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5Laboratoire de Résonance Magnétique Nucléaire,
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Summary

Background: Neuropsychology and human functional neuro-
imaging have implicated human parietal cortex in numerical
processing, and macaque electrophysiology has shown that
intraparietal areas house neurons tuned to numerosity. Yet
although the areas responding overall during numerical tasks
have been well defined by neuroimaging, a direct demonstra-
tion of individual number coding by spatial patterns has thus
far been elusive.
Results: We used multivariate pattern recognition on high-
resolution functional imaging data to decode the information
content of fine-scale signals evoked by different individual
numbers. Parietal activation patterns for individual numerosi-
ties could be accurately discriminated and generalized across
changes in low-level stimulus parameters. Distinct patterns
were evoked by symbolic and nonsymbolic number formats,
and individual digits were less accurately decoded (albeit still
with significant accuracy) than numbers of dots. Interestingly,
the numerosity of dot sets could be predicted above chance
from the brain activation patterns evoked by digits, but not
vice versa. Finally, number-evoked patterns changed in
a gradual fashion as a function of numerical distance for the
nonsymbolic notation, compatible with some degree of orderly
layout of individual number representations.
Conclusions: Our findings demonstrate partial format invari-
ance of individual number codes that is compatible with more
numerous but more broadly tuned populations for nonsymbolic
than for symbolic numbers, as postulated by recent computa-
tional models. In more general terms, our results illustrate the
potential of functional magnetic resonance imaging pattern
recognition tounderstandthedetailed formatof representations
within a single semantic category, and beyond sensory cortical
areas for which columnar architectures are well established.

Introduction

The processing and manipulation of numbers is highly devel-
oped in humans.However, althoughnumber symbols and exact
arithmetic are specifically human cultural achievements, basic
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nonverbal comprehension of quantities is present in animals
and preverbal infants [1, 2]. Numerical cognitive processes
suchas mental calculation rely onneuronalcircuitsof the frontal
and parietal lobes [3, 4]. More specifically, cortical regions
along the intraparietal sulcus seem to play a key role in process-
ing numerical magnitude but also other continuous quantities
or ordered entities [5–7]. Electrophysiological recordings in
nonhuman primates have demonstrated numerosity tuning of
single neurons in several brain regions and shown that parietal
responses to number precede those in frontal cortex [8].
However, monkey neurons preferring different numbers appear
to be highly intermixed between each other as well as with
neurons representing other continuous quantities [9], and until
now it has not been possible to directly visualize a correspond-
ing code for individual numbers in humans.

Behavioral observations such as the distance effects in
comparison tasks have led us to metaphorically think of magni-
tudeas being represented along a ‘‘mental number line’’ [10–12],
and neuroimaging studies have harvested evidence in accord
with this concept: number-induced parietal activation during
a comparison taskvaries with the numericaldistance separating
the two compared numbers [13], and release from adaptation
increases with numerical distance in an approximately logarith-
mic fashion [11]. However, the extent to which distance effects
reflect properties of neuronal representations themselves, as
opposed to decision- and response-related components,
remains controversial [14]. The ability to resolve response
patterns evoked by different individual numbers would help to
disambiguate between these alternatives, because it permits
direct testing for a signature of distance on a ‘‘neural number
line’’ while decision- or response-related effects are ruled out.

Multivariate decoding or multivoxel pattern analysis methods
[15, 16]have recentlyshownacapacity to identifyspatialpatterns
of functional magnetic resonance imaging (fMRI) activation
discriminative of stimulus features that were long thought to be
beyond the reach of functional imaging in humans, for example
orientation [17, 18], motion direction [19], object exemplars of
the same category [20, 21], or spoken vowels versus voices
[22]. Most of this previous work, however, investigated features
represented in early or midlevel sensory cortices. A recent study
[23] decoded responses for individual words as a function of
semantic similarity, based on the global patterns evoked across
the entire brain by words with distinct sensory and motor associ-
ations. In the present study, we faced the challenge of separating
representations within a single semantic category. We attempted
to decode individual number signals from human intraparietal
cortex, where there is no evidence thus far for a columnar or at
least patchy neuronal architecture equivalent to that underpin-
ning feature representation in sensory cortices [24, 25], while
subjects made delayed numerosity comparisons in a paradigm
similar to the one employed previously in the monkey [8].

