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In the last 10 years, considerable advances have been made toward understanding
the functions of prefrontal cortex and their anatomical and neurophysiological
counterparts.'? Relating these behavioral and neurobiological data into a coherent
picture, however, remains a challenging enterprise. The development of explicit
models of prefrontal cortex architecture and functions can potentially help to
bridge this gap by identifying the most relevant features of cellular and behavioral
data, by testing the plausibility of hypotheses put forward to relate these data in
a causal manner, by drawing attention to specific experimental predictions, and
by pointing to unsolved questions.

We have tried to achieve some of these goals in the limited context of simple
behavioral tests of prefrontal functions. Over the years, our modeling efforts fo-
cused successively on delayed-response tasks,” on the Wisconsin Card Sorting
Test,* and on the possible contribution of prefrontal cortex to the development
of numerical competence.’ In each case, we speculated on the implementation of
the task in neuronal networks, and we described computer simulations of formal
neuronal networks whose properties reproduce, to some extent, the available
neurophysiological and behavioral data. Although the details of the models varied,
common principles of neural architecture were used for all tasks. In this review,
three such principles will be discussed: (1) the distinction of levels of organization,
with prefrontal circuits modulating lower-level networks, (2) the role of long-last-
ing neurcnal activity in maintaining representations of task events, and (3) the
interconnection of these representations with reward systems that compute the
value associated with actions or events.

The general framework in which our work has developed is that of newral or
mental selectionist mechanisms.*7 It stresses that organisms are not passively
responsive to environmental inputs and do not absorb knowledge by instruction
from an external teacher. Rather, higher organisms function in a projective mode
in which hypotheses or prerepresentations are internally generated and are main-
tained or rejected depending on their adequacy to the situation at hand. Learning
proceeds by selective elimination of spontaneously generated alternatives. Thus,
behavior is not driven by gquasireflex responses to stimulation, but by internal
goals and by representations of past events and of future actions that may be
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relevant to these goals. In mammals, prefrontal cortical circuits seem instrumental
in generating goals, in maintaining representations of goal-relevant information,
and in selecting these representations as a function of their expected value for
the organism. Our simulations illustrate how specialized prefrontal circuits may
implement these functions.

LEVELS OF ORGANIZATION

A first key feature of our models is their organization in multiple hierarchical
and parallel levels. The notion that prefrontal cortex intervenes at a level of repre-
sentation higher than that of other cortical circuits is commeon to almost all ac-
counts of prefrontal cortical functions. Luria® considered the frontal lobes as cru-
cial for the programming, regulation, and verification of activity. According to
Grafman,” prefrontal cortex maintains and controls the execution of complex
scripts or hierarchical plans for actions. Fuster' and Goldman-Rakic® have also
emphasized the role of prefrontal cortex in modulating lower-level sensory-motor
contingencies using working-memory representations of the organism’s intentions
and past knowledge. Finally in the Norman-Shallice theory,'® prefrontal cortical
areas together form a supervisory attentional system that can inhibit or select
lower-level automatized thought or action schemata.

Our models** have implemented these ideas by introducing a layered architec-
ture with multiple parallel mappings between hierarchical representations of sen-
sory inputs and of intended motor outputs. At least three levels of processing
have been distinguished: a direct mapping between sensory data and correspond-
ing motor actions, an indirect mapping mediated by a working memory of past
events, and another indirect mapping holding a representation of the rules of the
task at hand. The last two indirect mappings, which are assumed to rely on prefron-
tal areas, modulate and select actions triggered at the lowest level (Fia. 1).

The functional role of such modulation is well illustrated by our model of de-
layed-response tasks, including the A-not-B task.'-*? In these tasks, an object is
hidden in one of two possible locations (A and B). The locations are then covered
and the subject’s attention is distracted for a short delay. At the end of this delay,
one then measures the subject’s ability to reach towards the appropriate location.
When the task is made simpler by reducing the delay to zero, or by repeatedly
hiding the object at the same location A, rhesus monkeys with prefrontal cortex
lesions, as well as infants between 7 and 9 months of age whose prefrontal cortex
is immature, suceeed in reaching to the correct location. Hence, reaching to spatial
locations and learning to always reach to a certain location are not dependent on
prefrontal cortex, but rely on lower-level action schemata. In our simulations,
these abilities were embodied in a direct sensorimotor pathway with slowly modifi-
able connections that linked a representation of the features of the objects to a
representation of the available motor responses. This lower level of the model
easily learned the reaching part of the task.

