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What representations underlie the ability to think and

reason about number? Whereas certain numerical con-

cepts, such as the real numbers, are only ever rep-

resented by a subset of human adults, other numerical

abilities are widespread and can be observed in adults,

infants and other animal species. We review recent

behavioral and neuropsychological evidence that these

ontogenetically and phylogenetically shared abilities

rest on two core systems for representing number. Per-

formance signatures common across development and

across species implicate one system for representing

large, approximate numerical magnitudes, and a

second system for the precise representation of small

numbers of individual objects. These systems account

for our basic numerical intuitions, and serve as the

foundation for the more sophisticated numerical con-

cepts that are uniquely human.

‘The knowledge of mathematical things is almost innate in us…

This is the easiest of sciences, a fact which is obvious in that no

one’s brain rejects it; for laymen and people who are utterly

illiterate know how to count and reckon.’

Roger Bacon (c. 1219–1294)

‘Mathematics may be defined as the subject in which we never

know what we are talking about, nor whether what we are

saying is true.’

Bertrand Russell (1872–1970)

How is it possible simultaneously to view mathematics
as a system of transparent truths and as a tangle of
relations between opaque entities? Why is it that small
children demonstrate some degree of mathematical under-
standing, yet many adults view mathematics as a domain
best left to only the wisest of academics? In short, why is
mathematics both so easy and so hard?

Combined efforts from developmental psychology, psycho-
physics, comparative cognition and neuroscience have
begun to paint a picture of both continuity and change in
the domain of numerical thinking. Here, we review evidence
that two distinct core systems of numerical representations
are present in human infants and in other animal species,
and therefore do not emerge through individual learning or
cultural transmission. These two systems are automatically
deployed, are tuned only to specific types of information, and
continue to function throughout the lifespan.

The two core systems are limited in their represen-
tational power. Neither system supports concepts of
fractions, square roots, negative numbers, or even exact
integers. The construction of natural, rational and real
numbers depends on arduous processes that are probably
accessible only to educated humans in a subset of cultures,
but which nevertheless are rooted in the two systems that
are our current focus and that account for humans’ basic
‘number sense’ [1].

Core system 1: Approximate representations of

numerical magnitude

Core system 1 in infants

Even in infancy, children exhibit numerical knowledge. Xu
and Spelke tested 6-month-old infants’ discrimination of
the numerosities 8 vs. 16 using a habituation paradigm [2].
Infants first saw repeated presentations of either 8 or 16
dots (Figure 1a). Careful controls for non-numerical
dimensions ensured that infants responded to numerosity
only (see Box 1). When tested with alternating arrays of 8
and 16 dots, infants looked longer at the numerically novel
test arrays regardless of whether they had been habitu-
ated to 8 or 16, showing that they successfully responded to
number.

Further experiments have revealed important limits on
infants’ representations of number. First, infants’ numeri-
cal discriminations are imprecise and subject to a ratio
limit: 6-month-old infants successfully discriminate 8 vs.
16 and 16 vs. 32 dots, but fail with 8 vs. 12 and 16 vs. 24
under the same conditions as those described above [2].
Second, numerical discrimination increases in precision
over development: 6-month-olds can discriminate numer-
osities with a 1:2 but not a 2:3 ratio, whereas 10-month-old
infants also succeed with the latter (Xu and Arriaga,
unpublished), and adults can discriminate ratios as small
as 7:8 [3,4]. Third, numerical discrimination fails when
infants are tested with very small numerosities in tasks
controlled for continuous variables: infants fail to dis-
criminate arrays of 1 vs. 2, 2 vs. 4, and 2 vs. 3 dots, even
though these differ by the same ratios at which infants
succeed with larger numerosities [5].

Infants’ approximate number representations are not
limited to visual arrays. When tested with sequences of
temporally distinct events such as sounds, 6- and 9-month-
old infants show the same pattern of success and failure as
with dot arrays [6,7]. In particular, infants discriminate
numerosities controlled for continuous variables, their
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discrimination is subject to a ratio limit of 1:2 at 6 months
and of 2:3 at 9 months, and they successfully discriminate
only numerosities of four and above. The convergence of
findings across these disparate types of entities suggests
that infants’ discrimination depends on abstract repre-
sentations of numerosity. Furthermore, these abstract
representations support number-relevant computations.

Infants recognize ordinal relationships between numeros-
ities [8], and form expectations about the outcomes of simple
arithmetic problems such as 5 þ 5 (Figure 1b) [9].

