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SUMMARY

Recent evidence of unconscious working memory
challenges the notion that only visible stimuli can
be actively maintained over time. In the present
study, we investigated the neural dynamics underly-
ing the maintenance of variably visible stimuli using
magnetoencephalography. Subjects had to detect
and mentally maintain the orientation of a masked
grating. We show that the stimulus is fully encoded
in early brain activity independently of visibility re-
ports. However, the presence and orientation of the
target are actively maintained throughout the brief
retention period, even when the stimulus is reported
as unseen. Source and decoding analyses revealed
that perceptual maintenance recruits a hierarchical
network spanning the early visual, temporal, parietal,
and frontal cortices. Importantly, the representations
coded in the late processing stages of this network
specifically predicted visibility reports. These unex-
pected results challenge several theories of con-
sciousness and suggest that invisible information
can be briefly maintained within the higher process-
ing stages of visual perception.

INTRODUCTION

Conscious perception is often associated with the ability to hold

a representation in mind. Empirically, studies have repeatedly

shown that the behavioral and neuronal influence of an invisible

stimulus rapidly decreases with time. Consequently, several the-

ories of visual awareness have conjectured a strong link between

the visibility of a stimulus and themaintenance of its correspond-

ing neuronal activity. For example, the Recurrence Theory pre-

dicts that an invisible stimulus may elicit a feedforward response

across the cortical hierarchies, but typically fails to trigger recur-

rent processing within each processing stage (Lamme and

Roelfsema, 2000). Similarly, the Global Neuronal Workspace
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Theory predicts that an invisible stimulus may be coded in pe-

ripheral cortical modules, but that this unconscious response

is too weak to recruit the fronto-parietal networks responsible

for the maintenance and global broadcast of the representation

across the cortex (Dehaene and Changeux, 2011).

However, the association between visual awareness and infor-

mation maintenance has recently been challenged. First, several

groups have shown that invisible stimuli can sometimes evoke a

relatively late neuronal response (Vogel et al., 1998; Sergent

et al., 2005; van Gaal et al., 2011; Silverstein et al., 2015; Bernat

et al., 2001; Salti et al., 2015; Charles et al., 2014). Second, Soto

and collaborators have recently demonstrated that a masked

Gabor patch can be maintained for several seconds, even

when subjects report not seeing the stimulus (Soto et al., 2011;

Soto and Silvanto, 2014; Pan et al., 2014).

Under some conditions, these challenging empirical observa-

tions may nevertheless remain compatible with current models

of visual awareness. For example, perceptual representations

may be transmitted in a feedforward manner across a deep

cortical hierarchy without necessarily triggering locally sustained

responses. This hypothesis would remain compatible with the

notion that recurrent activity and metastable representations

are critical to conscious perception (Lamme and Roelfsema,

2000; Schurger et al., 2015). Alternatively, some representations

could be maintained over time but may nevertheless remain

confined within a sensory region. This view, dissociating infor-

mation maintenance and global broadcast, would therefore be

consistent with the critical role of higher-order brain regions in

conscious perception (Dehaene and Changeux, 2011; Baars,

1993; Lau, 2008).

Testing these alternative accounts requires us to identify the

neural mechanisms responsible for the maintenance of invisible

stimuli. Specifically, we need to determine, first, whether the

maintenance of invisible information is confined to early sensory

stages or broadcast to higher processing stages (Baars, 1993;

Dehaene and Changeux, 2011; Lau, 2008), and second, whether

the maintenance of such information depends on the sustained

firing rate of a coding neuronal assembly (e.g., Kojima and

Goldman-Rakic, 1982; Schurger et al., 2015) and/or on the dy-

namic transmission of information across multiple modules

(e.g., Stokes et al., 2013).
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Figure 1. Visual Maintenance in Backward

Masking Protocol

(A) Subjects had to mentally maintain the orienta-

tion of a masked Gabor patch to compare it to a

subsequent probe (clockwise or counter-clock-

wise tilt). At each trial, subjects reported the visi-

bility of the target with a four-point scale.

(B) The proportion of visibility reports for target-

absent trials and each level of contrast confirms

that subjects adequately used the subjective visi-

bility ratings. Error bars indicate the SEM across

subjects.

(C) Replicating Soto et al. (2011), forced-choice

tilt discrimination performance correlates with

visibility reports, but nevertheless remains signifi-

cantly above chance in trials reported with mini-

mum visibility (blue).
To unravel the functional architecture of perceptual mainte-

nance and its relationship to subjective visibility, we investigated

with magnetoencephalography (MEG) the neural mechanisms

encoding and briefly maintaining low-level visual features, and

tested how these processes varied as a function of objective

stimulus features as well as subjective visibility reports.

RESULTS

Behavioral Evidence of Weak Maintenance of Unseen
Stimuli
We first quantified the extent to which subjects were able to

detect the masked Gabor patch (target), maintain its orientation,

and compare it to a subsequent probe (Figure 1A). Subjective

visibility ratings varied across the four-point visibility scale

(0, completely unseen; 3, clearly seen). Subjects used the lowest

visibility rating in the majority of absent trials (visibility = 0/3,

74% ± 6%). In present trials, subjects generally used one of

the other three visibility ratings (visibility > 0/3, 93% ± 2%), lead-

ing to a detection (d’) of 2.73 ± 0.32 (Figure 1B). This result

confirms that subjects meaningfully used subjective visibility

ratings. Forced-choice discrimination performance (the ability

to determine whether the probe was oriented clockwise or

counter-clockwise to the target) was relatively high (85% ±

5%, chance = 50%), and increased as a function of visibility

(R = 0.79 ± 0.10, p < 0.001), indicating that subjects adequately

estimated their ability to detect the target. To our surprise,

discrimination performance did not appear to systematically

increase with the contrast of the target (R = 0.17 ± 0.14,

p = 0.194), although this effect may be underpowered by the

fact that contrast varied only between three possible values.

Importantly, even the targets that were reported as unseen

continued to be discriminated slightly above chance level (accu-
Neuro
racy, 58% ± 5%, p = 0.036; d’ = 0.20 ±

0.09, p = 0.006; Figure 1C). These behav-

ioral results replicate the findings of Soto

et al. (2011) and suggest that subjects

were weakly, but significantly, able to

maintain and compare the orientation of

a target stimulus to that of a probe pre-
sented 800 ms later, even when they reported not seeing the

target.

The Brain Automatically Encodes All Sensory Features
in Parallel
We next sought to identify the neural mechanisms underlying the

behavioral dissociation between visibility reports and information

maintenance.We thus focused on the early brain response (100–

250 ms), the delay time period (300–800 ms), and the probe time

periods (900–1,150 ms) in an attempt to isolate the encoding,

maintenance, and retrieval processes engaged in this task. To

this end,wefirst compared theevent-relatedfields (ERFs) evoked

in trials with both a target and a mask to trials with a mask but no

target (‘‘absent trials’’). The visual target appeared to elicit a rela-

tively strong focal response in centro-posterior MEG channels

between �80 and 250 ms after the onset of the target (average

decoding scores 100–250 ms, area under the curve [AUC] =

0.88 ± 0.01, p < 0.001; Figures 2A and 2B). A region of interest

(ROI) analysis in the lingual gyrus suggests that this MEG activity

corresponds to a sharp activity reversal between 110 (maxAUC=

0.529 ± 0.005) and 169 ms (min AUC = 0.463 ± 0.006).