When the task is made more difficult, however, by imposing a longer delay
between cuing a location and letting the subject reach to it, and by changing the
location of the hidden object from trial to trial, young infants and monkeys with
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FIGURE 1. Schematic diagram of a neuronal model for delayed-response tasks,? illustrating
a hierarchical and parallel organization with multiple levels of processing.

prefrontal lesions fail systematically. In the A-not-B task, they continue to reach
towards the previously cued location A, even after the object has been shifted to
location B. In other words, an immature or lesioned prefrontal cortex yields an
impairment in inhibiting a previously learned response. Our simulation with the
sensorimotor pathway only behaved quite similarly, making a systematic error of
perseveration in reaching to location A (Fic. 2). In order to pass the test, just as
neurologically intact monkeys and 12-month-old human infants do, our network
had to be supplemented with a second pathway, parallel to the first, but which
held a short-term memory of the cued location throughout the delay. Units at this
higher level were not allowed to influence directly the motor output units, but
only to modulate the connections of the lower level sensorimotor reaching path-
way. They held a representation of the past location of the object and used it to
bias reaching when two possible locations could be reached at after the end of
the delay. These units therefore implemented a form of ““working memory”* which
has been related to dorsolateral sectors of prefrontal cortex.'-"

At an even higher level of representation in our models, units that we called
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FIGURE 2. Performance of the simulated delayed-response model (left) as compared to
actual data from rhesus monkeys (middle) and human infants (righr) (data from ref. 12).
The model with lesioned memory clusters, like monkeys with prefrontal lesions and 7.5-
9-month-old infants, is able to reach to a hidden object™after a delay when the object is
repeatedly hidden at the same location, but not when the object is switched to a novel hiding
location (top graphs). The full network model, like intact animals and older infants, reaches
correctly to the hidden object in both cases (bottom graphs).

rule-coding clusters were allowed to modulate entire sets of connections at the
lower levels (see also ref. 14). Their activation therefore drastically affected infor-
mation processing. For instance, when the rule-coding cluster coding for “*color™”
was activated, color information, rather than spatial information, was paid atten-
tion to and stored in the circuit memory. Changing the activity pattern over rule-
coding clusters allowed for a very fast change in the rules used by the system, a
performance analogous to that of normal human adults in the Wisconsin Card
Sorting Test." ' This part of the system therefore effectively performed functions
attributed to the ‘‘central executive,”’"” “‘supervisory attentional system,”'? or
“attention for action’ system' postulated by psychologists to underlie flexible
task switching and controlling. Anatomically, this level may rely on orbitofrontal
cortex,' the anterior cingulate,'® and other areas forming a prefrontolimbic
network. ™

Our emphasis on levels of complexity should not imply that the connectivity in
our models is purely hierarchical and pyramidal. The classical view that prefrontal
cortex is an end-point in cortical processing is not tenable.®® In our models, multi-
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FIGURE 3, Schematic diagram of a neuronal model capable of solving the Wisconsin Card
Sorting Test.* Mote the central role of the evaluation system (rop), which can selectively
inactivate inappropriate rules at the lower levels (leff), and can itself be internally activated
by upcoming intentions via an auto-evaluation loop (right).

ple anatomical loops integrate prefrontal representations, together with sensory
and motor representations, into parallel circuits for processing of color, form,
location, or number information (Fics. 1 and 3). This bears some similarity to the
known parallel cortico-cortical circuits linking prefrontal cortex with multiple
areas such as posterior parietal, anterior and posterior cingulate, and occipital and
superior temporal areas.® Recent observations have revealed parallel functional
circuits for the representation of object identity and location information in distinct
prefrontal areas.*! Working memory for object identity, on the one hand, rests on
the prefrontal area of the inferior convexity, in relation with the occipitotemporal
“what’" pathway. Working memory for object location, on the other hand, rests on
dorsolateral prefrontal cortex, in close anatomical relation to the occipitoparietal
“where'" pathway. This anatomical organization is similar to the maintained segre-
gation between color and location information at all levels of processing in our
models (Figs. 1 and 3).
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LONG-LASTING NEURONAL ACTIVITY