These hallmarks of approximate number represen-
tations are instantiated in models representing numer-
osity as a fluctuating mental magnitude, akin to a ‘number
line’, shared across modalities [10–14]. There are

Figure 1. (a–d) Four types of tasks used to test infants’ quantity representations. The tables below each task list evidence that has been obtained for the engagement of

either of the two core systems, and for which computations are performed over the representations generated by the systems. ‘Approximate magnitude’ is the represen-

tation generated by the first core system. ‘Distinct individuals’ is the representation generated by the second core system. Parenthetic references cite experiments yielding

conclusive evidence for the engagement of either of the two core systems. Other experiments on infants’ quantitative abilities remain indeterminate as to which system is

contacted (e.g. [67]).
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currently two competing mathematical formulations of the
number line (Figure 2), although their behavioral predic-
tions are highly similar. The linear model with scalar
variability represents the number line as a series of

equally spaced distributions with increasing spread. The
logarithmic model with fixed variability represents suc-
cessive numerosities on a logarithmic scale subject to a
fixed amount of noise. In both models, larger numerosities
are represented by distributions that overlap increasingly
with nearby numerosities. This variability increases the
likelihood of confusing a target with its neighbors, yielding
infants’ ratio-dependent performance.

Core system 1 in older children and adults

Older children and adults share this system for represent-
ing large, approximate numerosities [3,10,15–17]. When
shown arrays of dots or sequences of sounds under
conditions that prevent counting, adults discriminate
numerosities when continuous variables are controlled,
their discrimination is subject to a ratio limit, and the ratio
limit is identical for arrays from different modalities. Like
those of infants, adults’ numerical representations there-
fore show two hallmarks: they are ratio-dependent and are
robust across multiple modalities of input.

What is the relationship between this approximate
number system and the system of symbolic number that
supports exact enumeration and arithmetic? Early work
showed that adults are faster to determine which of two
Arabic digits is larger when the numerosities are small
and/or more distant from each other [18]. These two factors
collapse into thesameratiodependencethat isobservedwith
visual or temporal arrays, now seen with numerosities
presented in symbolic form. Ratio dependence in symbolic
numerical comparison has also been revealed in children
as young as 5 years [17], suggesting that children quickly
learn to map symbolic numbers onto their pre-existing
representations of numerical magnitude. Recent evidence
suggests that this mapping is initially logarithmic but
becomes linear during the elementary school years,
consistent with the thesis that the mental number-line is
logarithmically compressed, and that children and adults
learn to compensate for this compression [19].

Core system 1: Summary

To sum up, the findings indicate that infants, children and
adults share a common system for quantification. This
system yields a noisy representation of approximate
number that captures the inter-relations between differ-
ent numerosities, and is robust across modalities and
across variations in continuous properties. This system

Box 1. Infants’ computation of discrete versus continuous

quantities

Early experiments on infants’ quantitative abilities did not fully

disentangle discrete and continuous variables, leaving the source of

infants’ responses ambiguous. More recent studies with stringent

controls illustrate that infants can represent both types of

information.

In tasks involving large numbers of elements, infants compute

discrete number. With total surface area, contour length, display size,

item size and item density all neutralized, infants dishabituate to

changes between 8 versus 16 dots [2] and sounds [6]. That these

activate infants’ approximate representations of numerical magni-

tude is suggested by the signature of ratio-dependent performance.

Furthermore, large-number arrays appear spontaneously to trigger

numerical representations only; infants have difficulty extracting

information about the continuous properties of large number arrays

when number is controlled for [66].

Whereas the first core system outputs specifically numerical

representations, the second system allows for the representation of

continuous variables and of discrete number. Evidence comes from

tasks producing the set-size signature of the system for representing

small numbers of individuals. In some of these tasks, infants respond

based on the total continuous properties of the array. Given a choice

between two quantities of food, infants opt to maximize the total

quantity of food rather than the number of pieces of food [20]. And

when continuous variables are pitted against number in habituation

and violation-of-expectation tasks, infants respond to continuous

variables, such as total contour length or area [23,24]. However, the

system for representing numerically distinct individuals also sup-

ports discrete numerical computations. Infants search for hidden

objects based on the number of objects hidden, not on the total

amount of continuous ‘object-stuff’ hidden [22]. And in a habituation

task with strict controls for continuous variables, infants respond to

discrete number if the array contains objects with highly dissimilar

features (Feigenson, unpublished).

Why do infants sometimes compute continuous extent and

sometimes compute number over representations of small numbers

of individuals? Although no definitive answer has been found,

infants’ performance can be interpreted in light of the stimuli

presented and the behavior required. Computing total continuous

extent over arrays of food objects makes sense if the goal is to

maximize the amount one gets to eat. Computing number when

searching for objects makes sense when the goal is to obtain an

individual object, rather than a detached quantity of ‘stuff.’ Still,

because no single rule decides when infants will compute continu-

ous versus discrete properties of a small-number array, this area is

ripe for future investigation.

