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The psychophysics of numerical comparison:
A reexamination of apparently incompatible data

STANISLAS DEHAENE
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Reaction-time studies of numerical comparison have used essentially two paradigms: classifi-
cation, in which a target number must be labelled “larger” or “smaller” in comparison to a fixed
standard, and selection, in which the larger (or smaller) number of a pair must be picked out.
In previous studies, classification has yielded only a distance effect in RTs, whereas selection
has also revealed magnitude (or minimuem) and congruity effects. We used two experiments with
two-digit number comparisons to find the reason for this discrepancy. In Experiment 1, we used
a variant of the classification task with the standard changing on each trial. RTs increased along
with the standard for “smaller” responses and decreased along with the standard for “larger”
responses, in a manner reminiscent of magnitude and congruity effects. In Experiment 2, we again
used classification, but the fixed standard 75 was not at the center of the range of target num-
bers (20, 21, ... 99). Close to the standard, RTs were faster for “larger” than for “smaller” responses,
again a congruity effect. Our data show that magnitude and congruity effects can be obtained
with two-digit numbers in classification as well as in selection tasks. A single equation, which
implies that numbers are compared with respect to reference points at both ends of the continuum,

describes the results from both tasks.

We have little insight into the algorithm that enables
us to compare two objects. In information processing ac-
counts, the ““comparator’” usually appears as a little black
box whose performance is not open to analysis. The idea
that comparison is an atomic operation is partly rooted
in the computer metaphor of the mind. Designers of com-
puters have found it useful to implement comparison as
one of the fastest and the most elementary of operations.
But, is our ability to compare actually a primitive opera-
tion of the brain, or can it be broken down into smaller
parts?

In the last 20 years, some careful experiments have
challenged the atomicity of comparison—in particular, nu-
merical comparison, Obviously, the manipulation of num-
bers is a cognitive process; yet in comparison tasks, digits
(Mover & Landauer, 1967; Restle, 1970} as well as two-
digit numbers (Dehaene, Dupoux, & Mehler, 1989, Hin-
richs, Yurko, & Hu, 1981) appear to be represented in
an analogical, perceptual-like fashion. However, unlike
perceptual processes, the numerical system has the im-
portant property of being symbolic, and thus unambigu-
ous: the effects found cannot be attributed to peripheral
factors such as noise, masking, thresholds, and so forth.

I gratefully acknowledge the constant support of Emmanue] Dupoux,
Peter Jusceyk, and Jacques Mehler during this research. Jean-Luc
Aucouturier and Susana Frank provided technical help. Two anonymous
reviewers made helpful comments, This work was supported by grants
from the CMES (ASP Processus cognitifs en jev dans la production ct
la compréhension du langage) and the Fondation pour la Recherche
Médicale. Address reprint requests o Stanislas Dehaene, Laboratoire
de Sciences Cognitives et Psycholinguistique, 54 Bd Raspal, 75270 Paris
Cédex (M, France.

357

In contrast to many cognitive processes, numerical com-
parison is formally simple, and it has been unambiguously
defined. This is not the case, for example, in the com-
parison of the size of objects designated by their names
{(Holyoak, 1977; Kosslyn, Murphy, Bemesderfer, & Fein-
stein 1977; Moyer, 1973).

Essentially, rwo tasks have been used to study numeri-
cal comparison. They will hereafter be referred to as
selecrion and classification. In selection, two numbers are
presented visually, and the subject has to press one of two
keys to indicate which number is the larger (or the
smaller). In classification, a single target number is
presented, and the subject indicates with one of two
response keys whether it is larger or smaller than a stan-
dard of reference. The numerical standard is usually stored
in memory throughout the experiment.

In both tasks, response latencies decrease as the dis-
tance that separates the items to be compared increases.
This pattern of response is called the disrance effect. First
discovered in the case of digits by Moyer and Landauer
(1967), it has been reproduced by several experimenters
(e.g., Banks, Fujii, & Kayra-Stuart, 1976; Buckley &
Gillman, 1974; Parkman, 1971; Sekuler & Mierkiewicz,
1977; Sekuler, Rubin, & Armstrong, 1971). In fact, the
distance effect appears not only in the comparison of
digits, but also with all sorts of materials: two-digit num-
bers (Dehaene et al., 1989; Hinrichs et al., 1981; see also
Restle, 1970), bars of varying length (Johnson, 1939),
dot arrays compared for numerosity (Buckley & Gillman,
1974), objects compared for size (Holyoak 1977; Koss-
lyn et al., 1977; Moyer, 1973), and still others. With
numbers, reaction times (RTs) have often been found to
be proportional to the logarithm of distance (log D func-
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tion). However, there has been an occasional report of
a linear distance effect (Sekuler & Mierkiewicz, 1977).

In agreement with the apparent similarity of classifica-
tion and selection, the distance effect is invariably found
in both types of tasks. Surprisingly, however, the anal-
ogy berween the two tasks appears to stop there. Two
other effects have been found in selection and have not
been reported in classification. One is the minimum ef-
fect (Banks et al., 1976; Buckley & Gillman, 1974; Park-
man, 1971): for equal distance, comparison times vary
with the lesser of the two numbers. The term “*minimum
effect’” is rather misleading, because when distance is kept
constant, the minimum and maximum are perfectly cor-
related, and the minimum effect could thus just as well
be termed the **maximum effect.”” To avoid this difficulty,
the term magnitude effect is used throughout this paper.
For equal distance, the finding is indeed an effect of the
magnitude of both operands.

