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Abstract—When humans and animals compare two numbers, re-
sponding is faster and more accurate with increasing numerical dis-
parity and decreaging numerical size. Researchers explaining these
distance and size effects aften assume that the subjective number con-
tinuum s logarithmically compressed. An alternative hypothesis is
that the subjective number continuum is linear, bur positions farther
along it are proportionately fuzzier, thar is, less precisely located
These two hypotheses have been treated as functionally equivalent be-
cause of their stmilar empirical predictions, The current experiment
sought to resolve this issue with a paradigm originally developed ro
address the subjective representation of time (time left). In our adapta-
| tion, pigeons were reguired fo compare a constant number with the
number remaining after a numerical subtraction. Our results indicare
that subjective number s linearly, not logarithmically, related to ob-
Jective numben

Converging evidence from many different laboratories and para-
digms demonstrates that animals represent number (for reviews, see
Davis & Perusse, 1988; Gallistel & Gelman, 1992, 2000; Dehaene,
1997). For example, animals can produce a certain number of re-
sponses (e.g, Mechner, 1958), discriminate the numerosity of visual
or auditory stimuli (e.g., Hicks, 1956; Meck & Church, 1983}, repre-
sent the ondinal relations between numerosities (Brannon & Terrace,
1998, 2000), and even learn the relationship between arbitrary sym-
bols and numerosities (e.g., Matsuzawa, 1985),

A prowing body of data supports the conclusion that nonhuman
animals and humans represent number in a similar way {Dehaene, De-
haene-Lambertz, & Cohen, 1998; Gallistel & Gelman, 2000). For ex-
ample, when human or animal subjects are required to determine
which of two numerical values is larger (or smaller), their acouracy
and reaction time are systematically influenced by both the numerical
distance between the two values (the distance effect) and their numer-
ical size (the size effect; Brannon & Temrace, 1998, 2000; Moyer &
Landaver, 1967). Reaction time is longer and accuracy is lower for
values that are similar in numerical size (¢.g., 2 and 3) than for values
that are disparate in size (e.g.. 2 and 6). When distance is held con-
stant, accuracy decreases and latency increases as the numerical size
of the values being compared increases.

One explanation for the effect of nomerical size on numerical or-
dering is that the internal representation of number is logarithmically
compressed (e.g., Dehaene & Mehler, 1992; Moyer & Landauer,
1967; Rule, 1969), so that the representatives of, say, 12 and 13 lie
closer together on a mental continuum than do the representatives of 2
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and 3, The closer together two numerosities lic on the mental contin-

-uum, the harder it will be to determine their ordering. The logarith-

mic-compression hypothesis is grounded in a tradition of interpreting
magnitude-estimation data as evidence for a nonlinear relationship be-
tween subjective and objective continua (e.g., Eisler, 1976; Stevens,
1961). However, an alternative lesser-known possibilicy is that the
subjective number scale may be a linear reflection of objective num-
ber, but the uncertainty about where exactly a given quantity falls on
the mental continuum may increase in proportion to the size of that
quantity. Thus, the ordering of two big numbers will be harder o dis-
tinguish than the ordering of two small numbers the same distance
apart because the positicns of the big numbers on the menal number
continuum are more fuzzily defined (Fetterman, 1993: Galliste] &
Gelman, 1992; Gibbon, 1977; Whalen, Gelman, & (allistel, 1999). Both
hypotheses predict the observed effect of numerical size on ordering
{e.g., more difficulty in judging the order of 12 and 13 than 2 and 3).

Recent research suggests that animals represent time and number
in similar ways (Meck & Church, 1983; Meck, Church, & Gibbon,
1985; Roberts, 1997; Roberts & Boisvert, 1998). For example, Meck
and Church (1983) used a psychophysical choice procedure to train
rats to discriminate signals that differed in both duration and number.
Although duration and number were confeunded in training, test ses-
sions revealed that the rats had encoded both duration and number,
Furthermore, the data suggest that a scaling factor of about 200 ms per
count refates the subjective number continuum to the subjective time
continuum (Meck & Church, 1983; Meack et al., 1985,

