
Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 13293–13298, November 1997
Neurobiology

A hierarchical neuronal network for planning behavior

STANISLAS DEHAENE*† AND JEAN-PIERRE CHANGEUX‡
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ABSTRACT Planning a goal-directed sequence of behav-
ior is a higher function of the human brain that relies on the
integrity of prefrontal cortical areas. In the Tower of London
test, a puzzle in which beads sliding on pegs must be moved
to match a designated goal configuration, patients with le-
sioned prefrontal cortex show deficits in planning a goal-
directed sequence of moves. We propose a neuronal network
model of sequence planning that passes this test and, when
lesioned, fails in a way that mimics prefrontal patients’
behavior. Our model comprises a descending planning system
with hierarchically organized plan, operation, and gesture
levels, and an ascending evaluative system that analyzes the
problem and computes internal reward signals that index the
correctyerroneous status of the plan. Multiple parallel path-
ways connecting the evaluative and planning systems amend
the plan and adapt it to the current problem. The model
illustrates how specialized hierarchically organized neuronal
assemblies may collectively emulate central executive or su-
pervisory functions of the human brain.

The Tower of London test (1) consists of moving three colored
beads, mounted on vertical rods of unequal length, from an
initial position to a prespecified goal (Fig. 1). To solve this task,
various levels of motor programming are needed (Fig. 2). At
the first and lowest level, here called the ‘‘gesture’’ level,
sensory–motor coordination is needed to point to the location
of the beads. At a second level, called the ‘‘operation’’ level, a
sequence of two elementary gestures (an operation) must be
programmed to move a bead from its initial to its final
destination. The operation level suffices to solve the simplest
Tower of London problems, where each bead can be brought
directly to its desired final destination. More difficult prob-
lems, however, call for the planning of nondirect, provisory
moves and their evaluation by trial and error. These problems
pose specific difficulty to human patients with anterior lesions:
they experience little or no difficulty executing individual
moves but have trouble organizing them into a goal-directed
sequence (1–3). We suggest that a third level of programming,
the ‘‘plan’’ level, is needed to solve such problems. At this level,
sequences of operations (plans) must be selected, executed,
evaluated, and accepted or withdrawn depending on their
ability to bring the problem to a solution. Our model imple-
ments these functions.

Biological Premises

Our modeling approach (4–9) views the brain not as a passive
input–output system, but as an active, projective device that
spontaneously generates ‘‘hypotheses’’ and tests their ade-
quacy (4). Neuronal circuits are modeled as hierarchically
organized assemblies of neuronal clusters linked in multiple

parallel pathways by bundles of synapses (5). In the prefrontal
cortex, neurons within each cluster are connected by excitatory
collaterals and thus can maintain a long-lasting, self-sustained
level of activation implementing an elementary form of work-
ing memory (6, 7, 10). In the absence of specific inputs,
prefrontal clusters activate with a fringe of variability, imple-
menting a ‘‘generator of diversity’’ whose circuitry and hypo-
thetical molecular mechanisms have been outlined (6, 7). The
spontaneous activity patterns thus generated are selected
(stabilized) or eliminated (destabilized) by a simple Hebbian
rule modulated by positive or negative reward signals received
from diffuse projection systems (7, 11). Rewards may be
received from an external teacher, or they may be internally
generated by the organism itself using autoevaluation circuits
(7, 11). Here, we show how the spontaneous generation of
diversity at multiple hierarchical levels, followed by selection
by internally generated evaluation signals, provides a plausible
neuronal model for complex problem solving by trial and error.

Implementation of the model

Gesture Level. To operate on Tower of London problems,
the organism must be able to point to the beads on the pegs.
In our model, such simple sensory–motor coordination is
implemented by a direct projection between input and output
units. The input location of the beads on the pegs is coded by
18 ‘‘current state’’ units, 1 for each combination of 6 locations
on the pegs and 3 colors for the beads. On the output side, six
‘‘gesture’’ units code for the six possible locations on the pegs.
Direct input–output connections allow the network to pro-
gram a pointing gesture toward one of the beads, and lateral
shunting inhibition among gesture units ensures the activation
of a single gesture. Thus, the gesture level, by itself, is capable
only of pointing to beads.

