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INTERVAL TIMING, PACEMAKER(S), AND NEURAL
OSCILLATIONS

Neural oscillations are ubiquitous in the mammalian brain and they are typically classified
according to their specific frequency responses (Buzsáki, 2006). Neural oscillations are
hypothesized to organize communication within and between brain networks (e.g., Fries, 2015).
Neural oscillations have increasingly been associated with various cognitive functions such as
attention (Klimesch, 2012), working memory (Gulbinaite et al., 2014a; Haegens et al., 2014), and
cognitive control (Cavanagh et al., 2009; Gulbinaite et al., 2014b) but also temporal expectation
(Praamstra et al., 2006; Cravo et al., 2011; Rohenkohl andNobre, 2011) and timing (Treisman, 1963;
vanWassenhove, 2009; Kösem et al., 2014; Kononowicz and van Rijn, 2014). One quest in cognitive
neuroscience is to explain how neural oscillations can subserve complex cognitive processes. Here,
we mainly focus on the role of spontaneous rhythms in interval timing (also see van Wassenhove,
in press); however, some hypotheses are supported by the literature on rhythmic entrainment.

One of the possible cognitive abilities neural oscillations may support is interval timing
(Treisman et al., 1994), which is the ability to perceive, store, encode, and reproduce temporal
intervals ranging from few 100 milliseconds to minutes. Over decades, experimental psychologists
have proposed the existence of a cognitive mechanism akin to an internal clock. In search for the
neural bases of the internal clock(s), it may be tempting to draw an analogy between ticking clocks
and oscillating neuronal networks, as one of the reference papers in neurosciences states, “Clocks
tick, bridges, and skyscrapers vibrate, neuronal networks oscillate” (Buzsáki and Draguhn, 2004,
pp. 1926). Indeed, some interval timing theories have followed through this idea: Treisman (1963)
suggested, that the internal clock could consist of a pacemaker which at the beginning of the to-
be-timed interval would start sending pulses, that are then stored in the accumulator. The pulse
count could serve as a subjective estimate of time. Furthermore, to implement this model into
biologically plausible mechanisms, Treisman proposed that the pulse rate of the pacemaker would
be driven by neural oscillations in the alpha range (8–12Hz, see Figure 1A): faster alpha rhythms
would thus result in longer estimates of time than slower alpha rhythms considering, that more
pulses would accumulate during the same physical time interval (Treisman et al., 1994). As no
simple relationships have been found between the rate of visual flicker, neural oscillations, and the
subjective perception of duration when using oscillatory entrainment (Herbst et al., 2013, 2014;
although see Johnston et al., 2006), it remains plausible that spontaneous fluctuations of alpha
peaks could modulate perceived duration. For example, Haegens et al. (2014) have shown, that
alpha peak frequency changed as a function of cognitive load in a N-back working memory (WM)
task such that the larger the WM load, the higher the alpha peak frequency. These results indicate
that subjectively longer durations could be associated with larger alpha peak if WM is implicated in
the estimation of duration (Gu et al., 2015; van Wassenhove, in press).

Despite mechanistic attempts to link oscillatory processes with internal clock models, direct
implementations of internal clock models still lack solid neural foundations whereas, more
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FIGURE 1 | Illustration of the main interval timing theories of interval

timing that rely on the notion of neural oscillations. Panel (A) illustrates

the idea that faster alpha rhythms results in longer estimates of time as more

pulses could be accumulated in a given physical time interval (Treisman, 1963).

Panel (B) illustrates the SBF model. The gray sinusoids depict oscillators in an

example trial. The amplitude of each oscillator is represented by the size of

gray circle at t1 and t2 times, respectively. Panel (C) illustrates the main brain

regions engaged in interval timing (PFC, SMA, PPC) and their presumed

projections to the striatum as suggested by the SBF model.

biologically grounded frameworks have been more plausible
(Buhusi and Meck, 2005).