Figure 2. Two models of the mental number line (Core system 1), a linear model (a) and a logarithmic one (b), depicting mental activation as a function of numerosity.
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shows a signature ratio limit that is probably explained by
logarithmic compression of its underlying representation
of numerical magnitude. Finally, the first core system
becomes integrated with the symbolic number system used
by children and adults for enumeration and computation.

Core system 2: Precise representations of distinct

individuals

Core system 2 in infants

The approximate system is not our only source of
numerical information. Infants and adults have a second
system for precisely keeping track of small numbers of
individual objects and for representing information about
their continuous quantitative properties.

In one experiment, 10- and 12-month-old infants chose
between two quantities of hidden crackers (Figure 1c) [20].
Infants watched an experimenter sequentially hide, for
example, one cracker in a bucket on the left, and 1 þ 1 ¼ 2
crackers in a bucket on the right. With choices of 1 vs. 2 and
2 vs. 3 equal-sized crackers, infants spontaneously chose
the larger quantity. However, with choices of 3 vs. 4, 2 vs. 4,
3 vs. 6, and even 1 vs. 4 crackers, infants chose randomly
despite the highly discriminable ratio between the
quantities (Figure 3) [20].

This performance pattern differs dramatically from
that observed with large numerosities in the studies
reviewed above, because infants’ success depended not on
numerical ratio but on the absolute number of items
presented, with an upper-bound of 3. This striking limit on
infants’ small number quantification appears in at least
two other paradigms. First, infants successfully discrimi-
nate 2 vs. 3 but not 4 vs. 6 items in a habituation task [21],
despite the identical ratio difference. Second, the 3-item
limit was found in a task in which infants saw objects
hidden sequentially in a box and then searched to retrieve
them (Figure 1d) [22]. Fourteen-month-olds matched their

searching to the number of objects hidden, but only for
numerosities 1, 2 and 3. Infants’ search patterns show that
they successfully represented the hiding of ‘exactly 1’,
‘exactly 2’, and ‘exactly 3’ objects. However, when 4 objects
were hidden, infants retrieved one of them and then
stopped searching. Importantly, in this experiment the
continuous extent of the objects was controlled for. Thus, in
this task, infants base their searching on the exact number
of objects hidden and not on continuous variables (Box 1).

Besides computing numerosity, infants also compute
the total continuous extent of small object arrays. In the
cracker task described above, infants presented with one
large cracker versus two crackers totaling half the area of
the large one reliably preferred the bucket with one [20].
As infants succeeded in this task only when 3 or fewer
crackers were hidden in either location, this suggests that
they represented the crackers as distinct individuals, up to
a limit of 3, and then summed across these to represent the
amount of total cracker material in each bucket. This
sensitivity to continuous variables has been observed in
many paradigms, including habituation and violation-of-
expectation, demonstrating the importance of this com-
putation when representing small numbers of objects
(Box 1) [5,23,24].

Like the first core system, the system for representing
small numbers of distinct individuals yields a consistent
signature across abstract representations. Just as with
object arrays, infants precisely represent the individuals
in visual-event and auditory sequences (e.g. puppet jumps
and sounds) [25]. Here again, infants fail to represent
arrays greater than 3, fail to represent number when
continuous variables are controlled, and often respond
instead to summary representations of amount of motion
or amount of sound. Nevertheless, there are limits on the
types of individuals that can be represented by this
system. Streams of continuous substances or objects that
come into and go out of existence are not successfully
tracked either by adults [26,27] or by infants [28,29]. These
shared constraints provide further evidence for the
deployment of the second core system across development
(see also [30–32]).

Core system 2 in adults

One long-standing and still unanswered question concerns
the role of exact small-number representations in adults’
symbolic number processing. When adults enumerate
elements in dot arrays, performance is fast and nearly
perfect for the numerosities 1–4, after which error rate or
response time rise sharply and climb with increasing
numerosity [33,34]. This discontinuity has led to the
suggestion that small numbers are processed differently
from large numbers via subitizing, a process allowing for
their immediate and accurate recognition. Subitizing has
been proposed to depend on the system for representing
and tracking small numbers of individuals discussed
above [34], but this claim remains controversial [12,15].
An alternative explanation for the fast and accurate
enumeration of numerosities 1–4 is that, like larger
numerosities, they are represented by the first core
system, but that the variability in the read-outs of these
small numbers is sufficiently small that they can be

Figure 3. Infants’ choices in the experiment by Feigenson et al. [20]. Bars represent

the percentage of infants in each comparison group (at two different ages, 10 and

12 months, for the smaller quantities) choosing the greater quantity of crackers.