Operation Level. Moving a bead calls for two pointing
gestures, first toward the bead and then toward its desired
destination (3, 12). In our simulation, the execution of this
sequence is controlled by a hierarchically higher ‘‘operation’’
network comprising operation and transition units. Operation
units code for each combination of an initial and a destination
peg, whereas gesture-transition and operation-transition units
code for all possible succession relations between gesture units
and between operation units (13). The projections from and to
operation units incorporate knowledge of the rules of the test
(see legend of Fig. 1). At both the gesture and the operation
levels, termination and exhaustion units control the state of
execution of the sequence (Fig. 2). Whenever an operation unit
activates, there follows the successive activation of a first-
gesture unit (pointing to a bead), then the gesture-termination
unit (suppressing the currently active gesture unit), a second-
gesture unit (pointing to an empty location), the gesture-
exhaustion unit (signaling the exhaustion of all gestures for
that operation), and finally, the operation-termination unit
(suppressing the currently active operation unit).
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At any given time, any of the six operation units may activate,
so a mechanism is needed by which the move most appropriate
for reaching the desired goal can be selected. In our simulation,
the goal configuration is coded by 18 ‘‘goal state’’ units using
a color 3 location code isomorphic to that used for ‘‘current
state’’ unit. Eighteen units compare the goal with the current
state and signal which beads in the goal configuration have not
yet been brought into place (‘‘remaining goals’’ units). An-
other set of 18 units compute which of the beads are movable
and are not yet in place (‘‘movable beads’’ units). Finally,
another 18 units compute which of the goal beads, if any, are
reachable, which means that they are movable, not yet in place,
and that their desired destination is empty and attainable
(‘‘reachable goals’’ units). ‘‘Reachable goals’’ and ‘‘movable
beads’’ units project to operation units and therefore are used
to constrain the choice of which operation is most appropriate
to the current problem.

Behaviorally, the network, when equipped with these rep-
resentations, can only execute moves that place beads directly
at their goal location: a ‘‘reachable goal’’ unit activates and the
corresponding sequence of gestures systematically is executed
first. Thus, the network with both gesture and operation levels,
but no plan level, is capable of executing stimulus-driven motor
sequences but is not able to program nondirect intermediate
moves that call for temporarily placing a ball at a provisory
location.

Plan Level. Planning, which we define here as the goal-
directed, trial-and-error exploration of a tree of alternative
moves, requires additional computations. When no direct
move is available, a move must be self-generated, tried out, and
accepted or rejected depending on its ability to bring the
problem closer to a solution. This productionyselection pro-
cess (4, 14), which is considered to be an important function
of prefrontal areas (6, 7), is implemented here at the plan level
by three major neural systems (Fig. 2): working-memory units
capable of maintaining a self-sustained activity and hence a
memory of a previous problem state while a plan is tested; plan
units that cause novel activation patterns among lower-level
operation units, thus generating a novel plan; and reward units

that evaluate the correctyincorrect status of the plan and may
alter plan unit activity accordingly. Three plan units encode
whether a new operation should be attempted (‘‘move’’ unit),
whether the operation just performed should be withdrawn
and the current state reverted to the memorized state (‘‘re-
treat’’ unit), or whether the current state should be memorized
to permit subsequent backtracking (‘‘store’’ unit). When the
‘‘move’’ plan unit is activated, it provides excitation to all
hierarchically lower operations, thus enabling them to activate,
with an intrinsic variability, even in the absence of any directly
reachable goal. The corresponding operation is then executed,
and the ensuing change in problem state is evaluated. The sum
of activity over ‘‘remaining goals’’ units is used as an approx-
imate measure of distance to the goal, d, which provides input
to three reward units. The ‘‘motivation’’ unit activates when-
ever the problem is as yet unsolved (d . 0) and projects to all
plan units, thus maintaining the generation of novel plans until
the problem is solved. The ‘‘correct’’ unit activates when d
decreases, indicating that a move just made is likely to be
correct, and projects to the ‘‘store’’ plan unit, which will ensure
storage of the new problem state. The ‘‘error’’ unit activates
when d increases, suggesting an incorrect move, and projects
to the ‘‘retreat’’ plan unit, which will restore the problem state
from memory as it was before the attempted move.