It has been known for at least 20 years that prefrontal neurons can maintain a
sustained level of firing for extended periods of time.” In our models, as in some
others,™ this is seen as a critical and specific property of prefrontal areas that
enables them to hold on-line representations of past events, future intentions,
and rules of behavior. We have simulated long-lasting firing using local recurrent
excitatory connections within clusters of neurons coding for a given feature (e.g.,
the color red). These clusters coarsely model the known columnar organization
of cortical areas. Theoretical analyses and simulations show that such clusters
may possess two levels of activity that are stable in time. Either most neurons in
the cluster are inactive, or most neurons fire at a sustained rate. In the latter case,
neurons keep a sostained or “‘remanent’’ activity because they reactivate each
other through fast recurrent connections. Simulations* indicate that the temporal
activity profiles of neurons within bistable clusters resemble those seen in actual
recordings (e.g., ref. 13).

It should nevertheless be stressed that our attribution of long-lasting neuronal
activity to local recurrent connections is a strictly theoretical hypothesis that
awaits experimental confirmation. Alternative approaches attnibute long-lasting
firing to single-cell membrane properties, to distant recurrent loops with other
brain areas, either cortical or subcortical,**** or altogether disregard long-lasting
firing as an important and specific property for the simulation of prefrontal func-
tions.*s*" Indeed, cells in many areas such as posterior parietal cortex or basal
ganglia have also been recorded to keep a sustained level of firing during extended
periods of time. In our interpretation, however, this could be due to a propagation
of activation originating from local circuits forming neuronal clusters within pre-
frontal areas. Clearly, further research will be needed to decide between the single-
cell, local circuit, and distant loop interpretations of sustained firing. Until then,
our working hypothesis is that the ability to keep a sustained level of firing in the
absence of sustained inputs from other areas is a specific property of prefrontal
circuits that stems from strong local recurrent connections and that is not seen
in other cortical regions.

What function does sustained firing serve? Goldman-Rakic,? Fuster,!= and
others have provided convincing evidence that prefrontal cell activity encodes a
representation of past or future events. In our models, these events can be of
several types. Consider for instance the model capable of solving the Wisconsin
Card Sorting Test and depicted in Fig. 3. The cards that have to be sorted are
encoded along three dimensions, according to the color, number, and form of the
symbols on the card. Different assemblies of memory clusters are allocated to
each of these parameters. Throughout a trial and the succeeding intertrial interval,
these clusters hold in their activation pattern a memory of the parameters of the
input card, long after it has been removed from sight. Activation from the memory
clusters is then transmitted to an intention network that codes for the stack in
which the network will place the input card. Hence, units at this level code for
an anticipation of subsequent motor outputs (*‘intention’”) rather than for a mem-
ory of past inputs. Neurophysiologically, both types of units have been recorded
in prefrontal cortex:*® during the delay period of delayed-response task, some
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neurons fire only after certain types of cues were presented (e.g., red cues),
whereas other units fire only before certain types of movement are made (e.g.,
rightward movements).

Importantly, the memory and intention clusters in our models can be com-
pletely isolated from actual inputs and outputs. Memory units can maintain a
sustained level of firing in the absence of their original inputs. Likewise, intention
unit activity is not propagated to motor activators unless a *“go’ signal is received.
The effect of this *'go’" signal is to potentiate the intention-to-motor connections
and therefore to release a preprogrammed motor command, Before the “*go”” signal
is received, the representations held in memory and intention units function as a
“mental model” or “*working memory space’’ that can be used to freely manipu-
late hypotheses independently of current input-output contingencies.

In the card sorting model, a third type of unit also shows long-lasting activation:
the rule-coding clusters. Here, long-lasting firing is used to maintain on-line the
behavioral rule which is currently being applied and which specifies how the lower-
level network will sort the input cards. The Wisconsin Card Sorting Test imposes
two contradictory requirements on the rule-coding system. First, a rule must be
discarded as soon as it is found not to apply well to the present situation. Second, a
successful sorting rule, once found, must be maintained and applied systematically
across several trials. According to our model, prefrontal cortex is ideally suited
for meeting these demands because rules can be represented as stable activity
patterns over rule-coding clusters rather than as slowly modified connection
weights. The bistable property of neuronal clusters makes it possible to keep a
rule active as long as it is useful, and vet to immediately turn the corresponding
circuit off if the sorting rule must be changed.