Infants’ choices demonstrate the set-size signature of the system for representing

small numbers of numerically distinct individuals (Core system 2), in that infants

performed randomly (dotted line at 50%) when either array contained more than 3

objects, even with highly discriminable ratios between the quantities. Asterisks

denote significance levels of P , 0.05. Adapted with permission from [20].
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recognized with little error. At present, therefore, it is not
known whether the second core system is recruited in
symbolic number tasks.

Dissociations between systems 1 and 2

In summary, infants’ processing of large versus small
numbers exhibits two dissociations. First, large approxi-
mate number discrimination varies relative to the ratio
between numerosities, whereas small-number discrimi-
nation varies relative to the absolute number of individ-
uals, with a limit of about 3. Second, large-number
discrimination is robust over variations in continuous
variables, whereas small-number discrimination is often
affected by such continuous properties. These dis-
sociations suggest that large and small numerosities are
the province of different systems with different functions:
large arrays primarily activate a system for representing
sets and comparing their approximate cardinal values.
Small arrays primarily activate a system for representing
and tracking numerically distinct individuals, which
allows for computations of either their continuous quan-
titative properties or of the number of individuals in
the array.

The core systems’ shared heritage

Core representations of number are common across many
species. When given tasks comparable with those pre-
sented to human infants and adults, animals show the
same signature limits, suggesting that core knowledge of
number depends on mechanisms with a long phylogenetic
history.

Core system 1 in non-human animals

Many animal species represent numerical magnitudes.
Rats trained to press a lever N times produce presses
normally distributed around the target number. Further,
the standard deviation of these response distributions is a
linear function of the target number, showing that the rats
rely on imprecise representations that grow noisier as
numerosity increases [35]. And like those of human infants
and adults, rats’ numerical magnitude representations are
abstract [13]. Rats trained to respond to numbers of noise
bursts later experienced sequences that mixed noise

bursts with a stimulus from a new modality, cutaneous
shocks. Rather than enumerating only the trained audi-
tory stimuli, rats spontaneously enumerated both the
noises and shocks.

Primates also use approximate magnitudes to represent
number, as illustrated by experiments testing ordinal
knowledge in rhesus monkeys. Monkeys were trained to
touch arrays of 1–4 elements in ascending numerical
order [36]. Next, they saw pairs of novel stimuli containing
two numerosities between 5 and 9. Monkeys spontane-
ously touched these new arrays in ascending numerical
order, and the speed and accuracy of their responses was a
function of numerical ratio, mirroring the effect obtained
with human adults (Figure 4). Similar ratio-dependence
has been found in untrained cotton-top tamarins pre-
sented with auditory sequences [37].

Core system 2 in non-human animals

Animals also represent small numbers of distinct individ-
uals. In the task on which Feigenson et al. [20] based their
cracker experiments with infants, rhesus monkeys saw
apple slices sequentially hidden in two locations and then
chose between them [38]. With choices of 1 vs. 2, 2 vs. 3,
and 3 vs. 4, monkeys preferred the larger quantity. But
with 3 vs. 8 and 4 vs. 8, they were at chance. Therefore,
although demonstrating a slightly higher capacity than
human infants, monkeys presented with these relatively
small numerosities (arrays containing up to 8 items) were
limited to tracking 4 or fewer per location, regardless of
the ratio between the quantities. The same 4-item limit
was also found when monkeys watched simple addition
problems, in which they succeeded at discriminating the
correct outcomes of 1 þ 1 ( ¼ 2 or 3), and 2 þ 1 ( ¼ 3 or 4),
but failed with 2 þ 1 þ 1 ( ¼ 3 or 4 or 5) [39].

The abrupt limit on the number of entities monkeys
represented in the above tasks implicates the small-
number system as the source of their performance.
Monkeys’ restriction to the numerosities 1–4 in situations
involving small arrays, coupled with their capacity to
create noisy representations of large sets, suggests that
monkeys, like humans, have two distinct systems for
representing number. The two core number systems
therefore offer a strong case of representational continuity
across development and across species.

Cerebral bases of the core systems

Recently, neuroimaging and neurophysiological tech-
niques have begun to provide access to the neuronal
underpinnings of the core number systems. The system for
representing approximate numerical magnitudes has
become well characterized and is associated by a con-
vergent series of results with the bilateral horizontal
segment of the intraparietal sulcus (HIPS; for a review see
[40]). This brain region is implicated by both event-related
potentials [41,42] and fMRI [43,44] as the source of the
numerical distance and size effects that are observed
behaviorally. In adults, the HIPS is activated equally well
by numerical symbols in the auditory and visual mod-
alities [45], and by sets of visual items [46]. This area thus
lies at the convergence of multimodal symbolic and non-
symbolic input pathways for approximate number.