Fig. 2 summarizes the main features of the full model. There
is a descending planning system, with hierarchically organized
plan, operation, and gestures levels and their corresponding
transition, termination, and exhaustion units, an ascending
evaluative system that analyzes the current state and the goal
state and culminates into an internal reward, and multiple
horizontal pathways that connect the two systems and ensure
the adaptation of the plan to the problem at hand. The
outcome of this architecture is a hierarchical network that,
given the static input of a Tower of London problem (an initial
state and a goal state), selects a sequence of moves that solves
the problem.

Simulation Details

Details of the connections and a complete listing of the
program are available from the first author. Briefly, at each
time step, the unit activities xi are updated in parallel according
to Eq. 1:

xi~t 1 1! 5 w~si~t! 2 ui! [1]

where ui is a threshold, w is the sigmoid function w(x) 5 1y1
1 e2x, and the net input to unit i, si (t), is computed according
to Eq. 2:

si~t! 5

O
j

wjixj~t! 1 n

1 1 elO
k

xk~t!1m
[2]

where wji is the positive or negative connection weight from
unit j to unit i, n is a noise term, and l and m are parameters.
In this expression, the top sum is computed over all units j that
belong to a different neuronal assembly than unit i, and the
lower sum is computed only over units k that belong to the
same neuronal assembly as unit i and implements nonlinear
inhibition within each assembly. Combined with a large self-
connection (typically wii 5 13), this construction ensures that
regardless of input strength, only one or a few units of each
assembly can activate at any given time. Typical values for the
parameters are m 5 1.5, l 5 2.3, m 5 2, and ui 5 5. A lesion
is simulated by letting ui 5 40 for plan units only, thus
preventing them from activating. For reward units, the time
derivative of ‘‘remaining goal’’ units activity, dxi(t)ydt, was
used instead of si (t) in Eq. 2, as in other models of reward

FIG. 1. State space for the Tower of London test. A problem is
defined by the joint selection of an initial state and a goal. Legal moves
(lines) consist in moving the top bead of any given peg to an empty,
supported location on another peg.
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systems (11), so that reward units were activated by increases
or decreases in the distance to the goal.

The connection weights wji were not subjected to a learning
rule. However, the afferents to plan, operation, and gesture
units obeyed the following desensitizationyrecovery rule (6, 7):

wij~t 1 1! 5 ~1 2 g!wij~t!

if xi~t! . 0.5, xj~t! . 0.5, and xtermination~t! . 0.5

wij~t 1 1! 5 ~1 2 d!wij~t! 1 dwij
`

otherwise [3]

where g and d are respectively desensitization and recovery
parameters (typically g 5 0.07 and d 5 0.02). Eq. 3 implements
an exponential desensitization of active connection weights to
plan, operation, and gesture units that are active whenever the
termination unit of the corresponding level is activated, and a
recovery to their initial value wij otherwise. Desensitization
ensured the termination of unit activity once the correspond-
ing lower-level sequence was executed.

Behavior and Predictions of the Normal Model

The normal behavior of the model was evaluated by submitting
it to a large number of Tower of London problems of varying
complexity and recording its success rate, solution time, and
trajectory in state space (Fig. 3). Like a normal human subject
(1–3), the model shows an increase in error rate and solution
time as the number of moves required to solve the problem
increases (Fig. 3 C and D). Nevertheless, even problems of
intermediate difficulty requiring three, four, or five moves,

including nonobvious intermediate moves, are solved accu-
rately and with a direct trajectory (Fig. 3A and Fig. 4). Only the
most difficult problems that require six, seven, or eight moves,
almost never used in neuropsychological testing because of
their difficulty, are rarely solved by the model after 1,000
iterations. Given more time, even these problems are eventu-
ally solved because noise and habituation of excitatory con-
nections ensure that moves with a very low initial probability
of being selected are eventually tried out. Hence, the normal
network exhibits f lexibility and is rarely stuck in an impasse.

