought to involve a transduction from the digital notation to an
analogical magnitude representation, and the determination of the relative positions of the
two numbers on the number line [11, 12, 23, 32, 33]. Since N.A.U.’s digital-to-analogical
transduction abilities are presumably preserved, he should perform normally in this task.
The inherent variability of the analogical representation might however yield some errors
when the two compared numbers are close in magnitude (e.g. 4 vs 5).

Method

Across four sessions, 1- and 2-digit Arabic numbers were presented visually for comparison respectively with
standard numbers 3 and 53, For each target number. N.A.U. tilted the joystick to the right if the number was larger
than the stundard. and to the left otherwise. For T-digit numbers, all the numbers 1-9 except 5 were presenied seven
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times cach in random order, preceeded by four training trials. For 2-digit numbers, all numbers 31- 79 except 35 were
presented once in random order. preceeded by 10 training trials. Both sets of targets were used twice, once with a
tachistoscopic presentation (300 msee duration), and once with i response-terminated visual display,

Results

N.A.U. responded fast (median RT 1005 msec) and made no error in the 56 trials of 1-digit
number comparison with unlimited presentation duration. He made only one error to target
53 in the 48 trials of 2-digit number comparison with unlimited presentation (median
RT 975 msec). With tachistoscopic presentation, error rate increased but performance
remained excellent. With 1-digit numbers he made four errors (7.1%) to targets 3,4, 4 and 6,
and his median RT was 8000 msec. With 2-digit numbers he made four errors (8.3%) to
targets 50, 52, 53 and 54, and his median RT was 814 msec.

Discussion

The patient’s performance was virtually normal, a remarkable result given that his short
response time would not have allowed him to read aloud the presented numbers or to use
counting. N.A.U. could compare Arabic numbers and therefore could mentally represent
their magnitudes, even with display durations of 300 msec. This experiment confirms that
fast approximate encoding of numerical magnitudes is preserved.

The clustering of N.A.U.’s errors to target numbers close to the standards of comparison
suggests that encoding precision was not perfect. However, the sparseness of comparison
errors contrasts sharply with the high error rate observed in addition verification and in the
short-term memory experiment. II N.A.U. is only able to compute the approximate value of
numbers, how can he perform so well in numerical comparison? First, in numerical
companison, only a single target number is processed on each trial, whereas three numbers
are processed in the addition task. Thus the error rate should be at least three times larger in
the addition task. especially if the addition process itsell generates errors.

Second, at the computational level, numerical comparison is demonstrably easier than
addition verification or the short-term memory task. The latter two tasks belong to the
general class of same~different tasks: in fine, they require the subject to decide whether two
numbers are the same or not. In the appendix, we demonstrate mathematically that the
same-different task cannot be performed on an analog magnitude representation without
making systematic errors. Even if an optimal decision criterion is used, the subject is bound
to respond ‘same’ to numbers that actually differ by only a small amount. By contrast, the
optimal decision criterion for larger-smaller comparison is more efficient. We show that
under the same conditions of variability, an ideal observer may respond wrongly that 4 is
identical to 5 (e.g. that 2+2=35) in 66% of trials in a same-different task, but nevertheless
respond correctly that 4 is smaller than 5 in 80% of trials in a smaller—larger comparison
task. These percentages are close to N.A.U.’s actual response rates. Our analysis therefore
demonstrates that good performance in the numerical comparison task is compatible with
the hypothesis of a high variability in the internal representation of magnitudes.

EXPERIMENT 10: PARITY JUDGEMENT

N.A.U.’s number knowledge was further explored by asking him to classify [-digit
numbers into odd and even numbers. This task of parity judgement is formally similar to
numerical comparison: in both cases, numbers must be classified in one of two categories
(smaller;larger, odd,/even). On preliminary testing, N.A.U. gave a reasonable definition of
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the notion of parity, and he was able to laboriously classily 10 cards bearing the digits 0-9
into two piles ol odd and even digits. Therefore one might expect N.A, U. to master the parity
judgement task. However if our hypothesis is correct and if N.A U, only encodes the
approximate magnitude of numbers, then number n should be hard to distinguish from
numbers n+ 1 and n— 1. We would thus predict parity judgements to be defective.