The magnitude effect is often described as a linear re-
lation of RTs and the minimum of the digits. However,
some descriptions of comparison times include a logarith-
mic term for it. This is the case with the Welford (1960)
function

L
RT o log ;—5 (1)

{where L and § are respectively the larger and the smaller
of the digits to be compared), which has been used to
describe data from psychophysical and numerical com-
parison tasks (Moyer & Landauer, 1967). This function
includes, in addition to the logarithmic distance effect,
a magnitude effect in the form of a logarithmic relation
of RTs to the larger digit.

The other effect found in selection tasks is the congruity
effect (Banks et al., 1976). In its purest form (the cross-
over effect), the effect is simply that responses are faster
when internal and response codes are congruent; thus,
large digits (say, 7 and 9) are compared faster in the
**choose larger’” condition than in the “‘choose smaller””
condition, and the reverse is true for small digits (say,
2 and 4). In general, the congruity effect is superimposed
on top of other effects (for example, the fact that the
“*choose smaller” condition is often slower than the
**choose larger”” condition). This may preclude a full
crossover effect. In this case, the congruity effect may
take only a funnel form and appear as an interaction be-
tween the instructions used (to choose the larger or to
choose the smaller) and the magnimde of the operands.
The effect has been reported with a diversity of materi-
als (e.g., by Audley & Wallis, 1964, and Jamieson &
Petrusic, 1975).

Very few studies, if any, have contained reports of mag-
nitude or congruity effects in classification. The typical
RT curve in a classification task is a fairly symmetrical
logarithmic function of distasice (Dehaene et al., 1989;
Hinrichs et al., 1981). Thus it is not the case, as the

magnitude effect seems to imply, that at equal target/
standard distances, ‘*smaller’” responses are faster than
*‘larger’” ones. For instance, in classification with Stan-
dard 5, Targets 3 and 7 are responded to at about the same
speed; yet in a “*choose smaller’” selection task, (3, 5)
is faster than (5, 7). In other words, the Welford func-
tion, with its implicit term for the magnitude effect, is
always a worse predictor of classification times than is
a simple log D function (Dehaene et al., 1989; Hinrichs
et al., 1981).

There is no report of a congruity effect in classifica-
tion either. However, it is not clear what the congruity
effect would look like in a classification task. To test the
influence of congnuty implies the examination of the same
stimuli under two different conditions of response. Yet
in classification with a fixed standard, a given number
always elicits the same response—either ‘‘larger™ or
**smaller'’—depending on its position with respect to the
standard. Thus, this paradigm may not offer an opporm-
nity to assess congruity.

The aim in this paper is to find connections between
selection and classification tasks, despite their apparent
dissimilarity. First, two experiments are described. They
represent slight departures from the standard classifica-
tion paradigm. A few modifications of the standard proce-
dure will permit reproduction of magnitude and congruity
effects within classification. I shall then wrn to theoreti-
cal models of numerical comparison, to see whether any
of them predicts or explains the results.

EXPERIMENT 1

The discrepancy berween the results of experiments with
classification and those of experiments with selection tasks
may stem from a difference in the sampling of stimulus
space. In selection, all possible couples of stimuli (e.g.,
digits) are usually proposed for comparison. In contrast,
in classification, the standard of comparison is usually
fixed throughout the experiment, thus severely restrict-
ing which couples of numbers can be tested. Such a de-
sign is useful with two-digit numbers for instance, in
which case it would be impractical to test all couples of
stimuli. Nevertheless, it has one shortcoming: within one
set of responses (e.g., ‘‘larger’” responses), magnitude
and distance are perfectly correlated. An intuitive way
to express this is to note that in classification, “‘large”
numbers always receive a *‘larger’’ response, and “‘small"™”
numbers a “*smaller’’ response. There is no room for the
congruity effect if targets and responses are always con-
gruent. However, were one to separate the two factors,
would magnitude and congruity effects emerge? In Ex-
periment 1, a possible way to make targets and responses
incongruent in classification is examined. A variable-
standard classification procedure is used: a new standard
of comparison is presented before each trial. Possible stan-
dards span the 35-73 imterval. Thus some operands, like
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37 with Standard 35, are small even though the correct
response is “‘larger.”” A congruity effect may be expected
in such conditions,

Method

Procedure, A random list of two-digit standards and targets was
constituted for each trial. The standards were chosen from the num-
bers 35, 45, 55, 65, and 75. For each standard, all the numbers
at a distance of 24 and under were presented as targets. Thus, each
list contained 240 different couples (standard/target) that were
presented once, plus an initial training list of 20 couples. Each list
was controlled so that the same target did not appear twice in a
row. The order of the standards was fully random.

