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The number-to-position task, in which children and adults are asked to place numbers on a spatial number
line, has become a classic measure of number comprehension. We present a detailed experimental and
theoretical dissection of the processing stages that underlie this task. We used a continuous finger-
tracking technique, which provides detailed information about the time course of processing stages.
When adults map the position of 2-digit numbers onto a line, their final mapping is essentially linear, but
intermediate finger location show a transient logarithmic mapping. We identify the origins of this log
effect: Small numbers are processed faster than large numbers, so the finger deviates toward the target
position earlier for small numbers than for large numbers. When the trajectories are aligned on the finger
deviation onset, the log effect disappears. The small-number advantage and the log effect are enhanced
in dual-task setting and are further enhanced when the delay between the 2 tasks is shortened, suggesting
that these effects originate from a central stage of quantification and decision making. We also report
cases of logarithmic mapping—by children and by a brain-injured individual—which cannot be ex-
plained by faster responding to small numbers. We show that these findings are captured by an
ideal-observer model of the number-to-position mapping task, comprising 3 distinct stages: a quantifi-
cation stage, whose duration is influenced by both exact and approximate representations of numerical
quantity; a Bayesian accumulation-of-evidence stage, leading to a decision about the target location; and
a pointing stage.
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How do we understand the quantity represented by two-digit
numbers? This question can be explored using a number-to-
position mapping task, in which individuals are presented with a
number and are asked to mark the corresponding position on a

number line. This task is informative because it requires convert-
ing the symbolic Arabic number into an internal representation of
quantity. Quantities are thought to be internally organized along an
internal continuum which has been likened to a mental “number
line” (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Cap-
pelletti, Kopelman, Morton, & Butterworth, 2005; Dehaene,
Bossini, & Giraux, 1993; Fitousi & Algom, 2006; Ruiz Fernández,
Rahona, Hervás, Vázquez, & Ulrich, 2011; Shaki, Fischer, &
Petrusic, 2009; von Aster, 2000). Monitoring how participants
point at the physical number line can therefore shed some light on
this internal quantity representation (Barth & Paladino, 2011;
Booth & Siegler, 2006; Dehaene, Izard, Spelke, & Pica, 2008;
Siegler & Booth, 2004; Siegler & Opfer, 2003).

To gain greater insight into this process, we developed a para-
digm in which the participants performed the number-to-position
task on a tablet computer while their finger position was contin-
uously tracked (Dotan & Dehaene, 2013). The finger direction is
assumed to continuously reflect the ongoing decision (Finkbeiner
& Friedman, 2011; Finkbeiner, Song, Nakayama, & Caramazza,
2008; Freeman, Dale, & Farmer, 2011; Santens, Goossens, &
Verguts, 2011; Song & Nakayama, 2008a, 2008b, 2009), and this
allows for a temporal dissection of the digit-to-quantity conversion
process. We observed that, starting at about 400 ms post stimulus
onset, the finger position began to be correlated with the linear
quantity of the two-digit target number. Most importantly, there
was a transient time window, around 550–1,050 ms, in which the
finger position was affected by an additional contribution of the
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logarithm of the target. This observation suggested that the quan-
tities were encoded by two distinct systems: an exact linear rep-
resentation, where all numbers are equally well represented, and an
approximate representation, where small numbers are represented
more precisely than larger ones. This conclusion was in accord
with studies that found compressive quantity representation in
other tasks (Anobile, Cicchini, & Burr, 2012; Berteletti et al.,
2010; Booth & Siegler, 2006; Dehaene et al., 2008; Dehaene &
Marques, 2002; Lourenco & Longo, 2009; Núñez, Doan, &
Nikoulina, 2011; Opfer & Siegler, 2007; Siegler & Booth, 2004;
Siegler & Opfer, 2003; Viarouge, Hubbard, Dehaene, & Sackur,
2010). Mathematically, the approximate representation can be
described as a logarithmic number line with fixed variance, as
suggested by neural recordings and brain imaging data (Nieder &
Miller, 2003; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). As
previously noted (Dehaene, 1997), an equally accurate model of
behavioral data can be obtained by postulating a linear number line
with scalar variability (standard deviation proportional to number;
for discussion, see Cicchini, Anobile, & Burr, 2014; Dehaene,
2007). As shorthand, we refer to these two representations simply
as “approximate,” referring to the fact that they both show an
increasing uncertainty as the numbers get larger.

Our goal in the present study was to clarify the theoretical reasons
why a logarithmic effect arises even in adults, who know perfectly
well that they should point to the linear location of the numbers. In
particular, we designed new experiments exploring the hypothesis of
a dual representation of quantity. We reasoned that, if there are two
distinct representations of number, respectively exact and approxi-
mate, then we might be able to interfere with one of them and
therefore transiently enhance the influence of the other. We relied on
the method introduced by Anobile et al. (2012), who used quantity-
to-position mapping in a dual-task setting. In the critical condition,
participants estimated a number of dots and responded by marking a
position on a line, while simultaneously performing a secondary task
of color pattern judgment. This manipulation made their mapping
more logarithmic. This pattern could be explained as a psychological
refractory period (PRP) effect in which the secondary task competed
with the exact linear quantification process for central resources,
while leaving approximate quantification intact. As a result, the log
effect was facilitated while the linear representation was reduced. The
log-linear dissociation can therefore support a model of dual quantity
representation. We aimed to replicate these findings with two-digit
symbolic numbers, using our continuous number-to-position para-
digm.

We also assessed a new theoretical interpretation that has recently
arisen for the log effect in number-to-position tasks (Cicchini et al.,
2014). This interpretation rests on a single quantity representation
with differential variability—large quantities are represented with
greater noise than small quantities. The idea is that the log effect
results from a Bayesian process that combines this fuzzy quantity
representation with prior knowledge (Fischer & Whitney, 2014;
Jazayeri & Shadlen, 2010). Because large quantities are fuzzier than
small quantities, they are estimated with lower confidence, and the
Bayesian decision process assigns them a smaller weight relatively to
prior knowledge. The decision is therefore slower (and the effect of
prior biases is stronger) for larger target numbers than for smaller
target numbers, and this is what gives rise to the logarithmic effect. In
a dual-task setting, interference from the secondary task reduces even
further the amount of evidence that can be extracted from the quantity

representation per unit of time, and therefore the logarithmic effect is
increased.

Note that differential variability between small and large num-
bers can take many forms: One possibility is scalar variability
(linear mapping of numerical quantities, and linear relation be-
tween the noise level and the target number), but the model can
accept almost any form of differential encoding of small and large
numbers. Thus, a compressive scale for number (e.g., logarithmic)
with fixed variability would lead to similar results. Furthermore,
when the stimuli are sets of dots (as was the case in Anobile et al.,
2012), differential variability may arise from the assumption that
the noise in the subitizing range (1–3) is lower than in the non-
subitizing range (�4; Cicchini et al., 2014).

Crucially, according to this model, logarithmic mapping can be
obtained even if the internal quantity scale is not logarithmic.
Although it was initially argued that logarithmic behavior in the
number-to-position task implies an internal logarithmic represen-
tation (Booth & Siegler, 2006; Dehaene et al., 2008; Dotan &
Dehaene, 2013; Siegler & Booth, 2004; Siegler & Opfer, 2003),
Cicchini et al.’s (2014) model shows that this is not the case. In
particular, as previously argued, there is a near-complete behav-
ioral equivalence between the log and the scalar variability models
of approximate number representation (Dehaene, 2007).

Cicchini et al. (2014) further showed that the prior in the
Bayesian decision process need not be fixed. Indeed, they discov-
ered a new empirical finding that suggests that the prior is adjusted
on a trial-by-trial basis: Judgments are strongly affected by the
quantity presented on the immediately previous trial. Nevertheless,
whether the prior is fixed or is updated after each trial, what really
accounts for the log effect in Bayesian decision models is differ-
ential variability. Accordingly, a recent study has shown a loga-
rithmic effect in quantity-to-position mapping even in the first trial
of an experiment, when prior trial information was not yet avail-
able (Kim & Opfer, 2015).

The experiments and equations presented in Cicchini et al. (2014)
capture only the participants’ ultimate response location in a number-
to-position task, and remain silent about the sequence of processing
stages that lead to this decision. In the present study, we wish to
extend this model to account for the detailed within-trial dynamics of
the number-to-position task. Our goal, indeed, is to obtain a detailed
theory of the successive stages leading to a decision in the number-
to-position task. We will show that an ideal-observer theory can
account for our main finding that the mapping to position shows a
logarithmic trend when the trial starts but becomes fully linear when
the finger reaches the number line. The intuition behind this model
can be specified succinctly: Assuming that the decision to move is
based on a Bayesian decision process, with a progressive accumu-
lation of evidence arising from the target, then differential vari-
ability should affect the processing time of the target. Large target
numbers, which are represented with higher variability, are quan-
tified more slowly than small target numbers (hereby, “small-
number advantage”), so the Bayesian prior is overridden more
slowly for large target numbers. As a result, at each poststimulus
time point, small-target trials are in a more advanced stage of
processing than large-target trials, which means that the finger
trajectories for small targets are farther apart from each other than
the trajectories for larger numbers. These differential distances
between the trajectories appear as logarithmic effect when analyz-
ing a specific time point.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

638 DOTAN AND DEHAENE



We term this dynamic version of Cicchini et al.’s (2014) model the
differential encoding time model. In the final section, we present a
precise mathematical model and simulations of this idea. Note that the
differential encoding time model conforms to the two main assump-
tions of Cicchini et al. (2014): (a) The target position is determined by
a Bayesian decision process, with a prior that is affected by previous
trials, and (b) the log effect results from differential variability for
small versus large numbers, which causes differential overriding of
the prior by the present-trial quantity.

Experiment 1: Number-to-Position Mapping With
Dual Task

In Experiment 1, the participants mapped numbers between 0
and 40 to the corresponding positions on a number line. Each
participant performed the task in three conditions, administered in
three separate blocks. The first condition involved a single task:
The participants mapped numbers to positions, with no other
manipulation (like in Dotan & Dehaene, 2013).

The second condition involved dual-tasking: Subjects per-
formed the number-to-position mapping parallel to a distracter
task. Like Anobile et al. (2012), we used a color-detection task,
which in our case was color naming. We hoped this task would
maximize the interference effect, because it is not only attention
demanding but also involves verbal output, which may selectively
interfere with the linear quantity representation. One possible
reason for such a selective interference rests on the assumption that
Arabic numbers can be encoded as quantities by both hemispheres,
but only the left hemisphere houses a verbal representation of
numbers (Cohen & Dehaene, 2000). When the verbal system is
occupied, approximate quantity may still be perceived without
verbal mediation (Dehaene & Cohen, 1991; Dehaene et al., 2008;
Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). Under this
hypothesis, verbal interference should increase the relative weight
of the nonverbal parietal circuit that encodes approximate quanti-
ties. The dual-representation model thus predicts that the color
naming condition should enhance the transient logarithmic effect.

The third (control) condition was number naming: The participants
said aloud the number while pointing to the corresponding position.
This condition does not divert attention from the target number and,
if anything, should enhance the exact linear representation.

Method

Participants. Eighteen right-handed adults, aged 27;8 � 6;5,
with no reported learning disabilities or color blindness, were paid
€10 for participation. Their mother tongue was Hebrew. For com-
parison, we also reanalyzed the data of 21 right-handed partici-
pants reported in Dotan and Dehaene (2013)—10 Hebrew speak-
ers, nine French, one Italian, and one Thai, aged 35;5 � 10;7, who
performed the number-to-position task silently. Digital numbers in
Hebrew are written like in English, and in our number-to-position
paradigm Hebrew participants and left-to-right readers were found
to exhibit similar patterns of results (Dotan & Dehaene, 2013).

Procedure. In each of the three conditions (silent, color nam-
ing, and number naming), each number 0–40 was presented six
times (246 trials) in random order. In the two naming conditions,
the participants were told that the two tasks (number-to-position
and naming) were equally important but that they should first

attend to the naming task and then to the number-to-position task.
The three conditions were blocked and were administered in
random order (three participants per presentation order). The silent
condition was identical to Dotan and Dehaene (2013): A horizontal
number line, marked only with 0 and 40 in its ends, was present at
the top of the screen throughout the experiment (see Figure 1).
When the participants touched the initiation rectangle, a fixation
cross appeared above the middle of the number line. When the
participants started moving their finger toward the number line, the
fixation cross was replaced by the target number and the partici-
pants moved their finger to what they judged to be the correspond-
ing position on the number line. When the finger reached the
number line, an arrow showed the position marked by the finger.
In the naming conditions, while moving the finger the participants
also said aloud (in Hebrew) the target number or a color name. One
color per trial—white, yellow, orange, pink, red, blue, or green—
was indicated by two horizontal stripes that appeared simultane-
ously with the target number, surrounding it. The oral responses
were tape recorded and trials with semantic or phonological errors
were excluded. The speech onset time was defined as the first time
point in which the voice level, sampled at 20 Hz, exceeded a
threshold level for a consecutive period of 200 ms. This threshold
was configured per experiment session to match environment
noise and the participants’ speech volume.

The following violations were considered as failed trials: lifting
the finger in midtrial, touching the screen with more than one
finger, moving the finger backward, and starting a trial with
sideways (rather than upward) movement. Furthermore, excluding
the first 300 ms of each trial, a minimal finger velocity of 6 mm/s
was required. The finger also had to reach the number line within
2 s and one third of the vertical distance within 1 s, with linear

270 40

Stimulus appears when the 
finger crosses this height

Finger
trajectory

Arrow shows where the finger 
landed on the number line Implied

endpoint

Color stripes (only in the 
color naming condition)

Figure 1. Task and screen layout. Participants pointed to the location of
two-digit numbers on a horizontal number line that extended from 0 to 40. On
each trial, they first placed their finger on the bottom rectangle. When they
started moving their finger upward, the target appeared. In the naming condi-
tions, they simultaneously named either the number itself (number naming
block), or the color of the two stripes surrounding it (color naming block).
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interpolation. In the two naming conditions, trials were also con-
sidered as failed if the speech onset time was too early (less than
200 ms) or too late (less than 200 ms before the finger reached the
number line). Failed trials were excluded from all analyses and
their target numbers were presented again later in the experiment.
The training procedure was as described in Dotan and Dehaene
(2013), with additional training phases for reviewing the color
names and for adapting to the speech onset limits.

Technical specifications. We used Apple iPad 1 and iPad 2
devices in landscape orientation. The screen size was 197 � 148 mm
and the resolution of display and finger tracking was 1,024 � 768
pixels. The background was black. The number line was white, 2 �
844 pixels, and horizontally centered 80 pixels below the screen top.
Target numbers appeared centered above the number line in Arial
bold white font with 10-mm-high digits. The numbers 0 and 40 at the
ends of the number line appeared in light gray, 5-mm-high Helvetica
font. The fixation cross was 7.7 mm high and wide. The feedback
arrow was green, 7.7 mm high, and pointed downward with its tip
touching the number line. In the color naming condition, colors were
shown as two horizontal stripes (100 � 12 pixels each), horizontally
centered, above and below the target number. The trial-initiation
rectangle was 60 � 40 pixels (landscape) and dark gray. The stimulus
appeared when the finger crossed the line y � 50 pixels (from the
bottom of the screen).