Gibbon and Church (1981) showed that one can distinguish be-
tween linear and logarithmically compressed continua with 2 task that
requires the subject to base its behavior on the difference berwesn two
points on the continoum rather than on their ordering. Any mwo points
that have the same ratio are the same distance apart on a logarithmi-
cally compressed continuum, If the subjective number continunm is
logarithmically compressed, then two pairs of numbers with the same
ratio—for example, the pairs 2,3} and {2030} —have the same sub-

jective separation; that is, the pairs of subjective representatives of |

these numbers lie the same distance apart on the subjective number
continuam. Thus, if the subjective number scale is logarithmically
compressed, when numerical behavior is based on the subjective differ-
ence between two numbers, the behavior will be the same whenever the
ebjective ratio of the two numbers is the same, no matter how far apart
those two numbers are objectively. Gibbon and Church used thus fact to
show that the subjective representation of time is linearly related 1o ob-
jective time. In the research we report here, we adapted their paradigm
to show that subjective number is linearly related to objective number,
Our task requires subjects to compare a numerical difference that
varies from trial to trial with a constant value, Subjects choose which-
ever seems smaller, the difference or the constant value, If the number
scale is logarithmically compressed, then whether the difference is
bigger than the constant will depend not on the objective difference
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between the two numbers but rather on their objective ratio. Thus, the |
number that is subjectively equal to a given subjective difference will
not increase when we make the values objectively bigger but keep the
same ratio between them., Of course, when we scale up two numbers
in this way, we make the objective difference between them bigger, so
this outcome would be unexpected if the subjective representation of
number is linearly related to objective number.

We call the constant number with which differences are 10 be com-
pared the standard, or §, number. The first of the two numbers whose
difference is to be compared with 5 is called the initially required, or [,
number, The second is called the rallied, or T, number. At the moment
of choice, the subject must judge whether the initially required num-
ber of pecks minus the tallied number is less than the standard number
(i.e., whether / — T < 5). If s0, the subject chooses the key called the
number-left key, if not, it chooses the other key, called the srandard key.

The task works like this: First, the middle key among three keys is
illuminated, signaling its activation. Pecking it then produces brief
flashes of the light in a food hopper on a variable-ratio schedule, a
schedule in which the number of pecks required to produce a flash
varies unpredictably about a mean value. With a variable-ratio sched-
ule, the amount of time required to generate a given number of hopper
flashes varies considerably, We make use of this fact to deconfound
time and number in our data analysis. After the pigeon's pecking of
the middle key has produced a variable number, T, of hopper flashes,
the light on the middle key goes out, and the keys on either side are il-
luminated, confronting the pigeon with 4 choice: Which side key
should it peck? Whichever side key it pecks first it must then continue
to peck in order to collect a food reward, because pecking one side key
inactivates the other side key. Continued pecking of a side key gener-
ates hopper flashes, and the pigeon gets to eat from the hopper afier it
has produced the requisite oumber of flashes for the side key it has
chosen. The requisite number is always the same on the standard side
key. The requisite number on the number-lefi side key, however, is ] —
T, where T is the number of flashes the pigeon has already tallied by
pecking on the middle key. The standard key is the better choice when
I — T = 5 the number-left key is the better choice when/ — T << 8.

The value of T at which the subject is equally likely to choose the
number-lefi key and the standard key is called the subjective indiffer-
ence point. The eritical question in this experiment is whether T in-
creases when we increase the values of [ and § by the same factor,
thereby maintaining their ratio. The indifference point depeads on
how far apart / and § are on the subjective continuum, because the
subjective magnitude of T at the indifference point must be equal to
the subjective difference (or separation) between [ and 5. The indiffer-
ence point indicates the difference (the number left) that seems to the
subject 1o be equal to the standard number. If the mental continuum is
logarithmically compressed, then this subjective difference will de-
pend on the ratio of the two numbers, not their linear distance. So long
a8 we keep their ratio the same, we should keep the value of T at the
indifference point the same.

METHOD

Subjects

The subjects were 4 White Carneaux pigeons maintained at ap-
proximately 80% ad lib body weight. They were exposed to a regular
12:12 hr light/dark cyele and were tested 5 days a week.

VOL, 12, NO. 3, MAY 2001

Apparatus

Experimental sessions were conducted in a BRS/LVE Small Envi-
ronment Cubicle (SEC-002), with minimal external light and noise.
Normal illumination was provided by an overhead houselight, except
during reinforcement presentation. Stimuli were presented through the

| BRS/LVE Pigeon Intelligence Panel (PIP-010 through PIP-016),

equipped with three illuminated pecking keys. Using an IEEE one-
plane readout projector (No. 00010-01-X33C-1820), we illuminated
each key a specific color, the central key was white in each case, and
the colors of the left and right keys were yellow and green, counterbal-
anced for color and position across subjects. A Macintosh computer
controlled the experiments and recorded the data

Procedure

Training

Subjects were first trained to peck two keys on a continuous rein-
forcement schedule. On each wial, one of two keys was illuminated,
and pecking at the illuminated key resulted in 3.5 s of access to the il-
luminated hopper. One key was green and the other yellow, and the
leftfright position of the two keys was counterbalanced across sub-
jects. Subjects were then shifted to a VRS reinforcement schedule
(variable-ratic schedule: M = 8, range: 4-12).