Methaod

N.A U. was presented with iwo lists, each comprising 11 initial training trials and 9 occurcences of each of the
digits 0~9. Each target was presented visually and remained on the computer screen until NLALU. made his parity
judgement. In the first session, N.A.U. responded by tilting the jovstick to the left if the target number was even, and
to the right il it was add. In the second session, response sides were reversed,

Results and discussion

Median response time was 2701 msec, and the overall error rate of 44 4% did not differ
from chance [x? (1d.f.)=0.89]. N.AU. was distressingly aware ol responding quasi
randomly. The two sessions therefore had to be interrupted before completion, and only a
total of 72 trials could be analysed. N.A.U. indeed responded randomly to odd numbers
(55.3% errors). However he was slightly but significantly better than chance with even
numbers [32.4% errors; z* (1 d.f.)=4.24, P=0.040]. Note that N.A.U. was able to recite the
verbal sequence 0. 2,4.6.8 . .., but not the sequence 1, 3, 3,7, 9 .. .. This may explain his
better performance with even than with odd numbers in parity judgement. Furthermore, the
preservation of the rote sequence of even numbers presumably allowed him to correctly
classify even vs odd digits in the preliminary card-sorting test.

In several numerical tasks, including parity judgement, normal subjects are faster and
more accurate when responding with the right-hand key to a lurge number and with the left-
hand key to a small number. than in the opposite condition [12, 13]. This effect is thought to
reflect an automatic activation of the left-to-right oriented ‘number line’, or mental map of
number magnitudes. Interestingly, patient N.A.U. exhibits this effect. Target numbers were
classified as small {(0—4) or large (3-9). Parity judgement tnals requiring a leftward response
to a small target or a rightward response to a large target were labelled as ‘congruent’. The
other trials were labelled as ‘incongruent’. N.A.U. performed significantly better for
congruent than for incongruent trials (31.3% vs 55.0% errors; #° (1 d.f.)= 4.06, P=0.044).
In others words he was biased to press the right-hand key for a large number, and the left-
hand key for a small number. This result indicates that as far as numerical magnitude is
concerned, N.A.U.'s performance shows even the most subtle characteristics of normal
processing. This contrasts sharply with the almost complete loss of parity knowledge.

GENERAL DISCUSSION

We have presented the case study of a severely aphasic and acalculic patient with selective
preservation of approximation abilities. The dissociation between impaired exact processing
vs preserved approximation was observed in several domains of numerical competence:

Number reading: N.A.U. showed considerable difficulties and had to count on his fingers,
but his responses were always numbers of plausible magnitude.

Number comprehension: N.A.U. understood the relative magnitudes of numbers, as
attested by his good performance in numerical comparison and in pointing onto a numerical
scale, However, he was largely impaired in judging the parity of 1-digit numbers.

Memory: N.A.U. failed to memorize the exact identities of three digits for more than a few
seconds. However he still remembered their approximate magnitude.
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Calculation: N.A.U. was unable to solve simple additions. multiplications or subtractions.
However he could accurately reject grossly incorrect additions such as 2+ 2 =9, or select the
most plausible result for an addition.

Number knowledge: N.A.U. remembered only approximate facts, for instance that a year is
about 350 days, or a month about 15 or 20 days.

Two mental caleulation systems

These dissociations suggest the existence of two parallel routes in number processing, one
for exact symbolic processing and the other for the manipulation of approximate numerical
magnitudes. In adults, most numerical calculations are normally achieved by manipulations
of symbols in digital notation [2, 207. The disruption of the digital route in N.A U. yields
severe deficits. However, this route is supplemented by a second pathway specialized in the
representation of approximate magnitudes in analog form. The analog representation or
number line [37] is used in number comparison, memory for magnitudes, and generally all
tasks requiring estimations of quantities, which are intact in patient N.AU. Figure 6
summarizes the functions supposedly subsumed by each processing pathway.

Arithmeticzl cperations
Transcoding (raasing, writing)
i Parity wdgmeant
Memary for digits

Vi

wak / symbalic N
—/ \rfpresen: ions o
T S

!,

i numeral
! comprehension
mechanisms

numeral
production
mechanisms

\ \“u_._.‘\\\h s ma;rfr'!ud'a < ._,.:-'

represantalion

digital-ig-analog
conversion ¥ l

Sstimaticn of additicns
Number comparison
Memaory for magnitudes
Estimation of numearcsity

1
|
|
|
Approximaie measurements !

Tt e e

Fig. 6. Schematic diagram of 1the proposed dual-route model of number processing.