Data encoding and preprocessing. We first introduce our
terminology. The trial endpoint is the position where the finger
crossed the number line (expressed in numerical units, 0–40). The
endpoint bias is the difference between the endpoint and the target
number. Endpoint error is the absolute value of endpoint bias.
Movement time is the duration from stimulus onset to reaching the
number line. Horizontal movement onset time is the post-stimulus-
onset time in which we could identify that the finger started
deviating toward the target number (see the “Identifying the onset
of horizontal movement” section below).

The finger position was sampled at 60 Hz � 1 ms, recorded as
a sequence of time stamped x,y-coordinates, and transformed into
a fixed sampling rate of 100 Hz using cubic spline interpolation.
For each point along the trajectory, �t is the direction vector
between the finger coordinates at times t – 50 ms and t. The �t

values were smoothed using a Gaussian with � � 40 ms. The
implied endpoint (iEP) is the position on the number line that the
finger would reach if it keeps moving in the direction �t. iEPs were
cropped to the range [�2, 42] and were undefined for sideways
movement (|�t| � 80°).

A median trajectory was calculated per participant and target
number as the median x,y-coordinates per time point (for late time
points, which exceeded the trial’s movement time, the endpoint
was used when averaging). iEPs of the median trajectories are
denoted iEPmed.

We excluded from all analyses (and from the median trajectory
calculation) the failed trials (as defined above), trials with move-
ment time 	200 ms, trials with semantic or phonological naming
errors, and trials with outlier endpoints. Outlier endpoints were
defined, per group of six trials with the same target number, as the
endpoints that exceeded the 25th or 75th percentile by more than
1.5 times the interquartile range.

Trajectory analysis. Trajectories were analyzed using the
method introduced in Dotan and Dehaene (2013). One regression
was run per participant and per time point in 50-ms intervals. The

dependent variable in these regressions was the iEP of the median
trajectories (iEPmed). The predictors were the target number (de-
noted N0–40), its logarithm, log=(N0–40) � log(1 
 N0–40), lin-
early transformed to the range 0–40, the unit digit (U), and a bias
function due to spatial reference points (SRPs, defined in Equation
1). The latter (or similar functions) was found significant in several
number-to-position studies (Barth & Paladino, 2011; Dotan &
Dehaene, 2013; Rouder & Geary, 2014; Slusser, Santiago, &
Barth, 2013) and was hypothesized to result from the comparison
of the target position with three spatial reference points—the
middle of the number line (20) and its two ends (0 and 40).

SRP(N) �

� 20 * log(N � 1)
log(N � 1) � log(21 � N) For N � 20

20 � 20 * log(N � 20 � 1)
log(N � 20 � 1) � log(21 � N) For N � 20

(1)

A second-stage analysis was performed per predictor and time
point, to examine whether the predictor had a significant group-
level effect: The participants’ regression b values (significant and
nonsignificant) were compared with zero using a t test. The re-
ported p values are one-tailed when mean[b] � 0 and two-tailed
when mean[b] 	 0.

A possible concern about implied endpoints is whether they
indeed reflect the subject’s intention in a given point in time. iEPs
are calculated based on the momentary finger direction �t, which
does not necessarily reflect a well-developed motor plan but per-
haps random movements or jitter. However, in our previous pub-
lication with this paradigm we showed that analyzing iEPs yields
similar results to an analysis of the x coordinates, which are much
less affected by jitter—at least when it comes to regression anal-
ysis, in which all trials are pooled together. Here, we preferred the
iEPs over the x coordinates, as they provide better temporal gran-
ularity (Dotan & Dehaene, 2013).

ANOVA. The speed of performing the number-to-position task
varied a lot between individuals. Our goal in the present study was not
to explain these interindividual differences, but to focus on the within-
subject factors that affect people’s behavior in the number-to-position
task. For this reason, in all analyses of variance (ANOVAs) in this
study—most of which concern reaction time (RTs)—we use repeated
measures design and report effect sizes as partial �2, a measure that is
independent of the between-subjects variance. To maintain standard-
ization, we also report �2 for one-way ANOVAs, and generalized �2

(Bakeman, 2005; Olejnik & Algina, 2003), denoted �G
2 , for ANOVA

with several factors. In case of an ANOVA effect for which df � 1
and the effect direction has a clear prediction, we used the correspond-
ing t test and one-tailed p values.

Results

General performance. Table 1 shows that number-to-
position mapping was more difficult in the color naming condition
than in the silent condition: The participants were less accurate
(larger endpoint error), slower, and had more failed trials. Thus,
the color naming manipulation was clearly effective. The number
naming manipulation had a weaker effect: A smaller difference
was observed in movement time and failed trial rate, and accuracy
was similar to the silent condition. The participants’ unanimous
subjective impression was that color naming was considerably
harder than the two other conditions.
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The participants’ median trajectories are presented in Figure
2a–c. The trajectory data was submitted to the two-stage regres-
sion analysis described above in Method. All four predictors
showed significant effects in all conditions (Figure 3a–c and Table
2). The silent condition replicated the results from Dotan and
Dehaene (2013), including the approximate time window for the
significant effect of the log regressor (500–600 ms here, 450–750
ms in Dotan & Dehaene, 2013). The only essential difference was
that here we did not observe an early contribution of the unit digit;
instead, both decades and unit digits arose simultaneously as
significant regressors, giving rise to a main effect of the linear
value of the two-digit target number (see Figure 3). The pattern of
significant effects in the two naming conditions was similar to the
silent condition, but in the color naming condition the factors were
observed in later time points, in accord with the slower finger
movement in this condition.

Assessment of the dual representation model.
Color naming interferes with the linear factor and enhances

the logarithmic factor. The regression b values of the log and
linear factors in the silent condition were compared, per time point,
versus the color naming condition using a paired t test (see Figure 3).
This comparison confirmed the dissociation between the log and
linear factors: As predicted, the color naming manipulation enhanced
the log factor and reduced the linear factor. The linear factor in the

color naming condition was significantly smaller than in the silent
condition from 450 ms to 850 ms, b[N0–40]colors 	 b[N0–40]silent,
t(17) � 1.75, one-tailed p 	 .05. The pattern was reversed for the
log factor: A significant difference, b[log=(N0–40)]colors �
b[log=(N0–40)]silent, was observed from 650 to 750 ms, t(17) � 2.1,
one-tailed p � .05 (the difference b[log=(N0–40)]colors 	
b[log=(N0–40)]silent from 500 ms to 550 ms did not reach signifi-
cance, t(17) 	 1.4, one-tailed p � .09). This dissociation supports
the predicted enhancement of the approximate representation rel-
ative to the exact representation during dual-task interference.

This influence of color naming can be interpreted in two ways—
either as facilitating the approximate quantity representation and
weakening the linear representation, or as delaying the linear repre-
sentation (i.e., the difference between the silent and color curves in
Figure 3d can be viewed as either vertical or horizontal). If we accept
the delay model, the delay size can be estimated from Figure 3d as
�50 ms around movement onset (�450–500 ms post stimulus onset),
increasing to �200 ms when crossing the b � 1 threshold (at �670–
870 ms). Figure 3e suggests that color naming may have slightly
delayed the influence of the logarithmic factor too, but this delay was
much smaller and never exceeded �50 ms. The results are therefore
compatible with the hypothesis that the linear quantity representation
was delayed, which left the stage for the log representation to have a
larger effect on the finger movement.

Table 2
Experiment 1: Time Windows (ms Post Stimulus Onset) in Which the Regression b Values Were
Significantly Different From Zero (p � .05)

Factor Silent Color naming Number naming

b[N0–40] � 0 450–end 200,500–end 450–end
b[log=(N0–40)] � 0 500–600 550–700 500–600
b[log=(N0–40)] 	 0 750–end 1250–enda 850–end
b[U] � 0 750–endb 550, 1,150, 1,300–end 1,000–end
b[SRP] � 0 550–end 700–end 550–end
b[SRP] 	 0 None None 150–400

Note. U � unit digit; SRP � spatial reference points.
a p 	 .05 in 1,250–1,450, 1,650–1,700, and .05 	 p 	 .07 in the other time points. b p 	 .05 in 750–800,
900–1,000, 1,400–1,500, and .05 	 p � .08 in the other time points.

Table 1
General Performance Measures in Experiment 1

Measure Silent Color naming
Number
naming

Failed trials (%) 3 � 2.4 22.1 � 8��� 14.4 � 10.3���

Invalid speech onset (%)a — 10.6 � 5.3 11.2 � 9
Naming error (%)b — 2.6 � 2 .04 � .13
Minimal velocity violation (%) 1.4 � 2.1 7.6 � 5.8��� 1.8 � 3.3
Other errors (%) 1.6 � 1.6 1.3 � .9 1.4 � 1.3

Endpoint outliers (%) 4.6 � 1.5 5.6 � 1.9† 4.7 � 1.4
Movement time (ms) 1,102 � 154 1,398 � 131��� 1,208 � 132���

Endpoint bias (0–40 scale) �.65 � .45 �.68 � .46 �.58 � .39
Endpoint error (0–40 scale) 1.7 � .42 2.1 � .7��� 1.74 � .4
Speech onset time (ms) — 898 � 101���,c 695 � 90

Note. The standard deviations refer to between-subject variance of the per-subject means.
a Invalid speech onset: The verbal response was too slow, too fast, or no response was made. b Naming error:
semantic or phonological. c Speech onset time was compared between the color naming and number naming
conditions.
Paired t test vs. the silent condition: † one-tailed p 	 .1. ��� p 	 .001.
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Given these apparent delays, we also attempted to compute a
time-independent per-participant index of the peak log effect
size. This index, denoted b[log=(N0 – 40)]global, was defined as
the 75th percentile of b[log=(N0 – 40)] between 450 ms and 750
ms (the time window in which a significant log effect was found
in Dotan & Dehaene, 2013; we used 75th percentile rather than

the peak b value to increase the robustness to noise and outli-
ers). b[log=(N0 – 40)]global was larger in color naming (b �
0.20 � 0.10) than in the silent condition (b � 0.15 � 0.11),
t(17) � 2.1, one-tailed p � .03, Cohen’s d � 0.47, confirming
that the color naming manipulation enhanced the participants’
log effect.

Experiment 1, silent conditio gniman rebmun ,1 tnemirepxEn

tnemirepxEgniman roloc ,1 tnemirepxE  2, silent (baseline) condition

sm 001 = AOS ,2 tnemirepxE0 = AOS ,2 tnemirepxE

sm 003 = AOS ,2 tnemirepxEsm 002 = AOS ,2 tnemirepxE

Ti
m

e
Ti

m
e

Ti
m

e
Ti

m
e

noitisop latnoziroh regniFnoitisop latnoziroh regniF

ba

dc

fe

hg

Figure 2. Median trajectories per target in Experiments 1 and 2. A median trajectory was created by
resampling each trajectory into equally spaced time points, finding the per-subject median coordinates per
time point, and averaging these medians over participants. Median trajectories shorter than 2 s were
extended using the endpoint. Note that in Experiment 2, the number sometimes appeared after the color
(Panels f– h); the bottom of each of these panels is aligned to the beginning of the trial (color onset), and
time � 0 indicates the number onset. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

642 DOTAN AND DEHAENE



When comparing regression b values in different conditions or
at different time points, a potential confounding factor may be that
the b values are affected by the global variance among trajectories
�(iEP), and that this variance may differ between conditions.
However, this explanation cannot account for the present results,
because we found a larger log effect size in the color naming,
whereas �(iEP) in equivalent time points was smaller in this condi-
tion. To completely rule out the alternative interpretation, we reran the
log effect size analysis using the regression 
 values, which are not
affected by the overall iEPs variance.1 This analysis too showed a
larger log effect size in color naming, 
[log=(N0–40)]global/silent �
0.22 � 0.22, 
[log=(N0–40)]global/colors � 0.32 � 0.18, t(17) � 1.83,
one-tailed p � .04.

Control condition: Number naming. The number naming re-
sults were very similar to the silent condition (see Figure 3). The
linear factor b[N0–40] was slightly smaller in number naming than

in the silent condition, but this difference was significant only at
two time points (650 ms and 750 ms, t(17) � 2.47, two-tailed p �

1 A regression analysis results in a regression formula Predicted(y) �
const 
 �bixi. These b values are informative when the predictors xi and
the dependent variable y are specified using a meaningful scale, as is the
case in the present study. However, the bi values are sensitive to the scale
in which xi and y are specified, and consequently they are typically not
comparable with each other or across data sets. This comparability issue
can be solved by standardizing the predictors and the dependent variable
using linear transformation into a common scale with M � 0 and � � 1.
Denoting the transformed variables xi= and y=, the regression formula
would now be Predicted(y=) � �
ixi=, where 
i � bi � �(xi)/�(y). Unlike
b values, the 
 values are comparable with each other because all xi= are
specified using the same scale. More importantly for the present issue, even

 values from different regressions are comparable, because the dependent
variables too are specified using a fixed scale.

Silent condition

Number naming

Color naming

Linear factor

Log factor

p < .05
NS.

Comparison of b values to 0:

da

eb

c

Figure 3. Time course of the effects in Experiment 1. All panels show b values of regressions on the implied
endpoint of the median trajectory (iEPmed). One regression was run per time point, participant, and condition.
The b values were averaged over participants and plotted as a function of time. In this and all subsequent
regression figures, the b values were compared to zero (t test), and a black dot indicates a significant b value.
(a–c) The b values per experimental condition. (d) The b values of the linear factor b[N0–40] in all three
conditions: The effect of the linear factor arises faster in the silent condition than during color naming (the
shaded area indicates a significant difference). (e) The b values of the logarithmic factor b[log=(N0–40)], showing
a slightly stronger effect in color naming than in the silent condition.
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.03; in all other time points, t(17) 	 1.77, p � .09). The log factor
did not show a clear trend: b[log=(N0–40)] was stronger in the silent
condition than in number naming at some time points and weaker at
other time points, with a significant effect only in two time points (350
ms and 750 ms), t(17) � 1.88, p 	 .04. The global log effect size was
similar in number naming, b[log=(N0–40)]global � 0.12 � 0.13, and in
the silent condition, b[log=(N0–40)]global � 0.15 � 0.11; t(17) � 1.12,
two-tailed p � .25. Thus, number naming, unlike color naming, did
not facilitate the log factor. Analyzing the results in terms of delay
shows that number naming caused only a small delay of �10–20 ms
in the linear factor and no delay in the log factor.