The temporal presentation of the stimuli was as follows: After
a L,500-msec blank, an empty frame appeared at the center of the
screen, together with the standard. One group of subjects viewed
the standard above the frame throughout the experiment, while the
other group viewed it under the frame. After 400 msec, a target
numbser appeared in the frame. Meither the frame nor the standard
was erased, The subject's response was then recorded via two Morse
keys with a 1-msec precision, over a period of 1,500 msec. The
whaole display disappeared 2,000 msec after the target first appeared,
and a new testing cycle began. The presentation rate was thus one
test couple every 3,900 msec. The whole experiment lasted less
than 20 min.

Subjects. Twenty right-handed French students, aged between
18 and 30, were tested individually. All were naive in numerical
comparison tasks. Ten subjects viewed the standard above the frame,
the other 10 under it.

Instructions. The subjects were told that they would see a frame
with a two-digit number (35, 45, 55, 65, or 75) figuring above or
below it. After some tme, another two-digit number would appear
inside the frame. The subjects were told to press the right-hand but-
ton if the number in the frame was larger than the one above or
below, and the lefi-hand button if it was smaller. The instructions
emphasized the need to answer fast while avoiding errors,

Results

Distance effect. No effect of the position of the stan-
dard’s being above or below the frame was found. Ac-
cordingly, the two groups of subjects were mixed. The
data were averaged across subjects for each value of tar-
get and standard. The resulting RT curves for each stan-
dard are shown in Figure 1. In all 10 cases, RTs decreased
significantly (p < .001) as the absolute difference be-
tween target and standard decreased (distance effect). The
overall correlation with log D, the natural logarithm of
this difference, reached r = —.95 (p < .001). Emmors
followed the same tendency (r = —.56, p < .01).

Influence of units. The difference between the ob-
served RT and the mean RT of the decade was computed
for each target number outside the decade of the standard.
Difference scores for targets ending with the same ones
digit were then averaged together, separately for “*larger™
and *‘smaller’” responses. Finally, to reduce variability,
the curve for “*larger’’ responses was combined with the
curve for “‘smaller”” responses by means of averaging
together RTs corresponding to symmetrical ones digits:
RT (1, larger) with RT (9, smaller); RT (2, larger) with
RT (8, smaller); and so forth. The resulting units curve

559

presented a significant increase with the ones digits
{r = .87, p < .005). Thus there was a substantial con-
tribution of units within decades to the distance effect.

Magnitude and congruity effects. An analysis of vani-
ance on the subjects’ mean RTs was performed with
standard and response type (*'larger’” or “‘smaller’’) as
within-subject factors. The ANOVA revealed a margin-
ally significant influence of standard (F = 2.51,p < .05)
and a considerable interaction between standard and re-
sponse type (F = 13.0, p < .001), but no influence of
response type per se. The means for each condition are
plotted in Figure 2. It can be seen that when the subjects
responded **smaller,”” the RTs increased regularly along
with the standard. When they responded *‘larger,”” the
RTs decreased along with the standard. It is also clear
that *‘larger’’ RTs changed less along with the standard
than did “*smaller”” RTs. This was assessed statistically
by computing the absolute values of the slopes of evolu-
tion of the mean RTs along with the standard, separately
for “‘larger’” and *‘smaller’’ responses and for each sub-
ject. The slopes for *‘larger’” responses were significantly
smaller than those for ‘‘smaller’” responses on both a
ttest (p < .03) and a Wilcoxon test (p < .04).

In order to study whether the magnitude of the distance
effect varied with standard and response type in a fashion
similar to the mean RTs, slopes of regression with log
D were computed for each subject in each of the 10 con-
ditions, and they were submitted to the same analysis of
variance as above. No significant results were observed.
There was a trend toward an interaction between stan-
dard and the response given (F = 2.09, p < .10). There
was also a tendency for ““larger’” responses to vield lesser
siopes (median 57.0) than *“*smaller’’ responses (median
77.8). This tendency was marginally significant when
separate regression analyses with log D were performed
on the raw data for ““larger’” and *‘smaller”” responses
i{the slopes were 81.1 for “‘smaller’ and 68.0 for
“larger’’; p < .10, two-tailed).

Finally, to provide results directly comparable with
those from selection tasks, the target-standard couples that
were tested twice under different response conditions were
examined. For a target-standard distance of 10, these are
the couples 35-45, 45-55, 55-65, and 65-75. The differ-
ences between “‘smaller’” and “*larger’” response times
for each of these couples are, respectively, 0, 41, 57, and
105 msec. For a target-standard distance of 20 (Couples
35-33, 45-65, and 55-75), the corresponding differences
are —17, 5, and 10 msec. In both cases, the difference
increases with the magnitude of the operands. This is a
congruity effect in a funnel form for split 10 couples, and
a crossover form for split 20 couples.