Figure 4. Latency and accuracy to the first response in a pairwise numerical com-

parison task. Both species were required to order two numerosities on a touch-

sensitive screen. Accuracy increased (b) and latency decreased (a) with increasing

numerical disparity for both monkeys (blue circles) and humans (green triangles).

Reprinted with permission from [68].
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Lesion data concur with these findings. Many adult
patients with acalculia suffer from lesions in the IPS
vicinity. In particular, a subcategory of patients with
deficits in elementary operations such as subtraction,
bisection, or comparison seem to suffer more specifically
from a deficit of the numerical magnitude system [47,48].
Even simple non-symbolic tasks involving the enumer-
ation of large-number dot arrays can be impaired in such
patients [49]. Furthermore, early pathologies of this
system might cause developmental dyscalculia, a severe
deficit in learning arithmetic in otherwise normally
developing children. Loss of gray matter in the IPS has
been identified in two medical conditions associated with
dyscalculia: prematurity [50] and Turner’s syndrome [51].

In a crucial step towards elucidating the internal
organization of this system for representing approximate
numerosities, the first electrophysiological recordings of
number-related neurons in awake monkeys indicate the
existence of neurons tuned to approximate numerosity
(Figure 5) [52–54]. In a numerosity-matching task, for
instance, about a third of prefrontal neurons and up to 15%
of neurons in the depth of the IPS fired selectively after a
certain numerosity of dots was presented visually [52,53].
Furthermore, the neurons had identically short firing
latencies for all of the numerosities tested, indicating

parallel extraction of numerosity across the entire display,
and the faster latencies for IPS neurons than for prefrontal
neurons suggests that numerosity is first computed in
parallel in parietal cortex, then is transmitted and held on-
line by prefrontal delay activity [54].

Crucially, numerical tuning is approximate and is
broader for larger numerosities. The ratio signature of
Weber’s law is observed, with the breadth of the tuning
curves increasing linearly with the neurons’ preferred
numerosity. Mathematically, the tuning curves can be
described as Gaussians with a fixed width on a logarithmic
scale of number. This property, together with the lack of
any discontinuity between numbers below 3 and above 4,
associates this neural code unambiguously with the first
core number system. It provides evidence, moreover, that
this system can represent the magnitude of the smallest
numerosities as well as larger ones, at least in monkeys
that receive extensive training.

By contrast, the neural bases of the second core system
are not yet clear. In neuropsychological patients, rep-
resentations of small numbers are sometimes dispropor-
tionately spared relative to large numerosities [55,56].
And conversely, some children with developmental dys-
calculia show impairments to subitizing that are so severe
that the children had to count to assess the numerosity of
arrays of even 2 or 3 objects [57,58]. However, imaging of
the neural substrates of subitizing has proven inconclusive
[46], perhaps because this activity is a basic, automatic
function of early extrastriate areas [59]. Indeed, the
representation of distinct objects is so fundamental to
perception and cognition that it might elude current
neuroimaging methods, which work best when one can
devise control tasks in which the target system is not
activated.

Conclusion

Why is number so easy and yet so hard? Although studies
of human infants have not definitively answered this
question (see Box 2), they offer several suggestions. First,
number is easy because it is supported by core systems of
representation with long ontogenetic histories. One sys-
tem serves to represent approximate numerical magni-
tudes independently of non-numerical quantities. Because
this system is active early in infancy, humans are attuned
to the cardinal values of arrays from the beginning of
life. The other system serves to represent numerically
distinct individuals of various types, and allows multiple
computations over these representations. These compu-
tations include forming summary representations of the

Figure 5. Behavioral and neural numerical filter functions. (a) The behavioral per-

formance for two monkeys indicated whether they judged the first test stimulus (in

a delayed match-to-numerosity task) as containing the same number of items as

the sample display. The function peaks indicate the sample numerosity at which

each curve was derived. Behavioral filter functions are plotted on a logarithmic

scale. (b) Single-neuron representation of different numerosities in the prefrontal

cortex of the same behaving monkeys. Population neural filter functions were

derived by averaging the normalized single-unit activity for all neurons that pre-

ferred a given numerosity and transforming them to a logarithmic scale. Reprinted

with permission from [52].
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Box 2. Questions for future research

† What is the relationship between representations of large,

approximate numerosities and representations of small numbers

of numerically distinct individuals? Can information be transferred

from one core system to the other?

†What factors determine which representational system is deployed

in a given situation?

† How does each of the two core number systems contribute to the

creation of more sophisticated numerical knowledge?