THE (STRIATAL) BEAT FREQUENCY
MODEL

The most prominent neurobiologically plausible model of
interval timing is the Striatal Beat Frequency (SBF) model (Matell
and Meck, 2000, 2004; Buhusi and Meck, 2005) developed
on the basis of the beat frequency model (Miall, 1989). One
major assumption of SBF (Figure 1B) is the existence of cortical
oscillators of various frequency responses most likely located in
the Pre-Frontal Cortex (PFC) which is part of the mesocortical
pathway. However, other cortical regions cannot be excluded
[e.g., Supplementary Motor Area (SMA), Posterior Parietal
Cortex (PPC), or sensory cortices, Figure 1C]. At the onset of
an interval to be timed, the model posits, that cortical oscillators
are phase-reset and, at the offset of the interval, the state of these
cortical oscillators is read out by medium spiny neurons located
in the striatum. Hence, the SBF model considers, that the phase
of cortical oscillators gives rise to a unique activation pattern over
time (Buhusi and Meck, 2005; Oprisan and Buhusi, 2011, 2014)
and, that spiny neurons are coincidence detectors reading out the

state of these cortical oscillators. Note that in SBF, the pattern
of activation is identical whether one reads the phase or the
amplitude of the oscillators. Although, cortical oscillators seem to
be a key element of the SBF model, only little evidence currently
supports the existence of a dedicated set of cortical oscillators
for interval timing (e.g., Matell, 2014). It is also unclear whether
cortical oscillators are really necessary for the SBF model, as any
stable pattern of neural activation (Crowe et al., 2014; Merchant
et al., 2014; Mello et al., 2015) within to-be-timed intervals but
variable across to-be-timed intervals would be sufficient as input
to insure reliable coincidence detection (also see Meck et al.,
2013).

QUANTIFYING THE ROLE OF CORTICAL
OSCILLATORS

When considering oscillatory processes in the context of the
SBF model, at least two important predictions regarding neural
oscillators have to be taken into account. The first prediction is,
that in order to provide a meaningful pattern, cortical oscillators
have to be phase-reset, such that they always start from the
same fixed state. For example, the results by Parker et al.
(2014) suggest, that more precise phase reset of ongoing theta
oscillations in the medial frontal cortex results in better timing
accuracy (Kononowicz, 2015), something that would be in line
with the SBF model. This hypothesis awaits future tests and more
compelling evidence have to be provided.

The second prediction is linked to the idea, that the speed
of internal clock can be modulated by the speed of cortical
oscillators (Oprisan and Buhusi, 2014), which are modulated
by tonic levels of dopamine (Oprisan and Buhusi, 2011). It is
very often assumed, that the clock speed could be represented
by the alpha band regime (Treisman et al., 1990, 1994) as it is
the most prevalent spontaneous rhythm in the mammalian brain
(Oprisan and Buhusi, 2014). However, as previously discussed,
the relationship between alpha peak power and fluctuations
in subjective timing has not been clearly established; direct
attempts to test this hypothesis have not succeeded (Treisman
et al., 1990, 1994). The power of alpha is a good marker
of temporal expectation (Praamstra et al., 2006; Cravo et al.,
2011; Rohenkohl and Nobre, 2011), which is in line with the
hypothesized role of alpha as a selective coordinator implicated
in the temporal prioritization of sensory events (Jensen et al.,
2014). Hence, one possible departure from the early proposals
could be that a single dominating frequency may not be
necessary to represent the clock speed as neural oscillations
outside of the alpha range have been implicated in interval
timing (Busch et al., 2004; Kaiser et al., 2007; Sperduti et al.,
2011), raising the possibility that other rhythms could serve as
“pacemakers.” For instance, recent studies suggest a signifant
role of beta oscillations in timing (Iversen et al., 2009; Fujioka
et al., 2012, 2015; Bartolo et al., 2014; Teki, 2014; Kononowicz
and van Rijn, 2014; Wiener and Kanai, 2016) and the phase
characteristics of low-frequency oscillators can predict subjective
timing (Cravo et al., 2011; Kösem et al., 2014), suggesting, that
different neural oscillations have the potentiality to track time.
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Therefore, instead of focusing on one single neural oscillation,
future studies should explore local trial-to-trial fluctuations
across frequency bands and how subdominant frequencies
vary as a function of subjectively perceived time intervals.
Complementary to this, addressing the implications of such
markers at different time scales and across sensory modalities
may be desirable.