Discussion

Experiment | enables us to compare the results obtained
in selection and classification tasks. First, the distance ef-
fect is reproduced in detail. The correlation of RTs with
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Figure 1. RTs to compare two-digit target numbers in the variable-standard classification tasks of Experiment 1. RTs are plotied
as a function of target number, separately for each standard. The model fitted to the data is given by Equations 4a and 4b.

log D is good in all 10 cases. The significant influence
on RTs of units within decades confirms the earlier find-
ing (Dehaene et al., 1989; Hinrichs et al., 1981) that two-
digit numbers are not compared lexicographically (first
by decades, then by units when decades do not suffice
to conclude), but rather holistically (the whole quantities
that the two numbers represent are compared).
Second, varying the standard enabled us to discover,
in a two-digit number classification task, two effects that
had previously only been found in selection tasks with sin-
gle digits. The magnitude effect appears as a significant
influence of standard on the time to respond **smaller”’
or ““larger.”” For *‘larger”” responses, RTs decrease along
with the standard; for ““smaller™ responses, they increase

along with the standard. This interaction of response type
and magnitude reveals the congruity effect: large num-
bers receive a “‘larger’” response faster than a “*smaller™”
response; the opposite is true for small numbers. The con-
gruity is also found in a form directly comparable to that
for selection tasks; some couples received both a ““larger™”
and a “*smaller”’ response, depending on which number
in the couple played the role of the standard. With these
couples, and for equal target-standard distances, we have
found that the larger the magnitude of the numbers, the
faster the “‘larger’” response relative to the “‘smaller”
response—again, a congruity effect.

Before examining models for these findings, we have
to answer one question: Why were magnitude and con-
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Figure 2. Mean comparison times a5 a function of standard for
larger and smaller responses in Experiment 1.

gruity effects found in a variable-standard classification
task, but not in classification with a fixed standard? The
simplest reply is that the effects were already present with
a fixed standard, but that the particular choice of stan-
dard rendered them obscure. Commonly, in classification
with a fixed standard, targets are distributed symmetri-
cally around the standard. For instance, Dehaene (1989)
and Hinrichs et al. (1981) both chose a standard of 55,
presumably because 53 stands precisely at the middle of
two-digit numbers. Consider the comparison times with
Standard 55 in Figure 1. They look fairly symmetrical
when seen in isolation, as compared to the curves with
Standard 75, for instance. The symmetry seems to stem
from the particular position of 55 at the center of the range
of targets tested. Around the center, the congruity effect
cancels out, since no bias for *‘larger”” or “‘smaller”’
responses is perceptible. This argument leaves open the
possibility that with an asymmetrical range of targets,
a congruity effect should emerge even in classification
with a fixed standard. This possibility was tested in
Experiment 2.

EXPERIMENT 2

In Experiment 2, the subjects were asked to compare
a list of targets with a fixed standard of 75. “*Larger™
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Figure 3. RTs to compare a two-digit turget number to 75 in
Experiment 2. Two independent regressions with log D are plotted.

and “‘smaller’’ responses were equiprobable, but target
numbers were drawn from the interval (20, 21, ... 99).
Thus, the standard was much closer to the larger extreme
of the range of targets (99) than to the smaller extreme
{20). Accordingly, the subjects were expected to bias their
judgments toward the congruent, “*larger”” response. Al-
ternatively, the variable-standard task of Experiment 1
may have induced qualitatively different processes that
are not normally used in classical comparison with a fixed
standard. If this is true, then no congruity effect should
be found in Experiment 2,

Method

Subjects and instructions. Five members of the Laboratoire de
Sciences Cognitives et Psycholinguistique were tested individually,
Their ages ranged from 22 to 34. They were told that they would
see a list of two-digit numbers, ranging from 20 to 99, to be com-
parcd to 75. They had to respond as fast as possible by pressing
the right-hand response key if the target was larger than 75, and
the left-hand key if it was smaller than 75.

Procedure, The same apparatus as in Experdment 1 was used.
First an empty frame appeared at the center of the screen for
300 msec, Then the target appeared in the frame, and responses
were recorded during the next 1,300 msec. Finally, %) msec of
biank screen preceded the next trial.

A random list, starting with 15 training trials, was made up for
each subject. In the list, numbers from 20 to 74 appeared three times
each, mumbers from 76 to 99 seven times each. This ensured the
equiprobability of *“larger'” and **smaller’’ responses. The order
of the targets was random, with the constraint that the same target
was never presented twice in a row. The list contained a total of
348 items. The experiment lasted less than 20 min.

Results and Discussion

Correct RTs were averaged for each target across sub-
jects and trials to yield the RT curve of Figure 3. Two
regressions of RTs with log D were performed separately
for “*smaller’ and “*larger”’ responses (Table 1). Both
regressions were extremely good (the values of r* were
86.8% and 83.1%, respectively). The predicted RTs to
Points 20 and 99 were not significantly different, but the
predicted RT to Point 74 was significantly slower than
to 76 (p < .001). The direction of the difference is com-
patible with a congruity effect.’ The slopes of regression
were also significantly different (p < .002): as in Ex-
periment 1, the slope for **smaller’” responses was steeper
than the slope for “‘larger’” responses.