† Do impairments to either core system lead to different types of

deficits in the development of mature number knowledge?
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individuals’ continuous properties, and representing the
number of individuals in an array. Because this second
system is also active in infancy, concepts of ‘enumerable
individual’ and ‘adding one’ are accessible throughout
our lifetimes. Numerical reasoning might be easy, and
numerical intuitions transparent, when they rest on one of
these systems.

Second, number is hard when it goes beyond the limits
of these systems. When one attempts to represent an exact,
large cardinal value, one must engage in a process of
verbal counting and symbolic representation that children
take many years to learn [60,61], that adults in different
cultures perform in different ways [62], and that people
in some remote cultures lack altogether (Gordon, unpub-
lished). When humans push number representations
further to embrace fractions, square roots, negative
numbers and complex numbers, they move even further
from the intuitive sense of number provided by the
core systems.

What drives humans beyond the limits of the core
systems? If the human mind were endowed only with a
single system of core knowledge, then humans might never
venture beyond its bounds. We are endowed, however, with
two core systems of numerical knowledge and with other
systems for reasoning about physical, living and inten-
tional beings (e.g. [63–65]). As we apply these different
systems to the same objects, events and scenes, we appear
to be driven to reconcile the representations that they
yield. Three-year-old children might show this drive when
they struggle with their representations of approximate
magnitudes and of numerically distinct individuals so as to
learn the meanings of words like ‘seven’, a concept whose
meaning is guaranteed by neither core system. Newton
and Leibniz may have shown a similar impulse when they
independently invented the calculus, stretching their
systems of numerical and mechanical knowledge so as to
reconcile them. Nothing guarantees, however, that the
intuitions provided by distinct core systems can be
reconciled into a single system of consistent, transparent
and accessible truths. Despite the great advances in
human physical and mathematical concepts over cul-
tural and intellectual history, this consilience continues
to elude us.

References

1 Dehaene, S. (1997) The Number Sense, Oxford University Press
2 Xu, F. and Spelke, E.S. (2000) Large number discrimination in

6-month old infants. Cognition 74, B1–B11
3 Barth, H. et al. (2003) The construction of large number represen-

tations in adults. Cognition 86, 201–221
4 van Oeffelen, M.P. and Vos, P.G. (1982) A probabilistic model for the

discrimination of visual number. Percept. Psychophys. 32, 163–170
5 Xu, F. (2003) Numerosity discrimination in infants: evidence for two

systems of representations. Cognition 89, B15–B25
6 Lipton, J.S. and Spelke, E.S. (2003) Origins of number sense: large

number discrimination in human infants. Psychol. Sci. 15, 396–401
7 Lipton, J.S. and Spelke, E.S. Discrimination of large and small

numerosities by human infants. Infancy (in press)
8 Brannon, E.M. (2002) The development of ordinal numerical knowl-

edge in infancy. Cognition 83, 223–240
9 McKrink and Wynn Large number addition and subtraction by

9-month-old infants. Psychol. Sci. (in press)
10 Whalen, J. et al. (1999) Nonverbal counting in humans: the

psychophysics of number representation. Psychol. Sci. 10, 130–137

11 Dehaene, S. and Changeux, J.P. (1993) Development of elementary
numerical abilities: a neuronal model. J. Cogn. Neurosci. 5, 390–407

12 Gallistel, C.R. and Gelman, R. (2000) Nonverbal numerical cognition:
from reals to integers. Trends Cogn. Sci. 4, 59–65

13 Meck, W.H. and Church, R.M. (1983) A mode control model of counting
and timing processes. J. Exp. Anal. Behav. 9, 320–334

14 Wynn, K. (1998) Psychological foundations of number: numerical
competence in human infants. Trends Cogn. Sci. 2, 296–303

15 Cordes, S. et al. (2001) Variability signatures distinguish verbal from
nonverbal counting for both small and large numbers. Psychonomic
Bull. Rev 8, 698–707

16 Huntley-Fenner, G. and Cannon, E. (2000) Preschoolers’ magnitude
comparisons are mediated by a preverbal analog mechanism. Psychol.
Sci. 11, 147–152

17 Temple, E. and Posner, M.I. (1998) Brain mechanisms of quantity are
similar in 5-year-olds and adults. Proc. Natl. Acad. Sci. U. S. A. 95,
7836–7841

18 Moyer, R.S. and Landauer, T.K. (1967) Time required for judgments of
numerical inequality. Nature 215, 1519–1520

19 Siegler, R.S. and Opfer, J. (2003) The development of numerical
estimation: evidence for multiple representations of numerical
quantity. Psychol. Sci. 14, 237–243

20 Feigenson, L. et al. (2002) The representations underlying infants’
choice of more: object-files versus analog magnitudes. Psychol. Sci. 13,
150–156