Figure 4 shows how the different kinds of units with long-lasting firing in our
model are activated on two consecutive trials of the Wisconsin Card Sorting Test,
Even before the first trial starts, a rule-coding cluster is already active. It codes
for the sorting rule that the system is going to &y first. Upon presentation of a
card to be sorted, input units (not shown) are activated and the corresponding
memory clusters therefore switch to an active state. The sorting rule is applied,
leading to the activation of an intention cluster coding for the upcoming response
of the network. When the **go™ signal is received, activity is allowed to propagate
from intention to output units which execute the intended response, Feedback is
then received from the experimenter. On the first trial depicted in Fic. 4, feedback
is positive and therefore the active rule-coding cluster is maintained throughout
the duration of the trial. On the next trial, feedback is negative. The active rule-
coding cluster is therefore turned off and another one is activated, thus implement-
ing the switch from one sorting rule to another.

REWARD AND AUTO-EVALUATION SYSTEMS

The example of the Wisconsin Card Sorting Test illustrates the critical role
that reward systems play in the architecture of our models. Most real organisms
do not acquire information about the environment via a teacher that specifies
desired levels of neuronal activity, as in the backpropagation algorithm. Rather,
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FIGURE 4. Example of long-lasting activity in memory, intention, and rule-coding clusters
during two simulated trials of the card sorting task. Megative reward during the second trial
induces a change in the activity of rule-coding clusters.

they are exposed, often with some delay, to the positive or negative consequences
of their actions, and they learn to anticipate future rewards and to adapt their
representations and goals in order to optimize these rewards. Hence, the develop-
ment of adequate value systems, which can evaluate internal representations and
use this evaluation to direct behavior, is an essential part of learning and decision
making.**7-1%% Prefrontal cortex is richly interconnected with limbic areas such
as the anterior cingulate as well as with subcortical nuclei, which have been postu-
lated to provide information about the relevance and value of behavior. Further-
more, prefrontal cell activity is often modulated by the relevance, or value, of
the situation to the organism. Hence, some sectors of prefrontal cortex obviously
play an important role in evaluative functions.

In our models, the interaction between the representations held on-line in pre-
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frontal cell activity and their evaluation in limbie and/or subcortical circuits has
been modeled as a bidirectional pathway. On the one hand, external rewards
such as food or punishment, which are received from the environment, can be
transmitted to the appropriate representations and yield an immediate modification
of behavior (external evaluation). On the other hand, the same circuitry can also
be activated internally, with similar conseguences on behavior, because the sys-
tem has learned to anticipate that a given situation is likely to result in a negative
or positive reward (internal evaluation or auto-evaluation).

External Evaluation

In our model, external evaluation works as follows. The system, as a result
of being in a certain activity state—for instance, with an active “‘color™ rule
cluster—performs a certain motor action (e.g., sorting a card by color). If the
experimenter decides that this action was incorrect, negative reward is provided
to the network. In turn, the reward input activates an error-coding cluster which
signals that the network has performed an error. This error signal then has two
effects on the rest of the network: a slow diffuse effect and a fast focal effect.
First, the error signal is broadcast via diffuse neuromodulatory systems to all
areas of the network, where it enables slow and diffuse modifications of connection
strengths. The Hebbian rule that we use for synaptic modifications destabilizes
recent neural activity if it led to negative reward, and stabilizes it if it led to
positive reward, thus slowly increasing the chances of obtaining positive rewards
in the future.

In parallel, the error signal is also sent to a targeted network, the rule-coding
clusters, where it yields a fast desensitization of currently active synapses. A
tentative molecular mechanism has been proposed for such desensitization.® A
diffuse neuromodulator signaling recent negative reward (e.g., a catecholaminergic
input), when occurring in conjunction with a molecular marker of recent postsy-
naptic activity such as an elevated intracellular concentration of calcium, would
induce a reversible allosteric transition of postsynaptic receptor molecules toward
a slow, desensitized state (FiG. 5). Whatever the exact molecular mechanism, the
result of this fast focal effect of reward is to turn currently active rule-coding
clusters back to an inactive state, thus letting other rule-coding clusters compete
for the control of behavior. In the terminology of learning by selection, the rule-
coding network functions as a generator of diversiry. Spontaneous fluctuations in
activity lead one rule-coding cluster to take control and inhibit the others. Subse-
guent negative rewards ensure the elimination of inadequate active clusters until,
after several trials, one is found to yield only positive rewards.