The results of Experiment 2 with a fixed standard thus
replicate those obtained with Standard 75 in the variable-
standard condition of Experiment | (compare Figure 1,
Standard 75, with Figure 3). It was demonstrated that
congruity effects can be obtained in a classification task
with a fixed standard. A unified description of data from
selection and classification tasks now seems within reach.
This will be the goal of the next section,

EQUATIONS FOR
NUMERICAL COMPARISON

To understand the comparison of numbers, several facts
should be considered. First, in Experiments 1 and 2 we
found a continuous distance effect, with a significant in-
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Table 1
Regression Analyses of Reaction Times in Experiment 2

Condition _ Slope  r*  SEE _ RT(Dmax)  RT(Dmin)
Regressions with Log | Target — Standard |
Target < 75  —58 H6.8% 20 384 616
Target > 75 —42 83.1% 16 397 530
Regressions with Log | Log(Target) — Log(Standard) |
Target < 75 =50 86.0% 21 375 602
Target > 75  —44 B2.9% 16 396 531

Note—SEE = Standard Error of Estimate (in msec). RT(Dmax) is the predicted RT in response
to 20 when the target < 75, to 99 when the target > 75, RT{Dmin) is the predicted RT in response
10 74 when the target < 75, o 76 when the target > 75.

fluence of units within decades. We (Dehaene et al., 1989)
and others (Hinrichs et al., 1981) have already argued that
such data naturally point towards an analogical encoding,
In comparison tasks, the magnitude of numbers appears
to be represented on a continuum that conserves neigh-
borhood relationships, a mental map called the number
line (Restle, 1970). Comparison operations reveal an in-
ternal psychophysics (Moyer, 1973) that bears some
similarity to the psychophysics of other, more perceptual
comparison tasks.

Second, we have already noted that the position of the
comparison standard with respect to the extremities of the
range of targets has a considerable effect on RTs. When
the standard comes closer to the “‘larger’’ extreme, for
instance, “‘larger’’ responses bécome faster and faster.
In our results, the congruity effect seems to reduce to an
effect of the distance separating the standard from the ex-
tremes of the continuum. '

Analogical encoding and the influence of distance from
extreme points are the two characteristic features of the
comparison model proposed by Jamieson and Petrusic
{1975). This model, which we will now examine in de-
tail, was proposed to account for data from selection
paradigms. It will be our task to adapt it to fit data from
the classification paradigms as well.

The Discriminability Model

In selection paradigms, subjects have to choose the
larger (or smaller) of two digits. Jamieson and Petrusic
{1975) suppose that instructions such as “‘choose larger™
induce the choice of a reference point at the correspond-
ing extreme of the contimmum. In their model, the two
operands are never compared directly. Rather, the rela-
tive distances of their representations from the reference
point are compared. The model is named a discrimina-
bility model because it supposes that the same internal dis~
tance between two objects is more discriminable when the
objects are close to a reference point than when they are
far from it.

Consider, for example, the comparison of 510 6 in a
“‘choose larger'’ selection task. According to the dis-
criminability model, the two operands are first encoded
on the number line at locations 5(5) and s(6). The subject
then sets a reference point at the *“larger’” extreme of the

continuam. If only digits are compared, this “‘anchor™
may be set around £(9). The subject then responds by com-
paring 5(9) —s(5) to 5(9) —s(6), in other words by choos-
ing the number closest to the reference point. Jamieson
and Petrusic (1975) assume that reaction time is a func-
tion of the ratio of the two distances. Their model may
be summarized by the following equation:

Sref —'ix] ) (2)

Sret—5(Y)

where F 15 some function increasing on (0,1) and verify-
ing Fx) = F{1/x) for logical consistency, and sy is the
location of the reference point, which varies according
to whether the instructions specify “*choose larger™ or
““choose smaller.”™

RTsetectionlx,¥) = F(‘

Extending the Model to Classification Tasks

The discriminability model applies correctly to selec-
tion tasks, but also to tasks that involve choosing which
of two points is closer to a third (Holyoak, 1978; Holyoak
& Mah, 1982). How can this model be extended to ac-
count for classification data? In classification, the two
types of responses (*‘larger’” and “‘smaller’) are present.
But Jamieson and Petrusic assume that each type of re-
sponse stems from a comparison with a different refer-
ence point. Thus, the only way that their model may be
extended to classification with a fixed standard is by as-
suming the simultaneous use of two reference points. Sub-
jects should simultanecusly compare the relative distances
of the standard and the target both from the “*larger’’ and
the “*smaller’” extremes of the continuum. They should
respond according 1o the reference point closer to the tar-
get than to the standard. If this view is correct, reaction
times can be predicted by two equations:

Smax —5(x)
g e e ) (a)

RT (x > standard) = F[l

and

B Smin—S() ]

RT (x < standard) = F (I;—m_m ! D
Where Smax and Smis are the two reference points on the
continuum. :
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Fitness of the Model

It seems very unlikely that in a task as simple as nu-
merical comparison with a fixed standard, two reference
points are used. The discriminability model implies that
four analogical distances are computed. This is a very un-
economical assumption indeed. Nevertheless, the match
between the model and the data is excellent. Equations
3a and 3b successfully predict that if the standard varies
in a classification task, then effects similar to those found
with selection should be observed. This was verified in
Experiment 1. Equation 3a further predicts that for equal
target-standard distances, the tme taken to respond
“larger" should decrease with the standard, since the
same distance becomes more and more discriminable with
respect to the *“larger”” reference point. Similarly, the time
taken to respond *‘smaller”” should increase with the stan-
dard (Equation 3b). These predictions are nicely upheld
in Experiment 1. The model presupposes that there are
no fundamental differences in comparison tasks with a
fixed or variable standard, as Experiment 2 demonstrated.
Finally, the equations imply that when the target coin-
cides with a reference point, RT should be minimal and
independent of the standard. Indeed. RTs to 21 (respec-
tively 20) and to 99 do not differ either in Experiment 1
or in Experiment 2.2 _

The data in Experiment | further constrain Equations
3a and 3b. In Experiment 1, RTs decreased logarithmi-
cally along with the distance between target and standard,
independently of the standard: the distance effect and the
effects of standard and response were essentially additive.
It can be shown that these constraints suffice to uniquely
determine the function F in the discriminability model.
The following equations for classification times then
replace Equations 3a and 3b:

RT(x > standard)
#ix) —s(standard)

= a log |SW i 1'_;' + b (4a)
and
RTix < standard)
_ #ix) —s(standard)
Iy F.Smin"‘.!-'{m.dﬂl'd]1 8 .