21 Starkey, P. and Cooper, R.G. Jr (1980) Perception of numbers by
human infants. Science 210, 1033–1035

22 Feigenson, L. and Carey, S. (2003) Tracking individuals via object-files:
evidence from infants’ manual search. Dev. Sci. 6, 568–584

23 Clearfield, M.W. and Mix, K.S. (1999) Number versus contour length in
infants’ discrimination of small visual sets. Psychol. Sci. 10, 408–411

24 Feigenson, L. et al. (2002) Infants’ discrimination of number vs.
continuous extent. Cogn. Psychol. 44, 33–66

25 Wynn, K. (1996) Infants’ individuation and enumeration of actions.
Psychol. Sci. 7, 164–169

26 van Marle, K. and Scholl, B. (2003) Attentive tracking of objects versus
substance. Psychol. Sci. 14, 498–504

27 Scholl, B.J. and Pylyshyn, Z.W. (1999) Tracking multiple items
through occlusion: clues to visual objecthood. Cogn. Psychol. 38,
259–290

28 Huntley-Fenner, G. et al. (2003) Objects are individuals but stuff
doesn’t count: perceived rigidity and cohesiveness influence infants’
representations of small groups of discrete entities. Cognition 85,
203–221

29 Chiang, W.C. and Wynn, K. (2000) Infants’ tracking of objects and
collections. Cognition 77, 169–195

30 Scholl, B.J. (2001) Objects and attention: the state of the art. Cognition
80, 1–46

31 Scholl, B.J. and Leslie, A.M. (1999) Explaining the infant’s object
concept: beyond the perception/cognition dichotomy. In What is
Cognitive Science (Lepore, E. and Pylyshyn, Z., eds), pp. 26–73,
Blackwell

32 Carey, S. and Xu, F. (2001) Infants’ knowledge of objects: beyond object
files and object tracking. Cognition 80, 179–213

33 Mandler, G. and Shebo, B.J. (1982) Subitizing: an analysis of its
component processes. J. Exp. Psychol. Gen. 111, 1–21

34 Trick, L. and Pylyshyn, Z.W. (1994) Why are small and large numbers
enumerated differently? A limited capacity preattentive stage in
vision. Psychol. Rev. 101, 80–102

35 Platt, J.R. and Johnson, D.M. (1971) Localization of position within a
homogeneous behavior chain: effects of error contingencies. Learn.
Motiv. 2, 386–414

36 Brannon, E.M. and Terrace, H.S. (1998) Ordering of the numerosities
1-9 by monkeys. Science 282, 746–749

37 Hauser, M.D. et al. Evolutionary foundations of number: spontaneous
representation of numerical magnitudes by cotton-top tamarins. Proc.
R. Soc. Lond. B. Biol. Sci. (in press)

38 Hauser, M.D. et al. (2000) Spontaneous number representation in
semi-free-ranging rhesus monkeys. Proc. R. Soc. Lond. B. Biol. Sci.
267, 829–833

39 Hauser, M.D. and Carey, S. (2003) Spontaneous representations of
small numbers of objects by rhesus macaques: examinations of content
and format. Cogn. Psychol. 47, 367–401

Review TRENDS in Cognitive Sciences Vol.8 No.7 July 2004 313

www.sciencedirect.com

http://www.sciencedirect.com


40 Dehaene, S. et al. (2003) Three parietal circuits for number processing.
Cogn. Neuropsychol. 20, 487–506

41 Dehaene, S. (1996) The organization of brain activations in number
comparison: event-related potentials and the additive-factors method.
J. Cogn. Neurosci. 8, 47–68

42 Kiefer, M. and Dehaene, S. (1997) The time course of parietal
activation in single-digit multiplication: evidence from event-related
potentials. Math. Cogn. 3, 1–30

43 Pinel, P. et al. (2001) Modulation of parietal activation by semantic
distance in a number comparison task. Neuroimage 14, 1013–1102

44 Stanescu-Cosson, R. et al. (2000) Understanding dissociations in
dyscalculia: a brain imaging study of the impact of number size on the
cerebral networks for exact and approximate calculation. Brain 123,
2240–2255

45 Eger, E. et al. (2003) A supramodal number representation in human
intraparietal cortex. Neuron 37, 719–725

46 Piazza, M. et al. (2003) Single-trial classification of parallel pre-
attentive and serial attentive processes using functional magnetic
resonance imaging. Proc. R. Soc. Lond. B. Biol. Sci. 270, 1237–1245

47 Dehaene, S. and Cohen, L. (1997) Cerebral pathways for calculation:
double dissociation between rote verbal and quantitative knowledge of
arithmetic. Cortex 33, 219–250