Although Shallice (1) originally used the total number of
moves as a measure of problem difficulty, empirical research
with normal subjects (15) has shown that a better predictor of
normal performance is the number of indirect moves (moves
that do not place a disc in its final position). Our network
performs similarly. Multiple regression on a simulated data set
of 2,081 problems indicated that both the solution time and the
error rate were better predicted by separate variables for the
number of direct and indirect moves required than by a single
variable for the total number of moves. Each additional
indirect move added about 110 simulation cycles to the solu-
tion time, whereas each additional direct move required only
45 additional cycles. These results are directly analogous to
empirical findings (15), except that human subjects also learn
to represent whole series of moves as a single chunk in working
memory (15), a feat beyond the reach of the present model.

On the basis of a detailed analysis of normal subjects’
behavior in a similar test, Ward and Allport (15) suggested that
humans solve Tower of London problems using a heuristic of
look-ahead, evaluation, and backtracking similar to the one
used by our model. To directly compare normal subjects’
evaluation function with the one used by our network, we

FIG. 2. Architecture of the model. Squares represent sets of functionally related units (neuronal assemblies), and arrows depict connection
pathways. The model is divided into ascending evaluative and descending planning pathways with multiple horizontal interconnections at each of
three hierarchical levels (gestures, operations, and plans). At the top level, plan units receive inputs from reward units. At the intermediate level,
operation units receive inputs from ‘‘current state,’’ ‘‘movable beads,’’ and ‘‘reachable goals’’ units. Finally, at the lowest level, gestures units receive
direct inputs from ‘‘current state’’ units, enabling the fine details of the motor plan to be adapted to the current configuration of the beads. Within
each assembly, units pool the activation or inhibition they receive and compete for the control of behavior through self-excitation and nonlinear
shunting lateral inhibition, resulting in the selection, at any given time, of a single, active unit at each level, the one that is best adapted to the
constraints received from other assemblies.
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computed, after each tentative move, the difference in the
activation level of the positive and negative reward units in our
network (evaluation index; positive values indicate positive
evaluation). Moves that placed a bead to its final location
(direct moves) were rated ‘‘best’’ in Ward and Allport’s (15)
empirical study and had an average evaluation index of 10.697
in our simulation. Likewise, moves that cleared the top of a
current goal bead or cleared a current goal location were rated
‘‘good’’ (10.438), those that blocked these locations were
‘‘bad’’ (20.611), and those that moved a disc away from its goal
location were ‘‘worst’’ (20.838). All other moves were rated by
our network as ‘‘neutral’’ on average (10.028). Thus, the
internal evaluations computed by our network matched those
of normal subjects.

At least two behavioral predictions follow from this evalu-
ation function. First, for a fixed number of direct and indirect
moves, problems requiring the assembling of a tower of beads
all onto one peg should be easier than converse problems
requiring the disassembling of a tower (Fig. 3E). This is
because assembling a tower provides an unambiguous ordering
of goals (15). This prediction was verified by Ward and Allport
in normal subjects (15), and is also valid for our network (Fig.
3G). Second, problems in which a direct move is actually
incorrect and must be inhibited should be much harder to solve
than problems in which the same direct move is correct (Fig.

2F). This prediction was verified in our network (0% correct
under a 1,000-cycle time limit for ‘‘direct move incorrect’’
problems; 100% correct, average solution time 243 cycles for
‘‘direct move correct’’ problems) but remains to be tested
empirically.