The next phase of raining required the pigeons to keep track of the
number of hopper flashes (100=300 ms each), rather than the number
of pecks or the time spent pecking. Subjects were reinforced the sec-
ond time the hopper was illuminated, and because each hopper illumi-
nation was produced on a VRS schedule with a range of 4 to 12, the
birds were required to peck anywhere from 8 1o 24 times for each rein-
forcement. Subssquently, the number of fashes to reinforcement was
increased 1o four, requiring anywhere from 16 to 48 pecks per rein-
forcement. In the next phase of training, the number of flashes to rein-
forcement was again increased, but only for the number-left key,
which then reguired eight flashes to reinforcement; the standard key
still required four flashes. Each flash was provided on a VRE schedule.

A white middle key was then introduced. On each trial, subjects
were required to respond o the middle key o produce a number, T, of
hopper flashes berween 1 and 7. Flashes were again provided on a
VRE schedule. After T flashes, the middle key was extinguished, and
cither the standard or the number-left key became available. [f the
standard key was illuminated, the subject was required to produce 4
additional flashes for reinforcement regardless of the number of the
flash tally from the middle key. However, if the number-left key was
illuminated. the subject was regquired to produce 8 — T additional
flashes before reinforcement. There were 42 trials per session; each of
the seven possible T values was tested six times in a random order.

In the final phase of training, subjects were given a choice berween
the standard and number-left keys on a subset of trials. After pecking
produced T flashes on the middle key, both the standard and the num-
ber-left keys were illuminated The first response to one key alimi-
nated the availability of the other key. As in the previous phase of
traiming, the standard key required 4 additional flashes to reinforce-
ment, and the oumber-left key required 8 — T flashes to reinforce-
ment. The remaining trials were forced-choice trials in that only the
standard or number-left key was illuminated, as in the previous phase
(no choice). [n each session, choice rials were presented on 2 out of
every 6 trials for each of the seven middle-key values {i.e.. 14 choice
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| trials per session), The intertrial interval was 10 s throughout training
| and testing.

| Training continued until the choices the animals made varied sys-
tematically as a function of the flashes obtained on the middle key.
’ Training required 25 to 30 days for each subject.

i

|

l

Testing

The first testing condition was essentially identical to the final
training phase in that the standard key required 4 flashes to reinforce-
ment and the number-left key required § — T flashes to reinforcement
(5 = 4, I = 8), The only change was that subjects were given a choice
between the standard and number-left keys on 4 of the 6 trials at each
of the middle-key values (i.e., on 28 trials). The remaining trials were
forced (i.e., either the standard or the number-left key was illuminated
at the Tth middle-key flash). This test phase contimued for 40 sessions.

In the second testing condition, the § and I values were multiplied
by a factor of 1.5. Thus, the standard key required 6§ flashes to rein-
forcement, and the number-left key required 12 — T flashes to rein-
forcement (§ = 6, / = 12). The middle key required 1, 2, 3,4, 6, 8, or
10 flashes. There were 28 choice wials per session and 14 forced-
choice trials per session. Birds were tested on these values for 25 days.

In the third testing condition, the values for the standard and
number-left keys were returned to the values in the first testing session
{5 = 4 [ = §). Ten sessions were conducted.

Finally, in the fourth testing condition, the standard and number-
left key values were reduced to 3 and & — T, respectively (§ = 3,/ =
). The middle key required 1, 2, 3, 4, or 5 flashes. There were 28
choice trials per session and 14 forced-choice trials per session. Ten
sessions were conducted.

RESULTS

The central findings were that the pigeons’ choice between the two
side keys was controlled by the number of flashes generated by peck-
ing the middle key and that increasing the J and 5 values by varying
amounts had a linear effect on the indifference point; the bigger the
objective difference between [ and 5, the higher the indifference point,
contrary to the predictions of the logarithmic-compression hypothesis,

Figure 1 shows the probability of choosing the number-left key as
a function of the number of flashes on the middle key in the first con-
dition, where [ = 8 and 5 = 4. When the tally of flashes generated by
pecking on the middle key was low, the pigeons chose the standard
key; when it was high, they chose the number-left key. A cumulative
normal ogive fit to these data accounted for 99% of the variance. The
indifference point is the tally {number of middle-key flashes) at which
this ogive crosses the .5 level. When the tally was less than the indif-

than the indifference point, they preferred the number-left key.