In simulations of the rule-coding cluster network, we found ranges of param-
eters for which the occurrence of one or two consecutive erroneous trials was
sufficient to trigger an internal change in the sorting rule used. This is comparable
to the performance of normal adult subjects in the Wisconsin Card Sorting Test,
who rapidly switch to a new sorting rule when the previous one is found incorrect.
When we lesioned either the reward network or the rule-coding network, however,
perseverations were observed: the system continued to use the same sorting rule
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FIGURE 5. Tentative mechanizm for the shift in rule-coding cluster activity when negative
reward is received (the *‘generator of diversity’’)-(A) The simultaneous occurrence, on a
given postsynaptic site, of a diffuse neuromodulator signaling recent negative reward and
of a postsynaptic marker of recent cell activity, such as intracellular calcium, triggers an
allosteric transition of postsynaptic receptor molecules towards a desensitized state (ion
channel closed). (B) This molecular mechanism has the effect of depriving currently active
neurons from supporting inputs from neighboring neurons belonging to the same cluster.
The cluster therefore shifts from a stable active state to a stable inactive state, releasing other
clusters from lateral inhibition and allowing them to compete for the control of behavior.

for several trials in a row, even after it was negatively rewarded several times,
Hence, the lesioned network mimicked the perserverative behavior observed in
patients with frontal lesions. 1%

Perseverations were observed in our model after many sorts of simulated le-
sions, including weakening the reward input, weakening the influence of the error
signal on the rule-coding network, weakening or destroying the connections origi-
nating from rule-coding clusters, or eliminating the rule-coding clusters altogether.
Hence, we would expect many different types of frontal and/or subcortical lesions
to affect card sorting performance. We also found that our simulation performed
poorly (but without perseverating) when the rule-coding layer was extended to
include rules other than the three basic color, form, and number rules. This may,
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to some extent, account for the failure of some normal subjects in the task.'® Our
contention is that the two sorts of failure have very different origins: normal
subjects fail because they tend to try out complex sorting rules before having
exhausted the simplest ones, whereas frontal patients fail because of an impair-
ment in changing the current sorting rule in the face of negative reward.

Internal Evaluation or Auto-Evaluation

The ability to evaluate behavior internally and to anticipate future errors was
also provided to the card sorting network by introducing modifiable connections
from the intention units to the error cluster (Fic. 3). These connections, which
formed an auto-evaluation loop, were able to learn when a pattern of activity over
intention clusters had been associated with negative reward. If, later on the same
trial, the same intention recurred, the error-coding cluster was spontaneously
activated via the auto-evaluation loop, with the consequence that the sorting rule
was immediately changed without actually having to try it on the environment.

Auto-evaluation, in conjunction with the previously described ability of mem-
ory and intention clusters to remain isolated from external inputs and outputs,
provides our simulation with an internal work space in which representations can
be manipulated and rules can be tried out until a satisfactory one is found. A
precise sequence of neuronal activity is predicted (FiG. 6). When negative reward
is received, it triggers a change in rule-coding cluster activity and a new sorting
rule becomes active. This new rule, when applied to the memorized features of
the input card, yields a new pattern of activity over intention clusters. If this
pattern is again recognized by the auto-evaluation loop as likely to be negatively
rewarded, the error cluster is internally activated, and the whole cycle starts overs
until a more satisfactory intention is found.

The notion of autc-evaluation and its relation to prefrontal cortex has now
begun to receive experimental support. Damasio and colleagues'®*%*! have stud-
ied patients who experience severe difficulties in decision making in everyday life
and whose deficit is traceable to an impairment in evaluating whether a given
image, situation, or plan has a positive or negative outcome. Because their auto-
evaluation of ideas and plans is impaired, these patients do not know how to select
a course of action other than by chance or by attempting to list all the events
that could happen. Anatomically, these patients have lesions of the orbitofrontal
cortex, which is a good candidate for a component of the auto-evaluation loop
because of its strong connectivity with the limbic system.