These early neural responses coded for the orientation of the

target (Figure 2B, bottom, and Figures 3 and S2, available

online). Linear circular correlations between the ERFs and the

target angles revealed a focal response over posterior channels

and in the lingual gyrus from�90ms. The corresponding decod-

ing scores were relatively low but highly significant during this

early time window (100–250 ms, 0.066 ± 0.007 radians [rad.],

p < 0.001; Figures 3 and S2).

Task-irrelevant sensory features were also encoded in early

brain responses (Figure 3). Indeed, decoding analyses demon-

strated that the contrast (R = 0.25 ± 0.02, p < 0.001), spatial fre-

quency (AUC = 0.53 ± 0.01, p = 0.001), and phase of the target
n 92, 1122–1134, December 7, 2016 1123



Figure 2. Weak Propagation of the Target Information across the Cortex

(A) The average area under the curve (AUC) estimates between target-present and target-absent trials within each ROI (bottom) and reveals a weak propagation

of the target information from early visual cortices (purple) up to frontal regions (orange and red). Filled areas indicate significant effects after cluster correction for

multiple comparisons.

(B) The exhaustive but uncorrected analyses in sensor and source spaces suggest that target information propagates to a highly distributed cortical network.

Error bars indicate the SEM across subjects.
(0.024 ± 0.006 rad., p < 0.001 when estimators fitted on the

probe) could only be decoded between �100 and 250 ms after

stimulus onset and presumably originated from occipital sour-

ces. Thus, all sensory features, whether relevant or irrelevant

to the task, were simultaneously and automatically encoded in

early brain responses.

The Presence, Orientation, and Visibility of the Target
Are Specifically Maintained
After 250 ms, during the delay period, task-irrelevant sensory

features of contrast, spatial frequency, and phase quickly drop-

ped to chance level, but the presence, orientation, and visibility

of the target remained decodable during the entire remaining

time period (Figure 3). Specifically, the decoding scores of the

target presence were significantly above chance during the

delay period (300–800 ms, AUC = 0.73 ± 0.02, p < 0.001), as

well as after probe onset (900–1,050 ms, AUC = 0.70 ± 0.02,

p < 0.001; Figure 3, red), and captured a spatially distributed

MEG response from �250 ms onward, which presumably re-

flects a distributed set of cortical sources. This distributed

pattern was confirmed by ROI-based analyses that first revealed

a weak, but significant, negative response evoked in infero-tem-

poral cortex between 410 and 690 ms (mean AUC = 0.495 ±

0.001, p = 0.0036), followed by a superior parietal cortex

response between 430 and 800 ms (mean AUC = 0.496 ±

0.001, p = 0.0036; Figure 2A). A positive response could then

be detected in the rostral middle frontal cortex between 1,090

and 1,270 ms (mean AUC = 0.503 ± 0.001, p = 0.0388) and in

the precentral cortex between 1,170 and 1,420 ms after target

onset (mean AUC = 0.52 ± 0.001, p = 0.0388). A whole-brain
1124 Neuron 92, 1122–1134, December 7, 2016
analysis revealed multiple weak, but significant, clusters in a

relatively large number of regions, including the precuneus and

cuneus, fusiform gyrus, middle and transverse temporal cortex,

lateral orbitofrontal cortex and caudal middle frontal cortex, and

parahippocampal area (Figures 2 and S4).

We next asked whether the neural responses identified in the

delay period coded for not only the presence of the target, but

also for its identity. The decoding of the target angle was signif-

icant from�250 ms (300–800 ms, 0.032 ± 0.006 rad., p < 0.001).

Although the sensor and source analyses suggest a similar dis-

tribution of activity pattern than the one observed for the target

presence, these effects did not survive correction for multiple

comparisons during the delay period. This suggests that the

anatomical substrates recruited during the delay period may

have been too variable across subjects to be detectable with

conventional group analyses across sensors, and demonstrates

the utility of decoding analyses. After the probe onset, an

increased correlation between the MEG signals and the target

angle could be also observed (0.055 ± 0.007 rad., p < 0.001)

and was presumably generated by the visual cortex. Additional

control analyses confirmed that the target could be decoded

independently of the probe angle after probe onset (R =

0.093 ± 0.022, p = 0.001; Figure S3). This finding suggests a

recall effect reminiscent of Wolff et al. (2015) and suggests that

the target information is maintained within the visual cortex in a

way that is not detectable with M/EEG.

Interestingly, we observed that the neural correlates of visibil-

ity, a subjective variable, were also sustained throughout the

retention period. Indeed, the decoding of visibility, restricted to

target-present trials, was sustained from �100 ms up to the



Figure 3. Decoding Reveals a Parallel Encoding of Multiple Sensory and Decisional Features

Time course of decoding performance for each sensory and decisional feature, based on the evokedMEG responses (A and B) and on their time frequency power

estimates (C).

(A) Filled areas and thick lines indicate significant decoding scores (cluster corrected, p < 0.05) and dotted lines indicate theoretical chance level.

(B) Univariate sensor topographies depicting the average evoked response in combined gradiometers averaged within each of the four time windows of interest.

(C) Significant clusters of decoding performance are contoured with a dotted line. Overall, while all features are decodable shortly after the onset of their cor-

responding stimulus, only the task-relevant features of target presence, orientation, and visibility appear to be maintained in the neural activity.

Error bars indicate the SEM across subjects.
end of the epoch (100–250 ms, R = 0.07 ± 0.01, p < 0.001; 300–

800 ms, R = 0.08 ± 0.01, p < 0.001; 900–1,050 ms, R = 0.09 ±

0.01, p < 0.001). Both sensor and source analyses suggest

that this activity is generated by a distributed set of cortical

sources located in the visual, temporal, parietal, and frontal

cortices. Note that although visibility ratings involved distinct

finger presses within the dominant hand, neither sensor nor

source analyses showed motor or premotor activity before

1,070 ms (Figures 3 and S4). This lack of detectable motor activ-

ity argues against a motor confound and fits with the fact that the

median reaction time for the visibility response was 2,330 ms

after the target onset.

Overall, these results suggest that while the brain first en-

codes, automatically and in parallel, all visual features, only

those that are relevant to the task (presence, angle, and visibility)

are later maintained during the delay period (Figure 3). The same

conclusion was also reached on the basis of inducedMEG activ-

ity. Specifically, applying similar decoding analyses after decom-

posing the ERFs into power estimates between 4 and 80 Hz

revealed significant clusters of decoding performance of the

target presence, angle, and visibility during the delay and probe
periods between �4 and 30 Hz (Figure 3C). Nevertheless, the

present link between sustained neural responses and task rele-

vance is an incidental finding. An explicit manipulation of the

relevance of the sensory features would be needed to confirm

that the brain selectively maintains target-relevant information

and discards irrelevant information.

