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We are not aware of everything our brain does. This dissociation between subjective experience and 

objective neural activity challenges both theoretical neuroscience and clinical practice. Indeed, not only are the 

neuronal mechanisms of conscious perception poorly understood, but it remains extremely difficult to deter-

mine whether vegetative state patients – who are thus awake but non-communicating – perceive their envi-

ronment consciously. These theoretical and clinical questions constitute the two main axes of this thesis. In a 

first part, I develop, from the recent empirical and theoretical advances, a series of methods to characterize the 

neural and computational mechanisms of conscious perception. In particular, I show in a first study how multi-

variate pattern classifiers can decode magneto- and electroencephalographic recordings at the single trial level. 

In three successive studies, I then propose new signal processing methods to i) characterize the dynamical 

structure of stimulus-evoked processes ii) quantify the amount of information exchanged across cortical regions 

and iii) estimate the complexity of cerebral responses. At last, I show how a mathematical model based on 

Bayesian inference principles, can account for a large number of empirical findings observed in studies of con-

scious and unconscious perception. In a second part, I apply these methods on EEG recordings acquired from 

a large cohort of vegetative, minimally conscious and conscious patients. The results show that vegetative state 

patients present i) impaired late and sustained sound-evoked brain responses, ii) a reduction of the exchange of 

information across cortical regions iii) abnormal slow and medium EEG rhythms (<13Hz) and iv) a decrease of 

the EEG complexity. Ultimately, these various neural signatures of consciousness could be used in synergy to 

decode conscious contents and help to diagnose, predict and monitor the state of consciousness of non-

communicating patients. 

 

Nous n‘avons pas conscience de l‘ensemble des processus réalisés par notre cerveau à chaque instant. 

Cette dissociation entre l‘expérience subjective et l‘activité neuronale présente un défi majeur à la fois pour les 

neurosciences fondamentales, mais également pour la pratique clinique. En effet, non seulement les méca-

nismes neuronaux de la prise de conscience sont mal compris, mais il reste extrêmement difficile de déterminer 

si des patients en état végétatif – éveillés mais non-communicants – perçoivent leur environnement consciem-

ment. Ces questions théorique et clinique constituent les deux axes principaux de cette thèse. Dans un premier 

temps, je développe, à partir des récentes avancées aussi bien empiriques que théoriques, une série d‘outils 

permettant de caractériser les mécanismes neuronaux et computationnels de la perception consciente. En parti-

culier, je montre dans une première étude comment les analyses de classification multivariée permettent de 

décoder les signaux magnéto- et électro-encéphalographiques à l‘échelle de l‘essai unique. De plus, dans trois 

études successives, je propose de nouvelles méthodes de traitement du signal permettant de i) caractériser la 

structure dynamique des processus évoqués par une stimulation sensorielle ii) de quantifier la quantité 

d‘information échangées entre différentes régions corticales et iii) d‘estimer la complexité des réponses céré-

brales. Enfin, je montre comment un modèle mathématique utilisant les principes d‘inférence bayésienne per-

met de rendre compte d‘un grand nombre de résultats observés dans les études de la perception consciente et 

inconsciente. Dans un second temps, j‘applique ces méthodes aux EEG d‘une large cohorte de patients végéta-

tifs, minimalement conscients et conscients. Les résultats montrent que les patients végétatifs présentent i) une 

altération des réponses corticales tardives évoquées par une stimulation auditive, ii) une diminution de l‘échange 

d‘information entre régions cérébrales, iii) des rythmes EEG moyens et lents (< 13Hz) anormaux et iv) une 

réduction de la complexité de l‘activité EEG. A l‘avenir, ces différentes signatures neurales de la conscience 

pourraient être utilisées en synergie pour décoder le contenu conscient et aider au diagnostic, au pronostic et au 

monitoring des patients non-communicants.  
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A BRIEF HISTORY OF THE INTUITIVE APPROACHES TO 

CONSCIOUSNESS 

A soft jazz melody. The shimmering colour of a glass of red wine. The delectable smell of coffee 

in the early morning of summer. When it comes to writing an article, a chapter, or a book about con-

sciousness, rare are the scientists who resist the urge to drop a few lyrical lines about their suddenly in-

spired inner life.  

It is with slight embarrassment that we then admit that the vast majority of our research really is 

about blurry grey patches flashed on a computer screen. The conscious experience elicited by such stimuli 

is inevitably less exciting, but it raises fundamental questions: why do we experience anything at all? What 

is perception really made of? 

 

Before detailing how such stimuli helped us understanding the mechanisms of conscious percep-

tion, it is worth briefly summarizing some of the main philosophical proposals put forward across the last 

three millennia and that have served as theoretical foundations for the scientific study of consciousness. 

These proposals were not cautiously founded on scientific grounds to say the least. Indeed, when tackling 

the topic of consciousness, the most clear-sighted scientists and philosophers, also responsible for the 

theoretical and methodological foundations of contemporary science, have generally come round to one 

of two equally unsatisfactory routes: dualism and panpsychism. 

The former is probably best incarnated by Descartes‘ infamous pineal gland proposition. Des-

cartes was an immense scientist, whose interests spanned from philosophy and mathematics to cosmology 

and human anatomy. In this last topic he developed an expertise in the nervous system, which he de-

scribed in great detail to mechanistically understand the way sensory information is transmitted to the 

brain. But the author of the Discourse on the Method struggled when it came to the question of conscious 

perception. It was seemingly too much for Descartes to believe that this 1.5 Kg of pinkish, wet and 

 

FIGURE 0.1 THE “GABOR PATCH” 

This gray stimulus one of the most common visual stimuli used in experimental psychology. 
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squishy matter could in any way host and produce subjective experience. Rather, Descartes proposed that 

vision, smell and touch as well as all sensory information were transmitted to an immaterialist soul 

through the pineal gland. This little spherical body, roughly located at the centre of the brain would be the 

gate linking mind and matter, perception and reality. 

This dualist view has persisted in parallel to panpsychist proposals. Panpsychism stems from the 

idea that mind and matter are not fundamentally distinct in nature but rather reflect two properties of the 

same thing. At the extreme, this view led many to argue that everything is more or less conscious. For 

instance, according to Diogenes, Thales believed that ―the universe is alive and full of spirits‖ (HARE ET AL., 

1982). Paradoxically, mixes of dualism and panpsychism have also been expressed: more than two millen-

nia ago, Leucippus and Democritus developed a radically materialist theory, which continues to inspire 

contemporary physics. But sensations, Democritus argues, are composed of a fundamentally different type 

of atom than inert matter.  