Results

Experiment 1: Nonsymbolic Number Discrimination
and Effects of Stimulus Parameters

Subjects were briefly presented with a sample stimulus
comprising 4, 8, 16, or 32 dots that was followed after several
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seconds by a second set of dots requiring a smaller or larger
response (see Figure 1 and Experimental Procedures). Activa-
tion patterns evoked by the sample stimulus were analyzed as
a function of the numerosity presented. To unconfound
number from associated low-level stimulus parameters, we
used two different sample stimulus lists that equated either
overall luminance change or the size of individual dots
between numerosities.

We tested whether the numerosity of a given set of dots
could be predicted within each sample stimulus list, as well
as across low-level stimulus properties—i.e., whether a classi-
fier trained only on data from sample numerosities of constant
dot size (and therefore increasing luminance for larger
numbers) could accurately discriminate data from stimuli with
constant luminance, and vice versa. Successful generalization
of classification performance, together with low discrimina-
bility of the two stimulus lists themselves, should indicate
discrimination based on number as opposed to secondary
low-level factors.

Region of Interest Analysis

On a subject-by-subject basis, we identified within a mask of
parietal cortex the 1000 voxels that activated most signifi-
cantly in response to all sample stimuli versus baseline. Within
this region of interest (ROI), patterns for any two test numero-
sities could be discriminated with on average nearly 70%
accuracy (chance = 50%), irrespective of whether data from
the same or different sample stimulus lists served as training
and test data [t(9) = 6.9, p < 0.0001 and t(9) = 8.0, p < 0.0001,
respectively; see Figure 2]. Conversely, discrimination of the
list from which the stimulus was drawn (for a fixed numerosity)
remained nonsignificant, with only w54% accuracy [t(9) = 1.9,
p = 0.09].
Searchlight Analysis

The above analyses indicate that activation patterns of a
relatively extended parietal region of interest contain informa-
tion discriminating between individual numbers. Exploratory

+

Sample stimulus
200 ms

Delay period
3.8-6.8 s

Match stimulus
200 ms
-> response
smaller or larger number?

Hi-Res fMRI
(1.5 mm)

A

B C

Figure 1. Overview of Experimental Design

(A) Subjects were presented briefly with a sample

number stimulus (200 ms) and, after a variable

delay of 3.8–6.8 s, with a match stimulus (200

ms) that differed in numerical magnitude by

50% and required a numerical smaller versus

larger judgment.

(B) Two different nonsymbolic stimulus lists

(equating either overall luminance or dot size

between numerosities) for numerosities 4, 8, 16,

and 32 were used in experiment 1. Sample and

match stimuli were always from different lists to

prevent subjects from solving the task by moni-

toring either luminance or dot size change.

(C) Dot patterns of matched luminance and single

digits (numbers 2, 4, 6, and 8) were used in exper-

iment 2, where a format change between sample

and match occurred in 50% of the trials. The crit-

ical data for the fMRI analysis correspond to

evoked activities for different sample stimulus

conditions (four numerosities 3 two formats/

stimulus sets).