Is the assumption of a dual pathway really necessary, or might N.A.U."s performance be
explained within a single-route model? In McCloskey’s model of number processing [7, 27,
28], for instance, one might assume that N.A.U.'s abstract internal representation has
become inherently more variable following the lesion. Therefore his representation of, say,
45, which is normally {4}10EXP1 {5}10EXPO, would randomly switch to {3}10EXPI
{4} IOEXPO or to {4}10EXP! {6}10EXPO, etc. Since the abstract internal representation
allegedly intervenes in number comprehension, calculation and production, approximation
errors would be predicted in all tasks. However, such a lesion would not by itself suffice to
explain N.A,U.'s deficit. N.A, U, cannot retrieve any addition, multiplication or subtraction
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facts: nor can he apply stundard multidigit calculation procedures. The possibility cannot be
dismissed that these additional deficits stem [rom lesions at other sites within the functional
architecture. However, our account in terms of a single destruction of symbolic number
processing seems more economical. Furthermore the existence of an independent non-verbal
number processing system is corroborated by animal and human infant data, as mentioned
in the introduction.

Similar difficulties confront an explanation of N.A.U.’s deficit in CampBELL and CLARK'S
encoding-complex model [6]. In this model the various internal codes for numbers are
interconnected by a network, with some links coding for parity information, others for verbal
associations, and presumably others for proximity of numerical magnitude. To explain
N.A.U.'s deficit, one should suppose that only the links specifying proximity of numerical
magnitude were spared by the lesion. The encoding-complex model is sufficiently
underspecified to allow for such a lesion, but the account would then become formally
equivalent to our more constrained two-route explanation.

Conterging evidence

In the adult, the two number processing routes are expected to work simultaneously and in
coordinated fashion, and their respective reles may thercfore be difficult to delineate,
Nevertheless. some arithmetical tasks seem to tax selectively one or the other calculation
system. In number comparison. response times and error rates are aflected by the numerical
distance between the two compared numbers (distunce effect [3, 11, 12, 23, 32, 33]). In
verification ol arithmetic caleulations. performance depends on the distunce between the
proposed result and the actual result of the operation (spht effect [ 1, 2, 24, 47]). Finally in a
short-term memory task. the time to judge ifa probe digit belongs to a previously memeorized
set of digits depends on the distance between the probe and the set [31]. In our view, such
distance efects indicate processing through the analog route. Caonversely, there is evidence
that normal subjects perform certain algorithmic calculations without any expectation of the
approximate result. For instance in the initial stages of subtraction acquisition, errors such as
75-25=410 are produced [45], suggesting that subjects are 'blind” to the quantities
associated with the computation. Indeed. it has been argued that number acquisition in
children mostly consists in appropriately bridging the symbolic number processing
algorithms and the preverbal magnitude representation [[9].

The dual-route framework can also account for the performance of patient D.R.C. [46],
which bears considerable similarity to patient N.A.U. Patient D.R.C. had severe difficulties
in performing simple calculations, which could be traced back to a deficit in accessing
memories for elementary arithmetical facts. However D.R.C. could rapidly provide an
estimate of the operation result. For instance for 5+7 he replied ‘13 roughly’. Like N.A.U.,
D.R.C. had no difficulties in number comparison and in estimation of quantities. However
unlike N.A.U., D.R.C. was also perfect in number reading, digit span, and number
knowledge. D.R.C. probably had a mild and isolated deficit in arithmetic fact retrieval, and
therefore sometimes had to rely on his preserved approximate calculation abilities. However
he also had several other strategies at his disposal (e.g. parity checking). By contrast, our
patient N.A.U. had a much more severe deficit affecting almost all symbolic number
processing (reading, calculating, short- and long-term memory). Therefore the selective
preservation of approximate number processing was exposed more distinctly to investiga-
Lo,
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Calculating with the right hemisphere?

Patient N.A.U. sullered from a massive lesion involving almost all of the posterior half of
the left hemispherc (Fig. 1). This raises the issue of the contribution of the right hemisphere to
his preserved abilities. N.A.U.'s reading was similar to that of the left-hemispherectomized
deep dyslexic patient described by Patterson et al. [36]. Both N.A.U. and Putterson et al.’s
patient produced semantic errors in word naming, could not read a single non-word, and
could access the phonological form of printed words, for instance numbers, by reciting an
overlearned verbal series. The suggested right-hemisphere mediation in N.A.U.’s reading
might extend to calculation processes. The notion of ‘calculating with the right hemisphere' is
largely undermined by the preponderance of left-hemisphere lesions in acalculia (e.g. Ref.
[22]). Nevertheless, studies with split-brain patients [41], patients with massive aphasia (e.g.
Ref. [4]), as well as hemifield presentation data from normal subjects (e.g. Ref. [16]), have
long suggested the existence of limited number processing abilities in the right hemisphere,
which Assat and Jacotr-Descomses [3] have called ‘“arithmetic intuition’. Whether
right-lesioned patients would show a dissociation of calculation abilities opposite to patient
N.A.U.’s remains to be evaluated.
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APPENDIX: OPTIMAL STRATEGIES FOR SAME-DIFFERENT AND
LARGER-SMALLER COMPARISON TASKS