“[...] Soul and mind are, [Democritus] says, one and the same thing, and this thing must be one of the primary 

and indivisible bodies, and its power of originating movement must be due to its fineness of grain and the shape of its atoms; 

he says that of all the shapes the spherical is the most mobile, and that this is the shape of the particles of fire and mind.”, 

Aristotle, De Anima, referring to Democritus‘ theory of atoms and its relation to soul, mind and sensa-

tions. 

Wild speculations are not the monopoly of ancient philosophers. The influential neurophysiolo-

gist Eccles and philosopher Popper (the very same Popper who forcefully defended the principle of refut-

ability as a necessary condition for scientific theories) defended a radically dualist position in the 20th cen-

tury (POPPER AND ECCLES, 1984). Still today, Chalmers continues to argue in favour of a dualist view of 

mind and matter (CHALMERS, 1996). Equally as controversial, Penrose and Hameroff argue, without any 

clear explanations, that consciousness results from the quantum mechanics properties of microtubules 

(PENROSE AND HAMEROFF, 2011).  

However intuitive, convincing, or appealing these propositions might appear, they do not provide 

a satisfactory explanation to our original query: whether conceived of an immaterialist soul, or incarnated 

by a spherical atom of fire, or a Bose-Einstein condensate, conscious perception remains equally cryptic. 

More importantly, the way to empirically assess these proposals is equally mysterious. Fortunately, this 

situation changed radically with the rise of psychology and neuroscience. It may be difficult to span across 

all of the influential ideas developed by the founders of experimental psychology, but Helmholtz‘ proposal 

is worth mentioning here. Capitalizing on the physiological study of the human eye, he suggested that the 

quality of visual information was too poor to account for subjective experience. Rather, he argued, percep-

tion had to be an active process by which the brain makes inferences on sensory information. For the first 

time, perception was viewed as a constructive process rather than a self-sufficient substance or inaccessi-

ble essence. The study of visual illusions and brain-damaged patients comforted this view by demonstrat-

ing that perceptual inferences can go wrong. The mechanisms and the building blocks of perception could 

start to be dismantled, apprehended and comprehended. 

At the time, however, experimental psychology was not the only approach to studying the mind. 

Other, less rigorous – if not completely esoteric – methods were also popular amongst the multiple scien-

tific communities. It is probably for this reason that experimental psychology adopted the so-called behav-

iourist doctrine, which essentially consisted in focusing on behavioural predictions, rather than long liter-

ate phenomenological descriptions and mentalistic speculations. The notion of conscious perception did 

not appear to fit with this radical view, and was thus momentarily neglected, at least overtly. The scientific 

study of conscious perception finally reappeared when behaviourism gave way to what is now referred to 
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as cognitive science, a field in which the mind is explained in terms of mental processes involving compu-

tation, manipulation and the sharing of representational contents (BODEN, 2006).  

 

Progressively, theoretical and empirical approaches to consciousness have adopted what Dennett 

refers to as a ―heterophenomenological‖ principle (DENNETT, 1992). Behind this complicated word lies the 

idea that psychology and neuroscience should explain the mechanisms by which subjects come to report 

seeing and hearing conscious experiences – as opposed to explaining consciousness in abstraction. Many 

scientists and philosophers now argue that explaining subjective reports will naturally provide an explana-

tion to self reports and introspection, that can be viewed as the only mean by which one can be convinced 

of consciously experiencing an inner life. And indeed, as will be detailed in this thesis, a series of concep-

tual, computational and neural models of perception have now started to be sketched and empirically 

tested. In particular, the extraordinary technological progress that has marked the last fifty years have now 

allowed us to directly and objectively study the neural mechanisms that produce our stream of thoughts. 

While the ―quest for consciousness‖ (KOCH, 2004) used to be solely driven by a curiosity of the 

unknown, recent clinical applications have shifted the motivation. Indeed, as will be detailed in the litera-

ture review, there exist patients who, despite their awake state, lie still in their bed and fail to communicate 

with their environment. This so-called vegetative state provides an exceptional condition in which arousal 

and consciousness appear to be dissociated, providing a concrete way to the address the theoretical (What 

mechanisms allow one to be conscious?) and epistemological (How can we know whether someone is 

conscious?) questions initially raised by philosophers.  

OUTLINE OF THE THESIS 

After introducing the disorders of consciousness encountered in the clinics, I briefly summarize in 

CHAPTER 1. the scientific theories of consciousness, review their empirical supports, and show how they 

can be used to dissociate conscious and unconscious processing in non-communicative patients.  

 

FIGURE 0.2 THE RABBIT-DUCK ILLUSION (1892) 

This visual illusion, popularized by Wittgenstein (1953), highlights the idea that perception is active 
interpretation and not a mere re-presentation of reality. 
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The scientific contribution detailed in CHAPTER 2. interconnects two main issues. The first, tackled 

in CHAPTER 3. , CHAPTER 6. and CHAPTER 7. , consists in characterizing the patterns of brain activity associ-

ated with different states of consciousness, using electrophysiological recordings (EEG) of patients suffer-

ing or recovering from disorders of consciousness. This clinical investigation aims at both improving pa-

tients‘ diagnosis, as well as confronting the contemporary theories of consciousness to a novel condition: 

i.e. when arousal and consciousness are seemingly dissociated. In brief, I show that vegetative state pa-

tients, present patterns of brain activity associated with unconscious processing: unlike conscious patients 

and healthy subjects, their electrophysiological responses to auditory stimuli is characterized by an im-

paired late evoked related potentials, a lowered amount of information sharing across distant brain re-

gions, an increase of low frequency rhythms, and a decrement of complexity. These markers are similar to 

the ones observed in physiological, pharmacological, and clinical losses of consciousness, as well as in 

studies directly manipulating the visibility of stimuli presented to conscious subjects. 

A second series of studies aims at providing original methods, empirical evidence, and theoretical 

concepts to refine the current models of consciousness, and is based on the behaviour and the brain activ-

ity of healthy subjects. CHAPTER 4. and CHAPTER 5.  introduce novel decoding methods to detect and char-

acterize the dynamics of different types of brain activity evoked by specific stimuli. In brief, I show that 

decoding tools applied to magnetoencephalographic recordings can extract information at the single trial 

level, and dissociates the type of brain dynamics associated with conscious and unconscious processes. 