analyses in frontal ROIs showed
a weaker but similar profile of discrimina-
tion, whereas performance for primary
motor cortex was at chance (see the
Supplemental Data available online). To

further clarify the topographical distribution of numerosity
information, we conducted a multivariate ‘‘searchlight’’ anal-
ysis [26], testing for the local presence of number information
in a sphere with 3 voxel radius sequentially moved across all
voxels (27 slices covering parietal and superior parts of the
frontal lobes). The resulting maps of classification accuracy
scores for each voxel and subject were submitted to a group
analysis for both same and different sample stimulus lists.
Number information was detected most significantly in parts
of the intraparietal sulcus, although at a lower, uncorrected
level of significance, additional foci appeared in medial parietal
cortex and medial and lateral premotor regions (Figure 3; Table
1). This demonstrates that information discriminating indi-
vidual numbers is not distributed nonspecifically across wide
regions of cortex. Instead, within the limits of our imaging
volume, numerical information is mainly concentrated in the in-
traparietal sulcus, where monkey electrophysiology has iden-
tified a high proportion of numerosity-sensitive neurons [8].

Experiment 2: Number Discrimination
and Effects of Format

Our previous results left unresolved whether the pattern
signals that permit number discrimination reflected a represen-
tation of nonsymbolic numerosity only or a more abstract code
shared by symbolic numbers. Our second experiment there-
fore compared the discrimination of activation patterns
evoked by dot patterns and by Arabic numeral (digit) stimuli
(numbers 2, 4, 6, and 8). We probed discrimination of
number-evoked patterns within a given format, but also
when training the classifier on dot patterns and testing on
digits, and vice versa.
Region of Interest Analysis

We once again tested for discrimination of pairs of numbers in
a parietal region of interest comprising the 1000 parietal voxels
that were most significantly activated by all sample stimuli,
regardless of their notation. When comparing the patterns
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Figure 2. Experiment 1: Discrimination of

Nonsymbolic Numerosity and Effects of Stimulus

Parameters

Results of support vector classification for the

parietal region of interest (n = 10; data show

means 6 standard error of the mean [SEM]). The

1000 most activated voxels across all sample

stimulus conditions versus baseline within

a mask of parietal cortex were chosen as a region

of interest (ROI) on a subject-by-subject basis.

The surface mapping (Caret PALS atlas) gives

an illustration of the regions included and the

across-subject overlap of voxels (color coding

indicating the number of subjects activating the

corresponding voxel). Pairwise discrimination of

mean-corrected activation patterns for different

numerosities was significant for training and test

on data from the same stimulus list, as well as

for training and test on data from the different

stimulus list. Discrimination of the stimulus list

for the same number did not reach significance.
evoked by nonsymbolic and symbolic stimuli for the same
number, discrimination of formats was highly accurate, with
w80% correct [t(9) = 14.6, p < 0.0001]. Number discrimination
within the nonsymbolic format reached w77% correct [t(9) =
10.1, p < 0.0001], but generalization performance to symbolic
numbers was at chance level (51%, t = 0.36). In the symbolic
format, discrimination accuracy for individual digits was at
w57% and hence markedly lower than dot numerosity
discrimination but still significantly above chance [t(9) = 2.5,
p < 0.05]. Interestingly, this level of performance of the digit-
trained classifier,althoughrelatively low,generalized completely
to dot patterns [57%, t(9) = 2.3, p < 0.05] (Figure 4).
Searchlight Analysis
Results of a searchlight analysis for the dot pattern conditions
confirmed the results obtained in experiment 1. However, for
discrimination of digits as well as generalization tests, we
Test same list

Test different list

Overlap

n = 10, t = 3.2

LHEM

SVM classification

r = 3 voxel

L R

Figure 3. Experiment 1: Results from a Multivar-

iate Searchlight Procedure

Random effects group analysis (n = 10); see

Experimental Procedures for details. Accuracy

maps from support vector machines (SVM)

pattern classification were tested for significance

across subjects with one-sample t tests (thresh-

olded here at t = 3.2 for visualization purposes).

The extent of the scanned volume (group inter-

section) is shown in green. See Table 1 for

detailed clusters and statistical results.
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found no results at the threshold of significance employed in
the previous analyses (p < 0.001, uncorrected, 10 voxel
extent). This suggests that the relatively weak effect observed
in the ROI analysis relies on inclusion of a large number of indi-
vidually defined voxels and is no longer detectable at a rela-
tively local scale (3 voxel radius).