Figure 2a shows the same function {probability of choosing the
number-left key as a function of the tally of middle-key flashes) for
each of the four conditions. Each function reflects average values for
the 4 birds for the last five sessions of the condition.' The indifference

1. Although data thronghout this article reflect the last five sessions of each
condition, there is one exception. Data for Bird 4 in the second festing condi-
ton {§ = 6, f = 12) were taken from the 16th through 20th sessions (rather
than 215t through 25th) because his indifference point decreased in the last five
gessions and was not representative of his previous performance.
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ference point, the birds preferred the standard key; when it was greater |
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| ton of objective time (Gibbon & Church, 1981). Our goal in this study

Fig. 1. Psychometric functions relating probability of choosing the
number-left key to the tallied number of flashes on the middle key for
each of the 4 birds for the last 5 days of the first testing condition. The
fitted line is the besi-fit model by a comulative normal distribution.

point shifted to the right, toward higher allies, when the § and I values
were increased to 6 and 12 and to the left, toward lower tallies, when
they were reduced to 3 and & Figure 2b shows that the funetions for
the four conditions superpose when the probability of choosing the
number-left key is plonted as a function of the proporion of middle-
key flashes, This proportion is arrived at by dividing the number of tal-
lied flashes by the maximum number of flashes that could occur on the
tallied key for that condition,

Cumulative normal functions ft to the data in Figure 2 accounted
for 99% of the variance in each case, so these curves accuraely repre-
sent the data. The tallies at which these curves cross the .5 level give
the indifference points for the conditions. Figure 3 plots theses indiffer-
ence points for each of the 4 birds, as a function of the value of §,
hence also as a function of the value of f, which was twice § in each
condition. For each bird, the indifference point appears to be a linearly
increasing function of 5, and thus of § - /. Regression analyses re-
vealed that for each bird, the slope of the function in Figure 3 was sig-
nificantly different from zero (p < .05); the intercepts werz not !
significantly different from zero { p = .1). Thus, increasing or decregs- J
ing the § and 7 values by the same factor produced a proportional in-
crease or decrease in the indifference point.

Furthermore, there was a significant shift in the indifference poing
from the Jast 5 days of the first condition, where / =  and 5 = 4, o
the first session of the second condition, where / = 12 and § = 6 (2.8
¥s. 3.593), {3) = —3.09, p = .05.

It is already known that subjective time increases as a linear func-

was to test whether for number also, subjective representations are 4
linear function of ohjective magnitude. Because pigeons peck at an #p-
proximately constant rate, the time spent pecking a key tends to covary
with the number of flashes thereby generated. Furthermore, it has been
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Fig. 2. Psychometric functions relating the probability of choosing the number-left key to the tallied oumber of flashes (a) and the proportion of
tallied flashes (b) on the middle key. Each function reflects one of the four testing conditions. The proportion of tallied flashes is ammved at by di-
viding the number of tallied flashes by the maximum number of flashes that could occur on the tallied key for that condition.

demonstrated that timing sometimes contributes to numerosiry discrim-
ination in pigeons (Fetterman, 1993). It was therefore essential to show
that the pigeons’ choices were controlled by the number of hopper
flashes generated, and not by the time spent generating them. Thar was
the rationale for delivering Aashes on a variable-ratio schedule. Such a
schedule produces considerable variation in the number of pecks,
hence the amount of pecking time, required to generate any given num-
ber of hopper flashes.

Figure 4a shows the cumulative distribution functions for the ime spent
pecking on the middle key when T ranged from one to seven flashes. The
point where each cumulative function begins to rise gives the minimum
amount of time spent generating the requisite number of flashes; the point
where each function attains asymptote gives the maximum amount of time
50 spent. Clearly, for sach value of T, there was great variation in time spent
on the tallied key. Most important, there was a great deal of overlap in
these time distributions for different numbers of flashes (different tal-
lies). Thus, we determined whether the pigeons’ behavior was controlled
by time or by the number of flashes generated by plotting the probability
of choosing the number-lefi key afier a given tally of hopper flashes as a
function of the time spent generating that wily (Fig. 4b). If ime influenced
Pigecms' choice, these functions would rise, but in fact they are more or
less flat, so variation in time did not affect choice. By contrast, for cach in-
crease in the middle-key flash tally, there was a marked increase in the
Probability of choosing the number-left key (Fig. 2a). Thus, choices were
controlled by the flash tally, not by the time spent generating that tally.
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Fig. 4. Cumulative probability distributions for the time spent pecking
the middle key for each tallied number (T} a) and conditional probabil-
ity of choosing the oumber-left key as a function of the amount of time
spent pecking the middle key (b). The amount of time spent pecking
the middle key was a continnous variable but was averaged in discrete
time bing for simplification. The data reflect average values for the 4
| birds for the last 5 days of the first testing condition (§ = 4, [ = ).

DISCUSSION

In this experiment, pigeons were required to estimate the numeri-
cal difference between two values (f — T) and compare that difference
to a constant number, 5. If, as has commonly been assumed, the sub-
jective representation of numerosity were logarithmically compressed,
then the tally number T at which the pigeons judged the difference be-
tween [ and T (the number left) to equal § would be constant for a con-
stant ratic berween [ and S, even though the objective difference
between § and § was made bigger by increasing both numbers by a
common factor. This prediction of the logarithmic-compression hy-
pothesis is clearly false.