Finally, I show in CHAPTER 8. how a simple Bayesian model can account for a large number of classic find-

ings observed in the consciousness literature. This simple framework shows how conscious perception 

can be tackled in a perceptual decision perspective, and thus opens novel avenues to study its neural 

mechanisms. 



 

 
 

 

1.1. THE VEGETATIVE STATE: CLINICAL AND THEORETICAL 

ISSUES  

1.1.1. A DISSOCIATION BETWEEN AROUSAL AND CONSCIOUSNESS? 

Every year, thousands of patients recover from coma. While many of them regain communication 

abilities, others evolve to particularly ambiguous states. This is the case of vegetative state (VS) patients, a 

condition in which patients present clear signs of wakefulness but are believed to remain utterly unaware 

of the self or the environment (JENNETT AND PLUM, 1972). More than a century ago, Rosenblath encoun-

tered the case of a 16-year-old tightrope-walker who fell into a coma after a terrible fall from his wire 

(ROSENBLATH, 1899). Two weeks after the event, the young patient recovered ―to become strangely awake‖. 

He subsequently died from his injuries, after eight month of tube-feeding ((ROSENBLATH, 1899) reported by 

(STRICH, 1956) and (JENNETT, 2002)). Since, similar cases have been repeatedly reported (KRETSCHMER, 1940; 

FRENCH, 1952; STRICH, 1956; HASSLER ET AL., 1969), and referred to as ―apallic syndrome‖(KRETSCHMER, 

1940), ―severe traumatic dementia‖ (STRICH, 1956) and ―encephalopathy‖ (JENNETT, 2002). But it was the 

English term ―vegetative state‖, introduced by Jennett and Plum (JENNETT AND PLUM, 1972), that caught on 

in the medical and scientific communities. This term, argued Jennett and Plum appropriately characterizes 

these patients, because it implies ―[leaving] a merely physical life devoid of intellectual activity [...] social 

intercourse [...] sensation and thought‖.  

 

   

FIGURE 1.1 DISORDERS OF CONSCIOUSNESS: A DISSOCIATION BETWEEN AROUSAL AND CONSCIOUSNESS? 

(Left) The vegetative state (VS) is characterized by a dissociation between patients’ arousal (propensity 
to be awake and vigilant) and subjective reports. Unlike comatose patients, or deeply anesthetized 
subjects, these patients present relatively preserved wake-sleep cycles but remained completely unable 
to communicate with their environment. Minimally conscious state patients refers to similar patients 
who nevertheless presents fluctuating signs of consciousness. 

(Right) Example of a patient who, after having been diagnosed in a vegetative state, communicated 
with a brain computer interface (OWEN ET AL., 2006) and hence demonstrated that he was in fact 
conscious of his environment. 
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The ―vegetative‖ definition may appear straightforward at first: wakefulness and unawareness. 

Arousal is clearly defined as a set of behaviours – opening eyes, high and rapid muscle tone, etc. – and can 

thus be assessed unequivocally. Furthermore, its neural bases, the so-called ascending reticular activating 

system (ARAS), and its links to sleep-wake cycles are relatively well described and understood. However, 

determining whether the precise clinical definition of awareness should be of the self or the environment 

is challenging. How can we objectively assess such a subjective construct? Does the absence of overt be-

haviour imply an inner ―life devoid of sensation and thought‖? How can we know whether patients ex-

perience their surrounding environment when they are utterly unresponsive? 

The concreteness of this simple question provides an unprecedented perspective to the funda-

mental question of consciousness. The vegetative state sweeps away the metaphysical considerations and 

the bizarre philosophical thought experiments and challenges both scientists and clinicians. 

This clinical definition of consciousness is probably at the heart of ongoing debates that repeat-

edly engender novel, arguably more precise terminologies1 and definitions (JENNETT, 2005; FINS ET AL., 2008; 

LAUREYS ET AL., 2010; LAUREYS AND SCHIFF, 2011; VON WILD ET AL., 2012) nonetheless condemned to an in-

trinsic limitation: an absence of behaviour does not necessarily imply a lack of consciousness. In practice, 

assessing supposedly conscious behaviour in severely impaired patients is extremely difficult, and often 

comes to differentiating between intentional2 and command-following actions from random movements 

and reflexes. Besides, patients‘ arousal is fluctuating, and their behaviour does not necessarily replicate 

within and across clinical examinations. Current estimates indicate that between 15 and 43% of the pa-

tients diagnosed in a vegetative state present signs of residual consciousness when carefully examined by 

trained clinicians (CHILDS ET AL., 1993; ANDREWS ET AL., 1996; GILL-THWAITES, 2006; SCHNAKERS ET AL., 2009B). 

In the present thesis, the meaning of ―vegetative state‖ will thus be restricted to the clinical defini-

tion provided by the Coma Recovery Scale – Revised (CRS-R) (GIACINO ET AL., 2004). The CRS-R catego-

rizes patients as in a vegetative state when they are consistently unable: 

- to follow simple command 

- to communicate, with gestural or verbal yes/no responses 

- to verbalize intelligibly 

- to demonstrate non-reflexive movements and/or emotional behaviour in contingent relation to 

relevant environmental stimuli (this includes sustained visual fixation, localization of nociceptive 

stimulations, emotional reaction to known faces, etc.) 

Each of these abilities is assessed by trained clinicians with a precise set of tests resulting in a 23-

point scale. 

The reproducible demonstration of at least one of these abilities within the same clinical examina-

tion would result in a ―minimally conscious state‖ (MCS) diagnosis. This term has only been recently in-

troduced by Giacino and collaborators (GIACINO ET AL., 2002)3, and together with the CRS-R has improved 

the diagnoses and scientific investigation of vegetative and minimally conscious state patients (GIACINO ET 

                                                      
1 For instance, Laureys and collaborators have recently proposed to replace the term ―vegetative state‖ by 

the less connoted and more descriptive ―unresponsive wakefulness syndrome‖ (LAUREYS ET AL., 2010). This term 
has however not consensually be taken by the community (see a disagreement between Laureys and Schiff in their 
recent paper for example (LAUREYS AND SCHIFF, 2011)).  