Simulation of Prefrontal Lesions

When the network is lesioned by removing the plan units,
accuracy drops and solution time increases considerably for
problems of intermediate difficulty (Fig. 3 C and D), paralleling
the performance of patients with frontal lesions (1–3). De-
pending on the problem, different behaviors are observed (Fig.
3B). Either moves are selected and executed at random,
leading to a purposeless trajectory in state space, or the
network reaches a dead end where it is incapable of generating
further moves because operation units, being deprived of
inputs from plan units, now fail to reach their activation
threshold. However, there is a relative preservation of simple
problems that can be solved by direct, stimulus-driven place-
ment of beads at their final location (Fig. 3 B–D). In fact, direct
moves are often executed faster by the lesioned network than
by the intact network, and in more complex problems the
lesioned network can no longer inhibit a direct move even
when it leads away from the goal. This behavior is analogous

FIG. 3. Simulations of normal and impaired performance in the Tower of London test. (A and B) Sample resolution attempts, plotted as
trajectories on the state space of Fig. 1. Starting from various positions (stars), the normal network (A) detects and withdraws inappropriate moves
(dotted lines) and quickly converges to the goal. The network with lesioned plan units (B) never withdraws the moves it selects and is often stuck
in impasses (solid disks). (C) Average time to reach a given goal, starting from various initial states, for networks with intact (white) and lesioned
(black) plan units. Disk diameter is proportional to solution time. A time limit of 1,000 update cycles, corresponding to about 20 attempted moves,
was imposed. Initial states are grouped by ‘‘iso-distance’’ lines according to their distance to the goal, a measure of problem complexity. Both
networks quickly solve problems within two moves of the goal, where beads can be moved directly to their final location. The lesioned network
performs abnormally slowly on complex problems that require intermediate moves. (D) Percent problems solved by the intact and lesioned networks
as a function of problem complexity. The dotted lines are taken from Shallice’s groups of normal controls and left anterior patients (1). (E–G)
Predicted dissociations in performance in normal subjects. Problems requiring the disassembling of a ‘‘tower’’ of beads (E, dotted arrow) and
problems in which a direct move is incorrect and must be inhibited (F, dotted arrow) are predicted to yield more errors (G) than the converse,
superficially similar problems (E and F, continuous arrows).
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to the impulsivity (16, 17) and utilization behavior (18, 19)
attributed to patients with frontal lesions.

According to our simulation, the lesioning of plan units
effectively disconnects the operation network from the reward
network. Hence, the planning deficit can be attributed to an
inability to guide the selection of motor operations by an
internal evaluation of their relevance to reaching the goal (10,
20). There is an adherence to the immediately apprehensible
sensory characteristic of the problems (18) but no consider-
ation of the global objective of solving them. Note that
plan-unit lesions leave the reward system fully functional but
unable to affect the selection of moves. Thus, a testable
prediction is that some patients with frontal lesions, although
unable to generate a goal-directed sequence of moves, might
remain able to evaluate its correctness when performed by a
third party. The predicted dissociation between preserved
internal evaluation and incorrect generation of plans is anal-
ogous to the observation that in the Wisconsin Card Sorting
Test, some patients with frontal lesions may verbally criticize
their errors, all the while failing to correct them (21, 22).

Functional brain imaging experiments show that when nor-
mal subjects engage in the Tower of London task, an extended
network of areas activates, including parietal, prestriate, insu-

laryopercular, premotor, and prefrontal cortices (12, 23, 24).
Because parietal, prestriate, premotor, and insularyopercular
areas are active even for simple problems, they may contribute
to the operation level, with occipitoparietal areas contributing
to identifying movable beads and reachable goals, and premo-
tor and insular cortex involved in mentally selecting and
executing direct moves. During the resolution of more complex
Tower of London problems, increased activity is detected in
this network as well as in dorsolateral, rostrolateral, and
medial prefrontal areas and in the basal ganglia (12, 23, 24).
This set of areas thus may contribute to the anatomical
substrates of working memory, plan, and reward units that
together form the plan level of the model. Within dorsolateral
prefrontal cortex in monkeys, neurons exhibiting long-lasting
firing during delayed-response tasks (10) may correspond to
the working-memory units. Sequential dependencies in neu-
ronal firing, including selective firing to a sequence of motor
actions, have been observed in prefrontal cortex (25) and in
supplementary motor area (26) and may correspond to the
transition units. Finally, some neurons in dorsolateral prefron-
tal cortex (27) and in subcortical mesencephalic dopamine
nuclei (11, 28) fire when an animal expects to receive a reward.
Hence, dopaminergic input to prefrontal cortex may contrib-