Dependency on prior trials. To assess the possibility that the
participants’ performance was affected by perseverations from
previous trials, as described in Cicchini et al. (2014), the trajectory
data was submitted to regression analysis with the four predictors
described above, N0–40, log=(N0–40), U, and SRP, to which we
added the values of the target numbers in each of the last 15 trials
(predictors denoted N-1, N-2, . . ., N-15). The regression was run
on the raw, unaveraged trials and the dependent variable was iEP.
One regression was run per condition and participant in 50-ms
intervals. Per predictor, condition, and time point, the participants’
b values were compared to zero using a t test (Figure 4a–c). These
regressions showed a significant effect of the last two or three
trials, which decreased around 500 ms as the finger began to point
to the target quantity of the current trial.

To examine the relative effect of perseveration from each of the
previous trials, we calculated the mean b value of each of the
predictors N-1 to N-10 over the time range 0–600 ms. This was
done for the three conditions in Experiment 1 and for the data from
Dotan and Dehaene (2013). We observed an exponentially de-
creasing contribution of previous targets (Figure 4d). This pattern
is consistent with the notion of a Bayesian process (Cicchini et al.,
2014), according to which the finger is initially guided by an
expectation or “prior” based on past trials, which gets constantly
updated as the new target gradually overrides the expectation
generated from older trials. The prior appears to decay roughly
exponentially across trials N-1, N-2, N-3 and so forth, and in this
respect, the phenomenon bears similarity to perseverations ob-
served in many brain-lesioned patients (Cohen & Dehaene, 1998).

Assessment of the differential encoding time model. The
differential encoding time model stipulates that the log pattern
occurs because the finger deviates toward the desired location at an
earlier time point for smaller target numbers (small-number ad-
vantage). As a result, in several post-stimulus-onset time points,
trials with small target numbers are in a more advanced stage of
processing (and finger movement) than trials with large targets, so
the trajectories of small-target trials are farther apart from each
other, giving rise to a log effect when regressing one post-
stimulus-onset time point.

Silent condition Number naming

Color naming Last 10 trials – mean b from 0 to 600 ms

Silent
Number naming
Color naming
Dotan & Dehaene (2013)

p < .05
NS.

Comparison of b values to 0:

a b

c d

b

b b

Figure 4. Influence of the prior targets on current finger trajectory in Experiment 1. (a–c) Influence of the current
target N and the past five targets (N-1 to N-5) on the implied endpoint, as measured by regression (same type of plot
as in Figure 3). (d) Mean b value over 0–600 ms, for each of the past 10 targets (N-1 to N-10), showing an
exponentially decreasing influence of prior targets. See the online article for the color version of this figure.
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Identifying the onset of horizontal movement. To assess the
differential encoding time model, we first calculated the onset
time of the finger’s horizontal movement on each trial. To
determine the horizontal movement onset per trial, we used an
algorithm that aimed to identify the time point where the finger
horizontal velocity started building up. A typical horizontal
velocity profile of a trial consists of one or more velocity peaks
(which may reflect several successive movement plans), but as
every experimental measure it is also affected by jitter and
random movements. Our goal was to find the onset of the
earliest nonrandom velocity peak. To identify nonrandom
peaks, we first estimated the participant’s individual level of
“motor noise” based on the distribution of horizontal velocities
during the time window 0 –250 ms (assuming that before 250
ms the movement is not yet affected by the target number; see
Supplemental Materials for a justification of this assumption).
We considered only velocity peaks that were significantly
higher than this motor noise, and found the onset of the earliest
of these peaks—as long as the onset occurred after 250 ms.

The specific algorithm was as follows. To calculate the hori-
zontal velocity along each trajectory, we first applied Gaussian
smoothing with � � 20 ms to the finger x-coordinates, and then
computed the derivative of the smoothed coordinates. To deter-
mine the horizontal movement onset per trial, we first looked for
a significant peak of the x velocity profile—the highest x velocity
that exceeded the top 1 percentile of the participant’s velocity
distribution on the first 250 ms of all trials. The onset time of this
peak x velocity was defined as the latest time point where the x
velocity remained lower than 5% of the peak velocity (if velocity
never got below this threshold from 250 ms onward, no onset was
found and the peak was ignored). To detect cases in which there
was evidence for several successive movements (several velocity
peaks), we checked if there was, earlier to the detected movement
onset, another significant velocity peak, and reapplied the algo-
rithm to detect this peak’s onset. This procedure was applied
recursively until no further velocity peak was detected. Visual
inspection indicated that, for the vast majority of the trials, the
algorithm was in excellent agreement with our subjective percep-
tion of the movement onset.

The algorithm failed to find the movement onset when the peak
velocity was too low to reach significance, or when the 5%

criterion was never met in the time window from 250 ms post
onset until 100 ms before the finger reached the number line. Such
failures amounted to 19%, 18.3%, and 13.6% of the trials in the
silent condition, number naming, and color naming, respectively.
The horizontal movement onset time of these trials was coded
manually whenever possible (the encoder was blind to the target
number and saw only if it was smaller or larger than 20). After
manual encoding, onset information was available for 97.9% of the
trials. In the data of Dotan and Dehaene (2013), the algorithm
failed to find the onset of 11.4% of the trials, and after manual
encoding the onset information was available for 99.2% of the
trials.

Figure 5a shows the mean horizontal movement onset times per
target number and experimental condition. In the analyses of
horizontal movement onsets (detailed below), we excluded trials
with target number between 15 and 25, in which the target was
close to the center of the screen and the horizontal movement was
too small for reliable onset detection. We also excluded trials with
endpoint outliers (as explained in the “Data encoding and prepro-
cessing” section above).

The factors affecting the horizontal movement onset. The
differential encoding time model predicts that the onset times
should be earlier for smaller numbers (the small-number advantage
effect), and that color naming should enhance the small-number
advantage. To examine this assumption, the onset times were
submitted to three-way repeated measures ANOVA with the sub-
ject as the random factor and with three within-subject factors: the
experimental condition, the target side (	20, left; or �20, right),
and a numeric factor given by the absolute distance between the
target number and 20. Two separate ANOVAs were run: One
compared color naming with the silent condition, and another
compared number naming with the silent condition.

Color naming versus the silent condition. A significant main
effect of condition, F(1, 17) � 114.1, p 	 .001, �p

2 � .87, �G
2 �

.38, reflected the dual-task interference: Movement onset in color
naming was delayed by 111 ms relative to the silent condition.

A significant main effect of side, t(17) � 3.99, one-tailed p 	
.001, �p

2 � .48, �G
2 � .11, confirmed the small-number advantage:

Movement onset was earlier for small numbers than for large
numbers (mean delay � 49 ms), as predicted by the differential
encoding time model. The differential encoding time model also

2 tnemirepxE1 tnemirepxE ba
Silent
Number naming
Color naming
Dotan&Dehaene, 2013

SOA=0
SOA=100
SOA=200
SOA=300
Silent

Figure 5. The mean onset time of horizontal movements, averaged over all participants, as a function of target
number. (a) Onset time per condition in Experiment 1 and in Dotan and Dehaene (2013). (b) Onset time per SOA
in Experiment 2 (t � 0 is the target number onset time). Targets � 15–25 are plotted here but were excluded
from all analyses. See the online article for the color version of this figure.
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predicts that color naming would facilitate the small-number ad-
vantage, and this was indeed the case: The small-number advan-
tage in color naming (62 ms) was larger than in the silent condition
(36 ms), and the Condition � Side interaction was significant,
t(17) � 1.99, one-tailed p � .03, �p

2 � .19, �G
2 � .008. Thus, the

predictions of the differential encoding time model were fully
confirmed.

A significant main effect of distance, F(1, 17) � 97.4, p 	 .001,
�p

2 � .85, �G
2 � .15, showed that movement onset was earlier as the

target number became closer to either end of the number line—a
pattern clearly observable in Figure 5a. To analyze the interactions
with the distance factor, we first examined their direction by
calculating the distance effect in the various conditions. The move-
ment onset time was submitted to regression analysis with dis-
tance � |target – 20| as a single predictor—one regression per
participant, condition, and side. The distance effect in color nam-
ing (average bdistance � �9.92 ms) was stronger than in the silent
condition (bdistance � �7.24 ms). The three-way ANOVA showed
that this difference was significant—Distance � Condition inter-
action: t(17) � 2.68, one-tailed p � .01, �p

2 � .0.3, �G
2 � .0.01. The

distance effect was also marginally stronger for numbers 	20
(bdistance � �9.49 ms) than for numbers �20 (bdistance � �7.67
ms), Distance � Side interaction: t(17) � 1.43, one-tailed p � .08,
�p

2 � .11, �G
2 � .001. This Distance � Side interaction is predict-

able by both logarithmic and scalar variability models, which
attribute the distance effect to the target quantity: Such models
predict a stronger distance effect when the ratios between the
quantities are larger, as is the case for targets 	20 compared with
targets �20. The three-way Condition � Side � Distance inter-
action was not significant, F(1, 17) 	 0.01, p � .98.

Number naming versus the silent condition. A significant
main effect of condition, F(1, 17) � 12.43, p � .003, �p

2 � .42,
�G

2 � .02, reflected a dual-task interference, although smaller than
in color naming: Movement onset in number naming was delayed
by 18 ms relative to the silent condition.

A significant small-number advantage was observed (41 ms),
main effect of side: t(17) � 3.14, one-tailed p � .005, �p

2 � .37,
�G

2 � .10. The small-number advantage did not differ significantly
between number naming (45 ms) and the silent condition (36 ms),
Condition � Side interaction: F(1, 17) � 0.53, p � .48.

The main effect of distance was significant, F(1, 17) � 81.7,
p 	 .001, �p

2 � .83, �G
2 � .13) and this effect too did not interact

with condition, F(1, 17) � 0.45, p � .51. The direction of the
Distance � Side interaction was examined using the same method
we described above to analyze the color naming condition. This
analysis showed that as predicted, the distance effect for num-
bers 	20 (bdistance � �9.0 ms) was marginally larger than the
distance effect for numbers �20 (bdistance � �7.24 ms), Dis-
tance � Side interaction: t(17) � 1.64, one-tailed p � .06, �p

2 �
.14, �G

2 � .004. The three-way Condition � Side � Distance
interaction was not significant, F(1, 17) � 0.28, p � .60.

Differential encoding times as the reason for the log effect.
The differential encoding time model attributes the transient log
effect (see Figure 3) to earlier horizontal movement onset times in
small-target trajectories than in large-target trajectories. If these
differences in movement onset times were eliminated, the model
predicts that the transient log effect would disappear. To eliminate
onset time differences, we aligned each trial’s trajectory data to its
horizontal movement onset time. The aligned trajectories (exclud-

ing trials with no movement onset information) were submitted to
regression analysis similar to the one described in the “Assessment
of the dual representation model” section above, with iEP as the
dependent variable and with four predictors: N0–40, log=[N0–40],
the unit digit U, and SRP. One regression was run per condition,
participant, and post-horizontal-movement-onset time point in
50-ms intervals. Per predictor, condition, and time point, the
participants’ b values were compared with zero using a t test. A
significant positive contribution of b[N0–40] was found in all
conditions and in all time points (see Figure 6). b[N0–40] was
significant even at the time of horizontal movement onset (t � 0),
and within 50 ms it reached a considerable effect in all conditions
(over participants, mean b � 0.38). This indicates that when the
finger horizontal movement started, the participants already had a
linear quantity representation of the two-digit number. Crucially,
the log factor b[log=(N0–40)] no longer showed any significant
positive effect in any experimental condition, excluding a short
time window (150–250 ms) in the Dotan and Dehaene (2013) data,
in which there was a minor log effect, b[log=(N0–40)] � 0.05
(Figure 6d). Thus, controlling for the movement onset time elim-
inated the log effect, as predicted by the differential encoding time
model.

The elimination of the log effect cannot be attributed to the fact that
the aligned regression was run only on a subset of the trials (those for
which we could identify the movement onset): When the same re-
gression was run on the same subset of trials without aligning trajec-
tories by their onset time, the log factor b[log=(N0–40)] was signifi-
cantly larger than zero in each of the 3 conditions during at least 250
ms, with peak b[log=(N0–40)] � 0.11 (average over participants).
These findings indicate that the transient log effect in this task, both
in the silent single-task condition and in the dual-task conditions, can
be fully explained by differential horizontal movement onsets per
target.

Discussion of Experiment 1

The silent condition in Experiment 1 replicated the results of
Dotan and Dehaene (2013): The analysis of trajectories showed a
strong linear effect and a transient logarithmic effect. The color
naming condition confirmed the prediction that dual-tasking
makes the number-to-position mapping more logarithmic: The
regression analysis showed a decreased (or delayed) linear factor
and an enhanced log factor. This is similar to the results previously
found when the quantities were presented nonsymbolically
(Anobile et al., 2012).

The log-linear dissociation was initially taken as direct evidence
for separate log and linear quantity representations (Dotan &
Dehaene, 2013), with the linear representation being more sensi-
tive to interference from the dual task—presumably due to com-
petition of resources between the color naming task and linear
quantity encoding mechanisms. However, the analysis of move-
ment onsets suggests a simpler explanation: The decision to start
moving the finger horizontally is earlier for smaller target num-
bers, thus the trajectories fan out more quickly for smaller number
than for larger numbers, and this induces a transient log effect in
the regressions. The dual task (color naming) further enhances this
differential delay in movement onset as a function of target size,
and consequently increases the log effect. Thus, the differential
movement time model fully accounts not only for the dissociation
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between the silent and color naming conditions, but also for the log
effect in each of the conditions. Indeed, when the horizontal
movement onset time was controlled for (by aligning each trial to
its movement onset time), the log effect was eliminated, and with
it the difference between the conditions.

Our findings are consistent with the idea that, early in the trial,
before the participants obtain evidence from the target, they move
their finger in accordance to prior knowledge. In our task, partic-
ipants initially point toward the midpoint of the line, which hap-
pens to be the optimal prior given the flat distribution of target
numbers. Furthermore, their pointing is also influenced in part by
the distribution of previous targets: When the previous targets are
large, the finger is slightly displaced toward the right side, and vice
versa. This effect is essentially a replication of Cicchini et al.’s
(2014) finding of a prior-trial effect, although in our case the effect
(a) showed an exponentially decreasing influence of several recent
targets, and (b) influenced only the initial part of the next trial’s
finger trajectory, not the final endpoint.

The aligned-by-movement-onset analysis also showed that the
unit and decade digits affected finger movement in an almost
accurate 1:10 ratio throughout the trial, indicating that the decade
and unit quantities were assigned accurate relative weights. This
finding is interesting because it suggests parallel rather than se-
quential processing of the two digits: If one of the digits was
processed before the other, its effect on movement should have
been larger than implied by the 1:10 ratio. The absence of such

deviation from the 1:10 ratio suggests either that the decade and
unit quantities were processed in parallel, or that the decision to
initiate finger movement was delayed until a complete two-digit
quantity was constructed.

Last, the analysis of movement onsets revealed a strong distance
effect that was not predicted by any of the models: The movement
onset was much earlier for targets close to the ends of the number
line and delayed for targets near the middle (see Figure 5). The
origins of this effect are discussed in Experiment 5.