2 Note that ―intentional‖ implies a subjective perspective too, which does not simplify the clinical assess-
ment. 

3 In 1995, the American Congress of Rehabilitation had already proposed the term ―minimally responsive 
state‖ (MRS) to distinguish purely vegetative state patients from those who present inconsistent but clear signs of 
conscious behavior (GIACINO ET AL., 2002). 
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AL., 2009). Finally, it should also be noted that Bruno and collaborators have recently proposed to divide 

the minimally conscious category in two sub-entities (BRUNO ET AL., 2011B). MCS+ would refer to patients 

who respond to command, communicate, or present intelligible verbalization, whereas MCS- would refer 

to patients who only show minimal behavioural interaction, such as the orientation to noxious stimuli, the 

fixation of moving or salient stimuli or a behavioural response in relationship with their environment (e.g. 

appropriate smiling in response to a face). 

The CRS-R is not the only scale that has been proposed to diagnose vegetative and minimally 

conscious state patients. A number of other scales have been proposed, including the Glasgow Coma 

Scale (GCS (GRAHAM ET AL., 2005)), the Western Head Injury Matrix (WHIM, (SHIEL ET AL., 2000)), the 

Western Neurosensory Stimulation Profile (WNNSP, (ANSELL AND KEENAN, 1989)), the Sensory Modality 

and Rehabilitation Technique (SMART, (GILL-THWAITES AND MUNDAY, 2004)) and the Full Outline of Un-

responsiveness (FOUR, (WIJDICKS ET AL., 2005)). Although most of these scales have adequate reliability 

and validity, and measure various behaviours in response to auditory, visual and somato-sensory inputs, 

they often suffer from several important limitations (SCHNAKERS ET AL., 2008B). For example, the Glasgow 

Coma Scale is widely used across the world, but was originally developed to diagnose patients in acute 

coma stages. This scale is thus fairly limited when it comes to monitoring the progress of chronic vegeta-

tive and minimally conscious patients (GIACINO ET AL., 2004; SCHNAKERS ET AL., 2008B). In contrast, the 

CRS-R directly and formally defines states ranging from coma to minimally consciousness. Comparing 

these scales to one another on the same cohort of patients demonstrated that the CRS-R was better able 

to distinguish minimally conscious state patients from vegetative state patients (GIACINO ET AL., 2004; 

SCHNAKERS ET AL., 2008B). For these reasons, patients‘ state of consciousness is formally assessed with the 

CRS-R in the present studies. 

1.1.2. NEUROIMAGING: TOWARD NON-BEHAVIOURAL DIAGNOSES?  

Vegetative and minimally conscious states are defined clinically and thus solely on patients‘ behav-

iour. However, unresponsiveness does not imply unconsciousness, limiting the accuracy of these behav-

ioural diagnostic techniques. For example, complete paralysis is one condition that would lead, superfi-

cially, to the very same symptoms as a vegetative state patient. This possibility is not hypothetical. Locked-

in syndrome (LIS) patients are completely aware of their environment but suffer from an almost complete 

inability to move. Fortunately, these patients are able to make some movements – they generally make 

eyes movements – and hence demonstrate to their clinicians and families that they are conscious 

(KOTCHOUBEY AND LOTZE, 2013). The possibility of misdiagnosing locked-in syndrome patients as vegeta-

tive state is therefore important to consider. Most of our senses and behaviours ultimately depend on the 

peripheral nervous system. Its integrity thus seems to necessarily determine the assessment of conscious-

ness. 

In a recent study, Owen and collaborators overcame the possibility of peripheral deficiencies and 

opted for a more direct communication channel: brain activity itself (OWEN ET AL., 2006). Healthy volun-

teers were asked to perform two different imagery tasks in the functional Magnetic Resonance Imaging 

(fMRI) scanner. The first task consisted in imagining playing tennis. This imaginary task interestingly re-

cruits the supplementary motor area, and thus increases its BOLD response. The second task consisted in 

imagining visiting the rooms of their house, and activated the para-hippocampal gyrus, the posterior parie-

tal cortex and lateral premotor cortex. The authors subsequently applied this experimental method to a 

series of patients and found that one patient diagnosed in a vegetative state demonstrated similar brain 

activations to healthy subjects. Although no sign of awareness could be observed behaviourally, this pa-

tient could demonstrate comprehension of complex instructions, and respond to them through her brain 

activity. A subsequent study revealed that, out of 23 vegetative state patients, four were able to wilfully 

modulate their brain activity (BYRNE ET AL., 2010). One vegetative state patient was even able to respond to 
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yes-or-no questions with this method. Recently, this approach has been adapted to a bedside setup using 

electroencephalography (EEG) (GOLDFINE ET AL., 2011; CRUSE ET AL., 2012). However, the validity of the 

statistical method in one of this study has been disputed (CRUSE ET AL., 2012, 2013A; GOLDFINE ET AL., 2012, 

2013). 

 

Can such brain responses solve, once and for all, the difficult issue of consciousness diagnosis? 

This is not at all clear. Out of 31 minimally conscious state patients who were investigated in Monti et al.‘s 

study (BYRNE ET AL., 2010), only one showed a significant brain response to the imaginary task. This ap-

proach failed to detect a modulation of brain activity in most of these patients, who could, nonetheless, 

demonstrate intentional behaviour in the clinic. Similar questionable results were obtained by Bardin and 

collaborators (BARDIN ET AL., 2011). The failure to accurately diagnose patients with neuroimaging tech-

niques may be due to a number of factors, ranging from experimental difficulties to cognitive deficits. 

While the former may be improved with the advances of neuroimaging techniques, the latter could impose 

an important limitation to this method. Some patients may indeed be conscious of their environment and 

yet fail to respond to command because of a profound lack of motivation or an inability to understand 

instructions. Furthermore, in the same way that we can have conscious experiences while we are asleep, 

some patients may not be aware of their environment and yet experience conscious contents. In such 

cases, this neuroimaging approach would be doomed to fail.  

In other words, whether these diagnostic methods are based on muscle or brain responses, they 

rely on subjects‘ ability to intentionally interact with their environment. Is it possible to take a simpler 

approach, and to test whether patients‘ brains respond to the environment, irrespective of their intention? 

 

FIGURE 1.2 IMAGINING PLAYING TENNIS TO COMMUNICATE SIMPLE RESPONSES. 