Unseen Sensory Information Is Maintained during the
Delay and Probe Time Periods
To investigate whether the maintenance of visual information

varied as a function of visibility, we separately analyzed the sin-

gle-trial decoding accuracy for each visibility rating (Figure 4A).

Decoding the presence of the target was significant across all

visibility conditions during the early time window (comparison

of present trials at a given visibility with all absent trials, AUC =

0.83, 0.86, 0.87, and 0.88 for visibility 0–3, respectively;

average SEM = ±0.02, all p < 0.001), as well as during the reten-

tion period (AUC = 0.64, 0.70, 0.74, and 0.75 ± 0.02, all p < 0.001;

Figure 4A, top).

The decoding scores of the target orientations in each visibility

condition were noisier than those of target presence, but showed
Neuron 92, 1122–1134, December 7, 2016 1125



Figure 4. The Maintenance of Unseen Information Is Diminished but Remains above Chance

(A) Left: decoding subscores of the target presence (top) and target orientation (bottom) for each level of visibility (blue, 0/3; red, 3/3). Note that the estimators are

trained independently of visibility ratings. For clarity purposes, the decoding scores of the target presence are estimated against all absent trials. Filled areas and

thick lines indicate significant clusters, and error bars indicate the SEM across subjects. Right: decoding subscores after averaging the estimators’ predictions

within each timewindow. Overall, the results show that presence of the target can be decoded long after its presentation acrossmultiple levels of visibility. Similar,

although noisier, results are obtained when decoding the orientation of the targets.

(B) The accuracy of single-trial predictions is first modulated by the contrast of the target (orange), and then co-varies with visibility ratings, hence revealing a

double dissociation between objective and subjective neural representations.
a similar overall pattern (Figure 4A, bottom). Specifically, the

target orientations could be decoded shortly after the target

onset in each visibility condition (0.048, 0.047, 0.049, and

0.040 ± 0.010 rad. for visibility 0–3, respectively; all p < 0.004),

and decoding remained above chance during the delay period

(0.012, 0.025, and 0.034 ± 0.010 rad. for visibility 1–3, respec-

tively; all p < 0.004) and probe period (0.021, 0.028, 0.037, and

0.045 ± 0.008 rad. for visibility 0–3, respectively; all p < 0.028),

with the notable exception of 0-visibility trials during the delay

period (�0.009 ± 0.010 rad., p = 0.100). However, additional

‘‘bias’’ analyses showed that the angle decoding of 0-visibility

trials was significantly biased by the target (R = 0.083 ± 0.065,

p = 0.023; Figure S5), which suggests that the orientation of

unseen targets was maintained in neural activity at a barely

detectable level (Figure S3).

Overall, these results show that the presence of the target and,

to a lesser extent, its orientation can be partially maintained in

the neural activity, even when subjects report not seeing the

stimulus.

The Maintenance of Sensory Features Specifically
Correlates with Visibility Ratings
Although detectable across all visibility levels, the maintained

decoding of the target presence co-varied with visibility ratings

from �180 ms and until the end of the epoch (Figures 4A and

4B; R = 0.24 ± 0.02, p < 0.001). Similar, although weaker, results

were observed for target-angle analyses (Figure 4A, bottom, and

Figure S3). Specifically, the accuracy of single-trial angular

predictions appeared to correlate with visibility ratings during

the delay (decoding R = 0.018 ± 0.012, p = 0.067; control bias

R = 0.330 ± 0.122, p = 0.0193) and probe time periods (decoding

R = 0.030 ± 0.011, p = 0.010; control bias R = 0.37 ± 0.128,

p = 0.014).

These late decoding predictions were remarkably indepen-

dent of the contrast of the target. Indeed, target contrast modu-

lated the early decoding scores of presence (R = 0.332 ± 0.032,

p < 0.001) and orientation (R = 0.051 ± 0.022, p = 0.048), but
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rapidly stopped influencing both of these codes during the delay

period (Figure 4B). Finally, the correlations between the single-

trial predictions and (1) visibility ratings or (2) target contrast

were significantly different from one another during the early

(DR = 0.248 ± 0.034, p < 0.001) and delay time windows

(DR =�0.060 ± 0.021, p = 0.014), confirming the temporal spec-

ificity of these two factors.

Overall, these results show that the early encoding of the

target features was performed largely independently of visibility

and was mainly modulated by the contrast of the stimulus.

Conversely, the late processing stages correlated with subjec-

tive visibility reports, but not with the objective stimulus contrast.

PossibleModels Accounting for theObserved Sustained
Activity on Unseen Trials
We next attempted to distinguish among six independent mech-

anisms that could account for our three main decoding findings

(Figure 5): (1) decoding scores correlate with visibility reports

during the delay period, but (2) not during the early period, and

(3) the decoding of unseen stimuli is above chance until the

probe onset.

The proposed models differ in terms of (1) their overall archi-

tecture (i.e., the number and order or the processing stages)

and (2) whether they postulate that visibility correlates with the

amplitude and/or the duration of a given processing stage. By

design, these models fit our decoding results and relate to

different aspects of neuronal theories of visual awareness. Crit-

ically, we show how each of these models can be tested by

characterizing and comparing the temporal generalization (TG)

analyses of each visibility condition. For concision purposes,

we mainly focus on the prediction that is sufficient to invalidate

a given model and incrementally increase the model complexity.

The simplest model consists of encoding and maintaining the

stimulus within a unique processing stage. To account for the

low but sustained decoding of unseen trials, this model implies

that unseen representations are sustained over time (‘‘meta-

stable’’) and that visibility correlates with the amplitude of the



Figure 5. Hypothesized Neural Architec-

tures of Perceptual Maintenance and Their

PredictedDynamics across Visibility Judge-

ments

Multiple mechanisms of perceptual maintenance

can account for the decoding results presented in

Figure 4. The present models vary in terms of

(1) the number and ordering of processing stages

and (2) whether changes in visibility correlate with

changes in the amplitude and/or the duration

(metastability) of one or several processing

stages. By design, these models generate quali-

tatively similar decoding performance, but may

nevertheless be distinguished with TG analyses,

which consists of (1) training an estimator at each

time point and across all visibility conditions and

(2) testing their respective ability to generalize

over all other time points in each visibility condi-

tion separately (King and Dehaene, 2014a).The

‘‘single’’ model encodes and maintains the target

information within the same neural system, yet

with an amplitude that correlates with visibility

during a late time period. The ‘‘early mainte-

nance’’ model encodes and maintains both seen

and unseen targets within the early stage, but

only transmits the information to a second stage

in the seen condition. The ‘‘re-entry’’ model

maintains both seen and unseen targets in a late

stage but reactivates the early stage only if the

stimulus is seen. The ‘‘late-maintenance’’ model

maintains the target in a late stage whose

amplitude correlates with visibility. The ‘‘dynamic

amplitude’’ model transmits the target informa-

tion across a sequence of short-lived processing

stages, whose amplitude codes for visibility. The

‘‘dynamic maintenance’’ model transmits the

target information across a sequence of pro-

cessing stages whose metastability codes for visibility. Unlike the six other models, the ‘‘hybrid’’ model combines multiple non-mutually exclusive