Predicting Number by a Regression Approach

Understanding of numerical magnitude is not restricted to rep-
resenting, for instance, 2, 4, and 6 as distinct entities but
implies an ordered relation between these quantities. In

Table 1. Experiment 1: Multivariate Searchlight Analysis

Comparison Region

Stereotactic MNI Coordinates

tx y z

Test

same list

intraparietal cortex right 32 275 36 17.4*

intraparietal cortex left 220 263 57 10.0

239 247 57 9.1

233 242 66 7.7

medial parietal cortex 15 272 39 6.0

28 269 47 7.0

premotor cortex right 248 2 51 7.4

medial premotor cortex 25 8 42 7.5

Test

different list

intraparietal cortex right 32 263 45 11.6*

30 272 50 8.9

23 265 53 6.0

intraparietal cortex left 224 259 47 8.1

242 253 54 7.8

217 263 44 7.6

224 262 60 6.2

medial parietal cortex 25 268 56 5.8

premotor cortex right 33 23 65 6.7

medial premotor cortex 6 11 57 5.8

Statistical results of a group analysis (t test, n = 10) that survive correction

for multiple comparisons employing either random field theory at p < 0.05

(indicated by asterisk) or an uncorrected threshold of p < 0.001 with an

extent of at least 10 voxels.
additional analyses, we used support vector regression
(SVR; see Experimental Procedures and Supplemental Data)
to test for gradual changes in evoked activation patterns as
a function of number magnitude (e.g., reflecting that 4 is
between 2 and 6). Regression requires that some sort of mono-
tonic relationship exist between the activation patterns and
the encoded quantity, which may be absent if two given
numbers are coded, for instance, by unrelated tuned cells,
as observed in macaques [8]. Based on the macaque research,
we expected that numerical quantity should be predictable
with the regression approach only if nearby numerosities are
encoded by sufficiently close groups of cortical neurons.
This approach would be most likely to work with experiment
2, where the tested quantities are relatively close (2, 4, 6, 8).
For numerosities more distant from each other (e.g., the nu-
merosities 4, 8, 16, 32 in experiment 1) or for symbolic numbers
(in experiment 2) that are thought to be encoded by sparser
and more discrete neuronal populations [27], the regression
approach would be less promising.

Figure 5 shows the percentage of variance explained by SVR
on the logarithm of numerical magnitude for the two experi-
ments. Because the regression fit was tested on independent
data (cross-validation), the theoretically expected perfor-
mance in noninformative data corresponds to 0%. In experi-
ment 1, the variance explained by SVR for the parietal ROI
also used for classification was low and not significantly differ-
ently from 0% [t(9) = 0.3 for set 1; t(9) = 1.7 for set 2]. (Although
in the first experiment using dot patterns within a larger
number range, no significant regression result was obtained
in the analysis using all voxels in the ROI, the explained vari-
ance could be increased with additional preprocessing
(removal of session effects, restriction to 500 maximally
discriminative voxels in training data) for set 1 to w18% [t(9) =
2.17, p = 0.06] and for set 2 to w20% [t(9) = 3.96, p < 0.05]. This
suggests that a similar gradual dependence on numerosity
also exists for evoked patterns in the larger number range
but is less pronounced. For consistency with the rest of the
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Figure 4. Experiment 2: Discrimination of Indi-

vidual Nonsymbolic and Symbolic Numbers and

of Format

Results of support vector classification for the

parietal ROI (n = 10; data show means 6 SEM).