Methodologically, these results indicate that data from the
number-to-position paradigm should be interpreted with caution.
Regression analyses of stimulus-aligned finger trajectories, as per-
formed in our earlier publication (Dotan & Dehaene, 2013), show
log and linear patterns at different times, yet this does not neces-
sarily reflect directly the underlying internal representations.
Rather, movement-aligned analysis suggests that this pattern may
reflect the differential durations of a premovement stage of inten-
tion buildup.

An alternative interpretation of the small-number advantage is
in terms of a motor rather than a numeric effect. According to this
interpretation, the faster deviation to small numbers would not
result from their magnitude but from their location on the left side
on the number line. Purely motoric reasons, including for instance
the types of muscle activity required to push the finger left or right,
may make leftward movements faster than rightward movements.
We refuted this hypothesis, however, with two control experi-

Silent condition Number naming

Color naming Dotan & Dehaene (2013)

onsetonset

p < .05
NS.

Comparison of b values to 0:

onsetonset

a b

c d

Figure 6. Time course of the effects in Experiment 1 after alignment on horizontal movement onset time. The
figure shows the regression b values (dependent variable: implied endpoint) per condition and time point in
Experiment 1 and, for comparison purposes, in Dotan and Dehaene (2013), averaged over participants. The
x-axis indicates the time after the initiation of horizontal movement.
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ments, which are reported fully in the supplemental material. In
one experiment, the silent condition of Experiment 1 was repli-
cated with a group of left-handed participants. The task required
these participants for the cognitive operation as in Experiment 1,
but for a reversed muscle operation. The motor hypothesis there-
fore predicts that the left-handed participants would deviate more
quickly toward the right side (large numbers), that is, a large-
number advantage. However, the findings were exactly the oppo-
site: The left-handed participants showed a small-number advan-
tage just like the right-handed group. In a second control
experiment, a group of right-handed participants pointed to the
same 41 locations as in the number-to-position task, but the target
location was now indicated explicitly and non-numerically by an
arrow placed at the target location. Thus, the set of required
responses in this task was as in Experiment 1, but the decision
process did not involve numbers. These participants deviated
slightly faster to the right than to the left, that is, the opposite of the
bias we observed in the numerical experiments. Taken together,
these control experiments clearly refute the motor hypothesis and
support our interpretation of the small-number advantage as a
numerical effect.

Experiment 2: Manipulating the Color-Number SOA

Experiment 2 was designed to replicate the dual-task interfer-
ence effect observed in Experiment 1 within the better-controlled
setting of a PRP design (Pashler, 1984, 1994). In Experiment 1, the
three conditions were very different from each other: One condi-
tion was a single task, and the two other conditions were dual-tasks
involving naming of words from different categories (numbers and
colors), which could trigger different cognitive processes
(Bachoud-Levi & Dupoux, 2003; Bormann, Seyboth, Umarova, &
Weillera, 2015; Cohen, Verstichel, & Dehaene, 1997; Dotan &
Friedmann, 2015; Marangolo, Nasti, & Zorzi, 2004; Marangolo,
Piras, & Fias, 2005). Experiment 2 therefore used the classic PRP
manipulation of stimulus-onset asynchrony (SOA) between two
fixed tasks. Only the color naming task was used, but the SOA
between the onset of the color and the target number was manip-
ulated. We assumed that decreasing the SOA would increase the
temporal overlap between the central decision stages of the two
tasks, thus imposing a decision bottleneck (Sigman & Dehaene,
2005). Thus, the effect of shortening the SOA would be similar to
adding the dual-task in the first place. Consequently, we predicted
an increased log effect for shorter SOAs, which according to the
differential encoding time model should be entirely reducible to a

differential delay of movement onset for different numerical tar-
gets.

Method

Twenty right-handed adults (age 26;2 � 4;0) with no reported
cognitive deficits or color blindness were paid €10 for participa-
tion. Their mother tongue was Hebrew.

One experimental block was a replication of the color naming
condition in Experiment 1. In three other blocks, the color stripes
still appeared when the finger started moving, but the onset of the
target number was delayed by 100 ms, 200 ms, or 300 ms. Each
participant performed all blocks and was randomly assigned to one
of four block presentation orders (0–100–200–300, 100–0–300–
200, 300–200–100–0, or 200–300–0–100). Each number be-
tween 0 and 40 was presented twice per block (82 trials). The
participants also performed silent number-to-position mapping
(identical with the silent condition in Experiment 1) as a fifth
block, which was administered last and presented each number
four times (for five participants) or six times (for the other partic-
ipants).

The horizontal movement onset time was calculated per trial
using the method described above (“Identifying the onset of hor-
izontal movement” section), excluding trials with target numbers
15–25. The automatic algorithm succeeded finding the onset of
90.8% of the trials (88.9%, 89.9%, 91.6%, and 92.6% per SOA
condition) and 84.5% of the trials in the silent control condition.
For the remaining trials, horizontal movement onset was encoded
manually, after which 98.7% of the trials (and 98.6% of the control
trials) had movement onset information. The other trials were
excluded from the onset-related analyses. The onset analyses de-
scribed below were also run while excluding the trials with manual
onset encoding, and the results were essentially the same.

Results

Comparison of the conditions using trial-level measures.
Table 3 shows the basic performance measures in this experiment.
Each of these measures was compared across the four SOA con-
ditions using repeated measures ANOVA with the per-subject
mean as the dependent variable. There were no significant differ-
ences between the SOAs in endpoint bias, F(3, 57) � 1.67, p � .18
and endpoint error, F(3, 57) � 1.66, p � .19, but there were
differences in movement time, F(3, 57) � 3.65, p � .02, �p

2 � .16,
�2 � .03, and failed trial rate, F(3, 57) � 3.98, p � .01, �p

2 � .17,

Table 3
General Performance Measures in Experiment 2

Measure Silent 0 ms 100 ms 200 ms 300 ms

Failed trials (%) 2.6 � 2.0 19.6 � 10.2 21.4 � 10.7 16.5 � 10.8 14.4 � 12.3
Movement time (ms)a 1,180 � 162 1,414 � 152 1,410 � 143 1,428 � 129 1,476 � 155
Endpoint bias (0–40 scale) �.66 � .46 �.67 � .72 �.57 � .56 �.61 � .67 �.78 � .92
Endpoint error (0–40 scale) 1.7 � .43 2.49 � 1.1 2.41 � .82 2.27 � .98 2.43 � 1.16
Speech onset time (ms)a — 878 � 106 871 � 140 811 � 138 802 � 153
Horizontal movement onset time (ms)b 496 � 42 597 � 86 525 � 83 467 � 75 420 � 75

Note. Standard deviations refer to between-subject variance of the per-subject means.
a The movement time and the speech onset time are indicated with respect to the color onset time. b The horizontal movement onset time is indicated with
respect to the number onset time.
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�2 � .06. The results were essentially the same when the ANOVA
was run with the SOA as a numeric factor.

We continued with a classical PRP analysis, which consists in
examining how the RTs in the two tasks were affected by the SOA
manipulation. The two RT measures are the speech onset time for
the naming task and the movement onset time for the pointing task.

The speech onset times of color naming were significantly
different between the SOA conditions, one-way repeated measures
ANOVA, F(3, 57) � 10.9, p 	 .001, �p

2 � .36, �2 � .06. They
were longer in SOA � 100 than in SOA � 200, paired t(19) � 4.0,
one-tailed p 	 .001, Cohen’s d � 0.10, but were similar between
SOAs 0–100 and 200–300, paired t(19) 	 0.54, one-tailed p � .6.

The horizontal movement onset time too was significantly dif-
ferent between the SOA conditions, one-way repeated measures
ANOVA, F(3, 57) � 91.93, p 	 .001, �p

2 � .83, �2 � .42; for all
pairs of adjacent SOAs, paired t(19) � 3.0, p 	 .001, Cohen’s d �
1.1. Table 3 shows that each increase of the SOA by 100 ms
decreased the horizontal movement onset time by �50–70 ms.
Note, however, that this added delay is significantly smaller than
the 100-ms spacing of the SOA conditions: when comparing onset
times after adding 100 ms to the earlier SOA: paired t(19) � 2.56,
p 	 .02, Cohen’s d � 0.57 for all adjacent SOAs. In many PRP
experiments, a 1:1 relation between SOA shortening and
secondary-task delay is obtained (Pashler, 1984, 1994; Sigman &
Dehaene, 2005). The fact that it was not obtained here suggests
that interference was not complete and that there was partial
resource sharing (Tombu & Jolicoeur, 2002) or intertrial variabil-
ity in the prioritizing of the two tasks, as also confirmed by the
above finding that color naming too was significantly delayed by
shortening the SOAs.

Regression analysis of the trajectories. The trajectory data
was submitted to regression analysis with iEP as the dependent
variable and with the predictors introduced in Experiment 1:
N0–40, log=(N0–40), the unit digit U, the spatial-reference-points-
based bias function SRP, and the target number of the previous
trial, N-1. One regression was run per SOA (and for the silent
condition), participant, and time point, in 50-ms intervals. The
per-subject regression b values of each SOA, time point, and
predictor were compared versus zero using a t test. The pattern of
factors we observed in Experiment 1 was replicated for all four
SOAs (Figure 7a–d): dominant linear factor, transient logarithmic
factor, SRP contribution in the late trajectory parts, and an effect
of the previous trial in early trajectory parts.

We then examined the effect of SOA on the linear factor (Figure
7e). The per-subject b[N0–40] values were first compared using a
repeated measures ANOVA with a factor of SOA (one ANOVA
per time point, starting from 150 ms). A significant difference
between SOAs was found from 550 ms to 900 ms, F(3, 57) � 4.48,
p 	 .01, .19 	 �p

2 	 .34, .03 	 �2 	 .11. A comparison of
b[N0–40] between each pair of adjacent SOAs using paired t test
showed that for SOAs from 0 to 200 ms, the difference was in the
predicted direction, that is, decreasing the SOA resulted in a reduced
linear factor: We found a significant difference b[N0–40]/SOA � 100 �
b[N

0–40
]/SOA � 0 from 700 ms to 900 ms, t(19) � 1.89, one-tailed p 	 .04,

0.42 	 Cohen’s d 	 0.56, and b[N0–40]/SOA � 200 � b[N0–40]/SOA � 100

from 550 ms to 750 ms, t(19) � 1.82, one-tailed p 	 .05, 0.41 	
Cohen’s d 	 0.74. There was no significant difference between
SOAs 200 ms and 300 ms at any time point, t(19) 	 0.84,
one-tailed p � .21; in fact, as Figure 7e clearly shows, the linear

factor was almost identical for these two SOA values. Thus, as
predicted, decreasing the SOA (and thereby extending the time
overlap between the two tasks) caused an increasing interference
with the linear factor of the number-to-position task, which can be
interpreted as a delayed onset of this factor. The shape of this
effect, with an absence of a difference between the longer SOAs
(200 and 300 ms), is classical for the PRP effect (Pashler, 1984,
1994; Sigman & Dehaene, 2005). It suggests that the central
competition between the two tasks lasted no more than 200 ms,
and therefore reached a floor level for SOA of 200 ms and beyond.

The effect of SOA on the log factor was examined in a similar
manner (Figure 7f). No significant SOA effect on b[log=(N0–40)]
was found in any time point: a per-time-point repeated-measures
ANOVA, starting from 150 ms, with SOA as a within-subject
factor and the subject as the random factor, showed no significant
difference, F(3, 57) 	 2.15, p � .10. Thus, whereas in Experiment
1 we observed significant effects on both the log and linear factors
but in opposite directions, in Experiment 2 shortening the SOA
reduced the linear factor while keeping the log factor almost
unchanged.

The interaction between the log and linear factor was evaluated
using two-way repeated measures ANOVA with the regression b
values as the dependent variable, between-subjects factors of re-
gression predictor (log, linear) and SOA, and the subject as the
random factor. One ANOVA was run per time point, starting from
150 ms. A significant interaction was found from 600 ms to 850
ms, F(3, 57) � 3.16, p � .03, except p � .06 in time point 650 ms;
.12 	 �p

2 	 .16, .02 	 �2 	 .06, confirming that the SOA
manipulation affected the linear and log factor differently.

We assumed that the effect of prior from the previous trial
would initially be independent of the new number presented, and
consequently independent of SOA. Indeed, when aligning the SOA
conditions to the beginning of the trial, that is, to the color onset
rather than to the number onset (Figure 7h), no significant differ-
ences in b[N-1] were found between SOAs until 550 ms (repeated
measures ANOVA per time point, with b[N-1] as the dependent
variable, SOA as a within-subject factor, and the subject as the
random factor), F(3, 57) 	 1.63, p � .19. In later time points, from
600 ms to 900 ms (the downhill part of the b[N-1] curve), a
significant difference was found between the SOA conditions,
from 600 ms to 900 ms, F(3, 57) � 3.15, p � .03, .14 	 �p

2 	 .42,
.06 	 �2 	 .18; between 650 ms and 850 ms, F(3, 57) � 5.51,
p � .002. This late between-SOA difference almost disappeared
when the conditions were aligned to the number onset rather than
to the color onset (Figure 7g), from 400 ms to 1,000 ms, F(3,
57) � 2.44, p � .07, except two time points, 650–700 ms, in
which p � .05. Thus, the initial effect of b[N-1] was triggered by
the color onset, whereas its decay was linked to the number onset.
These findings suggest that finger movement is initially affected
by the prior from previous trial(s), and this effect decays as the
prior is overridden by the new number presented.

Differential encoding times as the reason for the log effect.
The differential encoding time model assumes that the log effect
occurs because the horizontal movement onset time is different for
different target numbers. Once these onset differences are elimi-
nated by aligning trajectories to their movement onset, the regres-
sion analysis should show no logarithmic effect. To examine this
prediction, the trajectory data was submitted to regression analysis
after aligning each trajectory to the trial’s horizontal movement
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SOA = 0 SOA = 100 ms

SOA = 200 ms SOA = 300 ms

Linear factor Log factor

Previous target, alignment by number onset Previous target, alignment by color onset

p < .05
NS.

Comparison of b values to 0:

a b

c d

e f

g h

Figure 7. Time course of the effects in Experiment 2. Note that the different experimental conditions are
horizontally aligned to the target number onset, not the color onset. Each of the panels (a–d) shows the
regression factors of one SOA. (e) The linear factor b[N0–40] per SOA. Gray areas show a time window of 200
ms during which b[N0–40]/SOA � 100 	 b[N0–40]/SOA � 200. A similar difference b[N0–40]/SOA � 0 	 b[N

0–40
]/

SOA � 100 was found in a slightly later time point, 700 ms to 900 ms. (f) The log factor b[log=(N0–40)] showed
no significant differences among SOAs. (g–h) The prior-target factor b[N-1], with the SOA conditions aligned
by the (g) number onset or by the (h) color onset. The prior effect is initially independent of the number onset
time, but its decay is linked to the number onset.
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onset time. The dependent variable was iEP and the predictors
were N0–40, log=(N0–40), the unit digit U, and SRP. One regres-
sion was run per SOA, participant, and time point in 50-ms
intervals. Per predictor, SOA, and time point, the participants’ b
values were compared with zero using a t test (see Figure 8). The
linear factor b[N0–40] in these regressions showed a virtually
identical pattern for all SOAs (Figure 8a). A per-time point re-
peated measures ANOVA, with SOA as a single within-subject
factor and the subject as a random factor, showed no difference in
b[N0–40] between SOAs at any time point from 50 ms, F(3, 57) 	
2.21, p � .09, and only a minor difference at t � 0, F(3, 57) � 3.7,
p � .02, �p

2 � .16, �2 � .12; the b values per SOA at t � 0 were
0.04, 0, �0.02 and �0.02. The log factor too showed no
significant difference between SOA conditions in a per-time
point repeated measures ANOVA with SOA as a single within-
subject factor and the subject as a random factor, F(3, 57) 	
1.31, p � .28. In fact, the log factor showed no significant
positive contribution in any of the conditions (Figure 8b). Thus,
as in Experiment 1, the differences in horizontal movement
onset times fully accounted for the log effect as well as for the
differences between the four SOA conditions, including the
log-linear dissociation.