Interestingly, a recent review by Gu et al. (2015) proposes to
unify interval timing and working memory models. Specifically,
these authors proposed, that working memory and interval
timing can originate from the same oscillatory processes such
as gamma and theta oscillations, and phase-amplitude coupling
between these frequency bands (Lisman, 2010). The proposed
model largely focuses on oscillatory processes that could be
shared between working memory and SBF. Nonetheless, the
empirical ways to assess the principles of SBF model are still
lacking. As the gist of the SBF lies in the notion of communication
between cortical areas and the striatum, here we discuss the
possibility of testing this hypothesis by investigating functional
connectivity between the striatum and PFC.

STRIATUM-PFC COUPLING AND THE SBF
MODEL

Striatal neurons are ideal candidates for coincidence detection
as they receive direct inputs from cortical neurons. Through
coincidence detection of spiking activity from two or more
cortical regions, the same striatal neuron will discharge within
a given time window. For instance, Matell et al. (2003) showed,
that neural activity in the striatum and the anterior cingulate
cortex varied before 10 and 40 s when the reinforcement was
presented at one of these two time points, suggesting, that
neuronal populations respond to to particular time intervals.
However, this pattern although predicted by SBF could largely
be confounded by motor activity of lever pressing. Nevertheless,
note, that Riehle et al. (1997) observed transient synchronization
of neurons in motor cortex when stimuli were expected, but
failed to appear. Although, this work is very important it only
shows pattern of activity that fits into the SBF model under
certain conditions. Given, that an important premise of the SBF
model is the communication between striatal neuronal ensembles
and cortical neurons, we propose, that investigating functional
connectivity between subcortical and cortical structures can
serve as an important step extending the results of Matell
et al. (2003) and giving further support to the SBF model. For
example, Antzoulatos and Miller (2014) found, that perceptual
(non-temporal) category learning was accompanied by increased
synchronization within beta band range (12–30Hz) between
the PFC and striatum, demonstrating the role of functional
connectivity in learning. Specifically, synchronization was larger
for correct trials. On the basis of the SBF model, a change of

cortical-striatal synaptic weights through learning is predicted to
reflect a memory mechanism such as the one implemented in
the Scalar Expectancy Theory (Gibbon, 1977). Taken together,
striatal neurons are predicted to become more sensitive to firing
as a function of specific PFC neurons, and these learning effects
should be visible during training of temporal discrimination as
a change in inter-areal synchronization. Moreover, according to
the SBF model and in line with the results of Antzoulatos and
Miller (2014), inter-areal synchronization should be enhanced
in “correct” trials (Kononowicz, 2015). Particularly, the striatal-
PFC synchrony enhancement should emerge at the time of a
standard interval, for example in the task where subjects compare
a comparison interval, that could vary in length to a fixed
standard interval. That is because striatal and PFC structures
should become transiently synchronous due to previous learning
enhancing sensitivity/tuning of striatum to the particular neural
pattern exhibited at the time of standard interval.

The synchronization of neural oscillations has been associated
with neuronal mechanisms such as coincidence detection, neural
plasticity though long term potentiation/depression mechanism,
and neuronal communication (Fell and Axmacher, 2011).
These processes seem like a plausible candidate to coordinate
striatum-PFC communication in recognition for specific patterns
considered by SBF model. Specifically, the simplest scenario
would predict an increase in coherence or spike-filed coherence
for accurately timed trials. Coherence was proposed to reflect
facilitated communication between brain regions (e.g., Fries,
2015). Effective communication should be linked to the
successful timing performance if indeed communication between
the striatum and PFC is a key component of timing system
as proposed in the SBF model. This cortico-striatal spike-
field coherence should be specifically enhanced at the time
of standard interval if striatal neurons recognize cortical
pattern (see Kononowicz and van Rijn, 2015). Furthermore, the
role of cortico-cortical coherence has been shown in passive
rhythmical stimulation paradigms, in which an increase in
coherence coincided with the next tone occurrence (Fujioka
et al., 2012). These results do support the hypothesis sketched in
this paper and also suggest cortico-cortical analysis. Moreover,
recent progress in neuroscientific methods allows to adress this
questions in animals and humans using MEG/EEG modeling
(David et al., 2011), but also deep brain recordings.
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