The surface mapping (Caret PALS atlas) gives

an illustration of the regions included and the

across-subject overlap of voxels (color coding

indicating the number of subjects activating the

corresponding voxel). Pairwise discrimination of

mean-corrected activation patterns for different

numerosities was significant for training and test

on data from dot pattern stimuli, but not for

training on data from dot pattern stimuli and test

on data from digits. Training and test on data

from digits was significantly above chance but

less accurate than for dot patterns, as was gener-

alization from digits to dot patterns. Discrimina-

tion of the stimulus format (symbolic versus

nonsymbolic) for the same number was also

significant and highly accurate.
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analyses, we focus on reporting the results for the same ROIs
as used in classification above.) In experiment 2, which studied
a smaller (and closer) range of numbers, the explained vari-
ance for dot patterns reached w50% on average and was
highly significant [t(9) = 6.0, p < 0.001]. However, the same
analysis remained nonsignificant for patterns evoked by digits
[t(9) = 0.7].

We further investigated whether pairwise classification
accuracies varied with the numerical distance between
numbers (see Supplemental Data). Both regression and
distance analyses converged to demonstrate a gradual
change of evoked activation patterns for small and sufficiently
close nonsymbolic numbers. Arabic numerals and numerosi-
ties separated by a large ratio showed no such dependency,
suggesting that they are encoded by essentially distinct and
unrelated neuronal populations.

Discussion

Our studies probed the coding of information on individual
numbers by distributed activity patterns in human parietal
cortex, as recorded by high-resolution functional imaging. In
two experiments, multivariate pattern recognition was used
to decode cortical activity patterns associated with the
different numerical stimuli that subjects saw and then held in
mind.

Multivariate searchlight analyses showed that number infor-
mation was present most significantly in the posterior and/or
middle parts of the intraparietal sulcus, confirming the sug-
gested role of this region in numerical processing [3]. Overall
increases of intraparietal activity as observed previously while
performing numerical tasks could be due to a range of factors,
and explanations related to attention and/or working memory
have been invoked by some [28]. Here, we show that the infor-
mation in number-evoked fMRI activity patterns is specific
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Figure 5. Result of Support Vector Regression on Parietal Region of Interest

The percentage of explained variance by the support vector regression

(SVR) on the logarithm of number magnitude is shown for the two nonsym-

bolic stimulus lists in experiment 1 (left) and for nonsymbolic and symbolic

numbers in experiment 2 (right). n = 10; data show means 6 SEM.
enough to predict the individual numerosity of nonsymbolic
sets of dots that subjects were mentally processing with
high accuracy, in spite of changes in low-level parameters of
those stimuli. Furthermore, symbolic and nonsymbolic
numbers evoked partially different patterns that were very
accurately discriminated and led to an asymmetric generaliza-
tion of classification: above-chance generalization when the
classifier was trained on digits and tested on numerosities of
dot patterns, but no generalization from dot patterns to digits.
Finally, our experiments produced evidence that, at least for
small (or sufficiently close) numerosities of dots, pattern
discriminability increases with numerical distance.

The present evidence for numerosity coding by spatial
patterns is orthogonal and complementary to previous indirect
findings from adaptation or priming experiments where pari-
etal activation decreased for repeated numbers and recovered
when novel numbers were introduced (e.g., [11, 29, 30]). Some-
what surprising is the highly accurate format discrimination
obtained by our methods, because repetition paradigms
have found adaptation across number notations [29].
However, a similar scenario is present in studies on object
representation in the ventral stream, where the amount of
information on object size detected by pattern recognition
methods [20] appears large compared with what had been
suggested by adaptation or priming studies. In this context,
it is important to note that although fMRI adaptation effects
are commonly interpreted as being related to neuronal selec-
tivity, the relation is probably more complex [31], and expecta-
tions, saliency, or novelty might play a role, especially if aware-
ness of repetition is not prevented. Another possible
explanation for why results from the two methods might
disagree is if the spatial scale of different effects varies (e.g.,
if format-specific codes show a coarser spatial structure
than format-invariant ones), in analogy with what has been
proposed for object representation [32].