mechanisms and captures the complex dynamics of our MEG results. Error bars indicate the SEM across subjects.
late neural responses. This single-stage model fits Zeki’s theory

of micro-consciousness (Zeki, 2003), which, contrary to many

other approaches (Lamme and Roelfsema, 2000; Dehaene and

Changeux, 2011; Lau, 2008; Seth, 2007), predicts a direct rela-

tionship between subjective experience and the strength of acti-

vation in sensory areas. Thismodel predicts that a fixedpattern of

neural activity should be decoded over time. To test this predic-

tion, we estimated how the estimators trained at time t across all

visibility conditions generalized to other time samples t’ for each

visibility condition separately. When applied systematically, this

TG analysis results in a training by testing times matrix for each

visibility, whose diagonals directly correspond to the decoding

scores presented in the previous sections (Figure S1; King and

Dehaene, 2014a). Contrary to the prediction of the single-stage

model, the estimators fitted to our MEG signals were empirically

better at decoding the stimulus when trained and tested at the

same time point than when tested on their off-diagonal general-

ization scores (presence, DAUC = �0.735 ± 0.019, p < 0.001;

angle, D = �0.044 ± 0.006 rad., p < 0.001). This result therefore

demonstrates that a single processing stage cannot suffice to

account for the maintenance of seen and unseen stimuli.

Postulating two processing stages implies that the visibility of

the stimulus could relate to the amplitude and/or duration of the
early and/or late processing stage. We will first consider these

factors separately. The ‘‘early maintenance’’ model postulates

that stimuli (1) are encoded and maintained within an early

stage but (2) fail to be transmitted to a second processing

stage in the unseen condition. This model could reconcile un-

conscious working memory findings (Soto and Silvanto, 2014)

and the theories that dissociate unconscious sensory represen-

tations from conscious higher-order representations (e.g., De-

haene and Changeux, 2011; Lau, 2008; Baars, 1993; Seth,

2007), but goes against a strict equivalence between metasta-

bility and visibility (e.g., Schurger et al., 2015). This model pre-

dicts that in unseen trials, the late generalization scores of the

estimators trained during the early period would be equal or su-

perior to the diagonal decoding scores during the same late

period. Empirically, the early estimators only weakly general-

ized over time in the unseen condition (presence, average

AUC = 0.526 ± 0.011, p = 0.033; cluster correction across

testing time, 530 and 590 ms, p = 0.026; orientation, no signif-

icant cluster), and these generalization scores were lower than

diagonal scores (DAUC = 0.118 ± 0.023, p < 0.001; Figures S5A

and S5B). Consequently, this result invalidates the possibility

that unseen representations are confined to the earliest pro-

cessing stages.
Neuron 92, 1122–1134, December 7, 2016 1127



Figure 6. The Target Information Propa-

gates to All Processing Stages and Is

Partially Maintained by the Latest Stages

(A) Left: decoding time courses of five estimators

trained at 100, 300, 500, 700, and 900 ms,

respectively, and tested in the lowest (blue) and

highest visibility conditions (red). Thick lines indi-

cate cluster-corrected significance, and error bars

indicate the SEM across subjects. Right: full TG

matrices of the lowest and highest visibility con-

ditions. Significant clusters are contoured with a

dashed line. Below-chance generalizations (blue)

indicate a reversal of the neural response (e.g.,

P1 / N1 couple). The results demonstrate that

unseen stimuli propagate to all processing stages.

(B) The correlation coefficients between visibility

ratings and the decoding accuracy of each esti-

mator show that visibility selectively correlates

with the late processing stages.

(C) The average decoding duration of the target

presence is much briefer for the estimators trained

during the early (bottom) than for the estimators

trained during the delay time periods (top).

The early estimators are marked by a transient

bipolar response that appears virtually identical

across visibility conditions whereas late estima-

tors generalize for �250 and 450 ms in the lowest

and highest visibility conditions, respectively.

Right: similar, although noisier, results were

observed for target angle estimators. Overall,

these results show that contrary to early pro-

cessing stages, the late stages code and maintain

the target information in proportion to its visibility.
The ‘‘re-entry’’ model postulates that the early processing

stage is maintained or reactivated only if the stimulus is visible.

This model requires the second stage to bemetastable and iden-

tical across visibility conditions to account for the sustained

decoding of unseen trials. This model fits the hypothesis that

re-entrant feedback activity is critical for visual awareness

(Lamme and Roelfsema, 2000; Dehaene and Changeux, 2011)

but goes against the critical role of higher-order representations

(Lau, 2008). This re-entry model predicts that the late generaliza-

tion of early estimators should be lower in the unseen than

the seen condition. Empirically, however, early estimators did

not generalize differently across visibility conditions (presence,

R = 0.003 ± 0.007, p = 1.000; orientation, 0.009 ± 0.005 rad.,

p = 0.101). This result thus demonstrates that the correlation be-

tween late decoding scores and visibility ratings cannot be

directly accounted for by a re-entry phenomenon.

The ‘‘late-maintenance’’ model postulates that unseen stimuli

are weakly maintained in a late processing stage, with a lower

amplitude in unseen compared to seen trials, but with a duration

independent of visibility. Such a dissociation between visibility

and informationmaintenance would argue against a tight link be-

tween visual awareness and metastability (Schurger et al., 2015)

via global ignition (Dehaene and Changeux, 2011) or sustained

recurrence (Lamme and Roelfsema, 2000). This model predicts

that late estimators should generalize over the entire time period

even when the stimulus is unseen. Empirically, however, late es-

timators did not generalize over the entire delay period in the un-

seen condition. For instance, the presence estimator trained at
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500 ms only generalized between 330 and 660 ms (p < 0.001;

Figure 6A).

In summary, these two-stage models seem unable to account

for our empirical results. We therefore turn to more complex

models, which postulate that unseen information can be trans-

mitted to several processing stages. The ‘‘dynamic amplitude’’

model postulates that stimuli are maintained by a long sequence

of processing stages, and that the amplitude of each stage cor-

relates with the visibility of the stimulus. This dynamic architec-

ture departs from the standard working memory architecture

(Kojima and Goldman-Rakic, 1982) and extrapolates the notion

of dynamic working memory (Stokes, 2015) to conditions of

invisibility. It predicts that the amplitude, but not the duration,

of each processing stage varies with the visibility of the stimulus.

Empirically, the TG matrices revealed a diagonal pattern

compatible with the predictions of this dynamic amplitudemodel

(Figure S5), with the notable exception that the early estimators

were statistically more transient (presence, 50 ± 1 ms; orienta-

tion, 77 ± 19 ms) than the late estimators (presence, 315 ±

37 ms, p < 0.001; orientation, 147 ± 35 ms, p < 0.001; Figures

6A and 6B). Furthermore, while the duration of early estimators

was similar across visibility ratings (presence, 50, 50, 50, and

60 ± 1 ms; orientation, 45, 79, 55, and 50 ± 33 ms for visibility

0–3, respectively; Figure 6C, left), the duration of the late estima-

tors was significantly shorter in the lowest visibility condition

(presence, 288 ± 43ms; orientation, 94 ± 53ms) than in the other

visible conditions (presence, 447, 477, and 442 ± 32 ms; seen �
unseen, p = 0.010; orientation, 263, 263, and 363 ± 60 ms for



visibility 1–3, respectively; seen � unseen: p = 0.037). Similar,

although statistically weaker, effects were also observed for

target angle analyses (Figure 6C, left). Consequently, although

the observed decoding performance is compatible with a model

that includes a cascade of multiple successive processing

stages, a simple difference in the amplitude of the late stages be-

tween seen and unseen trials cannot fully account for the neural

correlates of visibility.