The alternative model, based on Gibbon's (1977) scalar expectancy
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theory, is that the subjective continuum is lingarly (indeed, almost
proportionately) related to the objective continuum, but that the varj-

ability of the magnitudes read from memory increases in proportion |

to their mean value. The magnitudes representing the fixed numerosi-
ties { and § must live in memory, and be read from memory on every
trial.

In scalar expectancy theory. the variability in the values read from
memory accounts for the rial-to-trial variability in which key the sub-
ject chooses after a given flash tally. For any given intermediate taily,
the subject sometimes chooses the sandard key and sometimes
chooses the number-left kev. However, the greater the tally, the more

" likely the subject is to choose the number-left key. In scalar expect-

ancy, the trial-to-trial variability is explained by assuming that on each
trial, the subject reads from numerical memory subjective magnitudes
for § and [. Because memory is noisy, the magnitudes read vary from
trial to trial. On a trial in which the magnitude read for § happens to be
unusually low and the magnimde read for [ is unusually high, the tally
required in order for the subject to choose the number-left key will be
unusually high. On trials in which the opposite variations occur, the
tally required will be unusually low, That is why, for a given interme-
diate tally, the subject sometimes ¢hooses the number-left kev and
sometimes chooses the standard key. Gibbon and Fairhurst (1994)
have shown that in order to predict the superposability of the cumula-
tive distributions shown in Figure 2b, it is necessary to assume (a) that
the variability in the magnitudes read from memory is proportional
the target magnitudes and (b) that the subjective variable that deter-
mines which choice the subject makes is the ratio of the two quantities
being compared (in this case, the ratio of / = T and 5).

An Alternative Explanation

As in the time-left paradigm, the number-left paradigm used here
assumes that subjects subtract their count of the flash tally (their sub-
jective tally) from their memory for the initial value, I. Subjects must
then compare the result of this subtracticn to their subjective reference
value for the standard (also from memory). An alternative explanation,
also considered by Gibbon and Church (1981), involves a kand of
paired-associate learning. High tallies on the middle key are associ-
ated with short delays of reinforcement on the pumber-lefi key,
whereas low tallies are associated with long delays. Perhaps the birds
learn simply o avoid the number-left key after low tallies and w
choose it after high tallies. Although we cannot entirely rule out this
possibility, our data suggest that it is unlikely, because the indifference
point shifted significantly in the first session when the § and [ values
were multiplied by a factor of 1.5. Although it is possible that this ob-
served change in the indifference point reflects rapid learning, the fact
that there were only seven mials at each of the tallies makes this expla-
nation unlikely. Nevertheless, it would be of interest o determine
whether the observed shift in the indifference point wouold occur in un-
reinforced test sessions.

Implications for the Neural Representation of Number

The logarithmic-compression hypothesis states that the size and
distance effects in numerical ordering judgments result from a loga-
rithmically spaced subjective number scale. Our results suggest that.
psychologically, the number scale is organized linearly with respect to
real number. Although our results suggest that behavior in the current
task is mediated by a linear representation of number, the possibiliry
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exists that the neural implementation of this lincar number representa-
ton might itself be logarithmic and then wransformed to a linear scale
before numerical ordering and subtraction can occur (Dehaene, this is-
sue). Alternatively, the brain may implement a second, logarithmic,
subjective number scale that is independemt of the linear subjective
number scale accessed in the current task. Neither our study nor any
other published smdies provide data that can address either of these
two hypotheses. Given the current state of knowledge, we view the
idea that number is represented in the brain both linearly and logarith-
mically as unparsimonicus. This debate underscores the need for fur-
ther research on the neurobiology of number representation.

In summary, our findings support the conclusion that the subjective
number scale is not logarithmic. This implies that the size and distance
effects, which inspired the logarithmic-compression hypothesis, are
rather to be attributed to the fact that the variability in the signals read
from numerical memory is proportional to their mean value. This
property is commonly called scalar variability (Gibbon, 1977). We be-
lieve our experiment also demonstrates, almost incidentally, that pi-
geons can do numerical subtraction.

Acknowledgments—We gratefully thank Steve Fairhurst for writing the
programs (o execute the experiment and analyze the dara. We also thank
Corby Dale for being & relief pigeon runner in times of need and Michael
Platt for helpful comments on the article, This research was supported by a
Mational Institutes of Health MERIT award (MH41649-09) to John Gibbon
and a Mational Research Service Award (MH12065-02) to Elizabeth M.
Brannon.

REFERENCES

Branson, B M., & Terrace, H.5. (1998). Ondening of the numerosites 1-9 by monkeys.
Science, 282, T46-749,
Braopon, EM., & Terrace, H.5. (2000). Representation of the numerosities 19 by rhesus

VOL. 12, NO, 3, MAY 2001

macadques (Maraca mulana). fouwmnal of Experimental Peychology: Animal Behavy-
ior Processes, 26, 3149,

Davis, H., & Peyusse, R. ([988). Numerical competence: From backwater 1o mainsiveam
of comparative psychology, Behavioral Brafn Sciences, 11, 602-615.