Our present findings also permit the establishment of
a closer parallel to monkey neurophysiology, where selectivity
to individual numerosities (initially in the range of small numer-
osities 1–5, but recently also in a larger range of 1–30) has been
observed in intraparietal and lateral prefrontal neurons [8]. Of
note, we did not cover homologous frontal regions in our scan-
ning volume. It is possible that the frontal selectivity observed
in monkeys is due to their extensive training in the delayed
response task, especially because similar frontal selectivity
of monkey neuronal responses has also been observed in
other situations after monkeys learned to group stimuli into
categories, for example to classify continuously varying
morphs as either cats or dogs [33]. In a recent neurophysiolog-
ical study in the macaque, neuronal activity was recorded after
monkeys had been trained to associate nonsymbolic numer-
ical stimuli with symbols [34]. After training, neurons that
were selective both for a given number of dots and for the cor-
responding symbol were observed in lateral prefrontal, but
only very rarely in intraparietal, cortex. In contrast, our study
in human subjects found that individual symbolic number
could be significantly decoded from parietal activity patterns,
though less accurately than nonsymbolic number. It is
commonly assumed that number symbols acquire meaning
by being mapped onto a preexisting nonsymbolic quantity
representation, creating format-independent number repre-
sentations in the adult human brain [2, 35, 36]. The better
discrimination that we observed for individual dot patterns
than individual digits agrees well with the notion of the
nonsymbolic representation being the evolutionarily older
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one, probably still represented by more numerous neuronal
populations.

We also found clear evidence of pattern differences
between formats and an asymmetric generalization of classifi-
cation across formats, with above-chance generalization
when the classifier was trained on digits and tested on numer-
osity but no generalization from dot patterns to digits. A neural
network model of numerical representation that explicitly
simulated the association of nonsymbolic and symbolic
numerals into a common representation [27] found that
a subset of neurons originally responding to nonsymbolic
analog number acquired selectivity to the corresponding
discrete symbol and, while preserving analog response prop-
erties, became more narrowly tuned to the specific number
symbol. The asymmetric generalization that we observed
here fits nicely with the predictions of this model. When fed
nonsymbolic data, the classifier would be trained on the entire
set of number-selective neurons that are coarsely tuned to nu-
merosity, including many neurons that, because of their nar-
rower tuning for symbolic number, would not be responsive
when the corresponding number is presented symbolically—
predicting good discrimination for nonsymbolic number but
poor generalization to the symbolic format. Conversely,
although the neurons used to encode symbolic numerals
may be a minority, thus providing weaker fMRI activation
patterns on which to form a multivariate classifier, the same
neurons participate in the neuronal assembly used to encode
the corresponding nonsymbolic numerosities—thus predict-
ing lower overall discrimination power for symbolic stimuli
but complete generalization to the nonsymbolic notation, as
observed here.

Another aspect of the aforementioned model [27] is that
nonsymbolic numbers are coded through an additional earlier
stage relying on summation coding. Although previous neuro-
imaging studies have found processing of symbolic and
nonsymbolic numerals to activate overall similar parietal
regions [37, 38], our pattern analyses show that the parietal
responses evoked by a given number of dots and the corre-
sponding digit are not identical (even after having accounted
for differences in overall activation by mean correction). This
and the lower level of accuracy for discrimination of digits
than for discrimination of dot patterns could be compatible
with an additional parietal processing stage unique to
nonsymbolic numerosities. Recently, response properties
compatible with summation coding have been observed in
human posterior parietal cortex [39] and in the monkey lateral
intraparietal area [40], whereas cells tuned to numerosity are
primarily found in the neighboring ventral intraparietal area
[41, 42]. Future human fMRI decoding studies should therefore
attempt to disentangle different numerical codes in terms of
their spatial generators.