The ‘‘dynamic maintenance’’ model postulates that the stimuli

are maintained by a long sequence of processing stages, and

that the duration, but not the amplitude, of each stage correlates

with the visibility of the stimulus. This model therefore applies a

principle similar to the feedforward/recurrent dissociation

(Lamme and Roelfsema, 2000) to the late processing stages.

Specifically, this model predicts that in the unseen condition,

the late estimators should generalize backward in time, but not

forward. As mentioned above, late estimators generalized for

�288 and 94 ms forward in time for the presence and orientation

estimators, respectively. Furthermore, these generalization du-

rations were longer than the forward generalization of early esti-

mators (all p < 0.005; Figure 6). These results thus show that

increasing the metastability of the late stages cannot solely ac-

count for our MEG results.

To test whether the late TG depended on metastable re-

sponses at the single-trial level and were not solely due to an

increased temporal variability of the late responses across trials,

we replicated the TG analyses on ‘‘very high-pass-filtered’’ data

at 2 Hz. The resulting diagonal scores remained unchanged, but

the late TGs completely vanished. This result suggests that late

TGs depend on slow and sustained neural responses and there-

fore supports the idea that late, but not early, processing stages

are metastable at the single-trial level.

We therefore conclude that, separately, the two dynamic

models cannot account for all empirical observations. However,

these models are not mutually exclusive. Indeed, all of the

observed features of the empirical TG matrices that were just re-

ported are compatible with a hybrid architecture in which the

maintenance of unseen stimuli depends on (1) a multiplicity of

processing stages sequentially coding for the target information,

(2) a dissociation between a transient encoding processing stage

and later metastable stages, (3) an increase in the amplitude and

duration of the late processing stages with subjective visibility,

and (4) a re-entry of the early processing stages that is indepen-

dent of visibility, supported by a weak reactivation of the early

processing stage independent of visibility. Finally, we also inci-

dentally noted a brief reversal of the early processing stage

around 170 ms in most analyses (see the below chance general-

ization scores in Figure S5), which matches the early activity

reversal identified in our sources. This reversal could correspond

to an activation/inhibition response or a reversal of the direction

of the electric current (King et al., 2014).

DISCUSSION

We investigated how the human brain encodes and maintains

the presence, orientation, and visibility of a masked Gabor

patch. Our behavioral results confirm that a stimulus subjectively

rated as ‘‘completely unseen’’ on a four-point visibility scale can
nevertheless be maintained for a sizeable duration (1.3 s), as

demonstrated by the significant discrimination performance on

the forced-choice task (Soto et al., 2011; Soto and Silvanto,

2014; Pan et al., 2014). This dissociation between perceptual

maintenance and subjective visibility is a challenge to current

theories of visual awareness (Lamme and Roelfsema, 2000; De-

haene and Changeux, 2011; Tononi and Koch, 2008; Seth, 2007;

Soto et al., 2011) but may nevertheless remain compatible with

the latter, depending on how the sensory information is encoded

and maintained over time (Figure 5). In the present study, we

therefore seek to unravel the mechanisms of perceptual mainte-

nance and demonstrate how the decoding of MEG signals can

distinguish these theoretical proposals.

Sensor analyses and estimates of the cortical sources suggest

that between�150 and 500ms, the neural activity elicited by the

target moves from the primary visual cortex to higher visual re-

gions and finally reaches the parietal and frontal cortices after

probe onset (Figure 2), in agreement with several other studies

(e.g., Sergent et al., 2005; Salti et al., 2015; Cichy et al., 2014).

The source estimates coding for the orientation of the target sug-

gest similar dynamics, but fail to resist correction for multiple

comparisons. This lack of robustness highlights the difficulties

inherent to source analyses, including the fact that inverse

modeling is ill posed in MEG, that the very high number of sour-

ces requires a drastic correction for multiple comparisons, and

that neural sources may vary across subjects. This difficulty

may here be increased by focusing on single-trial estimates,

which are suboptimal for minimum norm estimations, because

single-trial noise is modeled as neural sources.

We show here that decoding analyses overcome these limita-

tions and reveal three main findings. First, the decoding of the

presence, orientation, contrast, phase, and spatial frequency

of the Gabor patch peaks early after the onset of the stimulus.

Together with the source analyses, these results fit with the iden-

tification of overlapping neuronal maps in the visual cortex (Silver

and Kastner, 2009) and highlight the high sensitivity of MEG re-

cordings to subtle neural differences (Cichy et al., 2014; King

and Dehaene, 2014a; Stokes et al., 2015). Importantly, these

early visual codes appeared independent of visibility ratings,

but correlated with the contrast of the stimulus, which strongly

suggests that the encoding of the visual stimulus relates to

objective rather than subjective representations.

Second, and similarly to previous findings (Salti et al., 2015;

Wolff et al., 2015; Myers et al., 2015; Carlson et al., 2013; Stokes

et al., 2015; Mostert et al., 2015; Cichy et al., 2014, 2016), the de-

coding of target presence and orientation decreased from the

early time period to the delay, but then remained stable

throughout the rest of the epoch, both in terms of slow evoked

responses and sustained oscillatory activity (4�30 Hz; Figure 3).

Critically, the decoding of the target remained above chance

throughout the delay and probe time periods even in the lowest

visibility condition. This finding thus confirms that unseen stimuli

can be actively maintained in the neuronal activity. Interestingly,

we also observed that the irrelevant sensory features of contrast,

phase, and spatial frequency rapidly dropped toward chance

level during the delay period. This incidental finding suggests

that the brain automatically encodes all sensory features but

selectively maintains those that are relevant to the task.
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However, future research explicitly dissociating the task and the

sensory features is necessary to confirm this selective mainte-

nance of sensory information.

Finally, we observed that subjective visibility ratings specif-

ically correlated with the decoding of the target presence and

angle from �250 ms and up until the probe onset. This finding

confirms that the decoding of visibility does not reflect a trivial

motor preparation and, importantly, suggests that both visibility

and maintenance processes share a common neural substrate.

Indeed, if maintenance and visibility mechanisms depended on

strictly independent neural sources, then the maintained decod-

ing scores would have been identical across visibility conditions.

This finding therefore argues against the existence of a mecha-

nism that would perfectly maintain information over time, but

that would nevertheless remain inaccessible to introspection.

These three decoding findings demonstrate that we can track

the active maintenance of a variably visible stimulus from MEG

recordings. However, these results remain compatible with a va-

riety of neural mechanisms, as demonstrated by our modeling

(Figure 5). We therefore listed a number of elementary brain

mechanisms that could conceptually underlie the observed

perceptual maintenance and showed how TG analyses could

be used to test each of these models. The comparison between

the simulated TG and the empirical TG matrices successively in-

validated a series of models and revealed three main TG results.