Dehaene, 5., Dehaene-Lambertz, G., & Cohen, L (1998). Abstract representstion of num- |

bers in the animal and human brain. Namure Newroseience, 21, 1533-361.

Dehaene, 5., & Mehler, 1. (1992). Cross-linguistic regularities in the frequency of number |

words, Cognition. 43, [-29.

Eisler, H. (1%76). Experiments on subjective duraticn 1868-1975: A collestion af power
function exponents. Prychological Bulerin, 83, 1154-1171L.

Fetterman, 1.G. (1993). Numerosity discrimination: Both dme and number manes. fowmal
of Experimental Prvchology: Animal Behawor Processes, 19, 149-164.

Gallistel, C.R., & Gelman, R. (1992). Preverbal and werbal countng and computation.
Cognirion, 44, 43-74.

Gallistel, C.R.. & Gelman, R. (2000). Non-verbal numerical cognition: From reals wo inte-
gers. Trends in Cogninive Sciences, 4, 3963,

Gibbaon, J. (1977}, Scalar expectancy theory and Weber's Law in animal timing. Prycho-
logical Review, 54, 79333,

Gibbon, 1., & Church, R.M. (1981). Time kefic Linear versus logarithmic subjective tme
Jowrnal of the Experimental Analysis of Behavior, 7, 87-107,

Gibbon, I., & Fairburst, 5. (1994). Ratio versus difference comparators in choics. Jourmal
af the Experimental Analysis af Behavior, 62, 409-434,

Hicks, L.H. (1956). An analysis of number-concept formation in the rhesus monkey, Jour.
nal af Comparative and Physiclegical Prychology. 49, 212-218.

Matsuzawa, T. (1985}, Use of numbers by a chimpanzes, Namure, 3713, 57=59.

Mechner, F. (1958). Probability relations within response sequences under matio reinforce-
ment, Journal of the Experimental Analysis of Bekavigr, [, 108-122

Meck, WH., & Church, R.M. (1983). A mode control model of counting and timing pro-
cesses, Jowrnal of Experimennsl Prechology: Arnimal Behavior Processes, 5, 320-334.

Meck, W.H., Charch, R.M., & Gibbon, I. (1985). Temporal integration in durstion and
number discrimination. Jourmal of Experimental Prycholegy: Amimal Behavior Pro
cexses, 1. 591-597,

Mover, R.5,, & Landaper, T.K. {1967). Time required for judgments of numerical inequal
ity. Nature, 215, 1519-1520.

Roberts, WA (1997). Does a common mechanism acoount for timing and counting phenom-

ena in the pigeoa? In C.M. Beadshaiy & E. Szabadi (Eds.), Time and behavior: Pryche-

logical and newrsbiological anadyses (ppe 185-215) Mew Yook Elsevier Schence.

Roberts, W.A_, & Boisvert, M.J. {1998). Using the peak procadure (o measure dming and
counting procestes in pigeons. Journal of Experimental Psychology: Animal Sehav-
ior Processes, 24, 416-430.

Rube, 5.0, (1969 Equal discriminability scale of aumber. Jowrnal of Experimental Pry-
chology, 79, 35-38.

Stevens, 5.8. (1961} To honor Fechmer and repeal his law. Science, 133, 80-86.

Whalen, I, Gelman, R, & Gallistel, C.R. {1999). Non-verbal counting in humans: The
payehophysies of nomber representation. Prychalogical Science, 180, 130-137,

(RECEIVED 5/22000; REVISION ACCEPTED 978/00)

243




PSYCHOLOGICAL SCIENCE

Commentary

SUBTRACTING PIGEONS:
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Brannon, Wusthoff, Gallistel, and Gibbon (this issue) suggest that |
pigeons can subrract numbers and that this implies a linear encoding
of numbers in the pigeon's brain. I am sympatheric with the idea that
many animals possess an elementary sense of namber (Dehaene,
1997). However, although the experiment Brannon et al. conducted
convincingly demonstrates that number, rather than time, was the pa-
rameter that drove the animals® behavior, the experiment fails to un-
ambiguously demonstrate either subtraction or linear encoding,

Brannon et al. concepmalize their task as requiring mental subirac-
tion. After seeing a variable number T of light flashes, pigeons must |
choose between two keys. One, called the standard key, leads to wait-
ing for a fixed number § of additional flashes before being rewarded.
The other, the number-left key, leads to waiting for J — 1" flashes,
whars [ is another fixed number. Because pigeons learn to select the
key associated with the smaller number, § or I — T, Brannon et al. pos-
tulate that pigeons can compute f = T