Factors affecting horizontal movement onset. We next ex-
amined how the target number and SOA affect the horizontal
movement onset times (Figure 5b). Similarly to Experiment 1, the
onset times, specified as the time since the target number appeared

on screen, were analyzed using repeated measures ANOVA with
the subject as the random factor and with three within-subject
factors: the target side (	20, left; or �20, right) and two numeric
factors—the SOA and the absolute distance between the target
number and 20. To minimize noise, as well as to resolve the
problem of missing data in 13 participant-SOA-target combina-
tions, the distance factor grouped each set of three adjacent target
numbers, resulting in five levels of this factor: 6–8, 9–11, 12–14,
15–17, and 18–20.

A main effect of SOA, F(1, 19) � 80.53, p 	 .001, �p
2 � .81,

�G
2 � .24, mirrored the SOA effect that was earlier observed in the

trial-level PRP analysis: Decreasing the SOA created some delay
in the movement onset, indicating that the dual task interference
was not complete and that there was partial resource sharing with
the naming task.

A main effect of side, F(1, 19) � 17.15, p 	 .001, �p
2 � .50,

�G
2 � .14, reaffirmed the small-number advantage: As predicted by

the differential encoding time model, onset times were earlier for
small target numbers (	15) than for large target numbers (�25).
We then examined whether the small-number advantage interacted
with SOA. The small-number advantage was calculated per SOA
as the delta between mean movement onsets on the left and right
sides. The differential encoding time model predicts an increasing
small-number advantage for smaller SOAs (i.e., for larger overlap
between the two tasks). Indeed, averaged over participants, the
small-number advantage was 79 ms, 85 ms, 65 ms, and 54 ms for
SOA � 0, 100, 200, 300, respectively, and the three-way ANOVA
showed that this difference between SOA conditions was signifi-
cant, Side � SOA interaction: t(19) � 1.74, one-tailed p � .05,
�p

2 � .16, �G
2 � .004.

A significant main effect of distance-from-20, F(1, 19) � 22.86,
p 	 .001, �p

2 � .58, �G
2 � .06, showed that movement onset was

delayed for target numbers closer to the middle of the number line.
To examine whether this distance effect was sensitive to the SOA
manipulation, we calculated the distance effect per participant and
SOA as the slope of the onset-per-target function. This was done
using regression analysis with the movement onset time as the
dependent variables and with two predictors: the target number
side (�1 or 1) and its absolute distance from 20. The resulting
bdistance from this regression reflects the distance effect; its values
for SOAs 0, 100, 200, and 300 were �10.1 ms, �6.6 ms, �5.4 ms,
and �4.1 ms, respectively (average over participants), namely,
decreasing the SOA continuously increased the distance effect.
The three-way ANOVA showed that this effect of SOA on the
distance effect was significant, Distance � SOA interaction: F(1,
19) � 16.48, p 	 .001, �p

2 � .48, �G
2 � .01. There was no

significant Distance � Side interaction, F(1, 19) � 0.51, p � .48,
and no three-way interaction, SOA � Side � Distance, F(1, 19) �
0.13, p � .73.

Discussion of Experiment 2

Experiment 2 used the color naming dual task and manipulated
the color-number SOA. The analysis of trajectories replicated the
dissociation between the log and linear factors that was observed
in Experiment 1: decreasing the SOA decreased (or delayed) the
linear factor in the participants’ mapping to positions (iEPs), while
leaving the log factor almost unchanged. In this respect, the effect
of shortening the color-number SOA, a manipulation that presum-

Linear factor

Log factor

onset

onset

p < .05
NS.

Comparison of b values to 0:

a

b

Figure 8. Time course of the effects in Experiment 2 after alignment on
horizontal movement onset time. Here, b[N0–40] and b[log=(N0–40)] no
longer show any difference between the conditions.
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ably makes the experiment harder, was similar to the effect of
adding the distracter task in the first place.

The dual representation model can explain these findings as a
selective interference of the color naming task with the exact-
linear quantity representation, but not with the approximate rep-
resentation. However, again the differential encoding time model
offers a simpler account of the findings. Intertrial differences in the
horizontal movement onset times can fully account for the log
effect: When the onset times were controlled for (by aligning each
trajectory to the trial’s movement onset time), the log effect in the
regression analyses completely disappeared, and so did the inter-
SOA differences in the linear factor.

Experiment 2 also reaffirmed the main assumptions of the
differential encoding time model, namely, that horizontal move-
ment onset was earlier for smaller numbers, and that this small-
number advantage was increased when increasing the level of
interference from color naming (by shortening the color-number
SOA).

The use of a PRP design allowed exploring the nature of the
interference between the color naming and number-to-position
tasks. Several observations in the pattern of delays were compat-
ible with a partial PRP effect. First, both tasks were delayed by the
interference; in particular, the RT of the color naming task was not
constant (as should have been the case if this task was systemat-
ically prioritized over the number task), but became slower at
shorter SOAs. Second, while the onset of responses to the number
task was also delayed at short SOA, the amount of this delay was
not compatible with a full PRP effect. The number task was not
delayed by a full 100 ms whenever the SOA decreased by this
amount, but rather, by about 50%–70% of that value. Third, the
size of the target number influenced the horizontal movement
onset time of Task 2, but crucially this effect was not additive with
SOA (as predicted by a rigid delay of Task 2 due to a full PRP
effect; Pashler, 1984, 1994) but was enhanced at short SOAs. All
these findings indicate that color naming was not fully prioritized
over finger pointing, which is perhaps not surprising given that
participants were required to start moving the finger to make the
target appear, and were therefore already “launched” in the
number-to-position task.

The above observations are compatible with either a partial
resource sharing model (Tombu & Jolicoeur, 2002), according to
which both decisions are computed in parallel and are jointly
slowed by dual-task interference, or by a rigid delay model (Pa-
shler, 1984, 1994; Sigman & Dehaene, 2005) with random prior-
itization of one task or the other (Sigman & Dehaene, 2006). The
latter interpretation predicts that our trials are a mixture of two
trials types, depending on whether the central decision does color
first and number second, or vice versa. However, given the vari-
ability in task performance, this bimodal distribution model cannot
be distinguished from the single distribution predicted by partial
resource sharing.

Experiment 3: 0–100 Number Line

Experiments 1 and 2 supported the differential encoding time
model: Small numbers are encoded faster than large numbers,
thereby inducing the transient log effect in the iEPs. The model
stipulates that the reason for the small-number advantage is that
quantity encoding is noisier for large quantities than for small

quantities (differential variability), and the greater noise causes
slower processing. However, an alternative account is that single-
digit numbers are processed faster than two-digit numbers—that is,
what we observed in Experiments 1 and 2 was not a small-number
advantage but a single-digit advantage.

In the setting of Experiments 1 and 2, the two models are hard
to tease apart, because over the range of target numbers that were
analyzed for movement onset (0–14 and 26–40) most of the small
numbers were single digits. To dissociate between the small-
number advantage model and the single-digit advantage model,
Experiment 3 used a longer number line (0–100), which allows
excluding from the analysis the single-digit numbers and conse-
quently the possibility for a confounding factor.

Method

Seventeen right-handed adults (aged 26;10 � 5;2) with no
reported cognitive deficits were paid €5 for participation. Their
mother tongue was Hebrew. The experiment was performed like
the silent condition in Experiment 1, except that the number line
extended from 0 to 100 (rather than from 0 to 40). Each number
between 0 and 100 was presented four times, that is, 404 nonfailed
trials per participant. The horizontal movement onset time was
encoded as described in the “Identifying the onset of horizontal
movement” section, while excluding trials with target numbers
39–61. Automatic onset encoding succeeded for 82.8% of the
trials, and manual encoding increased this to 97.8%. The analyses
of onset times (described below) were also performed without the
manually encoded trials and the results were essentially the same.

Results

The rate of failed trials in this experiment was 2.9% � 2.3%.
The mean movement time was 1,191 � 204 ms, the endpoint bias
was �0.25 � 1.13 numerical units, the endpoint error was 4.69 �
1.87 numerical units, and the horizontal movement onset time was
444 � 113 ms (all standard deviations refer to the between-
subjects variance of the per-subject means). The median trajecto-
ries are presented in Figure 9a.

The trajectory data was submitted to regression analysis with
iEP as the dependent variable and with five predictors: N0–100,
log=(N0–100), the unit digit U, the spatial-reference-points-based
bias function SRP, and the target number of the previous trial, N-1.
One regression was run per participant and time point in 50-ms
intervals. The per-subject regression b values of each predictor and
time point were compared with zero using a t test. The results
(Figure 9b) replicated the previous experiments: dominant linear
factor, transient logarithmic factor, SRP contribution in the late
trajectory parts, and an effect of the previous trial in early trajec-
tory parts. When the regressions were rerun after aligning each
trajectory to the trial’s horizontal movement time, the log factor
disappeared (Figure 9c), as predicted by the differential encoding
time model.

The small-number advantage was found in this experiment too,
even when we analyzed only the two-digit numbers (Figure 9d):
The horizontal movement onset of targets in the range 10–38 was
shorter than that of targets in the range 62–90 by 22 � 54 ms
(the standard deviation refers to the between-subjects variance of
the per-subject means). To examine this difference statistically, the
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onset times were submitted to repeated measures ANOVA with
within-subject factors of side (smaller or larger than 50) and
distance from middle (|target – 50|) and the subject as the random
factor. Distance was a numeric factor and it grouped each set of
three adjacent targets so the factor had 9 levels (12–14 to 36–38).
A significant main effect of side, t(16) � 1.84, one-tailed p � .04,
�p

2 � .17, �G
2 � .04, confirmed the small-number advantage within

two-digit numbers, and thus refuted the “single-digit advantage”
hypothesis. The distance effect was also significant, F(1, 16) �
68.1, p 	 .001, �p

2 � .81, �G
2 � .18, with later onset times close to

the middle of the number line, and there was no Side � Distance
interaction, F(1, 16) � 1.84, p � .19. Similar results were obtained
when single digits were included in the analysis: Targets 0–39 had
shorter movement onsets than 61–100 by 23 � 55 ms. The Side �
Distance ANOVA showed significant main effects of side, t(16) �
1.87, one-tailed p � .04, �p

2 � .18, �G
2 � .05, and distance, F(1,

16) � 69.2, p 	 .001, �p
2 � .81, �G

2 � .21, with no interaction, F(1,
16) � 0.91, p � .35.

To characterize the distance effect, the horizontal movement
onset times were regressed with three predictors: The target side
(left � �1, right � 1), its distance from the middle of the line, and
log(distance), linearly transformed to 0–50. The side effect was
significant, b � �27.78 ms, t(6,161) � 6.59, one-tailed p 	 .001.
The log(distance) effect was significant, b � �5.28 ms, t(6,161) �
9.39, one-tailed p 	 .001, and much stronger than the linear
distance effect, b � �0.68 ms, t(6,161) � 1.75, one-tailed p � .04,
in accord with number comparison studies (Cantlon & Brannon,
2006; Dehaene, Dupoux, & Mehler, 1990; Dehaene, 1989).

Discussion of Experiment 3

Experiment 3 showed a small-number advantage, earlier onset
of horizontal movement for smaller targets than for large targets,
even within two-digit numbers. Thus, the small-number advantage
cannot be discarded as faster processing of single digits; it is a
genuine phenomenon in processing of two-digit numbers.

Figure 9. Results of Experiment 3 (0–100 number line). (a) Median trajectories, created by resampling each
trajectory into equally spaced time points, finding the per-subject 
 target median coordinates in each time point,
and averaging these medians per target number. (b–c) Regression b values (dependent variable: implied
endpoint), averaged over participants. In (b), the trials were aligned to the trial start time and a significant
transient log effect appeared. In (c), the trials were aligned to the horizontal movement onset time. This
eliminated the log effect, as predicted by the differential onset time model. (d) Mean horizontal movement onset
time per target. The black line is the average over trials and participants. The red line is the same data after
Gaussian smoothing with � � 3. Crucially, a significant small-number advantage was found not only over all
targets but also within two-digit numbers, contrary to the notion that it originated only in processing speed
differences between single-digit and two-digit numbers. See the online article for the color version of this figure.
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Experiment 3 also replicated the other major findings of our
previous experiments: The regressions showed a strong linear
factor, a transient log factor (which was eliminated when aligning
trajectories by the movement onset time), and a spatial-reference-
points effect in the late trajectory parts. The replication of these
findings using a 0–100 number line confirms that they do not
reflect strategies specific for the 0–40 range (e.g., trying to mem-
orize the positions of decade boundaries—a strategy overtly used
by several participants in the 0–40 experiments, but not in the
0–100 experiment).

Interestingly, whereas our previous experiments showed that the
decade digit was processed parallel to the unit digit (Experiments
1 and 2) or slightly after it (Dotan & Dehaene, 2013), in Experi-
ment 3 the regressions showed a strong effect of the unit digit.
Although absent from the aligned-by-onset regressions, this effect
suggests decomposed processing of the unit quantity. The exact
nature of this decomposed processing cannot be unambiguously
determined by the present experiment, and may be a subject for
future research (Dotan & Dehaene, 2016; for a discussion of
possible interpretations of the unit digit effect, see Dotan & De-
haene, 2013).

Nontransient Logarithmic Effects

The differential encoding time model attributes the logarithmic
mapping to delayed horizontal movement onset in trials with large
target numbers. Presumably, the effect of this delay will not last
forever: Eventually, even the large-target trajectories catch up with
the small-target trajectories, and the differences in horizontal
movement onset become irrelevant as other factors start governing
the finger movement. Thus, the differential encoding time model
can account only for a transient logarithmic effect, which disap-
pears in late trajectory parts. Indeed, this was the pattern observed
in Experiments 1–3. Several other studies, however, reported non-
transient logarithmic effects, which were observed even in the
endpoints—in children (Berteletti et al., 2010; Booth & Siegler,
2006; Opfer & Siegler, 2007; Siegler & Booth, 2004) and in a
brain-injured adult (Dotan, Friedmann, & Dehaene, 2014).