So far, studies in the monkey brain havenot revealedany clus-
tering of neurons preferring the same numerosity in the same
patches or columns of cortex. However, if neurons with different
numerical preferences were mixed completely randomly, it
would seem unlikely for voxels as used here to exhibit biases
towardone or the other number. The fact thatnumbercanbede-
coded from multivoxel pattern signals suggests that the layout
of individual number codes is at least sufficiently nonhomoge-
neous for coarse spatial structure to arise in fMRI data, even if
there should be no clear columnar (‘‘numerotopic’’) map struc-
ture comparable to, for example, the structure of orientation
coding in area V1. Although our fMRI decoding cannot directly
visualize the underlying architecture, it remains possible that
more detailed electrophysiological studies or optical imaging
in monkeys might in the future reveal some clustering of
neuronal tuning to numerosity.

Our results further show that pattern codes of numerically
close numbers are more similar than those of numerically
distant numbers. Previous fMRI studies reported that when
comparing numbers, activation in parietal regions depended
on numerical distance [6, 13], but such results could reflect
representational proximity just as well as secondary effects
from task demands (decisions for close numbers being more
difficult). Our present results, however, speak more unambig-
uously for representational overlap because they were ob-
tained while subjects were merely engaged in processing
and memorizing a given quantity, but not yet in a direct
comparative judgment. Although a distance effect in classifi-
cation accuracy was only significant for dot pattern stimuli,
the absence of distance effects for digits could reflect the
lower overall sensitivity as well as the use of too distant
numbers, thus leading to a saturation of numerical distance
effects due to sharper tuning curves for symbolic numbers,
as discussed above [27, 36]. In the future, by using a narrower
range of consecutive numbers and a more specific set of arith-
metic tasks, fMRI decoding studies might eventually further
clarify how numerical symbols are represented cortically,
how numerical codes are combined in mathematical opera-
tions, and how they are changed by education [43].

Experimental Procedures

Data Acquisition and Stimulation

Ten healthy volunteers per experiment (experiment 1, five male and five

female, 22.6 6 3.8 years old; experiment 2, six male and four female, 21.2 6

3.0 years old) were included in the study, which had been approved by the

regional ethics committee (Hôpital de Bicêtre, France). Functional images

were acquired on a 3 tesla MR system (Siemens Tim Trio) with 12-channel

head coil as T2*-weighted echo-planar image (EPI) volumes with 1.5 mm

isotropic voxels. Twenty-seven oblique transverse slices covering parietal

and superior frontal lobes were obtained in interleaved order (repetition

time 2.5 s, field of view 192 mm, echo time 30 ms, flip angle 78�).

Stimuli were back projected onto a screen at the end of the scanner bore

and viewed via a mirror attached to the head coil. Trials started with brief

(200 ms) presentation of a sample dot pattern stimulus (experiment 1) or

either a dot pattern or a digit (experiment 2) in black color within a white circle

subtending w8� of visual angle. After a delay of 3.8–6.8 s, a match stimulus

appeared for 200 ms. This stimulus was another dot pattern (experiment 1)

or a dot pattern or digit (experiment 2) differing in number by a ratio of 50%

(smaller or larger) relative to the sample numerosity. Subjects were instructed

to keep in mind the number shown as sample and respond with one of two

buttons (left or right hand) depending on whether the match number was

numerically smaller or larger than the previous sample number. The assign-

ment of hands to smaller versus larger responses was systematically

changed between scanning sessions with counterbalanced order across

subjects. Subjects performed eight experimental sessions of w6 min length,

each session containing four trials for each of eight experimental conditions.

In experiment 1, numerosities 4, 8, 16, and 32 served as sample. Two stim-

ulus lists were used that either equated the overall luminance change (list 1,

resulting in decreasing dot size with increasing number) or dot size (list 2,

resulting in increasing luminance change with increasing number) between

numerosities (see Figure 1). Dot positions were randomly chosen for each

stimulus and trial. Dot patterns further included four different density levels

in list 1 and four different dot sizes in list 2 (the same individual sizes that re-

sulted from equating overall luminance change between numerosities in list

1). Stimuli used for sample and match displays in a given trial were always

drawn from different lists.