A more economical hypothesis, however, is that the pigeons merely
represent the first number of flashes, T, and leamn to associate each value
of T with the key that leads to the fastest reward. Crucially, statistics about
the associations between numbers, responses, and rewards can be com-
piled without subtraction, simply by noting how favorable is the outcome
of pecking one key or the other. Thus redescribed, the task becomes simi-
lar to a previcus experiment in which rats were rewarded for pressing a
left lever when hearing two tones and a right lever when hearing eight
tones (Meck & Church, 1983), a task that was simulated by a simple neu-
ral network (Dehaene & Changeux, 1993). To show that the task Brannon
et al. used can also be acquired by simple association learning, I ran some
simulaticns of a minimal network architecture capable of leaming num-
ber-response associatons (see Fig. 1). A schedule similar to the pigeons”
was used, First came a maining phase, in which activity of the output
units was forced to be cormect (40 blocks of 42 twials each, § = 4, 7 = B).
After training came several test phases during which two thirds of the tri-
als were choice trials in which existing connections determined the net-

work's output (Test 1, 40 blocks, 5 =4, 7= 8; Test 2, 25 blocks, S = 6,7 =
12; Test 3, 10 blocks, § = 4, F = §; Test 4, 10 blocks, § = 3,/ = 6). |

The network’s performance, monitored during the last five blocks |
of each test period, reproduced the pigeons’ performance reported by |
Brannon et al. The probability of choosing the number-left key varied |
systematically as a cumulative normal function of the input number T.
Muoreover, increasing or decreasing the values of f and § had a linear
effect on the location of the indifference point. Brannon et al. interpret
the latter property as implying a lincar coding of numbers. However,
in the simulation, this property was observed whether the numbers
were coded linearly or logarithmically. In the linear scheme, the Gaus-
sian distributions of activation coding for different numbers T were
spaced linearly and had a linearly increasing width, In the logarithmic
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scheme, the distributions were spaced logarithmically and had a fixed
width. The two schemes led 1o similar performance (see Fig. 2). In
particular, the indifference point increased linearly with §, even when
the coding scheme was logarithmic.,

Interestingly, the indifference point was systematically shifted in
the direction of smaller numbers. An ideal observer would respond
randomly when T = I — § {and therefore T = §, because / = 25 in all
blocks): This is the point where the two choices § and 7 — T are indif-
ferent. The results of both Brannon et al. and the simulations, how-
ever, always gave a lower indifference point. This deviation seems
hard to explain if pigeons compute separate estimates of 5 and [ — T,
but follows namrally from asscciative learning. Under both the linear
and the logarithmic coding schemes, increasingly larger numbers are
coded by increasingly overlapping distributions and hence activaie in-
creasingly overlapping sets of connections. Thus, the network general-
izes asymmetrically in the direction of the larger numbers. A similar
shift of the indifference point was observed in Meck and Church's
{1983} experiment with rats, sirengthening the hypothesis that the
same association mechanisms are at work in both cases.

Brannon et al. reject asfociative learning because they observed a
shift in the indifference point in the first block of 42 trials afier the in-
troduction of new values of 5 and [, a result suggesting immediate
generalization and therefore an abstract understanding of sk require-
ments. However, even those trials continued to be rewarded and hence
could promote new learning. It is an empirical issue whether pigeons
can adapt their behavior with only 42 rewarded trials. In the simula-
tion, for a high-leaming-speed parameter, the indifference point
shifted significantly from the last five blocks of Test 1 to the first block
of Test 2 (3.10 vs. 3.41, 16 simulations), (15} = 1.93, one-tailed, p =
036, although it did not immediately reach its final value of 4.83,
Such a partial shift, also seen in the actual data, again seems 1o support
an associative leaming process more than a logical arithmetic compu-
tation. [n order to settle this issue, a classical test of generalization us-
ing unrewarded trials seems compulsory.

Elementary arithmetic computations bave been demonstrated in
monkeys (Haoser, Carey, & Hauser, 2000; Hauser, MacNeilage, &
Ware, 1996)._ It thus seems possible that subtraction may eventually be
demonstrated in pigeons. However, would this prove that numbers are

encoded linearly? Brannon et al. presume that if numbers are encoded |

logarithmically, subjects would not be able to subtract normally, buat
would only manage to subtract the logarithms of numbers. This does
not seem o be a valid inference. Subtraction can certainiy be imple-
mented whether the numbers are coded on linear or logarithmae num-
ber lines. As I have shown here, multiple neural implementations may
lead to the same function. In particular, linear coding with scalar vari-
ability and logarithmic coding with fixed variability lead o the same
merric of number similarity, and therefore wo the same behavior, More
generally, just as examination of a computer’s performance cannot tell
us how the computer encodes numbers in its microchips, behavioral
evidence cannot reveal how representations are implemented, but

| merely shows what their functional relations are.

