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Humans can perform sequential and recursive computations,

as when calculating 23 � 74. However, this comes at a cost:

flexible computations are slow and effortful. We argue that this

competence involves serial chains of successive decisions,

each based on the accumulation of evidence up to a threshold

and forwarding the result to the subsequent step. Such serial

‘programs’ require a specific neurobiological architecture,

approximating the operation of a slow serial Turing machine.

We review recent progress in understanding how the brain

implements such multi-step decisions and briefly examine how

they might be realized in models of primate cortex.
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Introduction: Turing’s hunches and rational
machines
The mathematician Alan Turing made at least two semi-

nal contributions to computing. First, to help break the

German Enigma code, Turing designed a sequential

decision algorithm that consists in accumulating votes

for the different options and using a threshold criterion to

commit to a choice. This framework has become ubiqui-

tous in the psychology and neuroscience of decision

making [1,2]. Second, Turing formalized a sequential

computing device, the famous ‘Turing machine’.

Although Turing conceived it as an abstract model of

‘‘a man in the process of computing’’ [3], this idea met

with a strong resistance in the neuroscience community

and, to this day, is still considered the wrong metaphor for

brain-like computing. Part of this resistance is justified:

unlike Turing devices, the brain is largely parallel, plastic,
Please cite this article in press as: Dehaene S, Sigman M. From a single decision to a multi-ste

www.sciencedirect.com 
and computes over probability distributions rather than

discrete symbols [2]. However, as we review here, con-

scious rational thought and more generally the assembly

of multiple decisions into sequential routines might still

be approximated by a Turing machine. We argue that the

Turing view of serial computations provides a fruitful

first-order approximation of the role of a central executive

system in serial decision making and conscious thought.

From isolated decisions to mental programs:
the brain’s Turing machine
We have proposed a framework for the neural basis of

serial computations that puts together Turing’s two semi-

nal contributions [4,5�]. Our framework (Figure 1)

assumes that serial tasks (e.g. computing 23 � 14) are

assembled as sequences of elementary decision steps,

each involving a parallel competition between a subset

of ‘productions rules’, implemented by pools of neurons

that accumulate relevant evidence. When one of the

competing pools encoding a production reaches a

threshold, the race concludes and the production ignites.

The consequence of the phasic ignition of a production

might be an overt motor action, for instance moving the

eyes towards a target, but also a covert effect, transiently

changing the properties of a subset of cortical areas

through an addressing mechanism [6]. This is equivalent

to the action performed by a Turing machine in a single

step: if a given condition is verified in the current memory

state, it modifies the state of the memory, after which a

new cycle begins.

This theory supposes that the circuits for sensorimotor

decision making, instead of simply triggering motor

actions, have been co-opted to implement a broader if

– then logic. As noted by Shadlen et al. [7], ‘‘the 25 million
years of evolution between macaque and humans has probably
served to expand the cortical mantle in the service of this nested
intentional architecture . . . This seems far more likely to have
occurred than the evolution of brand new principles of neural
computation.’’

Here, we argue that the configuration of this process

requires a distinctive control mechanism that conveys

flexibility at the price of slow serial performance. Our

framework envisages human rational thought as a com-

bination of two elements: (1) A vast parallel machinery for

decision making by accumulation of multiple sources of

evidence, which contributes to intuitions, hunches, and a

very rapid ignition of relevant actions; and (2) a capacity to

link each of this decisions into ‘strategies’ or ‘programs’,

where the outputs of one decision become the inputs of

the subsequent decision, thus creating serial programs.
p algorithm, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.05.006
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A neurobiological framework for assembling serial decisions into a mental algorithm. (A) Alan Turing’s formal machine [3] implements programs as a

series of state-dependent conditional rewriting operations on an infinite tape. (B) The proposed framework for the neural basis of serial computations

brings together the Turing machine and the evidence-accumulation scheme [4,29�]. We propose a sequential/parallel device in which each step

involves the parallel competition between a subset of ‘productions rules’, implemented by pools of neurons that accumulate evidence up to a

threshold. Once a production attains a threshold, probability distributions are collapsed in a few symbols (mean, variance, confidence) and passed to

the next operation. The production can have overt effects (actions) as well as covert effects in modifying the state of the memory, after which a new

cycle begins. In this architecture, each elementary step represents a complex massively parallel process of inference resulting in a single decision.