We hypothesized that the differential encoding time model will
not be able to explain such nontransient logarithmic effects. To test
this prediction, Experiment 4 examined the number-to-position
mapping of fourth-grade children. We also reanalyzed the number-
to-position mapping data of ZN, a brain-injured adult who showed
a logarithmic effect in the trajectory endpoints (Dotan et al., 2014).
We examined whether the log effect in these cases would be
observed even when the trajectories are aligned by the movement
onset time.

Experiment 4: Fourth Grade Children

Method. Forty-three Hebrew-speaking fourth-grade children
(aged 9;9 � 0;4), recruited from a single elementary school in Tel
Aviv, Israel, participated voluntarily in this experiment, with writ-
ten informed consent of their parents. They performed the silent
number-to-position mapping task described in Experiment 1. Each
number between 0 and 40 was presented four times.

Visual inspection of the results suggested that the children’s
trajectory data was noisier than the adults’. We therefore calcu-
lated several per-participant quality measures and excluded partic-

ipants with especially noisy data. Two measures were based on the
finger’s initial direction �0. This direction is presumably indepen-
dent of the target number, and may reflect a bias, noise, or
overrelying on prior trials, all of which could potentially disrupt
the trajectory analysis. The value of �0 was calculated per trial
using regression analysis with the x-coordinate as the dependent
variable and the y-coordinate as the predictor, over all time points
(in 10-ms intervals) from 0 to 160 ms, or from 0 to 100 ms if the
first regression was nonsignificant. We excluded one participant
whose �(�0) was an outlier (higher than the participants’ 75th
percentile by at least 150% the interquartile range), and four
participants whose mean �0 was an outlier to the left or to the right,
mean(�0) higher than the participants’ 75th percentile or lower
than their 25th percentile by at least 150% the interquartile range.
We also excluded three participants who had low correlation (r 	
.6) between the endpoints and the target number. For the remaining
35 children (aged 9;8 � 0;4), the horizontal movement onset time
was encoded per trial as described above (“Identifying the onset of
horizontal movement” section), excluding target numbers 15–25.
The encoding succeeded for 63.9% of the trials automatically and
for 87.3% of the trials after manual encoding.

Results. The median trajectories are presented in Figure 10a.
The trajectory data was submitted to regression analysis with the iEP
as the dependent variable and with 5 predictors: N0–40, log=(N0–40),
the unit digit U, SRP, and the previous target, N-1. One regression was
run per time point, in 50-ms intervals. These regressions (Figure 10b)
showed a strong log effect that lasted until the end of the trial and was
observed even in the endpoints (see the endpoints in Figure 10a).

The trajectory data was then submitted to a similar regression in
which each trajectory was aligned to the trial’s horizontal movement
onset time, and the N-1 predictor was removed (Figure 10c). This
alignment eliminated the log factor from the initial trajectory parts,
but a significant log factor was still observed in the late trajectory
parts (from 200 ms post movement onset time) and in the end-
points—a finding that is not predicted by the differential encoding
time model.

Reanalysis of Patient ZN’s Data

ZN was a 73-year-old man who was recovering from a stroke.
He was diagnosed with aphasia, severe apraxia of speech, impaired
comprehension, dyslexia, dysgraphia, agrammatism, and a selec-
tive deficit in converting multidigit numbers to their verbal repre-
sentation (but not to quantity). In Dotan et al. (2014), we described
in detail his performance in several number processing tasks,
including the iPad-based number-to-position task, which he per-
formed like the silent condition in Experiment 1, with each number
between 0 and 40 being presented four times. To reanalyze ZN’s
data, we encoded the horizontal movement onset time of each trial
using the method described above (“Identifying the onset of hor-
izontal movement” section), excluding target numbers 15–25. This
encoding succeeded for 63.3% of the trials automatically and for
95.8% of the trials after manual encoding.

ZN’s trajectories are presented in Figure 10d. They were submitted
to regression analysis with iEP as the dependent variable and with five
predictors: N0–40, log=(N0–40), the unit digit U, SRP, and the previous
target, N-1. One regression was run per time point, in 50-ms intervals.
This regression (Figure 10e) showed a strong log effect that lasted to
the end of the trial and was observed even in the endpoints.
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The trajectory data was then submitted to a similar regression in
which each trajectory was aligned to the trial’s movement onset
time, and the N-1 predictor was removed (Figure 10f). In line with
the differential encoding time model, the log factor was eliminated
from the initial trajectory parts. However, contrary to the predic-
tion of the differential encoding time model, a clear log effect was
observed in the late trajectory part of the aligned-by-onset regres-
sions (from 600 ms post movement onset time).

Discussion of Experiment 4 and Patient ZN’s Data

The main finding from the data of the fourth-grade children
(Experiment 4) and of Patient ZN was a nontransient log effect,
which was observed in late trajectory parts and in the endpoints.
This log effect was not eliminated even when we aligned each
trajectory to the trial’s horizontal movement onset time. Thus, the
log effect cannot be explained by premovement differential pro-

cessing durations, as suggested by the differential encoding time
model. We also found no evidence that the log effect in Experi-
ment 4 could be explained by quantity-dependent weighting of
prior trials. In this respect, our results were different from Cicchini
et al. (2014): Although both studies found logarithmic effect in the
endpoints, we did not replicate their finding of larger prior weight
for large-target trials. This difference could be related to the fact
that we used symbolic targets, while they used a nonsymbolic
display (sets of dots).

How should we explain, then, the log effect in the performance
of ZN and of the fourth-grade children? We think that two classes
of explanations remain tenable. The first class of explanations
reverts to the notion of dual quantity representation—linear-exact
and approximate. The late log effect would result from amplified
approximate representation and decreased exact-linear representa-
tion (the early log effect may result either from amplified approx-

ZN regression results, no alignment

onset

Children regression results, no alignment

ZN median trajectoriesExperiment 4 (children) median trajectories

Children, aligned by horizontal movement onset ZN, aligned by horizontal movement onset

noitisop latnoziroh regniFnoitisop latnoziroh regniF

e
miT

e
miT

da

b

c

e

f

onset

Figure 10. Median trajectories and the regression b values in Experiments 4 (fourth-grade children) and
the data of the brain-injured aphasic Patient ZN (a, d) The median trajectories. (b, e) Regression b values,
with the trajectories aligned by the target onset. (c, f) The b values of the regression after aligning each trial
to its horizontal movement onset time. A significant log effect was found both in Experiment 4 and in ZN’s
data. This log effect cannot result from different movement onset times per trial, because the alignment by
onset controlled for this factor. See the online article for the color version of this figure.
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imate representation or from differential encoding times). The
difference between the performance patterns of children and adults
in the number-to-position task would then indicate a conceptual
log-to-linear shift, as suggested in previous studies (Dehaene et al.,
2008; Opfer & Siegler, 2007). Does this log-to-linear shift truly
result from a change in the quantity representation, which begins
as approximate and gradually becomes linear with maturation or
education? Or perhaps the log-to-linear shift reflects the addition
of a separate linear-exact representation on top of the approximate
representation, and consistent inhibition of the approximate repre-
sentation by the exact? The finding of logarithmic mapping in the
performance of ZN support the latter possibility: ZN worked as an
engineer for many years, and reported being extremely fluent with
numbers, so it seems unlikely that his quantity representation
remained approximate throughout the years. It also seems unlikely
that his brain injury transformed the now-linear quantity represen-
tation back into approximate. It seems more likely that his loga-
rithmic mapping reflects an approximate representation that was
dormant in his cognitive system and reemerged following a selec-
tive impairment to the linear-exact representation.

The second class of explanations for the late log effect is a
variant of the differential encoding time model. It assumes that in
children and in Patient ZN, unlike in adults, the initial decision to
move is based on insufficient evidence. Even if the participants
understand the linear requirement of the task and intend to move to
the linear position of the target, they may err if the decision process
is fed with exceedingly noisy evidence. The participant may then
stop short of making the proper inference and start moving based
on a partial approximate numerical representation. Because this
representation is more precise for small than for large numbers, the
movement will be more accurate (more systematically away from
the default response) for small than for large numbers, resulting in
a log effect. In the General Discussion, we verify this property in
a precise mathematical model of the task. In adults, this log bias,
if it exists at all, would be quickly compensated by new adjust-
ments of finger position even after the onset of the first horizontal
movement, resulting only in a transient log effect. If such a
correction is impossible, however, then the log effect will remain
sustained.

At present, we cannot decide between those two interpretations.
However, the behavioral finding of logarithmic mapping in chil-
dren is in accord with several previous developmental studies that
used number-to-position mapping without tracking trajectories.
These previous studies found logarithmic mapping only until sec-
ond grade (Opfer & Siegler, 2007) or an earlier age (Berteletti et
al., 2010; Booth & Siegler, 2006; Siegler & Booth, 2004), whereas
here, we found a log effect even in fourth-grade children, that is,
in a group that was at least 2 years older. It is possible that our
paradigm, which requires a time-limited response and minimal
finger velocity, was more demanding than the paradigms used in
these previous studies, and therefore increased the logarithmic
effect. Such interpretation seems plausible given that, in Experi-
ments 1 and 2, we found that increasing task demands increases the
log effect.

A peculiar finding in the children data, which was not observed
in any of the adult experiments, is a strong negative effect of the
unit predictor in the regressions (Figure 10b, c). In principle, this
could mean that the unit effect was either reduced or delayed
relatively to the decade effect. However, interpreting this finding

as delayed processing of the unit quantity seems unlikely, because
b[U] 	 0 continues throughout the trial (i.e., the unit digit never
catches up with the decade digit). The b[U] 	 0 can therefore be
explained in two ways: Either the decade and unit quantities were
not encoded in 1:10 ratio but with underrepresentation of the unit
digit, or the unit digit was completely ignored in some trials,
resulting in lower b[U] in the regression analysis. Importantly,
both explanations suggest that even as late as fourth grade, the
processing of two-digit numbers is not fully automated. Previous
studies pointed to the log-to-linear shift as one kind of cognitive
progress that happens during maturation or education (Berteletti et
al., 2010; Dehaene et al., 2008; Opfer & Siegler, 2007); the data
from Experiment 4 suggests that assigning proportional weights to
the decade and unit quantity may be another cognitive ability that
develops with age or education.

Experiment 5: Validating the Movement Onset
Detection Algorithm

In all experiments so far, the horizontal movement onset was
calculated based on the finger’s horizontal velocity profile. To
make sure that the onset-detection algorithm did not create some
statistical artifact, we administered the number-to-position map-
ping experiment using a slightly modified paradigm: The partici-
pants started moving their finger only after the target number
appeared on screen (hereby, stimulus-then-move [StM] paradigm).
This is the method used in many trajectory-tracking experiments
(e.g., Finkbeiner et al., 2008; Santens et al., 2011; Song & Na-
kayama, 2008a, 2008b, 2009). While the StM paradigm does not
allow for continuous monitoring of cognitive processes at early
time points, it has the advantage that the movement onset time can
be measured directly rather than calculated statistically.

Method

Twenty right-handed participants aged 28;11 � 6;11 were
paid €5 for participation. Their mother tongue was Hebrew and
they had no reported cognitive disorders. The method was
similar to the silent condition in Experiment 1, except the way
a trial was initiated. When the participants touched the initiation
rectangle (see Figure 1), a fixation cross appeared, and was
replaced by the target number after a random duration between
500 and 1,500 ms. The participants were instructed to move
their finger as soon as the target number appeared, but not
before that. The movement onset time was registered as the time
from stimulus onset until the finger reached the y � 50 pixels
coordinate (measured from the bottom of the screen). Move-
ment onset lower than 100 ms or higher than 1,000 ms resulted
in a failed trial. Each number between 0 and 40 appeared four
times, that is, 164 nonfailed trials per participant.

Results

The rate of failed trials was 3.17% � 2.26%. The failures were
due to moving the finger too early (13.9%) or too late (44%), to
violation of the minimal-velocity policy (32%), or to lifting the
finger in midtrial (10.1%). The movement onset time was 623 �
139 ms, and the movement time (from movement onset until
reaching the number line) was 529 � 110 ms. The endpoint bias
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was �0.52 � 0.47 numerical units and the endpoint error was
1.68 � 0.44 numerical units (all � refer to the between-subjects
variance of the per-subject means).

Figure 11a shows the median trajectories in this experiment.
The trajectories are clearly different from the previous experi-
ments: Whereas in the movement-triggers-stimulus (MTS) par-
adigm the finger initial movement was toward the middle of the
number line, in the present experiment the movement was
typically aimed more or less directly toward the target number,
right from the start. This suggests that the finger movement
started only after an initial decision was made about the quan-
tity and the corresponding target position. Note that this pattern
is not the result of averaging several trials—it is observed in
single trials too (Figure 11b).

The trajectory data was submitted to regression analysis with
iEP as the dependent variable and with five predictors: N0 – 40,
log=(N0 – 40), the unit digit U, the spatial-reference-points-based
bias function SRP, and the target number of the previous trial,
N-1. One regression was run per participant and time point in
50-ms intervals. The per-subject regression b values of each
time point and predictor were compared versus zero using a t
test. A strong effect of the target number N0 – 40 was found from
the time of movement onset (Figure 11c), confirming that the
finger aimed more or less toward the target number right from
the start. The log effect did not have a significant positive
contribution at any time point. There was a clear effect of the
SRPs predictor, and there was a �10% overrepresentation of
the unit digit relatively to the decade digit (reflected by the
positive contribution of the U predictor). Unlike the previous
experiments, no contribution of the previous-target predictor
N-1 was found at any time point—that is, by the time a decision
was made to move the finger, the present-trial quantity has
completely overridden the prior trial effect.

The critical analysis in this experiment is that of the movement
onset times per target (Figure 11d). The onset times (excluding
target � 20) were submitted to repeated measures ANOVA with a
between-subjects factor of side (left, right) and a numeric between-
subjects factor of distance from 20. A main effect of side, F(1,
19) � 28.36, p 	 .001, �p

2 � .60, �G
2 � .02, confirmed the

small-number advantage: Movement onsets for numbers 	20
(M � 606 ms) were shorter than for numbers �20 (M � 634 ms).
A main effect of distance, F(1, 19) � 39.74, p 	 .001, �p

2 � .68,
�G

2 � .02, replicated the findings in previous experiments: Move-
ment onset was shorter when the target number was closer to the
ends of the number line. The Side � Distance interaction was
significant, too, F(1, 19) � 19.03, p 	 .001, �p

2 � .50, �G
2 � .01.

A comparison of Figure 11d with Figure 5 shows that the
movement onset times in the present experiment (move-then-
stimulus-paradigm) were longer than the times detected by our
onset-detection algorithm in the MTS experiments. This difference
was confirmed by a within-participant analysis: Thirteen of the 20
participants in Experiment 5 also performed the silent 0–40 ex-
periment in the MTS paradigm. The movement onset times of
these participants in the StM paradigm (620 � 84 ms) were longer
than the onset times detected in the MTS paradigm (448 � 46 ms),
paired t(12) � 6.05, two-tailed p 	 .001, Cohen’s d � 1.68; targets
15–25 were excluded from this analysis.