Similarly, for selection times, the equation correspond-
ing 10 Equation 2 is
RT:clecrionl(X,¥)

_ sw=sly)
Max (| Sres—5(x) |, | Scet—5(¥) )

= alog | | +& (5
where s.r is the location of the reference point, which
will coincide with Smy; if the task is *“choose larger,” and
with Smin if it is “‘choose smaller.”” Note that this equa-
tion reduces to the Welford (1960) function when the

reference point is zero. Thus, it is appropriate to call it
a generalized Welford function.

Equations 4a and 4b were fitted to the data of Experi-
ment 1, using a least-square algorithm. Measures of good-
ness of fit did not vary greatly with the values of 55, and
Smax, 35 long as they stayed sufficiently close to 5(11) and
£{99); so the latter values were used throughout. A first
regression was performed, assuming a linear encoding of
nmumbers on the continuum (5 = identity function). A two-
parameter regression imposing equal slopes and intercepts
in Equations 4a and 4b accounted for 53% of the vari-
ance of the 240 data points, as compared to 42% for a
simple log D model. A slightly better fit was obtained by
allowing for different slopes and intercepts in Equations
4a and 4b. The intercepts did not differ, but the slopes
were significantly different for ““larger’” and *‘smaller™”
responses, thus agreeing with the experimental obser-
vation that mean RTs vary less with the standard for
“larger"” than for **smaller’” response (see Figure 2). The
model with three adjustable parameters (two slopes and
one intercept) accounted for 56% of the variance, a con-
siderable figure given that 240 data points were fitted and
that each point is an average of only 20 measures (1 per
subject). The corresponding best-fitting curves are plotted
on Figure 1.

Reintroducing Fechner's Law

The asymmetry in the slopes found in Experiments 1
and 2 suggests that at an equal numerical distance from
the extremes, a number is internally less distant from the
“larger’” extreme than from the “*smaller’” one. This is
reminiscent of Fechner's law, which states that distances
are internally compressed. Indeed, hypothesizing a loga-
rithmic internal encoding (s = log function) slightly im-
proves the proportion of the variance accounted for in Ex-
periment 1 (54.2% with only two free parameters). It also
avoids the unjustified hypothesis of different slopes for
Equations 4a and 4b. The improvement is weak, proba-
bly because the correct encoding is halfway between linear
and logarithmic. Nonlinear regression with a power func-
tion for 5 gives a slightly better fit (r* = 56.3), but with
three free parameters; the best-fitting exponent for the
power function is 0.56.

Similarly, regressions with log | log{targer) — log(stan-
dard) |, an equation of the distance effect that takes into
account a Fechnerian compression of internal distances,
were performed on the data from Experiment 2 (see
Table 1). This corresponds to taking a logarithmic func-
tion instead of a linear function for function s in Equa-
tions 5a and 5b; the first log models the nonlinearity of
the distance effect, whereas the second log models Fech-
ner's law. The inclusion of such Fechnerian encoding does
not improve the proportion of variance accounted for,
nor does it change the pattern of asymmetries in RTs:
predicted RTs to 20 and 99 still do not differ, whereas

predicted RTs to 74 and 76 differ significantly atp < .01,
However, the slopes of regression no longer differ
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{p > .20). Thus, when Fechner's law is taken into ac-
count, two parameters—one slope and one intercept—
suffice to account for the data using the discriminability
mdel.

The inclusion of Fechnerian encoding also sheds light
on two other previous findings. First, it agrees with the
old finding that in selection paradigms, the *‘choose
smaller’” task takes longer than the “‘choose larger™ task:
because of the internal compression of distances, the
**smaller”” reference point is on the average more distant
from the operands than the *“larger” one is, Second, Fech-
nerian encoding predicts that in classification with a fixed
standard, even when the standard is at the numerical center
of the range of presented targets, slight asymmetries
should be present in the RT curve. RTs should be equal
at the extremes; close to the standard, however, ““larger””
responses should be slightly faster than *‘smaller™ re-
sponses, because although numerically centered, the stan-
dard is internally closer to the upper extreme of the con-
tinvum. This pattern of asymmetries was observed in
two-digit numbers comparison by Dehaene et al. (1989)
and by Hinrichs et al. {1981), but it has remained un-
explained.

OTHER PREVIOUS MODELS
OF COMPARISON

Jamieson and Petrusic’s (1975) discriminability model
predicts in great detail the RTs for both classification and
selection tasks. However, several other models of com-
parison have been proposed, and they must also be con-
fronted with our data. As I will try to make clear below,
most of them can only predict a limited portion of the
data set.