48 Delazer, M. and Benke, T. (1997) Arithmetic facts without meaning.
Cortex 33, 697–710

49 Lemer, C. et al. (2003) Approximate quantities and exact number
words: dissociable systems. Neuropsychologia 41, 1942–1958

50 Isaacs, E.B. et al. (2001) Calculation difficulties in children of very low
birthweight: a neural correlate. Brain 124, 1701–1707

51 Molko, N. et al. (2003) Functional and structural alterations of the
intraparietal sulcus in a developmental dyscalculia of genetic origin.
Neuron 40, 847–858

52 Nieder, A. and Miller, E.K. (2003) Coding of cognitive magnitude.
Compressed scaling of numerical information in the primate pre-
frontal cortex. Neuron 37, 149–157

53 Nieder, A. et al. (2002) Representation of the quantity of visual items in
the primate prefrontal cortex. Science 297, 1708–1711

54 Nieder, A. and Miller, E. A parieto-frontal network for visual

numerical information in the monkey. Proc. Natl. Acad. Sci. U. S. A.
(in press)

55 Ciplotti, L. et al. (1991) A specific deficit for numbers in a case of dense
acalculia. Brain 114, 2619–2637

56 Dehaene, S. and Cohen, L. (1994) Dissociable mechanisms of
subitizing and counting: neurospsychological evidence from simulta-
nagnosic patients. J. Exp. Psychol. Hum. Percept. Perform. 20,
958–975

57 Bruandet, M. et al. (2004) A cognitive characterization of dyscalculia in
Turner syndrome. Neuropsychologia 42, 288–298

58 Butterworth, B. (1999) The Mathematical Brain, Macmillan
59 Sathian, K. et al. (1999) Neural evidence linking visual object

enumeration and attention. J. Cogn. Neurosci. 11, 36–51
60 Wynn, K. (1990) Children’s understanding of counting. Cognition 36,

155–193
61 Wynn, K. (1992) Children’s acquisition of the number words and the

counting system. Cogn. Psychol. 24, 220–251
62 Saxe, G.B. (1981) Body parts as numerals: a developmental analysis of

numeration among the Oksapmin in Papua New Guinea. Child Dev.
52, 306–315

63 Baillargeon, R. (1998) Infants understanding of the physical world. In
Advances in Psychological Science Vol. 2: Biological and Cognitive
Aspects (Sabourin, M. and Craik, F., eds), pp. 503–529, Psychology
Press

64 Keil, F.C. (1994) The birth and nurturance of concepts by domains: the
origins of concepts of living things. In Mapping the Mind: Domain
Specificity in Cognition and Culture (Hirschfeld, L.A. and Gelman,
S.A., eds), pp. 234–254, Cambridge University Press

65 Johnson, S.C. (2000) The recognition of mentalistic agents in infancy.
Trends Cogn. Sci. 4, 22–28

66 Brannon, E.M. Number bias for the discrimination of large visual sets
in infancy. Cognition (in press)

67 Wynn, K. (1992) Addition and subtraction by human infants. Nature
358, 749–750

68 Brannon, E.M. and Terrace, H.S. (2002) The evolution and ontogeny of
ordinal numerical ability. In The Cognitive Animal (Bekoff, M. et al.,
eds), pp. 197–204, MIT Press

Language and Conceptual Development:

a series of TICS Reviews and Opinions, beginning in the July 2004 issue

Language and conceptual development (Editorial)
Michael Siegal (July 2004)

Core systems of number
Lisa Feigenson, Stanislas Dehaene and Elizabeth Speike (July 2004)

Vitalistic causality in young children’s naive biology
Kayoko Inagaki and Giyoo Hatano

How do children create new representational resources?
Susan Carey, Barbara Samecka and Mathieu LeCorre

Psychological essentialism in children
Susan Gelman

Number and language: how are they related?
Rochel Gelman and Brian Butterworth

Cognitive development underlies language acquisition
Eve Clark

Conceptual development and conversational understanding
Michael Siegal and Luca Surian

Thought before language
Jean Mandler

Review TRENDS in Cognitive Sciences Vol.8 No.7 July 2004314

www.sciencedirect.com

http://www.sciencedirect.com

	Core systems of number
	Core system 1: Approximate representations of numerical magnitude
	Core system 1 in infants
	Core system 1 in older children and adults
	Core system 1: Summary

	Core system 2: Precise representations of distinct individuals
	Core system 2 in infants
	Core system 2 in adults
	Dissociations between systems 1 and 2

	The core systems’ shared heritage
	Core system 1 in non-human animals
	Core system 2 in non-human animals

	Cerebral bases of the core systems
	Conclusion
	References