Supposing that N.A U. encodes numbers as fuzzy activated regions on 4 mental number line, how can he decide
that two numbers are equal (same-different comparison). or choose which of two numbers is the larger
{larger-smaller comparison)? In this appendix, we derive the statisticallv optimal choice strategies lor the two tasks,
We show that the larger-smaller comparison task can be performed with high accurucy even il the variance of
internal representations is important. On the contrary, the optimal strategy for the same-different comparison task
necessarily yields a systematic error (responding ‘same” to slightly different numbers). This difference in optimal
strategies for the two tasks may explain why on the one hand, N.A U. was wrong in verifying statements such as
'242=75 or ‘4 belongs to the set 5, 6, 7', while on the other hand he could reliably classify 4 as smaller than 3.
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Fig. 7. Mathematical model of the internal encoding of numerical magnitudes apd of the c_hplimal
strategies for larger-smaller and same—different comparison. See the appendix for details.

Suppose that numbers nl and n2 are presented visually, and that N.A.U. must decide whether n2 is larger or
smaller than nl (larger-smaller comparison task). or whether il and »2 are same or different (same—different
comparison task). In both cases, we assume that nl and n2 are internally encoded at locations /1 and 12 on ihe
number line. On each trial, the rundom variables [1 and 12 are drawn from two Gaussian distributions with fixed
variance o2, centred on the appropriate locations for #] and n2 on a linear scale (the hypothesis of linearity and of
fixed variance on the number line are not crucial to the argument and are adopted here only for simplicity). In the
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numerical simulations below, we take o= 1.2, which means that the 5% conlidence interval for the representation
of 515 [2.6, 7.4). Because of this high encoding variability, the internal representations are not always veridical, First,
[1 may be smaller than 12 when nl is actually larger than n2. Second, [T will generally differ from 12 even il ul is equal
to n2. Erroneous respanses therefore cannot be avoided, and the problem is to find strategies which minimize the
eITOr rates.

Snaller-larger comparisan task

When a given internal difference o ={2 —[1 is observed, positive or negative, what is the optimal way of choosing
between the two responses ‘n2 =nl" vs'n2 <nl™? The maximum likelihoed principle states than one should respond
‘12>l if and only if the probability of observing  when n2 is larger than nl, P{d|a:2 =nl), is larger than the
probability of observing d when n2 is smaller than nl {P[-Hul{nl]. Since the difference 12—11 15 normally
distributed with mean nl—n2 and variance 2¢°, P(d[n2>nl) and P(d|n2<nl) are easily computed. This
computation was performed in Fig. 7in the case ol 1 comparison of the target numbers 1-4 and §-9 with standard 3,
The two curves cross at d =0, yielding the following fairly intuitive optimal criterion: one should respond *n2 > nl"if
and only il a positive difference (/2> {1)is observed. The expected error rate of this strategy can then be computed lor
each value of n2—nl (Fig. 7). This error rate can never exceed 50% (by hypothesis P{I2>11|n2>nl)>4), and
therefore systematic errors cannol occur. Assuming o= 1.2, the error rate remains below 20.2%, this maximum
value being reached only when the difference n2—nl is minimal ﬂlnl—nl |=1). Thus, even with a noisy internal
representation of quantities, it is possible to make larger—smaller comparisons with high aceuracy,

Same-different comparison task

A similar analysis can be made for the same-different comparison task. The probability of observing a given
difference d when nl=n2, Pld|nl =n2), is given by a Gaussian with mean 0 and variance 2a*. Conversely,
P‘fﬂ‘]rli #12) is obtained by averaging the Guussians for all values of 12 which dilfer (rom nl. The two density
[unctions Pld [r:l =n2)and Pld|nl £n2), plotted on Fig. 7. cross at two symmetrical points —e¢and +¢ which define
the interval for the ‘same’ response, The optimal strtegy 1s to respond “nl =n2" whenever J falls within the interval
[—e, +¢c]. be. whenever 12 is sulficiently close to 1,

For cach targe! number n2. one may then calculaic the probability of responding that it i3 the same as nl. A
systemaltic error is found for n2 =nl £ 1: a “same’ response is ellicited on 72.3% of trials. This systematic error is
required in the optimal stratcgy in order to ensure a reasonable hit rate (here 83.3% success). when n2 is actually
equal to nl, Note that the exact value of the criterion ¢ varies with the expected range ol numbers n2, and with the o
priori probabilities of ‘same’ and “different’ responses, here taken to be equial. Nevertheless. some criterion must be
adopted and will necessarily yield some systematic errors at small numerical distances between the compared
numbers.