Any model with analogical encoding, for instance, can
easily account for the distance effect: two numbers that
are close on the number line will be compared more
slowly, either because their representations are more eas-
ily confused or because information retrieval has to be
more accurate. Buckley and Gillman (1974) proposed a
model based on the latter idea. In their model, evidence
must be accumulated about the sign of the difference be-
tween the digits. When this difference is small, given in-
ternal noise, much more evidence has to be accumulated
before a decision criterion is reached.

It is hard to see how such a model could predict mag-
nitude and congruity effects without suffering ad hoc dis-
tortions. The magnitude effect could be explained by posit-
ing a representation of numbers that would obey Fechner's
law: for equal numerical distance, the internal distances
would decrease along with the magnitude of the numbers.
This would slow down comparison—hence the magnitude
effect. Yet attributing the magnitude effect to a fixed bias
in the representation itself is problematic. It cannot ex-
plain the lability of the magnimde effect, which 1s modu-
lated by the congruity effect. It would also predict that
in classificarion, at equal numerical distances, *‘larger™
responses should be faster than “*smaller’” ones, an asym-
metry that has never been observed.?

Another model with important predictive power was
proposed by Banks et al. (1976): the semantic coding
maodel. This model assumes that after analogical encod-
ing, numbers are labeled L+ or 5+ according to whether
they are larger or smaller than a boundary point. If the
two numbers receive the different labels L+/S+, a re-
sponse can be given. If the two labels are identical (L+/L+
or S+4/8+), further processing is needed before the rela-
tive magnitudes of the numbers can be determined, the
final labeling being L/L + or 5/5+. Because the labeling
process is probabilistic, more distant numbers have a
greater chance of being labeled L +/S+, and thus receive
fast responses; this accounts for the distance effect. The
magnitude and congruity effects arise from the congruency
of internal and response codes. If the task is to select the
larger number (*‘choose larger’”), pairs of numbers la-
beled L/L +, where the internal code is congruent with
the instructions, receive faster responses than pairs labeled
5/8+, where a conversion of labels is necessary. Since
the larger the numbers, the more likely the L/L+ label-
ing, the model predicts a magnitude effect in the *‘choose
larger'” condition. The direction of this effect will reverse
in the “*choose smaller’” condition, where the congruent
code is 5/5++; hence the congruity effect.

Banks's model is definitely not refuted by the present
data. On the contrary, it is fairly able to account for the
gross findings. Nevertheless, its details are not fully speci-
fied (for example, what is the process by which an am-
biguous code L+/L + can be disambiguated into L/L+7).
As a consequence, there are some experimental details
with respect to which Banks’s model is indifferent. Several
features of Experiments 1 and 2 are predicted by the dis-
criminability model, but they would be a matter of chance
for Banks's semantic coding model. This is the case for
the equality of RTs in response to extreme points 21 and
99, which has been observed in other papers as well (De-
haene et al., 1989; Hinrichs et al., 1981). It is also true
of the subtle asymmetries observed close to the standard
in fixed-standard classification tasks with a symmetrical
range of targets (Dehaene et al., 1989; Hinrichs et al.,
1981).

In addition, there has been one empirical objection to
Banks's model, although not in the field of numerical com-
parison, Jamieson and Petrusic (1975) questioned Banks™s
hypothesis that the imitial labeling (L+ or S+4) is
probabilistic. In the case of comparison of animal sizes,
they have shown that individual animals are consistently
classified as small or large. Nevertheless, the magnitude
of the congruity effect is graded, not discrete as the model
of Banks et al. (1976} would predict.

The finding of a graded congruity effect natrally points
to an analogical explanation. This is exactly what Jamie-
son and Petrusic’s (1975) discriminability model proposes.
However, earlier work by Marks (1972) has also empha-
sized the same idea. Both models rely on the notion of
a reference point or “‘anchor.” However, according to
Marks" (1972) discriminal dispersion model, the variance
in the representation increases with distance from the
reference point. Assuming that for equal numerical dis-
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tance, a higher variance slows down the reaction time,
the model predicts that when the numbers are close to the
reference point (i.e., congruent with the instructions), they
will be compared faster than when they are on the side
of the continuum opposite the reference point—hence, a
(graded) congruity effect.

The data from Experiments 1 and 2 fit Marks’ {1972}
model quite well. However, the model requires that the
representation of objects vary with the instructions (*‘choose
larger’” or **choose smaller’). This feature was indirectly
rejected by Banks and Root (1979) for the case of the loud-
ness of sounds. Banks and Root used a production task,
making the hypothesis that the representation of loudness
tackled would be the same as the one used in comparison
tasks. They showed that variability in the loudnesses of
produced sounds was not affected by the form of the in-
structions, which specified the sound to be produced either
in terms of loudness or in terms of sofiness. In the case
of numbers, because the visual input is symbolic, it is
equally unlikely that the variance of internal representa-
tions will depend either on the instructions or on which
particular number is represented. Rather, this internal
variance is likely to be constant, although not necessarily
equal to zero.