(Left) Patients diagnosed in a vegetative state may be unable to communicate because of deficits 
unrelated to the state of consciousness (e.g. paralysis). Owen and collaborators developed a simple 
neuroimaging protocol which required subjects to perform two different tasks: imagining playing 
tennis, or imagining moving around a house. Each of these tasks recruits different neural circuits as 
identified with fMRI (top). When testing a series of vegetative state patient, the authors found a 
patient who recruited similar networks to the control subjects, hence demonstrated covert command-
following abilities (OWEN ET AL., 2006). 

(Right) This protocol was adapted to answer simple yes/no questions (MONTI ET AL., 2010A). For 
example, subjects and patients were asked to imagine playing tennis to answer “yes”, and imaging 
moving around a house to answer “no”. The authors showed that one vegetative state patient was able 
to use this protocol to communicate with his environment. 
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Putting this simple logic into practice faces a difficult issue: not all brain processes necessarily lead to con-

scious perception. 

The so-called ―blindsight‖ neuropsychological condition has marked, and in fact largely legiti-

mated, the field of consciousness research. Popularized by Weiskrantz (WEISKRANTZ, 1986) (see (BRINDLEY 

ET AL., 1969; PÖPPEL ET AL., 1973; STOERIG ET AL., 1985) for earlier reports), blindsight designates the para-

doxical ability to discriminate a visual stimulus above chance level, even when it is presented in a region of 

the visual field in which patients report not seeing anything, because of lesions in the primary visual cor-

tex. Weiskrantz presented a dim light at the top or at the bottom of patients‘ blind field, and asked them 

to perform a two-alternative ―forced-choice‖4 task which consisted in indicating the location of the stimu-

lus. Although patients argued that they did not see any light, their guesses were systematically correct. 

Pathological blindsight has now been observed in many patients (see review in (STOERIG AND COWEY, 2009; 

COWEY, 2010)), and has been induced in monkeys (COWEY AND STOERIG, 1995). The existence of blindsight 

seemingly demonstrates that cognition and consciousness are dissociated: one can discriminate a stimulus 

without experiencing it. The corollary of this phenomenon is that brain activity elicited by a stimulus need 

not necessarily indicate its conscious perception. To determine whether an unresponsive subject is con-

scious of his/her environment, a top-down theoretical approach is thus needed in order to determine 

whether the mechanisms that subtend conscious perception are operational. 

KEY POINTS 

 ―Vegetative state‖ (VS) is historically defined as wakeful unawareness of self and environment. 

 VS is defined here with the Coma Recovery Scale – Revised (CRS-R) that assesses communica-

tion and goal driven behaviours. 

 Minimally conscious state (MCS) refers to patients who demonstrate minimal communication 

and/or goal-driven behaviour. 

 The clinical diagnosis of non-communicating patients is directly limited by the integrity of the pe-

ripheral nervous system (e.g. paralysis). 

 Neuroimaging has recently been used as a tool to communicate intentions: subjects and patients 

imagining playing tennis or moving in their house to respond to yes-or-no questions. 

 Previous neuroimaging and clinical diagnosis approaches both require patients to understand and 

memorize complex instructions. 

 Could the diagnosis of consciousness be directly assessed by characterizing patients‘ brain activity 

(irrespective of their conscious perception of this activity)? 

1.2. THEORIES OF CONSCIOUS ACCESS: FROM ABSTRACT TO 

NEURAL MODELS 

The state of consciousness of awake but non-communicative patients is particularly difficult to es-

tablish, as there is no strict equivalence between conscious perception, brain activity and subjects‘ behav-

iour. To detect consciousness in the absence of subjective report, one must thus adopt a top-down theo-

retical approach. This strategy consists in first identifying the neural bases of consciousness in the labora-

                                                      
4 The term ―forced-choice‖ indicates that patients do not have the ability to say that they do not know. In 

this case, they had to choose between ‗top‘ and ‗bottom‘. 
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tory, and then applying a reverse inference in the clinic, by assessing whether these neural mechanisms are 

preserved in non-communicating patients. 

In the last decades, a great deal of theories of consciousness has been sketched. After briefly re-

viewing the initial ―box-and-arrow‖ models that have served as a basis for the contemporary theories of 

consciousness, I will summarize the main features of the recent neuronal models of conscious and uncon-

scious processing. Although the exact computational and biological mechanisms responsible for conscious 

perception remain heatedly debated, we will see that several several key principles are starting to be con-

sensually adopted. 

1.2.1. ABSTRACT MODELS OF PERCEPTION AND ATTENTION 

A multitude of philosophical concepts and analogies related to consciousness have been proposed 

throughout history, but it was not until the 20th century that computational models of conscious percep-

tion were investigated scientifically. The first models did not explicitly refer to ―consciousness‖ (KOUIDER 

AND DEHAENE, 2007; GARDELLE AND KOUIDER, 2009) but the proposed principles of ―selective‖ or ―execu-

tive‖ attention, ―visual short term memory‖ and ―working memory‖ undoubtedly served as a basis for the 

current theories of consciousness. In particular, Broadbent detailed a simple but influential model of selec-

tive attention which dissociates two steps of processing: i) a set of parallel sensory buffers, and ii) a unique 

limited capacity ―perceptual system‖, which would explain why we cannot perceive multiple things at the 

same time – the famous cocktail party effect (BROADBENT, 1957). Two decades later, Baddeley and Hitch 

(BADDELEY AND HITCH, 1975) formalized the idea of maintaining loops between these various steps5: the 

so-called ―central executive‖ would coordinate, select, and trigger the maintenance of peripheral ―slave‖ 

systems. In an action-selection model, Norman and Shallice (NORMAN AND SHALLICE, 1986) further clarified 

the distinction between processes that depend on a ―supervisory attentional system‖ and those that can be 

applied independently and in parallel. This model introduced a distinction between automatic and con-

sciousness-dependent processes which now constitutes one of the axioms of the contemporary models of 

consciousness (similar concepts are also present in (POSNER AND SNYDER, 1975; FODOR, 1983)).  

 

                                                      
5  Note that a maintaining loop was already proposed by Broadbent in his revision of the model 

(BROADBENT, 1957). 