Individual steps are analog in nature, but each is followed by a discretization step with a threshold. The latter mechanism provides control over the

propagation of noise in analog computation, a problem stressed by John Von Neumann in his 1958 book ‘The Computer and the Brain’ [94].
Two theories on how the brain implements
multiple decisions
Over the past years, Cisek, Kalaska, Shadlen and others

have argued in favor of a parallel decision framework, and

questioning the role of an executive system coordinating

decision making. Their argument rests on the following

observations. First, during a decision process, the same

neuron may, at different times, encode stimulus proper-

ties, a decision signal, or a motor response [8,9,10�]. This

argues in favor of distributed instead of centralized organ-

ization of decision variables. Second, when a monkey

faces opposite actions that will be resolved after a delay,

the monkey appears to prepare both movements simul-

taneously during the initial period of uncertainty, instead

of storing target locations in a general-purpose working

memory buffer [11].

However, we suggest that these data do not refute the

influence of a central executive in the decision process.

They merely argue against a naı̈ve box-and-arrow imple-

mentation. During a single decision, the transfer from

perception to decision and response is not strictly serial,

but rather involves parallel computations and continuous

flow [12] – a proposal with much support and a long

history [13,14]. We argue, however, that a central execu-

tive plays an inescapable role in information routing, task

setting, and task sequencing. This is manifest where

patients with lesions of the executive system are unable

to configure reliable decision paths [15,16]. Here we
Please cite this article in press as: Dehaene S, Sigman M. From a single decision to a multi-ste
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specifically review data on multiple decisions, which

consistently show that, whenever several decisions have

to be articulated, a slow sequential organization is

observed.

Evidence for serial operations in the human
brain
A classical psychological observation, the psychological
refractory period (PRP), illustrates the limits that human

brain architecture imposes on parallel processing. When a

human subject is asked to process two near-simultaneous

stimuli as fast as possible, a striking seriality emerges: one

stimulus is processed with no trace of interference, as if it

was presented in isolation, but the response to the second

is massively delayed, often by hundreds of milliseconds

[17,18�,19–21]. This delay is observed even when, in

principle, the stimuli and responses could be dealt with

by independent brain systems or even by two distinct

hemispheres [22,23]. It cannot be eliminated by training

[24–27], even after thousands of trials [28�], suggesting

that it reflects a structural bottleneck.

Response-time studies have refined the localization of the

bottleneck, suggesting that sensory and motor processes

can operate in parallel during the PRP, while a central

response selection stage establishes a serial bottleneck

[18�,19]. We have proposed that this bottleneck stage

coincides with the noisy accumulation-of-evidence pos-

tulated in drift-diffusion models of decision making [29�].
p algorithm, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.05.006
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This conclusion derives from the decomposition of

response times into decision and non-decision com-

ponents (see, e.g. ref. [30]). Only the experimental factors

that influenced both the mean and the variance of

response time (thus affecting the decision stage) also

caused a delay that propagates to a concurrent task (thus

affecting the central stage). In fact, the full, complex

distribution of response times in a dual task could be

explained by a model in which non-decision stages pro-

ceed in parallel, and only decision times are serially

convolved [29�].

In event-related potentials (ERPs), the dual-task bottle-

neck relates to a late decision-related component referred

as the P300. While subjects perform the first task, the

early components of the ERP evoked by a second target

T2 remain time-locked to T2 onset (and thus occur in

parallel to T1-evoked activity), but the P300 is consist-

ently delayed until after the T1 task is completed [23,31–
34]. Time-resolved functional MRI [35] similarly

indicates a delayed activation of a broad network in-

cluding parietal and lateral prefrontal cortex [23,27,36–
38]. This evidence is consistent with the proposal that in

humans at least, even two seemingly unrelated decisions

tie up a central executive or flexible routing system that is

shared between many tasks [39–41].

For more complex tasks, there may be an even longer

string of serial decision stages. For instance, when the

participant chooses which task to perform first, response-

time decomposition indicates a nested arrangement of

three stochastic decisions [42]: Which task should I do

first? What is the response to task 1? What is the response

to task 2?

At even longer time scales, we predict that, during com-

plex thought (e.g. mental calculation, internal speech,

etc.), brain activity should organize as a long series of

elementary decision steps. Because each step involves a

noisy accumulation of evidence up to a threshold, the

resulting activity should be dominated by noisy-triangular

waveforms (periods of drift-diffusion interrupted by

resets; Figure 1). Such activity may account for two

properties that characterize spontaneous brain activity

[43]: scale-free distribution (over a range of frequencies,

power is distributed as 1/fb, with b = 2 for a Brownian

diffusion process) and nested frequencies (in a triangular

wave, power in the high frequencies is concentrated at

specific phases of the lower frequencies).