CONCLUSION

Experiments 1 and 2 have shown that the magnitude
and congruity effects found in selection tasks with single
digits also appear in a predictable way in classification
tasks with two-digit numbers_ In Experiment 1, the sub-
jects had to compare a two-digit target to a standard num-
ber that varied from trial to trial. **Larger’” response
times gradually decreased along with the standard, while
“*smaller” response times increased along with it. Thus
congruent responses—for example, a “*smaller’’ response
to a small target— were indeed faster than incongruent
ones. Experiment 2 showed that the congruity effect could
be obtained in a fixed-standard classification task. Sub-
jects had to compare targets ranging from 20 to 99 to
a standard number 73, which was thus *‘large"™ in the
range tested. Close to the standard, congruent responses
(**larger’”) were faster than incongruent ones (**smaller’”).

The data of both experiments, as well as data from other
experiments, are compatible with the discriminability
model first proposed by Jamieson and Petrusic (1975) and
later confirmed by Holyoak (1978) and Holyoak and Mah
{1982). The model must be slightly extended to account
for classification data. One has to suppose that two refer-
ence points are simultanecusly used: the ““larger™ extreme
of the continuum is used to respond “‘larger,”” and the
“*smaller’” extreme to respond ‘“smaller.”” This hypothesis
yields Equations 4a and 4b, which predict classification
times in full detail. The inclusion of Fechnerian encod-
ing in these equations also accounts for subtle asymmetries
between “*smaller”” and *‘larger”” RTs. Other models, like
Banks's semantic coding model (Banks et al., 1976), are

not refuted by the data, but they do not seem to provide
a complete account of the details.

Several questions remain open concerning numerical
comparison. [ have merely proposed equations that cor-
rectly describe RT3, not an algorithm that could produce
such RTs. Similarly, Jamieson and Petrusic’'s (1975)
maodel does not specify the mechanism by which the sub-
jects perform comparison with respect to the reference
points. Merely to find satisfactory equations is not suffi-
cient to infer this mechanism. In fact, it is even possible
that our equations confuse effects belonging to several dis-
tinct stages of processing. For example, Duncan and
McFarland (1980) provide evidence suggesting that the
distance effect is central to comparison per se, while the
congruity effect stems from an initial encoding stage. Yet
in the equations above, the two effects are given a
homogeneous treatment, and it is tempting, but logically
unfounded, to attribute them to common sources.

In trying to infer the comparison algorithm, a logical
problem appears. One must explain why “‘larger”
responses are always performed in reference to the
““larger” extreme of the continuum, and *‘smaller”” re-
sponses to the ‘*smaller”” extreme. This strategy appears
inefficient in some cases. Other simpler strategies should
be possible. In fact, the use of one reference point is
always sufficient to determine the relative magnitudes
of the standard and the target. Such a single-reference
strategy is indeed used in *‘choose larger™ or “‘choose
smaller'” tasks. Why can’t it be utilized in classification?

Another possible strategy with two reference points
would be to respond using the anchor from which the
target/standard distance is optimally discriminable. This
would correspond to a race between the two anchors to
provide the correct response. But Experiment 2 clearly
demonstrates that **smaller’ responses are always reached
in reference to the *‘smaller” anchor, even though close
to the standard, a much faster response could be reached
by referring to the **larger’” anchor. Why is the time to
compare 74 to 73 so different from the time to compare
76 to 757 This finding is incompatible with a race between
anchors.

In brief, numerical comparison is a highly constrained,
inflexible process. In particular, **smaller’ responses can
only be reached using the “*smaller’” anchor, and *“larger™
responses using the “‘larger’” one. This feature has several
drawbacks, in particular the necessity to use two simul-
taneous reference points even in a classification task with
a fixed standard. The amempt to determine which al-
gorithm is responsible for such functional properties will
be examined in a coming publication.
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NOTES

1. It may be argued that the *“larger”” RTs were faster in Experiment 2
simply because of the differing amount of practice received: numbers
larger than 75 were presented T times each, whereas numbers smaller
than 75 were presented only 3 times each. This hypothesis is invali-
dated by the fact that the data from the first 50 trials of cach subject,
in which the presence of practice effects is unlikely, show the same asym-
metry in RTs. Also note that in Experiment 1, the ranges of numbers
that get the least repetition (11-30 and 30-99) in fact yield the fastest
responses, nol the slowest.

2. I have implicily assumed that the subjects chose reference points
adapted to the range of targets tested. Another possibility 15 that refer-
ence points assume fixed locations on the number scale. The two
hypotheses are not distinguishable on the basis of the present experi-
ments, but they can be separated, for example, in classification with
Standard 65 and numbers ranging from 31 1o 99: an asymmetrical RT
curve like the one observed in Experiment 2 would show that 11 or so
is still used as a reference point, whereas a symmetrical curve would
demonstrate that the reference point has shifted to about 31, Dehaene
et al. (1989) did precisely thiz experiment and found an almost sym-
metrical curve, with equal RTs in response to 31 and 99. Even without
this experiment, it is obvious that reference points are shifted to adapt
to one-digit or two-digit number comparison.

3. Although [ have had to reintroduce Fechner's law in the discrimina-
biliry mwodel, the reader should persuade himseif that it does not encounter
the same objection as above. In the discriminability model, the magni-
tude effect is described as an effect of distance from the reference painis,
Fechner's law plays only a minor role in accounting for subtle asym-
metries between “smaller’” and “*larger”" responses. )
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