First, TG matrices appeared dominated by a long diagonal

pattern, similar to that found in a growing number of perceptual

studies (King and Dehaene, 2014a; Salti et al., 2015; Wolff et al.,

2015; Myers et al., 2015; Carlson et al., 2013; Stokes et al., 2015;

Mostert et al., 2015; Cichy et al., 2014; Crouzet et al., 2015; Pe-

ters et al., 2016; Meyers et al., 2008; although see, e.g., King

et al., 2014; Hogendoorn et al., 2011). These diagonal patterns

suggest long sequences of neural responses reminiscent of

cascade models (McClelland, 1979) and strengthen a series of

anatomical and functional studies revealing the deeply hierarchi-

cal organization of the cortex (Felleman and Van Essen, 1991;

Rajalingham et al., 2015; Cichy et al., 2016; Chaudhuri et al.,

2015). Together with our source analyses, these elements there-

fore strongly suggest that the target-related activity is deeply

propagated across the cortex.

Second, these long TG diagonals were typically characterized

by a rapid increase in TG duration after �200 ms and revealed

that early and late processing stages code the target information

for�50 and 500ms, respectively. Such ametastability restricted

to late processing stages, confirmed by very high-pass-filtered

control analyses, fits with the elevated integration time of asso-

ciative cortices as compared to sensory cortices (Chaudhuri

et al., 2015). Interestingly, similar dynamics can be observed at

a more microscopic level (Meyers et al., 2012; Stokes et al.,

2013; Mante et al., 2013; King and Dehaene, 2014a), which

may suggest the existence of scale-invariant computational

architectures.

Finally, investigating these TG patterns in each visibility condi-

tion separately revealed that the lowest visibility condition was

neither characterized by an early disruption of the diagonal

pattern—as would be expected from a lack of broadcast to

higher processing stages—nor by a strong or sustained (re)-acti-

vation of early processing stages—as would be expected if the
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maintained representations remained confined to early visual

cortices (Figures 5 and 6). However, the late estimators general-

ized less and for a shorter duration in the lowest visibility condi-

tion than in the other visible conditions. Overall, these results

therefore suggest that the perceptual maintenance of unseen

stimuli is mainly accompanied by (1) a deep propagation of cod-

ing activity across all processing stages and with (2) a reduced

but still significant metastable response of the late processing

stages. These findings thus call for a partial revision of current

theories of visual awareness in order to account for significant

and metastable representations of unseen stimuli in higher pro-

cessing stages.

Nevertheless, our results remain profoundly compatible with

previous findings. In particular, we confirm that the visual targets

first evoke a rich set of early and automatic neural responses that

vary as a function of the objective properties of the stimulus,

whereas later neural responses only co-vary with subjective vis-

ibility (Dehaene and Changeux, 2011; Grill-Spector et al., 2000;

Fisch et al., 2009). Furthermore, the identified propagation and

maintenance of ‘‘unseen’’ information fits with the multiple find-

ings of late and high-level responses elicited by invisible stimuli

(Vogel et al., 1998; Sergent et al., 2005; Del Cul et al., 2007;

van Gaal et al., 2011; Silverstein et al., 2015; Bernat et al.,

2001; Salti et al., 2015; Charles et al., 2014; Soto et al., 2011;

Soto and Silvanto, 2014; Pan et al., 2014; Dutta et al., 2014).

Finally, the present results also remain compatible with the

idea that subjective visibility is a perceptual inference computed

from �200 ms by a highly distributed neural network (Baars,

1993; Lau, 2008; Moreno-Bote et al., 2011; King and Dehaene,

2014b; Dehaene and Changeux, 2011; Shadlen et al., 2008; Pe-

ters et al., 2016; Fisch et al., 2009). Indeed, the present data

merely indicate that multiple brain regions can maintain and

transmit residual sensory evidence long after an invisible

stimulus is gone. However, if this information is too weak, its

corresponding representation may be too similar to a noise

distribution for subsequent readout processes to conclude the

presence of a stimulus (Peters and Lau, 2015; King and De-

haene, 2014b).

Finally, it is important to underline that the present experi-

mental design relies on a subjective assessment of visibility.

The definition and empirical measurements of ‘‘conscious’’ and

‘‘unconscious’’ visual perception remain a topic of high contro-

versy (e.g., Eriksen, 1960; Kouider and Dehaene, 2007; King

and Dehaene, 2014b; Li et al., 2014; Pitts et al., 2014; Block,

2015; Peters and Lau, 2015; Tsuchiya et al., 2015). In particular,

the current visibility metric may lead to similar ratings when sub-

jects are confident that no target had appeared and when sub-

jects had a very weak visual experience (Peters and Lau, 2015;

King and Dehaene, 2014b). In this regard, it would be of partic-

ular interest to test how the present study generalizes to other

perceptual manipulations and to different metrics of visibility

and confidence. Furthermore, it remains necessary to investi-

gate whether the present findings would generalize to mainte-

nance periods lasting over several seconds. Longer delays

may involve different neural signatures of information mainte-

nance such as occasional stochastic bursts of activity during

an otherwise silent delay period, which could account for the

reduction of decoding performance between the early and delay



time periods (Mongillo et al., 2008; Stokes, 2015; Lundqvist et al.,

2016; Noy et al., 2015). Beyond its empirical findings, the present

study shows how such critical tests can be implemented with

temporally resolved neuroimaging techniques, and thus paves

the way to the identification of the processing stages that distin-

guish objective and subjective representations.

EXPERIMENTAL PROCEDURES

Stimuli and Protocol

Twenty young, healthy adults were scanned with MEG (22 ± 3 years old, 11

males, 18 right handed). Subjects had normal or corrected-to-normal vision.

Each experiment lasted for approximately 1 hr, and participants were finan-

cially compensated�80 euros for the study. All subjects gave written informed

consent to participate in this study, which was approved by the local Ethics

Committee.

Each trial started with a brief and variably contrasted target Gabor patch

(17 ms), subsequently masked by a radial sinusoid (117 ms, inter-stimulus in-

terval 50 ms; Figure 1A). A probe Gabor patch was then presented for 67 ms,

800 ms after the onset of the target. The contrast of the target was pseudo-

randomly varied among 0% (‘‘absent’’ trials), 25%, 75%, and 100%, whereas

the contrast of the mask and the probe was fixed to 100%. Pseudo-random-

ization corresponds to a shuffled permutation of all conditions and was

performed within each block. The orientation of the target pseudo-randomly

varied among 15�, 45�, 75�, 105�, 135�, and 165�. The probe angle was tilted

30� relative to the target angle; the direction of this tilt (clockwise or counter-

clockwise) was varied pseudo-randomly.

Subjects made two successive decisions. First, they performed a forced-

choice discrimination task, which consisted of indicating whether the probe

was tilted clockwise or counter-clockwise to the target (index and middle

finger of the left hand, respectively). Subjects were then asked to report the vis-

ibility of the target (0, no experience of the target; 3, clear experience of the

target, as defined by the ‘‘Perceptual Awareness Scale’’; Ramsøy and Over-

gaard, 2004) using the index, middle, ring, and little fingers of their right

hand, respectively. Subjects did 30 min of training before entering the MEG

to ensure that they understood the task, and sensibly used all visibility ratings.