 

FIGURE 1.3 COGNITIVE MODELS OF CONSCIOUSNESS 

Cognitive psychology has been marked by a series of influential models of perception. Broadbent 
proposed a very simple mechanistic model of attention in which sensory channels compete for a 
capacity limited perceptual stage. Baddeley and Hitch particularly formalize the notion of feedback 
loops to maintain information in the “slave systems” whose information is otherwise progressively lost. 
Norman and Shallice proposed an action selection model in which different streams of information 
processing (“schemas”) are distinguished: some are automatic, and others depend on or are controlled 
by the supervisory attentional system (SAS), most notably when a competition between the schemas is 
detected. Baars suggested that the central component that organizes and controls behavior may be 
best viewed as a global workspace: peripheral modules compete for a central resource that allows them 
broadcasting their information to multiple receiving processors. 
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Each of these models has a central, yet obscure component (―perceptual system‖, ―central execu-

tive‖, ―supervisory attentional system‖), often associated with conscious perception and deliberate behav-

iour and thus seemingly implies the existence of an internal observer and/or general coordinator. This 

premise is undoubtedly unsatisfactory. As forcefully argued by Dennett (DENNETT, 1992), the conscious-

ness of an internal ―homunculus‖ would still need to be explained. Current theories now favour highly 

distributed architectures which apparently escape the problem of the internal observer. One such model is 

Baars‘ ―global workspace‖ theory (BAARS, 1989). Baars postulates that a myriad of parallel input processors 

compete for a capacity-limited central stage, which itself just serves as a broadcasting mechanism that 

transmits the information to many other processors. Baars employs the metaphor of a theatre (global 

workspace) in which actors (processors) compete to play on the stage, and thus be heard and seen by the 

rest of the audience6. According to the Global Workspace theory, each processor can thus compute in-

formation in two distinct modes: if its information is globally broadcasted it will be consciously accessible 

and therefore experienced. In contrast, if its communication is limited to set of modular processors, inde-

pendently of the global workspace, then the activity would remain inaccessible and thus unconscious. In 

spite of their differences, these models converge on the idea that perception is subdivided into two steps: 

i) a set of peripheral processes which process information automatically and in parallel, and ii) a central 

bottleneck, which selects, in a goal-directed manner, the information that should receive dedicated com-

puting resources to be maintained and memorized.  

1.2.2. NEUROBIOLOGICAL MODELS OF CONSCIOUS ACCESS 

These four decades of box-and-arrow models gave way to a new neurobiological era. For the first 

time, scientists were able to directly watch the human brain in action. The scientific study of conscious-

ness, previously limited to abstract models and dry psychophysical experiments – or worse, thought ex-

periments – suddenly appeared very tangible. Concrete questions could now be asked. What are the neural 

mechanisms responsible for consciousness? Is there a specific brain region, specific neurons dedicated to 

conscious processing? Can we objectify subjective experience and identify the biological bases of our feel-

ings?  

The number of biological theories of consciousness is, once again, too large to be extensively re-

viewed in the present manuscript (for a more exhaustive review see (SETH, 2007)). While the majority of 

models support the idea that consciousness is a distributed neural process, some authors have been argu-

ing that it can be localized in specific regions. For instance, Zeki has argued that each cortical module is a 

bit of consciousness (or ―micro-consciousness‖) (ZEKI, 2003). The activity in the cortical region V5/MT, 

specialized in motion detection, would accordingly be equivalent to the conscious perception of motion. 

Contrarily, Goodale & Milner have proposed different cortical pathways for (conscious) perception and 

(unconscious) action processing (GOODALE AND MILNER, 1992, 2005). They argue that the dorsal stream – a 

cortical pathway starting from the visual cortex and going all the way up to the parietal lobe – processes 

visual information in an unconscious manner and ultimately supports visually guided actions. Conversely, 

the ventral stream would be dedicated to the conscious recognition of visual items. Another cortical locus 

of conscious perception often encountered across the theoretical proposals is the prefrontal cortex 

(NORMAN AND SHALLICE, 1986; POSNER AND ROTHBART, 1991, 1998; POSNER AND SCENCESS, 1994). To take a 

recent example, Lau argues that conscious perception depends on the dorso-lateral prefrontal cortex (LAU, 

2008), which would specifically host ―higher order‖ – synonymous of ―conscious‖ in Lau‘s view – repre-

sentations (LAU, 2008; LAU AND ROSENTHAL, 2011). Finally, thalamic proposals have also been proposed. For 

example, Ward recently argued that ―the cortex computes the contents of consciousness whereas the thalamus displays, 

and thus experiences, the results of those computations‖ (WARD, 2011).  

                                                      
6 Dennett in fact still criticizes this idea, which remains a ―Cartesian Theatre‖. Dennett proposed a slightly 

different version, the so-called ―pandemonium metaphor‖ which, according to him, is immune to such issue. 
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In contrast to these localisationist models, others have argued that conscious processes are intrin-

sically distributed across the brain. In a pioneering paper, Crick and Koch proposed that conscious access 

is mediated through synchronous neuronal activity, ―probably in the 40 - 70 Hz range‖ (CRICK AND KOCH, 

1990A, 1990B). This proposal capitalizes on a series of empirical findings and computer simulations which 

suggest that synchronous (or ―coherent‖) firing across distant areas may be a way to ―bind‖ different fea-

tures into a single unified percept (VON DER MALSBURG AND SCHNEIDER, 1986; GRAY AND SINGER, 1989; GRAY 

ET AL., 1989) (see (TALLON-BAUDRY AND BERTRAND, 1999) for a more exhaustive review). Indeed, since neu-

rons can act as coincidence detectors when the mean inter-spike interval is longer than the integration 

interval, they would preferentially relay synchronized input and thus allow higher areas to selectively inte-

grate different features (SINGER, 1993; SOFTKY AND KOCH, 1993; SINGER AND GRAY, 1995A; KÖNIG ET AL., 

1996). Although Crick and Koch progressively abandoned this synchrony hypothesis7, the theory was not 

forgotten. In particular, Llinás and colleagues have argued that synchronous activity around 40 Hz, engen-

dered by thalamo-cortical loops would constitute the essential mechanism of conscious perception (LLINÁS 

AND PARÉ, 1991; LLINÁS ET AL., 1998). More recently, Singer‘s school, and Fries in particular (SINGER AND 

GRAY, 1995A; ENGEL ET AL., 2001; FRIES ET AL., 2001, 2008; WOMELSDORF ET AL., 2006; MELLONI ET AL., 2007), as 

well as others such as Tallon-Baudry (TALLON-BAUDRY AND BERTRAND, 1999; TALLON-BAUDRY, 2009) plead 

in favour of a functional role of neuronal synchrony in visual perception. Note that this view has been 

vigorously contested with the argument that the brain ―lacks the mechanisms needed to decode synchronous spikes 

                                                      
7 After this original synchrony theory, Crick and Koch argued that consciousness was linked to higher corti-

cal areas (CRICK AND KOCH, 1998) that allow the formation of neuronal ―coalitions‖ (KOCH AND CRICK, 2003). 
They provocatively suggested that the primary visual cortex (V1), one of the most studied brain region at the time, 
could not be a locus for visual consciousness partly because of its lack of direct connection to the prefrontal cortex 
(CRICK AND KOCH, 1998; KOCH AND CRICK, 2003). Koch now defends Tononi‘s theory of consciousness as inte-
grated information (TONONI AND KOCH, 2008). 