In our model, the auto-evaluation loop is used exclusively for the internal detec-
tion of erroneous intentions. Recently, an electrophysiological correlate of such
error-detection has been observed in normal humans.*>-* In several reaction time
tasks, a sharp focal negativity was recorded from medial frontal scalp electrodes
only on trials in which the subject made an error. This error negativity occurred
with a very short latency (about 70 ms) after the response was made, ruling out
sensory feedback and suggesting that errors were internally monitored in parallel
to the execution of the response. Anatomically, dipole modeling suggested that
the generator of the error effect was located in the anterior cingulate cortex. Single-
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FIGURE 6. Simulated sequence of neuronal activity cormresponding to an internal test of
several rules. At the beginning of a trial, an intention is tried out and external negative
reward is received. This sets up a cyclical sequence of activity in which (1) a new rule-
coding cluster becomes active; (2) this leads to the activation of an intention cluster; (3) the
current intention is recognized as being the same one that previously led to negative reward;
and (4) the error cluster is activated via the auto-evaluation loop and the process repeats.
The testing cycle stops when a rule is found which leads to a different intention, one that

is not known to yield a negative reward.

cell recordings in monkeys have also revealed anterior cingulate cells that fire
when the animal makes an error or when an expected reward fails to be delivered. ™
It is not known yet whether the anterior cingulate contributes to error detection,
error correction, or both. However, its strong connectivity with multiple areas
of prefrontal cortex fit well with its involvement in an anterior auto-evaluation
circuit.
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CONCLUSION AND FUTURE PROSPECTS

According to our models, three aspects of frontal lobe circuitry are critical to
an understanding of its contribution to cognitive functions. First, prefrontal areas
are involved in hierarchically organized nested circuits that modulate lower-level
sensory and motor circuits. Second, prefrontal circuits can sustain a long-lasting
neuronal activity, which enables them to maintain over time representations of
past events, anticipations of future events, and putative goals or rules for behavior,
and to manipulate these representations in a purely internal manner. Third, pre-
frontal representations can be rapidly selected or eliminated based on an evalua-
tion of performance by reward systems. Frontolimbic circuits forming an auto-
evaluation loop endow the organism with a capacity to evaluate behavior internally
instead of having to wait for external reinforcement.

The three properties of modulation of lower levels, representation detached
from input-output contingencies, and auto-evaluation fit well with views of the
frontal lobe as a **central executive'” or *‘supervisory system’'™!7 that evaluates
and controls cognitive processing. Nevertheless, our models of this supervisory
system remain highly simplified. From the anatomical point of view, an important
direction for future modeling will be to incorporate more realistic data on the
anatomy and connectivity of known brain areas. From the functional point of
view, tasks that are known to depend on the supervisory functions of prefrontal
cortex, but cannot be handled by present network architectures, should be ad-
dressed in future simulations.

For instance, some prefrontal lesions are known to affect the ability to retrieve
temporal-order information and use it to guide behavior.! Our models cannot ad-
dress this issue yet because although they incorporate a mechanism for maintain-
ing on-line representations of past events, the order in which these events occurred
is not represented explicitly. Indeed, we know of no neuronal model of temporal-
order judgments that has attempted to account-for prefrontal impairments in the
time domain. However, models for the role of frontal and subcortical areas in the
production of temporal sequences of actions™** might probably be extended to
account for relative order judgments.

Another function not properly addressed by current models is the planning of
a future sequence of actions. A classical test of planning is Shallice’'s Tower of
London test,® a puzzle with pegs and movable disks in which the patient must
find the shortest sequence of moves for achieving a given configuration of the
disks. Solving the test requires the exploration of a tree of possible moves by trial
and error. Normal subjects decompose the problem into a hierarchical sequence
of subgoals; patients with prefrontal lesions may have a specific impairment in
managing this subgoal hierachy.”” Auto-evaluation probably plays an important
role in the process of subgoal selection by permitting the elimination of moves
that diverge from the main goal. However, other components are also needed
which have not yet been incorporated in models. Most notably, how could a
hierarchy of goals and subgoals be represented within a neural network? And
how could neural activity progress through a sequence of goals with automatic
backtracking when errors or impasses are found? As our knowledge of prefrontal
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functions increases, these questions stand out as important unsolved problems
that will have to be addressed by theorists and neurobiologists alike.
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