Four subjects had to be excluded from the analysis because ‘‘unseen’’ or

‘‘clearly seen’’ reports were given less than ten times across the experiment,

or because the training phase had not been completed.

The phases of the target and the probe randomly varied between�180� and
180�. The target spatial frequency pseudo-randomly varied between two

possible values (30 and 35). The spatial frequency of the probe and the

mask was fixed to 32.5. The target, mask, and probe stimuli had a fixed size

of 16� of visual angle. Stimuli were presented on a gray background of a

projector refreshed at 60 Hz, and placed 106 cm away from subject’s head.

Subjects were asked to keep their eyes open and to avoid eye movements

by fixating on a dot continuously displayed at the center of the screen. Sub-

jects performed a total of 840 trials, shuffled across five blocks of �12 min

each.

Circular analyses were based on the double of the Gabor angle, for the

orientation only varies from 0� to 180�. Similarly, the angular errors of the de-

coded orientations were divided by two for consistency (i.e., error = fð23aÞ,
where f is a function using circular data, a is the stimulus orientation in ra-

dians, and error is the angular error). The phase of the Gabor patches was

random. To facilitate the analyses and keep a consistent processing pipeline

(i.e., the stratified k-folded cross-validation is only implementable with

discrete values), continuous phases were digitized into six discrete, evenly

separated bins.

Preprocessing

The preprocessing and statistical pipelines are available at https://github.com/

kingjr/decoding_unconscious_maintenance, together with several method

tutorials. MEG recordings were acquired with an ElektaNeuromag MEG

system, comprising 204 planar gradiometers and 102 magnetometers in a

helmet-shaped array. Subjects’ head position relative to the MEG sensors

was estimated with four head position coils placed on the nasion and pre-
auricular points, digitized with a PolhemusIsotrak System, and triangulated

before each block of trials. Six electrodes recorded electrocardiograms as

well as the horizontal and vertical electro-oculograms. All signals were

sampled at 1,000 Hz. Raw MEG signals were cleaned with the signal space

separation (Taulu and Simola, 2006) method provided by MaxFilter to (1) sup-

press magnetic interferences and (2) interpolate bad MEG sensors. The sig-

nals were then high-pass filtered at 0.1 Hz (transition bandwidth = 0.01 Hz)

with an overlap-add FIR filter (order = 4, length = 30 s). The raw data were

then epoched between �600 ms and +1,800 ms relative to the target onset.

Epochs used for evoked response analyses were further low-pass filtered at

30 Hz using MNE default parameters, cropped between �200 and 1,600,

and decimated down to 100 Hz. Twenty-five Morlet wavelets with logarithmi-

cally spaced frequencies between 4 and 80 Hz (five cycles each) were used

to extract the time-frequency power of the non-low-pass-filtered epochs.

The resulting power estimates were then cropped between �0.200 and

1,400 ms and decimated to 125 Hz. Four large time periods of interest

were used to simplify the results and maximize signal-to-noise ratio. The

baseline, early, delay, and probe time windows refer to time samples be-

tween �150 and 0 ms, 100 and 250 ms, 300 and 800 ms, and 900 and

1,050 ms relative to the target onset, respectively. Indeed, several studies

show that invisible stimuli can only elicit a neural response up to 250–

300 ms, whereas visible stimuli typically elicit a neural ignition around this

time period (Sergent et al., 2005; Gaillard et al., 2009; Fisch et al., 2009;

Lamme and Roelfsema, 2000).

Sources

We retrieved the structural magnetic resonance images (MRIs) of 14 of our 20

subjects who had been previously scanned for other experiments in our lab.

One of these subjects was removed from the source analyses because of a

left temporal lobe anomaly. The remaining six subjects without an MRI were

analyzed using the default MNI brain. Forward models were generated from

the segmented and meshed MRI (decimation = 5, conductivity = [0.3, 0.006,

0.3]) using Freesurfer andMNE andmanually co-registered with the head-digi-

tized shape and fiducials (Fischl, 2012; Gramfort et al., 2013). The MNI brain

was scaled to fit the head shape of subjects without an MRI. The epoch

data were additionally baselined between �0.200 and 0 ms, and a shrunk

co-variance (Engemann and Gramfort, 2015) was estimated across all trials

from this time window. The inverse operators were generated with the default

MNE parameters and applied at the single-trial level (method, dSPM,

lambda2 = 0.125). The effect sizes obtained from mass-univariate analyses

of estimated sources were then morphed to the MNI brain. Unless stated

otherwise, source figures depict the mean of the absolute effect size across

subjects in order to minimize inter-individual variability effects. Note that

many source analyses failed to reach statistical significance after comparison

formultiple correction over the 5,012 sources and 151 time points. They should

only be interpretedwith caution, and only in light of significant effects observed

in sensor and decoding analyses. Additionally, we investigated five anatomical

ROIs commonly activated in visual masking protocols (Dehaene and

Changeux, 2011). Specifically, we used the lingual, infero-temporal, superior

parietal, rostral-medial prefrontal, and precentral cortices in an attempt to

isolate the sensory, perceptual, decisional, and motor responses, respec-

tively. Each time course represents the average over all sources of the bilateral

regions within each subject (e.g., mean of all sources in both left and right pre-

central cortices).

Statistics

Statistical analyses were based on second-level tests across subjects. Spe-

cifically, each analysis was first performed within each subject separately

(across trials). We then tested the robustness of these effect sizes across sub-

jects using, whenever possible, non-parametric statistical tests, which tend to

provide more robust, although potentially less sensitive, statistical estimates.

The reported effect sizes correspond to the mean effect size within subject ±

SEM across subjects; the p values correspond to the second-level analyses

obtained across subjects. Categorical and ordinal tests were based on two-

tailed Wilcoxon and Spearman regression analyses, respectively, as provided

by the Scipy package (Oliphant, 2007). Parametric circular-linear correlations

were implemented from Berens (2009) and consisted of combining the linear
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correlation coefficients (R) obtained between the linear data (x) and the cosine

and sine of the circular data (a):

Rsin = corrðx; sinðaÞÞ

Rcos = corrðx; cosðaÞÞ

Rnorm = corrðsinðaÞ; cosðaÞÞ

R2
lc =

R2
cos +R2

sin � 2RcosRsinRnorm

1� R2
norm

;

where R2
lc is the linear-circular correlation coefficient between x and a. Mass

statistical analyses, such as those used to test the significance of each chan-

nel, each source, or each estimator at each time sample, were based on clus-

ter-based permutation analyses (Maris and Oostenveld, 2007), using the

default parameters of the MNE spatio temporal cluster 1samp test function,

which intrinsically corrects for multiple comparison issues. The default source

connectivity was used for source analyses. Analyses were solely based on

meaningful trials: for instance, the decoding of Gabor angle was solely based

on target-present trials, and trials with missed decision responses were

excluded from any analyses involving a decision factor.
Decoding

The multivariate estimators aimed at predicting a vector (y) of categorical (e.g.,

present versus absent), ordinal (e.g., visibility = 0, 1, 2, or 3), or circular data