 
FIGURE 1.4 NEURONAL MODELS OF CONSCIOUS AND UNCONSCIOUS PERCEPTION. 

Different neural mechanisms has been proposed to support conscious (in green) and unconscious (in 
orange) perceptual processing. While several models suppose that a unique (set of) brain region(s) 
host and/or support conscious perception (e.g. (WARD, 2011)), most models now argue in favour of 
distributed architecture (SETH, 2007).For example, Tononi and Edelman have proposed that thalamo-
cortical loops could constitute a “dynamic core” corresponding to subjective experience (EDELMAN AND 

TONONI, 2000). Lamme has argued that feedforward activity (from sensory to associative cortices) was 
unrelated to conscious perception, whereas recurrent processing (horizontal and top down) would 
constitute the basis of conscious processing as it allows maintenance and information integration 
across cortical areas (LAMME, 2003, 2010). Dehaene et al. have proposed that the maintenance and 
integration mechanisms are supported by top-down feedback mechanisms mainly generated (DEHAENE 

ET AL., 2006; DEHAENE AND CHANGEUX, 2011). 
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and to treat them as a special code‖ (SHADLEN AND MOVSHON, 1999). Perhaps a more consensual alternative is 

the idea that neuronal synchrony is a marker – as opposed to a mechanism – of information sharing. 

A second important set of proposals relates to the concept of ―re-entrant‖, ―recurrent‖, or ―feed-

back‖ processing. Although these concepts also suggest that conscious processing depends on the com-

munication between different neuronal assemblies, they do not imply frequency-specific oscillations. 

Three models, differing in their specific physiological predictions, can be distinguished.  

- First, Edelman and collaborators have proposed that bi-directional re-entrant connections allow the in-

tegration of different features across the cortex, and may thus serve as a basis for object segmen-

tation, binding, and information maintenance (EDELMAN, 1989, 1993; SPORNS ET AL., 1989, 1991; SETH 

ET AL., 2004, 2006). The multiple re-entries across the thalamo-cortical system would be character-

ized by a specific functional cluster (―dynamic core‖) which would remain relatively stable for ap-

proximately 500 ms. Edelman and Tononi have argued that such dynamic cores would be charac-

terized by two main properties; they would be highly differentiated (i.e. specific dynamic cores can 

be selected amongst a very large repertoire) as well as highly integrative (i.e. each core gathers a 

large amount of information across the thalamo-cortical system) (TONONI ET AL., 1998; EDELMAN 

AND TONONI, 2000; SPORNS ET AL., 2000; TONONI, 2004). Tononi subsequently proposed a mathe-

matical formula to quantify the amount of integrated information in a given system (Tononi, 

2004). However, this measure faces a number of practical issues. First, it depends on arbitrary pa-

rameters such as the spatial (neurons, cortical column) and temporal (milliseconds, seconds) scale 

considered for a given piece of information to have an impact. Second, in theory, it can only be 

tested by perturbing each part of the studied system. Third, this measure is currently too computa-

tionally expensive to be computable in complex systems (e.g. with 100 elements or more). Other 

similar measures have been proposed, some of which can be tested in the lab (TONONI ET AL., 

1994; SETH ET AL., 2006, 2011; CASALI ET AL., 2013). 

- Second, Lamme has argued for a strong equivalence between conscious perception and recurrent 

processing in the cortex (LAMME, 2003, 2010). He describes a two-step process in which a sensory 

stimulation first elicits a ―fast feedforward sweep‖ of neuronal activity, and is subsequently fol-

lowed by recurrent processing (LAMME AND ROELFSEMA, 2000). For instance, a visual stimulus 

would rapidly and successively recruit the striate and extra-striate cortices, the ventral and the 

dorsal pathways, potentially all the way up to the prefrontal cortex, depending on the strength of 

the stimulation and the available attentional resources. Each of these areas would first identify dif-

ferent features (colour, motion, shape, etc.) and would then share information via horizontal con-

nections and top-down signals. Recurrent processing would i) maintain the various bits of informa-

tion and ii) integrate them into a unified conscious percept. Lamme argues that the feedforward 

sweep can be elicited unconsciously, whereas recurrent processing is identical to conscious per-

ception (LAMME, 2003, 2010). 

- Finally, Dehaene, Naccache, and Changeux have proposed a ―global neuronal workspace‖ model 

(DEHAENE ET AL., 1998A, 2006B; DEHAENE AND NACCACHE, 2001; DEHAENE AND CHANGEUX, 2005, 

2011; SERGENT AND NACCACHE, 2012), based on Baars‘ theory (BAARS, 1989). They postulate that pe-

ripheral processors compete for a global workspace in a winner-takes-all fashion. The central re-

source then i) maintains the selected information via a top-down re-entrant signal and ii) diffuses 

this selected information to other peripheral processors. This central resource would be imple-

mented through a network of pyramidal neurons with long-range axons particularly dense in the prefron-

tal, parietal, cingulate and temporal cortices. This model predicts that conscious perception 

should be marked by i) an ―ignition‖ – sudden large activation of a broad set of regions including 

the prefrontal-parietal networks, and by ii) a maintenance of the activity in the selected sensory 

regions as well as in the global workspace region. The model also provides a functional descrip-
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tion of the cortical layer, and of the main types of neurotransmitters associated with ignition (for 

recent review see (DEHAENE AND CHANGEUX, 2011)). 