Seriality and conscious control
Psychologists have long speculated that serial effortful

performance is associated with the deployment of strat-

egies that are consciously controllable and reportable

[44,45]. Indeed, the parieto-prefrontal network that is

tied during dual tasking overlaps strongly with the ‘global

neuronal workspace’ postulated to underlie conscious
Please cite this article in press as: Dehaene S, Sigman M. From a single decision to a multi-ste
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reportability [46�]. Furthermore, the mechanisms that

lead to the postponement of the second task during

the PRP are very similar to those that lead to the loss

of conscious reportability during the attentional blink

(AB) [[34], see also [38]]. In both cases, attending to a

first target interferes with the central processing of a

second one – in the PRP, by slowing it, and in the AB,

by preventing it entirely. In both cases, early perceptual

processing stages are intact, and only a late (>300 ms)

stage is affected [34,47–50].

PRP and AB effects can even occur on intermingled trials

of the same tasks [34,51], and the same variables are at

play – for instance, slowing down the central stage of task

1 increases both the PRP and the AB [52,53]. Even the

mere perception of an unexpected event [54] or the

simple fact of becoming aware of a letter [55�], is suffi-

cient to tie up central resources and create an attentional

blink for an immediately subsequent stimulus.

If the central decision stage that is tied during serial

processing underlies consciously reportability, then it fol-

lows that, during the dual-task delay, the second stimulus

whose processing is postponed is not consciously perceived

until it is centrally processed. This prediction was success-

fully tested [56,57]. During the PRP, human participants

are capable of faithfully reporting their first response time,

but not their second, nor even exactly when the second

stimulus was presented [56]. This demonstrates that a tight

relationship exists between central decisions and conscious

reportability. It offers a potential explanation for why serial

strategies require conscious perception (Figure 2; [58�,59]),

and why we can accurately report our multi-step strategies,

intermediate steps and subgoals, but not how we take an

individual decision [45].

Chaining: a missing link
Of particular importance for building a mental program is

the capacity to ‘chain’ operations, such that the output of

the first one becomes the input to the second. Chaining is

an understudied yet essential operation. It implies a

flexible neural architecture for ‘routing’ information

across any two brain processors, which is likely to involve

prefrontal cortex [40,41,60,61].

Using behavioral response-time measurements, Fan et al.
[62] demonstrated that in humans, even for identical

tasks, stimuli and responses, chained operations are

slower than independent operations by 60–70 ms. Thus,

chaining corresponds to a measurable processing stage

[see also [63]].

Two monkey electrophysiology studies suggest one

possible mechanism for chaining: the maintenance

of sustained activity in a relevant subset of neurons.

Yang and Shadlen [64��] trained monkeys to make a

saccade according to the total evidence provided by four
p algorithm, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.05.006
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Figure 2

Accumulated
evidence

x10-14
x 10-13

1.4

1.2

HV

0 ms:
arrow 1

(a)

(b)

300 ms:
arrow 2

600 ms:
arrow 3

900 ms:
arrow 4

1200 ms:
arrow 5

Time

...

...

mask:
100 ms

arrow:
16.7 ms

LV

0.8

F
ie

ld
 s

tr
en

gt
h 

(T
)

0.6

0.4

0.2

0
0 0.3 0.6 0.9

Time (s)
1.2 1.5

1

1

0.5

-0.5

-1

0

5
4
3
2
1
0

Current Opinion in Neurobiology

A complex sequential decision task in humans. De Lange et al. [58�,59] asked humans to click left or right, according to the sum of evidence provided

by five successive arrows, each of which could point left or right. The arrows could be masked down to near-invisibility (LV = low visibility), or they

could be unmasked (HV = high visibility; panel A, from ref. [58�]). Behavioral findings revealed that, in both cases, decisions were based on an

accumulation of the total evidence: subjects were increasingly fast and accurate as the number of arrows pointing to one side increased. Interestingly,

when the arrows were visible, humans deployed a rational strategy of progressively lowering their attention as their running count of arrows increased,

resulting in a decreasing amount of bilateral parietal activity with increasing evidence (panel B, from ref. [59]). When the arrows were masked, the

participants no longer deployed this rational strategy, although their responses remained affected by an unconscious accumulation of evidence [58�].

The results suggest that conscious executive control may be needed to advance through a multi-step serial program [see also [63]].
successive shapes (Figure 3). After each shape, the firing

of LIP neurons was incremented or decremented by a

roughly appropriate amount, suggesting that these

neurons maintained a running count up to the final

decision period (see Figure 2 for a similar task in

humans). In the second study, capitalizing on previous

demonstrations of serial curve tracing in human and non-

human primates [65–68]. Moro et al. [69��] trained maca-

que monkeys in serial ‘search-then-trace’ and ‘trace-

then-search’ tasks. Participants had to alternate between

curve tracing and searching for a dot whose color matched

the one found at a previous point (Figure 4). This series

of purely mental operations was detectable as a sequence

of precisely timed moments of amplified firing at the

appropriate V1 locations [69��]. Thus, although retino-

topic cortex is usually associated with early feedforward

processing, it can also be recruited in a top-down manner

during visual decisions [6,67,70,71] and maintain, via its

sustained activity, a pointer to the current step in a series

of decisions [69��].
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Approximate seriality in a parallel brain
Unlike a digital computer, the brain only implements an