(e.g., Gabor angle 30�, 90�., 330�) from a matrix of single-trial MEG data

(X, shape = ntrials3ðnchans31 time sampleÞ; Figure S1). Decoding analyses

systematically consisted of (1) fitting a linear estimator (w) to a training subset

of X ðXtrainÞ, (2) predicting an estimate of y on a separate test set ðbytestÞ, and
finally (3) assessing the decoding score of these predictions as compared to

the ground truth ðscoreðy; byÞÞ.
Estimators

Each estimator made use of two processing steps. First, X was whitened by

using a standard scaler that z scored each channel at each time point across

trials. When applied onto the raw signal, this ‘‘searchlight’’ analysis is only able

to capture effects that are consistent across trials, and is thus poor at detecting

induced activity. Second, an l2 linear model was fitted to find the hyperplane

(w) that maximally predicts y from X while minimizing a log loss function. All

model parameters were set to their default values as provided by the Scikit-

Learn package, with the exception of setting an automatic class-weight

parameter that aimed to make the analysis more robust to potential class

imbalance in the dataset. Three variants of estimators were implemented to

deal with categorical, ordinal, and circular data, respectively. Categorical

and ordinal data were fitted with a logistic regression and a ridge regression,

respectively. The logistic regression was set to generate probabilistic esti-

mates instead of categorical predictions. Finally, a combination of two ridge

regressions was used to perform circular correlations: the two ridge regres-

sions were fitted on X to predict sinðyÞ and cosðyÞ, respectively. The predicted

angle ðbyÞ was estimated from the arctangent of the resulting sine and cosineby = artan2ðbysin; bycosÞ.
Cross-validation

Each estimator was fitted on each subject separately, across all MEG sensors,

and at a unique time sample (sampling frequency = 100 Hz for most analyses,

and 125 Hz for time-frequency decomposed analyses) using all meaningful tri-

als. In other words, for each analysis (decoding of Gabor angle, contrast, vis-

ibility report, etc.), we fitted ntime estimators on an X matrix (ntrials3nchannels31

time sample of MEG data) to robustly predict a vector y (ntrials31 categorical,

ordinal, or circular data). This analysis was performed with an 8-fold stratified

folding cross-validation, such that each estimator iteratively generated predic-

tions on 1/8th of the trials (testing set) after having been fitted to the remaining

7/8th (training set) while maximizing the distribution homogeneity across

training and testing sets (stratification).

Single-Trial Scores

Mass-univariate and decoding analyses generated vectors of probabilistic,

ordinal, or circular data ðbyÞ that could be compared to the trials’ actual cate-

gorical, ordinal, or circular value (y). Categorical effects were summarized
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with an empirical AUC applied across all trials (AUC ranges between

0 and 1, chance= 0:5). Ordinal effects were summarized with a Spearman cor-

relation R coefficient (range between �1 and 1, chance= 0). Circular decoding

was summarized by computing the mean absolute difference between by and y

(range between 0 and p, chance=p=2). To facilitate visualizations, this ‘‘error’’

metric was transformed into an ‘‘accuracy’’ metric (range between �p=2 and

p=2, chance= 0). The corresponding univariate analyses, linear-circular corre-

lations, were summarized with an R2 value.

Correlation of Decoding Scores with Visibility and Contrast

To assess the extent to which some neural codes varied as a function of

the contrast and the visibility of the target, we correlated the single-trial

prediction errors with these two factors separately and within each sub-

ject: R= corrðy;�errorÞ, where error = j0:5� by j for categorical models and

error = jðp=2Þ � ðy � byÞmodp j for circular models. These correlations were

first applied within each visibility or contrast condition, and average across

conditions. For example, to compute the correlation between decoding scores

and target contrast, we computed

Rcontrast =
1

n

Xn

vis= 0

corrðyðvisÞ;�errorðvisÞÞ;

where vis is the visibility condition. Only present trials were analyzed in all these

analyses. The reported R values correspond to the mean correlation coeffi-

cients across subjects, and the p values reflect second-level Wilcoxon tests.

Time Periods of Interest

The decoding scores obtained for a large time window of interest were gener-

ated by (1) averaging the decoding predictions across the selected time sam-

ples at the single trial level, (2) computing the unique resulting score for each

subject, and (3) performing a univariate categorical or ordinal test across sub-

jects. The averaging of circular data (e.g., decoded angle of a target) was per-

formed in the complex space:

m= artan2

�Xn

i

sinai 3 ri
n

;
Xn

i

cosai 3 ri
n

�
;

where ai is the angle at trial i, n is the number of trials, r is the predicted radius,

and m the average angle.

Temporal Generalization

Time-resolved decoding analyses are a specific case of TG analyseswhere the

estimators are fitted, tested, and scored with a unique time sample (Figure S1).

Each estimator fitted across trials at time t can also be tested on its ability to

accurately predict a given trial at time t’, so as to estimate whether the coding

pattern is similar between t and t’. When applied systematically across all pairs

of time samples, this analysis results in a square TG matrix, where the y axis

corresponds to the time at which the estimator was fitted, and the x axis to

the time at which the estimator was evaluated.

All decoding analyses were performed with the MNE (Gramfort et al., 2013)

and Scikit-Learn packages (Pedregosa et al., 2011). Most first-level decoding

analyses have been integrated to the MNE package under the TimeDecoding

and GeneralizationAcrossTime classes.
Simulations

Different neural architectures can account for the maintenance of a stimulus

subjectively rated as unseen. To clarify how TG analyses can disentangle

thesemodels, we ran a series of exemplary simulations. Eachmodel consisted

of simulating the time courses S of shape nsources; ntimes for one of two possible

categories y˛ð�1; 1Þ defining the present versus absent condition. Both con-

ditions had the same background source signal B, to simulate the presence of

a common mask, probe, and response. In the present condition, an additional

signal was generated, potentially with a different signal ratio depending on the

visibility condition. This source space was then projected to a sensor space

with a random mixing matrix A of shape nsensor , nsource, and added to a white

noise N simulating sensor-specific noise: Xi =AðSyi +BÞ+N, where X is the re-

sulting sensor data and i is a given trial.

X and y were then analyzed with the same decoding and TG analyses as in

the empirical sections.

Ourmodeling relies on three premises. First, it is based on the notion of ‘‘pro-

cessing stages,’’ here defined as a set of detectable neural sources that are



activated simultaneously. Second, it only accounts for evoked responses.

Third, it assumes that invisible stimuli recruit at most a subset of the stages re-

cruited by visible stimuli. Our modeling is therefore independent from anatom-

ical locations and thus adequately tests signals that are not well spatially

resolved, such as MEG signals. We focus here son six independent models

that isolate elementary properties distinguishing the neuronal theories of visual

awareness.
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CEA, Collège de France, the Direction Générale de l’Armement, the

Bettencourt-Schueller Foundation, the Fondation Roger de Spoelberch, and

the Philippe Foundation. We are grateful to our anonymous reviewers and to

Denis Engemann, Alex Gramfort, Eric Larson, Sébastien Marti, Virginie Van
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