VOL. 12, NQ. 3, MAY 200]

|




PSYCHOLOGICAL SCIENCE

Stanislas Dehaene

2 output units
, standard key ()

number-left key
(number 3)

(number I-T)

50 input units (number T) . reward unit

Linear Coding (scalar variability) - Logarithmic Coding (fixed variability) ‘
1 1 5 10

¥ ¥ ¥ v i

Wi

‘ |
@ & 10 18 20 25 30 35 40 45 8o 0 5 10 15 20 25 30 a8 40 48 = [
Lnit number Unit number |

- 10
¥ v

Fig. 1. Network structure and coding schemes. The illustration at the top shows the network structure used in the simulation, Fifty input units,
coding for the input number T, are connected directly to two output units coding for the two possible response choices, S and 7 = T. Each ourput
unit computes the sum of its inputs, with additional uniformly distributed noise. The output unit that has the greater sum is considered to be the
nerwork's response to the number T (its activation is then set to 1). After responding, the network receives a reward that, in the present case, is an
exponentially decreasing function of the number associated with the selected key, either § or [ — T. The connection weights are modified after
each trial according to a Hebbian rule modulated by reward (as in Dehaene & Changeux, 1993), The graphs show the two number-coding
schemes that were compared. In linear coding (left), each input number T is represented by a distribution of activation whose location and width
are both proportional to T, with the width-to-location ratio set to a fixed Weber fraction (here arbitrarily chosen to be 0.20). In logarithmic coding
{right), cach input number T is represented by a distribution with a fixed width, but whose central location on the number map is a logarithmic
function of . Note that in the two cases, the metric of number similarity, a8 measured by the amount of overlap between the distributions coding
for two numbers, is essentially the same.

Probability of choosing the number-left key (%) Prabability of choosing the number-latt key (3a)
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Input numbear T

Fig. 2. Results of the simulations using linear (left) and logarithmic (right) coding. The probability of choosing
the number-left key is shown as a function of the input number T (filled squares: Test 1,5 = 4, I = ¥; filled trian-
gles: Test 2, 5 = 6,/ = 12; open squares: Test 3, § = 4, [ = §; filled circles: Test 4, § = 3, / = 6). Insets show the
linear relation betwesn the indifference point and the standard number, 5.
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Dehaene's model avoids the assumption of numerical processing
only by putting it in the tutor instead of in the net. The attempr is
ironi¢, because the units in the net process their inputs arithmetically.
Furthermore, treating the different values of T as unrelared stimuli
leads to a radically nonparsimonious model of what must be learned.

In Dehaene's simulation, the value of a reward is multiplied by an
exponentally decaying function of the aumber of flashes that the sub-
ject had to generate after its choice and before obtaining its reward,
The computation of the discount factor and its scaling of the value of
the reward is carried out by the tutor, but if such processes are causally
relevant to the behavior observed, then they have to be located in the
brain of the subject. Absent that brain, the effect of the fashes on the
value of a food reward is moot. It is not more parsimonious to assume
that the brain negates the flash count, exponentiates the negation, and
then multiplies the base value of a reward by the result than it is to as-
sume that the brain subtracts. Implementing Dehaene's model in a
multiunit nenral net is stil) less parsimonious. Because every unil in a
net is assumed to sum signed inputs, only one such onit is required to
implement the subtraction thal we assume.

Finally, in Dehaene's model, the response to each number of T
flashes is an independently acquired habit. Nets are universal function
approximators (Homik, Stinchcombe, & White, 1989), which means
they will learn an arbitrary mapping from inputs to outputs, Dehaene's
net will learn, for example, to choose the standard key after an odd
number of flashes and the number-left key after an even number. We
know that this is not how numbers function for animal subjects. {Ses
Honig, 1993, for a demonstration that pigeons have great difficulty
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VOL. 12, NO, 3, MAY 2001

" with odd-even discriminations and Brannon & Terrace, 2000, for a |

demonstration that monkeys cannot learn to touch amrays of different |
numerosities in arbitrary nonmonctonic orders but readily learn o |
touch them in 4 monotonic numerical order) Thus, in Dehaene's
model, the more numbers there are, the more numerous are the “hab-
its” (3-R relations) that must be acquired, When the values of [ and §
are increased, the net must learn a different mapping for each of the T
values it had previously mastered plus new mappings for the newly in-
troduced values of T. Our subjects’ rapid adjustments to new values of
f and § are not consistent with the assumption that making this adjust-
ment invelves learning a large number of new discriminations, We
would welcome, as Dehaene sugpests, future demonstrations of ou-
merical subtraction in our number-left paradigm with unrewarded tri-
als; however, given the data available, we view Dehaene's associative
explanation unparsimonious and unlikely.
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