Discussion of Experiment 5

The stimulus-then-move (StM) paradigm replicated the major
effects found in the movement-triggers-stimulus (MTS) paradigm.
In the regression analysis, the finger movement was dominated by
the linear quantity representation, with no logarithmic effect—
similarly to the aligned-by-movement-onset regressions in Exper-
iments 1–3. This provides further support to the differential en-
coding time model: When the movement onset is controlled for—
either statistically, as in Experiments 1–3, or methodologically, as
in the present experiment—the log effect completely vanishes.

The detailed analysis of movement onsets fully replicated the
pattern observed in the silent condition in Experiments 1–3: earlier
onsets for target numbers on the left side (small-number advan-
tage), and a distance effect such that onset times are later close to
the middle of the number line. The replication of these effects with
the StM paradigm confirms that these are genuine effects that do
not result from a statistical artifact of the onset detection algorithm.
This is especially important with respect to the distance effect: The
onset detection algorithm relies on the horizontal velocity, and
may consequently detect earlier movement onsets when the horizontal
velocity is higher, which is typically the case when the target number
is closer to any end of the number line. The replication of the distance
effect in Experiment 5, in which the movement onset was measured
directly rather than calculated, refutes the statistical artifact interpre-
tation and shows that the distance effect has a cognitive origin. Note
also that an analogous distance effect was observed by Cicchini et al.,
(2014, Figure 3b): Their analysis showed higher previous-trial-
weights for targets close to the middle of the number line.

How can we explain this distance effect? One possible expla-
nation is inspired by models suggesting that the trigger to change
a motor action is the existence of an internal comparison between
the action which is intended and the action which is currently
being executed (Charles, King, & Dehaene, 2014; Fishbach, Roy,
Bastianen, Miller, & Houk, 2007). In Experiments 1–4, partici-
pants are asked to initially point toward the middle of the line.
Even when the finger is initially at rest (Experiment 5), the motor
system might encode a default action of pointing toward the
optimal location given the distribution of target numbers, which is
again the middle of the number line. As the target-induced
intention-to-move builds up, the intention-movement comparison
mechanism would predict that the difference between the planned
location and the middle of the number line must cross a fixed
threshold before the finger starts moving toward the target. What
we described in this article as “movement onset” would thus
reflect the first decision to change the motor action. The duration
of this decision process would be affected by the difference be-
tween the default action location (the middle of the number line)
and the target number: The farther the target is from the middle of
the number line, the larger this difference and therefore, the faster
the decision threshold is reached—namely, earlier movement onset
time.

Methodologically, Experiment 5 sheds some light on the simi-
larities and differences between the StM paradigm of Experiment
5 and the MTS paradigm of the previous experiments. The StM
paradigm may have the advantage of a clearer separation between
the two stages involved in this task—the decision stage, whose
duration can be directly measured by the movement onset time,
and the pointing stage, which is reflected by the finger trajectories.
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The StM paradigm also seems to allow for less noisy measurement
of movement onsets, as the ANOVAs on movement onset times
resulted in much stronger effects in Experiment 5 than in the
previous experiments. The MTS paradigm, however, may be su-
perior in its sensitivity to early processes: The onset times we
detected in the MTS paradigm were much shorter than the onset
times measured in the StM paradigm. One possible reason for this
could be that initiating a movement takes longer than changing the
direction of an existing movement (Pisella et al., 2000). Another
possibility is that the longer onsets in Experiment 5 resulted from
the relatively relaxed limit on movement initiation (up to one
second from the stimulus onset). Shortening this limit would
probably encourage earlier finger movement. Indeed, some imple-
mentations of the StM paradigm required participants to initiate
movement as quickly as 200–350 ms from the “go” signal (Fink-
beiner, Coltheart, & Coltheart, 2014; Finkbeiner & Friedman,
2011). Such short time limits could make the StM paradigm more
similar to the MTS paradigm—presumably at the cost of less
reliable measurement of movement onset and the duration of the
decision stage.

General Discussion

Understanding the Number-to-Position Task

In a series of experiments, we investigated how two-digit Arabic
numbers are encoded as quantities in a number-to-position map-

ping task, which forces participants to convert a numeral into a
quantity. To analyze the series of stages involved in this task, we
obtained a nearly continuous measurement of finger position, and
we used a dual-task setting to perturb specific stages. In Experi-
ment 1, the distraction was manipulated by introducing a simulta-
neous color-naming distracter task and comparing it with the single-task
condition. In Experiment 2, we administered only the dual task, and
the distraction was manipulated by changing the SOA of the target
color and number. An analysis of the finger trajectories showed
similar patterns in both experiments: In the experimental condi-
tions with high distraction (color naming in Experiment 1, shorter
SOAs in Experiment 2), the participants’ number-to-position map-
ping became less linear, and in Experiment 1, also more logarith-
mic—a clear dissociation between the log and linear factors.

A careful analysis of the finger movement, however, showed
that this log-linear dissociation cannot be taken as direct evidence
for two distinct quantity representations, because a simpler inter-
pretation can account for the results. This interpretation assumes
that the finger horizontal movement onset is earlier for smaller
target numbers, presumably because their quantity representation
is less fuzzy than that of large numbers, which results in faster
encoding of small numbers. As a result, the trajectories fan out
more quickly for smaller number than for larger numbers, and this
induces a transient log effect in the regressions. The interference
from color naming further enhances this small-number advantage,
thereby increasing the log effect. This interpretation is supported
by the finding that the horizontal movement onset time is increased

Median trajectories

Regression results
Movement onset time per target

Sample raw trajectories

Finger
vertical

position

Finger horizontal position Finger horizontal position

dc

ba

Finger
vertical
position

Figure 11. Results of Experiment 5 (stimulus-then-move paradigm). (a) The median trajectories, averaged over
participants. (b) Sample raw trajectories of one participant to four specific target numbers. In Panels a–b, the
y-axis reflects the iPad screen vertical dimension, so we can see that the finer moves toward the target number
right from the start. (c) Regression b values. (d) Movement onset times per target number. The black line is the
average over trials and participants. The red line is the same data after Gaussian smoothing with � � 2. Onset
times were shorter for targets 	20 than for targets �20 and were shorter near the ends of the number line than
around the middle. See the online article for the color version of this figure.
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for larger numbers. As shown by Experiment 3, this small-number
advantage cannot be dismissed as a difference between processing
single-digit numbers and two-digit numbers. The interpretation is
further supported by the finding that aligning the trajectories on
movement onset times completely eliminated the logarithmic ef-
fect, revealing only a linear mapping of numbers to positions.

Our best interpretation of the data is that the number-to-position
mapping task involves separate processes of quantification, deci-
sion by evidence accumulation, and pointing (Figure 12a). The
quantification process converts the two-digit number into a quan-
tity representation. The decision process maps the quantity repre-
sentation to a planned position. The pointing process aims the
finger to the planned position.

The duration of the decision stage is affected by at least two
factors: (a) Number Size: Large numbers take longer to process
than small numbers, presumably because of differential variability
in the output of the quantification process (in line with previous
studies, e.g., Brysbaert, 1995; Li & Cai, 2014; Schwarz & Eiselt,
2009), and (b) Distraction (here induced by the color-naming dual
task), which delays the accumulation of evidence arising from the
target number (again in line with previous studies of decision
making, e.g., Sigman & Dehaene, 2005). Because of partial re-
source sharing, these two factors interact, so the size of this
dual-task delay may also depend on number size, with large
quantities suffering from a larger delay than small quantities.

A Mathematical Model of the Number-to-Position Task

To flesh out those ideas, we now present an explicit mathemat-
ical model of the number-to-position task. The model provides a
“rational” or “ideal observer” analysis, that is, it examines how any
rational agent should endeavor to perform this task if it is endowed
with exact and/or approximate representations of number. As we
will see, such an optimal observer closely predicts human behav-
ior.

We adopt here the same assumptions as in a previous mathematical
model of several numerical-decision tasks (Dehaene, 2007). First, at
the quantification stage, the quantity associated with the target number
is encoded as a time series of independent and identically distributed
noisy samples st, which are sampled from an internal random distri-
bution. Second, at the decision stage, based on these samples, the
posterior distribution over all possible target locations is continuously
updated, until a threshold level is achieved and the model commits to
a specific location. Third, at the pointing stage, the planned location is
used to guide the finger motor movement. We now present detailed
equations for each step.

Number representation. Following Dehaene (2007), we as-
sume that within each of the two quantity representation systems,
the target number T is represented at any given time step t by a
noisy sample s(t) (see Table 4 for a legend of all the notations used
here and throughout this mathematical modeling section). The
successive samples s(t), s(t 
 1), and so forth, are assumed to be
independently and identically distributed according to a Gaussian
distribution:

p(s | T) � 1
�(T)�2	

e
�

(s�c(T))2

2�(T)2 � Gaussian(s, 
 � c(T), � � �(T))

(2)

As this expression indicates, the samples s are centered on the
value c(T), which is a strictly increasing function of target number
T representing the hypothesized internal scale for numerical quan-
tity (e.g., linear or logarithmic). �(T), which may also vary as a
function of T, is the standard deviation of the noise on this
representation. The choice of functions c(T) and �(T) defines the
nature of the internal representation of numbers. For an approxi-
mate representation, we may assume either a linear code with
scalar variability, that is, c(T) � T and ��T� � k1�T � 1�; or a
log-Gaussian coding with fixed variability, that is, c�T� � log
�T � 1� and ��T� � k1. In both cases, k1 is a constant, and the 
 1
term avoids singularity when the target is 0. For an exact repre-
sentation, we take c(T) � T and �(T) � k2 (where k2 is another
constant).

In the following, we assume, for maximal generality, that exact
and approximate representations coexist, are activated in parallel,
and generate independent samples. At any time t, the information
available for decision is therefore comprised of the two sets of
samples from time � 0 to time � t, that is, �sexact�t���t��t and
�sapprox�t���t��t.

Accumulation of evidence. By definition, the ideal observer
computes, for every possible response location, the posterior prob-
ability that this location is the correct one given the set of past
samples. In the number-to-position task, there are as many re-
sponse locations as there are target numbers, and therefore the
inference is equivalent to inferring the likelihood of the current
target number being n, given the set of past samples until time �
t. Using Bayes’ theorem, we get

posteriort(n) � p(n | past samples) �

p(�sexact(t�)�t��t | n) p(�sapprox(t�)�t��t | n) p(n) (3)

Note that this equation makes uses of the symbol � meaning
“proportional to”—this is because, for simplicity, the denominator
in Bayes’ rule has been omitted; it is implicitly assumed that the
posterior probabilities are normalized by a multiplicative constant
to sum to 1 at each time step t.

In Equation 3, p(n) is the prior distribution of target numbers. In
the simplest ideal-observer version of the model, the prior is
supposed to be flat, in agreement with the fact that, in our exper-
iments, all target numbers in the proposed range are equally likely.

Thus, p�n� � 1
ntargets

, where n is the number of possible target

numbers (ntargets � max � min � 1). Further below, we consider
more complex options for the prior.

Given the independence of successive samples, the model re-
duces to a simple updating rule. Starting from the prior p(n), on
each time step t, the optimal observer model receives two new
random samples—sexact�t� and sapprox�t�—and uses them to update
the posterior probability that the correct response is n, using the
equation

posteriort(n) � posteriort�1(n) p(sapprox(t) | n) p(sexact(t) | n) (4)

(again up to a multiplicative constant, such that the posterior
probabilities always sum to 1).

Simulating the random walk inherent to Equation 4 requires ex-
pensive computations (generating many trials with random samples at
each time step). For a faster, deterministic approximation, we can
replace each of the two random multiplicands p�sapprox�t� �n� and
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Processing stages in the number-to-position task Posterior for two specific target numbers
Time

Target number

Onset 
time Time

Target = 35

Target = 5

Number iden�fica�on

Exact quan�ty Approximate quan�ty

Accumula�on of evidence

Poin�ng

noisy samples

Decided loca�on

g hMedian trajectories – children simulation Regression results – children simulation

Time
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Time
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Figure 12. Model and simulations of the processing stages in the number-to-position task. (a) Proposed stages.
Incoming digits are identified and the corresponding quantity is separately encoded in approximate and exact systems.
Next, evidence accumulation is used to infer the posterior distribution of target locations given the incoming noisy
samples. Finally, a pointing stage brings the finger to the location that minimizes pointing errors. (b–f) Simulation
results. (b) The posterior probability function in different time points, for two specific target numbers. As the trial
progresses the posterior curve becomes steeper. Crucially, the curve converges more quickly for small target numbers
such as 5 than for symmetric large target numbers such as 35. (c) Small-number advantage: The horizontal movement
onset times are earlier for small target numbers than for larger targets. The onset time were calculated using the onset
detection algorithm described in Experiment 1. (d) Median trajectories. (e–f) The regression b values (dependent
variable � x-coordinate, predictors � N0–40, log=(N0–40), unit digit, SRP, and the last five targets). The regression
captures several effects of the real data—strong linear factor, transient logarithmic factor, and an effect of several prior
trials in early trajectory parts, which decays exponentially for older trials. (g) Median trajectories of the simulation of
children data. (h) The regression b values of the simulation of children data. See the online article for the color version
of this figure.
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p�sexact�t� �n� by their time-independent expected value. For a trial
with target number T, the expected value of sexact is

E(p(sexact | n)) � ��




p(sexact | n)p(sexact | T)dsexact (5)

The expected value of sapprox is calculated with the same for-
mula, replacing sexact by sapprox. Although this equation looks
symmetrical, note that T represents the target number that was
actually presented in the trial, whereas n represents the partici-
pant’s enumeration of all possible target numbers.

The product of two Gaussians is itself a Gaussian, so Formula 5
yields

E(p(sexact | n)) � Gaussian�c(n), 
 � c(T), � � ��(n)2 � �(T)2�

(6)

and similarly for sapprox.
By plugging into this equation the parameters for approximate

and exact representation, and by replacing both p�sapprox�t� � n� and
p�sexact�t� � n� in Equation 4 by their expected values according to
Equation 6, we obtain a deterministic approximation of the updat-
ing rule for the posterior, given that the target number is T: for
log-Gaussian coding,

posteriort(n | T) � posteriort�1(n | T) Gaussian�log(n � 1),


 � log(T � 1), � � k1�2� Gaussian�n, 
 � T, � � k2�2�, (7)

and for linear scalar variability coding,

posteriort(n | T) � posteriort�1(n | T) Gaussian �n, 
 � T,

� � k1�n2 � T2� Gaussian �n, 
 � T, � � k2�2� (8)

Numerically, Equations 7 and 8 yield virtually identical results,
thus demonstrating the near-complete behavioral equivalence of
the log-Gaussian and scalar variability models (Dehaene, 2007). In

the following simulations, we therefore adopt only the log-
Gaussian model (Equation 7).