FIG. 4. Functional architecture (Left) and single-unit activity (Right) during the resolution of a problem of intermediate difficulty. Following
the presentation of initial and goal states, the network compares them and activates one ‘‘remaining goal’’ unit for each misplaced bead (Top). The
total activity of ‘‘remaining goals’’ units being positive, the ‘‘motivation’’ unit activates, followed by the ‘‘store’’ plan unit, resulting in the storage
of the initial state in ‘‘working memory’’ units. The ‘‘move’’ plan unit then activates, triggering a cascade of activation through which an operation
is selected and the corresponding sequence of two gestures is executed. The first operation thus selected happens to be inadequate, because the
resulting state is even farther from the goal (the black bead occupies the desired location of the gray bead). Hence, the total activity of ‘‘remaining
goals’’ units increases, which results in the activation of the ‘‘error’’ unit and the ‘‘retreat’’ plan unit, causing the withdrawal of the previous move
and the restoration of the initial state from working memory. A second operation is then performed, immediately followed by a third operation
that places the gray ball at its desired final location. The current state is now judged closer to the goal, as signaled by the activation of the ‘‘correct’’
unit. The ‘‘store’’ unit therefore is activated, again storing the current state in working memory. Finally, the final direct move is performed, making
the current state identical to the goal. Because of this match, the ‘‘motivation’’ unit switches off and activity ceases in all layers. In the lower graph,
single-unit activity curves were scaled by an arbitrary factor and superimposed to show the temporal nesting of lower-level units by successively
higher levels.
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ute to reward information necessary to modify the plan
according to its success or failure. Lesions of dopaminergic
neurons may be simulated in the model by removing the
reward units, whereas alterations of dopamine action on its
receptors andyor related signal transduction mechanisms (29)
may be mimicked by altering the parameters determining the
impact of reward units on plan units. In both cases, a severe
planning deficit similar to that caused by plan-unit lesions is
observed, in good agreement with the deficits of Parkinsonian
patients in the Tower of London test (30–32).

Inasmuch as motor, parietal-premotor, and mesolimbic-
prefrontal circuits correspond to the gesture, operation, and
plan levels, the model predicts a specific temporal organization
of their activation during problem solving. A given plan unit
may remain active while multiple operation units are sequen-
tially tested, each in turn calling for a sequence of gesture-unit
activity. This ‘‘temporal nesting’’ of activity (Fig. 4) remains to
be tested empirically.

Conclusion

We have described a neural architecture comprising multiple
hierarchical levels and capable of solving complex problems
that, in humans, require frontal lobe integrity. Our model uses
heuristics similar to those of normal subjects and mimics the
performance of normal subjects and of frontal patients in
considerable detail. Future work should address some of its
obvious limitations. The ‘‘chunking’’ of series of moves (15)
and the spatial interference effects (2, 33) that have been
observed in normal and lesioned subjects may require only
small modifications to the coding scheme of input and oper-
ation units. Most important, learning mechanisms should be
added to allow the model to adapt to different problem types
and domains. Currently, the exact values of the model’s
connections are specific to the Tower of London test. How-
ever, we believe that its architecture with interconnected
ascending and descending hierarchical streams for evaluation
and planning may be generalized to other tasks and provides
a general framework for understanding planning behavior.

Cognitive models of prefrontal cortex function during prob-
lem solving have emphasized its role as a supervisory struc-
ture, capable of selecting and controlling lower-level auto-
mated behaviors (19, 34, 35). Our neuronal implementation of
this influential view suggests that ‘‘supervision’’ and ‘‘plan-
ning’’ cannot be related to a single brain region. Rather, they
rely on multiple neural circuits coding for specialized subpro-
cesses such as working memory, plan generation, or internal
reward.
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