approximate form of seriality. Not only do a variety of

automatized perceptual and motor operations operate in

parallel, but even central decisions may be occasionally

subject to partial time sharing [72]. During the PRP, the

response to the second item may interfere with the first,

suggesting the presence of ‘cross-talk’ [22,23]. During

curve tracing, the successive stages of amplification may

partially overlap in visual cortex [69��]. During serial

arithmetic, participants may start the second operation

before finishing the first [63]. A decision may also con-

tinue after the motor response has been emitted [73],

leading to error detection and ‘change of mind’ [74��].

The human capacity for error detection and confidence

monitoring suggests that even during a single decision,

parallel hierarchical routes accumulate evidence at both

motor and supra-motor levels [75]. In particular, the

frontopolar cortex appears to implement a higher-order
p algorithm, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.05.006
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A complex sequential decision task in monkeys. Yang and Shadlen [64��] trained monkeys to decide between a red and a green target. The task

required summing the evidence provided by four successive shape cues of variable strength. Behavior and single-cell recordings in LIP revealed a

prolonged phase of serial decision making associated with accumulation of the total evidence. The sustained firing of LIP neurons tracked the

evidence accumulated to date at each time step. In the two example trials presented in panels B and C, the firing rate of an individual LIP neuron

(spikes) can be seen to roughly covary with the total amount of evidence objectively provided by the successive shapes (blue square curve).

Figure 4
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Evidence for serial operations in monkey area V1 [adapted from ref. [69��]]. Macaque monkeys were trained to perform a sequential task requiring

successive covert operations of curve tracing and color search, in variable order, before making one saccade to the final target location. The left panel

exemplifies a difficult ‘trace then search’ trial, the right panel a ‘search then trace’ trial. Below each trial type, curves show, as a function of time, the

best-fitting solution of a mathematical model of the experimentally observed normalized multi-unit activity (arbitrary units; see ref. 69 for detailed

methods). Gray: initial stimulus-induced response; Blue and red, additional response modulations observed when the traced curve (blue) or the

searched color (red) fell inside the neuron’s receptive field. V1 neurons whose receptive fields fell on the relevant path showed temporally ordered

phases of amplification of neuronal activity, faithfully reflecting the order of the corresponding mental operations.
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meta-cognitive device that operates in parallel to the

current decision, monitoring its success [76��] and con-

trolling the switch to subsequent steps [77–80].

Where is the program? Neural mechanisms
for coordinating multiple operations
The precise mechanism by which the executive system

organizes serial decisions remains unknown. We empha-

size that we do not advocate a homunculus or any dedi-

cated localized structure that will perform such a role. As a

first step to understand how executive control is deployed

over many parallel cortical processors, we modeled how a

network of spiking neurons could implement a sequence

of two independent tasks (Figure 4) [5�]. In the model,

seriality in dual-task performance results as a con-

sequence of inhibition within the control networks that

impose a precise routing of information flow. The same

structure that avoids spontaneous responses, persevera-

tion, erroneous mappings, or responses to irrelevant

stimuli results in a slow and serial sequencing of responses

in dual tasks. Multiple sources of evidence are encoded in

parallel and sustained transiently in meta-stable memory

buffers. However, the ignition of productions that triggers

the responses is strictly sequential and slow (�300 ms

duration). This time constant is a consequence of the

characteristic times of NMDA receptors and recurrent

cortical circuits. Our architecture accounts in great quan-

titative detail for error patterns, response time distri-

butions and brain activity patterns in a wide range of

interference experiments such as iconic memory decay

[81], masking [82], attentional blink [47,83] and psycho-

logical refractory period [19,37].

Concluding remarks
How the architecture of the brain supports multi-step

operations remains largely unexplored. We conclude by

pointing to two prominent challenges for further research.

First, dissecting the electrophysiological mechanisms of

seriality is hindered by the intrinsic difficulty of training

non-human primates in complex multi-step tasks.

Indeed, such tasks tap rostral and mesial prefrontal cor-

tical systems [77,84�] that are more expanded and con-

nected in the human brain than in other primates [85–87].

Nevertheless, simplified animal models of human

sequencing abilities can be developed and illuminate

the neural coding of task sequences [88�,89,90��,91,92].

Second, the brain may host serial programs, but not a

programmer. The Turing-machine metaphor for the

brain clearly breaks down here. Modeling studies are

required in order to develop an understanding of how

task-relevant sequences are assembled in prefrontal cor-

tex, either by self-organization, through reward-based

learning algorithms [40,93], or through linguistic instruc-

tions in humans [60].
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