Simulations presented in Figure 12b illustrate how the posterior
evolves in the course of the trial for two specific target numbers.
Initially, the distribution is flat, and then it evolves to an increas-
ingly sharp peak centered on the target number. Indeed, Equation
7 clearly shows that the “bump” in the posterior distribution is
always centered at the appropriate target location on the number
line, that is, the highest posterior probability is reached for n � T.
However, the sharpening of the posterior is faster for small than for
large numbers.

Cost function and decision. The above equations specify
how the posterior probability distribution of the correct numerical
response evolves with time, but not how participants transform this
distribution into an intention to move. In any Bayesian decision
task, the optimal use of the posterior distribution depends on the
cost function imposed by the experimental setting (Maloney &
Zhang, 2010). Here, as the task requires minimizing the distance
between the finger location and the actual target location on the
number line, we stipulate a quadratic cost function:

cost(r) � (r � T)2, (9)

where T is the actual target number and r is the subject’s intended
numerical response. At any time t, we assume that participants
pick up, out of all possible responses r, the one that minimizes the
expected cost:

r̂ � argmin
r

(E(cost(r))) � argmin
r �	n

posteriort(n | T)(r � n)2�
(10)

The solution of this equation is the mean of the numbers n,
weighted by their posterior probability:

r̂ � 	
n

posteriort(n | T)n. (11)

Table 4
Notations Used for Modeling

Notation Meaning

T A target number presented in the experiment
sapprox, sexact A quantity sample sent from the quantification mechanisms (approximate, exact) to the decision process
n A possible target number (this notation is used mostly for enumeration over all possible targets)
r A response (decision on a target number) considered by the Bayesian decision process
r̂ The response decided by the participant
� The slope of the linear distribution of target numbers, as perceived by the participant. Actual targets

were distributed evenly (� � 0), but the participants did not know that and may consider various �
values, in distribution denoted p(�).

Gaussian(x, �, �) The probability to get a value x given a Gaussian distribution with mean � and standard deviation �
c(T), �(T) The mean and standard deviation of a Gaussian distribution of sample quantities given a target number T

Subscripts
Xt The value of X at time point t within a trial
Xi The value of X at Trial i

Constant parameters in the model
k1 Scaling factor for the approximate quantity representation standard deviation
k2 Standard deviation of the exact quantity representation
k3 Forgetting: the probability to keep the prior distribution p(�), the perceived target bias (1-k3 is the

probability to revert to a flat prior)
� Posterior probability threshold for deviating the finger
�approx, �exact The time (within a trial) in which the quantity samples sapprox, sexact start arriving in the decision process
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This equation has the following experimental implications: (a)
In the absence of information about the target, given that all targets
are equiprobable, participants initially point to the center of the
number line, that is, the location that minimizes the quadratic error,
and (b) as increasingly precise evidence is gathered about the
target value, the intended response location deviates progressively
from this midpoint value.

Movement. For each target number, the model specifies the
subject’s optimal intended response at each time step. To compare
these numerical estimates with the motor trajectories recorded, we
need to model how a numerical intention is translated into a finger
trajectory. A complete model would entail answering each of the
following theoretical issues: (a) When does the finger move? Do
participants wait until a threshold amount of evidence is accrued,
or is the evidence continuously passed on to the motor system? (b)
How does the finger move? Is a target direction programmed once
per trial, and then translated into a velocity profile? Is the direction
updated continuously? Or is it revised only at discrete times, for
example, whenever the anticipated finger location deviates from
the intended location by a sufficient amount (Fishbach et al.,
2007), as suggest by previous “change-of-mind” results (Resulaj,
Kiani, Wolpert, & Shadlen, 2009)?

Answering these questions is clearly beyond the present re-
search program. Here, we present simulations of the simplest
possible model. Based on prior research on decision making (Gold
& Shadlen, 2001), we assume that the decision to move is based on
the accumulation of evidence toward a fixed probability threshold
�, that is, movement starts whenever the posterior probability of
one of the target locations exceeds this threshold value. At this
moment, the movement process sends the finger to the location
that minimizes the average square error, as described above. Fi-
nally, movement is implemented with the typical bell-shaped ve-
locity profile characterizing limb motion (Flash & Hogan, 1985;
Friedman, Brown, & Finkbeiner, 2013).

Under this assumption of a single movement, given that the
posterior distribution is sharper for small numbers than for large
numbers, the movement onset time should always be slower for
large compared to small numbers. However, the choice of the
threshold � has a crucial impact on the shape of the response
function. If the participants use a low threshold �, the finger
deviates toward the decided location early on, at a time when the
posterior distribution is sharp for small target numbers but not for
large ones. This results in a greater separation between small
numbers than between large numbers, leading to an approximately
logarithmic response pattern (as observed in children and in Pa-
tient ZN). If the participants use a higher threshold �, the finger’s
deviation toward the decided location happens later, at a time when
the posterior distributions for both small and large numbers are
already sharply centered on the appropriate target value, so the
responses become arrayed in a linear manner.

Effect of prior targets. In our experiments, the prior p(n) was
flat over all target numbers. The participants, however, were not
told this, and may (explicitly or implicitly) believe that some
targets are more likely than others. In agreement with this idea, in
all experiments, we observed an effect of the recent target numbers
on the early part of the trajectory. Such a prior-trial effect cannot
be explained merely as a perseveration of the motor response on
the immediately previous trial, because that response was influ-
enced solely by the target of that particular trial and not of the

previous trials. As we shall now see, the exponentially decreasing
influence of previous targets can be explained as a constantly
updated Bayesian prior over the possible targets.

Formally, we capture this idea using a second-order optimal
observer model. The assumption is that subjects use the distribu-
tion of recent targets to estimate the probability distribution of a
new target T. For simplicity, we assume that participants only
consider linear distributions over the range of target numbers, that

is, a set of distributions of the form p�n � �� � 1
ntargets

�1 �

� n � mean
max � mean� with mean � max � min

2 , where min and max
are, respectively, the minimum and the maximum of the range of
target numbers. This equation describes a linear probability distri-
bution over the numerical interval [min, max]. � � 
�1,1� is a
hyperparameter that governs the relative emphasis of small num-
bers over large numbers: � � �1 indicates that participants expect
a majority of small numbers, � � 0 a flat distribution, and � � 
1
a majority of large numbers.

We assume that the participants’ expectations about the target
numbers changes as a function of the recent target numbers they
received. This is achieved by constantly maintaining an internal
distribution of the possible values of �. At the beginning of the
experiment, this distribution is flat over the interval [�1, 1]: All
values of � are equiprobable. At the end of each trial, based on
the target they just received, subjects revise their posterior
distribution of �. We denote this revised distribution by p(�i)
(this is the estimate at the end of Trial i, after taking into
account the Target Ti, and therefore serving as a prior for Trial
i 
 1). At this time, we assume that the participants have
precisely identified the trial’s target number Ti, so they can use
it to revise their previous distribution p(�i–1). According to
Bayes’ rule, this update should be

p(�i | T1:i) � p(�i�1 | T1:i�1) p(Ti | �i) (12)

This optimal equation, however, would simply imply that sub-
jects accumulate perfect evidence about the distribution of targets,
without any forgetting, in which case they would quickly converge
to a distribution centered on the correct value � � 0 (unbiased
distribution of target numbers). The evidence, however, indicates
a strong effect of recent trials, which suggests the existence of
local expectations (e.g., after a streak of large numbers, subjects
expect to see more large numbers). We model this as forgetting in
the updating process. Formally, as in previous work (Behrens,
Woolrich, Walton, & Rushworth, 2007; Meyniel, Schlunegger, &
Dehaene, 2015), we assume that there is a probability k3 that the
participants carry the current posterior estimates p(�i-1) onto the
next trial, and a probability of 1 – k3 that they revert to a flat prior.
In other words, k3 controls the relative weight of the prior expec-
tation relative to the incoming evidence at a given trial: k3 � 1
means no forgetting (optimal Bayesian integration), and 0 � k3 	
1 mean underweighting of the prior information and, correspond-
ingly, a stronger effect of the last target on the estimation of �.

The value of �i can now be calculated by applying Bayes’ rule:

p(�i | T1:i, k3) � p(�i, T1:i�1, ni | k3)p(T1:i), (13)

���1

�1
p(�i�1, �i, T1:i�1, Ti | k3)d�i�1, (14)
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���1

�1
p(T1:i�1 | k3)p(�i�1 | T1:i�1, k3)p(�i | �i�1, T1:i�1, k3)

� p(Ti | �i�1, �i, T1:i�1, k3)d�i�1, (15)

���1

�1
p(�i�1 | T1:i�1, k3)p(�i | �i�1, k3)p(Ti | �i)d�i�1. (16)

In Equation 14, we removed the constant term p�T1:i� and
marginalized over �i�1. In Equation 15, we applied the chain rule.
In Equation 16, we removed the constant term p�T1:i�1 � k3� and
simplified the other probabilities by considering that some terms
are independent of each other. In the resulting expression (Equation 16),
the term p��i�1 �T1:i�1, k3� reflects the prior; the term p��i ��i�1, k3� – the
forgetting factor; and the term p�Ti � �i� – the probability that the
present trial target would indeed be Ti given a certain � value.

Once we know the distribution p(�i), we can marginalize over �i

to obtain the prior probabilities for target number of the next trial:

p(ni�1 | n1:i) � ��1

�1
p(ni�1 | �i)p(�i) d�i (17)

Intuitively, the effect of those equations is that after receiving,
say, a large number such as 40, participants infer that the estimated
likelihood of being in an experiment with a large � is high, and
therefore they expect to receive other large target numbers on
subsequent trials. As consequence, even in an unbiased experiment
where all targets are presented equally frequently, participants will
be biased to point toward recently presented targets.

Simulations. Figure 12c–f shows simulations of movement
time, movement trajectory and regressor estimates. It can be seen
that the model provides a reasonable qualitative fit for most of the
experimentally observed effects (here and in Dotan & Dehaene,
2013). The horizontal movement onset is an asymmetrical function
of target size, with faster responses for small numbers than for
large numbers (Figure 12c). As a result, simulated finger trajecto-
ries depart from the center faster for smaller numbers than for
larger number (Figure 12d). Consequently, regression analyses
exhibit a transient log effect followed by a sustained linear effect
(Figure 12e). The log effect disappears when regression is locked
on the horizontal movement onset. Finally, an effect of previous
targets is observed on the initial part of the movement, with
approximately exponential decay over the past trials (Figure 12f).

The model may also account for two additional subtle features
of the data: the influence of the SRPs equation, and the fact that the
regression weight of the log function becomes negative late in the
trial. Both effects arise because the model only considers hypoth-
eses in the range [0,40], thus truncating the posterior distribution to
this range and shifting the responses away from the endpoints 0
and 40 and toward the center of the number line (a regression to
the mean typical of Bayesian models, see, e.g., Fischer & Whitney,
2014; Jazayeri & Shadlen, 2010). The reference point effect cap-
tures this small displacement, while the negative log captures a
slight asymmetry of this effect due to differential variability for
small and large numbers. In actual data, the reference point effect
is larger, seemingly because of an additional repulsion of re-
sponses away from the line midpoint 20, which is not captured by
the current model (but might be if one assumed an additional
process of comparing the target to the midpoint).

The simulations in Figure 12 were obtained with k1 �
0.7, k2 � 20.0, k3 � 0.7, � � 0.15, with a delay of �approx �
�exact � 350 ms for the onset of samples arising from the exact and

approximate representations, and with the assumption of calcula-
tion iteration every 1 ms. Because the model remains coarse and
unspecified, especially as concerns movement programming, we
did not attempt a quantitative fit of the data, but we did observe
that the above effects are generic across a larger range of param-
eters. Scalar and compressive representations of approximate num-
ber give virtually identical results. Importantly, having only an
exact linear representation cannot account for the results: Simu-
lating it leads to a disappearance of the transient log effect.
Conversely, however, it is possible to account for the results with
a single approximate representation—there is a range of parame-
ters (e.g., k1 � 0.7, k3 � 0.7, � � 0.12, �approx � 350 ms) for
which the movement onset is delayed for large numbers, resulting
in a transient log, and yet the internal distribution at the time of
movement is precise enough to yield near-linear pointing. The only
quantitative inadequacy of this approximate-only model is that the
weight of the linear regressor never converges to 1, that is, the final
pointing remains sublinear. The fact that the linear weight does
converge to 1 in adult data (Figure 3, 7, 9b) thus confirms that
adults are supplementing their approximate representation with a
linear understanding of exact number.

Both the single (approximate) and the dual-representation mod-
els can also account for the children’s data by lowering the
posterior threshold � required for making a decision. Lower thresh-
old leads to an earlier decision to move. In this earlier time point,
less evidence was accumulated, so the decision about a target
location is based on a more approximate representation, thus
magnifying the difference between small and large numbers. This
results in a more logarithmic mapping (Figure 12g–h, created by
lowering the threshold � from 0.15 to 0.07), which bears much
similarity to the children data in Figure 10a–b. Finally, the effect
of dual-task interference may be simulated in several ways, either
by differing the onset of the exact representation relative to the
approximate representation, or by assuming that, during dual-task
interference, both representations suffer from additional noise,
such that the rate of evidence accumulation is lower. Further
research will be needed to disentangle these possibilities.

One aspect that is not captured very accurately by this model is
the shape of the distance effect for the movement onset time: The
real data show a clear dependency on distance from the midpoint
(Figure 5, Figure 11d), which is absent in the simulated data
(Figure 12c). This finding suggests that the model’s simple deci-
sion mechanism (a fixed threshold on posterior probability, in-
spired by Gold & Shadlen, 2001) may have to be replaced by a
more complex mechanism of comparison between the new aim
(point to the target) and the initial aim (point to the midpoint), as
indeed suggested by recent studies of motor programming (Fish-
bach et al., 2007) and error correction (Charles et al., 2014). Such
refinements, however, add much complexity to the model and are
therefore better left for future research.

Conclusion

Performance of the number-to-position task, as studied in the
present experiments with adult participants, is entirely compatible
with a strictly sequential processing model that combines a quan-
tification stage (using both exact and approximate representations),
an optimal decision-making stage, and a movement stage that
minimizes pointing errors. Our main empirical finding is that in
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adults, these stages appear to be separable: Once the variable
duration of the decision stage is controlled for (by aligning trajec-
tories on the horizontal movement onset times), the finger trajec-
tories show virtually no logarithmic effect, but only linear point-
ing. Many other details are captured by the optimal decision
making model.

While this model nicely accounts for the performance of healthy
adult participants, an examination of the performance of the apha-
sic Patient ZN and of fourth-grade children indicated that this
model may not be the whole story. The logarithmic effect in these
experiments cannot be solely explained by differential durations of
a decision stage, as a logarithmic effect continued to be found long
after the horizontal movement onset. We saw that two classes of
explanations can be proposed: Either those subjects genuinely fail
at the conceptual level, that is, they simply do not understand that
the task calls for linear pointing (Booth & Siegler, 2006; Dehaene
et al., 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003), or
they attempt to point linearly (as our model does), but their
decision-to-move is based on partial evidence which is coarser for
large than for small numbers. More research will be needed to
separate those possibilities.
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