Experiment 2 used numerosities 2, 4, 6, and 8 as sample stimuli (either dot

patterns of equated luminance or Arabic numerals adjusted in size so that

their luminance was constant and matched to the dot stimuli). In equal

proportions of trials, sample and match stimulus were of the same format

(dot followed by dot, digit followed by digit) or different formats (dot

followed by digit, digit followed by dot).



Current Biology Vol 19 No 19
1614
Data Analysis

After preprocessing including motion correction and normalization to Mon-

treal Neurological Institute (MNI) space with SPM5 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm5), the unsmoothed EPI images were entered

into a general linear model, including regressors for the eight sample stim-

ulus conditions (four numerosities 3 two stimulus lists or formats) and eight

match stimulus conditions (four numerosities 3 smaller versus larger match

stimulus) with a standard hemodynamic response function. The resulting

eight independent estimates of fMRI signal change for each sample condi-

tion (one parameter estimate image per condition for each session) were

used for pattern analysis.

Regions of interest were defined subject by subject as the 1000 (not

necessarily contiguous) voxels most significantly activated across all

sample stimulus conditions within a mask of the parietal lobe in MNI space

(Wake Forest University PickAtlas, http://fmri.wfubmc.edu/cms/software).

In additional analyses, a multivariate searchlight with a 3 voxel radius (en-

compassing % 93 voxels) was used as a moving ROI centered in an iterative

procedure on each voxel of the volume. (A relatively small radius was

chosen to avoid disproportionally increased computation time.)

Pattern recognition analysis in both ROI and whole-brain searchlight anal-

yses was performed on parameter estimate images mean corrected across

voxels with linear support vector machines (SVM) [44] applied either for

classification or regression. All analyses were based on leave-one-

session-out cross-validation (with one pattern per condition for each of

the eight sessions). Classification on predefined ROIs used SVM in the im-

plementation of Gunn (http://www.isis.ecs.soton.ac.uk) for MATLAB;

searchlight analysis and regression used in-house software based on

a Python binding of LIBSVM (http://www.csie.ntu.edu.tw/wcjlin/libsvm/).

Classification for all pairwise comparisons between conditions used

a fixed regularization parameter C = 1, and accuracies were subsequently

averaged over different comparisons of interest (e.g., all dots, all digits, all

comparisons between format for a given number). Generalization of classi-

fication performance was tested training on a given pairwise number

comparison involving stimulus list 1 and testing the same comparison on

stimulus list 2 and vice versa in experiment 1, and analogously for the two

formats in experiment 2. Classification performance for ROI data was tested

for significance across the group of subjects by pairwise t tests with respect

to chance level (50%). For searchlight analysis, starting with voxel-wise

values reflecting discrimination accuracies for a given pair of conditions

within the sphere centered on that voxel, images were adjusted with respect

to chance level by subtracting 50%, averaged over all comparisons of

interest, and subsequently tested for significance across subjects in one-

sample t tests, applying correction for multiple comparisons by random

field theory in SPM5. Display of statistical results (and regions of interest)

used the PALS atlas [45] of Caret 5.51 (http://www.nitrc.org/projects/

caret/).

Multivariate support vector regression [44] was used to test for gradual

changes in activity pattern as a function of magnitude. Patterns evoked

by the four numerosities (separately for stimulus lists and formats) were

fitted by a four-step function corresponding to the logarithm of the four nu-

merosities after mean correction. The percentage of variance explained by

this fit was evaluated in session-wise leave-one-out cross-validation (see

Technical Appendix in Supplemental Experimental Procedures).

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental

Experimental Procedures, and nine figures and can be found with this

article online at http://www.cell.com/current-biology/supplemental/

S0960-9822(09)01623-6.
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