With the notable exception of Tononi‘s information integration theory (TONONI, 2004), most of 

these models progressively evolved from general concepts (connection to higher areas, synchrony, recur-

rence) to detailed bio-mimetic simulations (SPORNS ET AL., 1989, 1991; DEHAENE ET AL., 1998A, 2003; ENGEL 

AND SINGER, 2001; DEHAENE AND CHANGEUX, 2005; JEHEE ET AL., 2007; ZYLBERBERG ET AL., 2010). They thus 

offer a way to confront their predictions to empirical findings: what are the brain regions that can be acti-

vated unconsciously? What type of neural activity dissociates conscious and unconscious processing? 

1.3. EXPERIMENTAL METHODS TO STUDY CONSCIOUS AND 

UNCONSCIOUS PROCESSES 

I have briefly summarized above the neural theories of conscious processing. I will now outline 

the experimental method used in the laboratory and in the clinics to tests their respective predictions. 

Blindsight is not the only case in which cognition and conscious perception are dissociated. Con-

scious and unconscious perceptual processes have also been studied via two families of experimental 

methods.  

 

1.3.1. CONSCIOUS OF: DISSOCIATING CONSCIOUS AND UNCONSCIOUS CONTENTS. 

First, a series of studies has undertaken a minimalist contrastive approach (BAARS, 1989), which 

consists in minimizing the differences between the stimuli reported as ―seen‖ and the stimuli reported as 

―unseen‖8. A variety of experimental methods can limit, or even prevent, a stimulus from being con-

sciously perceived (for review see (KIM AND BLAKE, 2005)). Most are based on three generic principles:  

i) degrading the quality of the sensory information  

ii) varying subjects‘ expectation about a stimulus and  

iii) altering subjects‘ attentional resources available to the stimulus processing.  

The first technique can be simply implemented by adding noise to the stimulus, which obviously 

reduces the signal-to-noise ratio of sensory processes. Sensory information can also be deteriorated by 

                                                      
8 Obviously this approach is not restricted to vision, but for simplicity, the vocabulary employed in this the-

sis will be restricted to the visual modality. 

 

FIGURE 1.5 EMPIRICAL APPROACHES TO STUDY MINIMALLY DIFFERENCES BETWEEN CONSCIOUS AND UNCONSCIOUS 

PROCESSES. 
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presenting a crowded stimulus in the periphery of the visual field (CAVANAGH, 2001; PARKES ET AL., 2001; 

WHITNEY AND LEVI, 2011) as well as by forward, backward and meta-contrast masking. Note that pattern 

masking is arguably a form of spatio-temporal crowding (WHITNEY AND LEVI, 2011; LEV ET AL., 2013), and 

may not be that different from spatial crowding. The invisibility induced by these experimental is hardly 

explained by attentional deficits: indeed subjects are asked and trained to focus their attention on the 

stimulus. By contrast, attentional blink (RAYMOND ET AL., 1997) and inattentional blindness9 experiments 

(MACK AND ROCK, 1998; MACK, 2003) explicitly manipulate subjects‘ attention to reduce their ability to de-

tect a critical stimulus, which is otherwise perfectly visible. For instance, the attentional blink experiment 

consists in asking subjects to report two quickly flash targets. When the delay between the two targets is 

low (<50 ms), the second target is often missed, as subjects‘ attention is still directed toward the process-

ing of the first target (RAYMOND ET AL., 1997). Other methods such as change blindness (O‘REGAN, 2006), 

some forms of inattentional blindness (MACK AND ROCK, 1998), and multistable perception such as the 

face/vase illusion and binocular rivalry (LOGOTHETIS ET AL., 1996; KIM AND BLAKE, 2005) can be modelled in 

terms of a combination of varying attention, masking and prior expectations. For example, change blind-

ness is only efficient when i) subjects do not know which objects changes (low priors), and ii) there exists 

multiple salient objects on the screen (low attention), and iii) brief masks are flashed when the change 

occurs (masking). 

These methods have different characteristics: they mask stimuli for different amounts of time, in 

different regions of the visual field, and differentially affect sensory processing (KIM AND BLAKE, 2005). 

Importantly however, while these forms of masking disrupt conscious perception, they still preserve some 

processes. Residual sensory processing can be identified by comparing forced-choice responses, reaction 

time, and neural activity under different conditions of visibility, and can thus help us identifying the neural 

bases of conscious and unconscious processes. 

It may be useful at this point to clarify the vocabulary at play in each of these experimental meth-

ods: 

- ―Unseen‖ stimuli refer to items that subjects report not having seen when given the possibility to 

do so. Such a condition is thus referred to as a subjective visibility report. 

- ―Invisible‖ or ―subliminal‖ stimuli refer to items that subjects are unable to detect, making stimu-

lus discrimination or detection not significantly different from chance. This condition is thus of-

ten referred to as an objective discrimination. 

Interestingly, the objective ability to detect a visual stimulus can differ from subjective visibility 

reports. This is for example the case of blindsight patients who report not seeing the stimulus presented in 

their blind field, but are yet able to discriminate it above chance in a forced-choice task. The case of blind-

sight thus contrasts with the subliminal perception experiments, in which subjects report not seeing the 

stimulus and are also unable to discriminate it. Whether the term ―unconscious‖ should be restricted to 

invisible or unseen stimuli has been repeatedly debated over past decades (for a small set of opposing 

opinions, see (ERIKSEN, 1960; GREEN AND SWETS, 1966; MERIKLE, 1982; CHEESMAN AND MERIKLE, 1984; 

HOLENDER, 1986; SNODGRASS, 2002; DEHAENE ET AL., 2006B; SNODGRASS AND SHEVRIN, 2006; KOUIDER AND 

DEHAENE, 2007; LAU, 2008)).  

                                                      
9 Depending on the exact paradigm, inattentional blindness experiments may also manipulate subjects‘ ex-

pectation about specific stimuli. In Simon & Chabris‘s famous experiment, naïve subjects are asked to count the 
number of passes made by one of the basket-ball teams recorded in a short video-clip (SIMONS AND CHABRIS, 1999). 
Performing this demanding task make them unaware that a person disguised as a gorilla had come right in the middle 
of their visual field in the middle of the video. Subjects‘ inability to consciously perceive the gorilla may however not 
only be solely due to attentional deficits, but is also affected by the fact that subjects had no reason to expect a gorilla 
in the video. Prior expectations may thus be crucial to ―inattentional‖ blindness. 
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Indeed, each measure has its own advantages and disadvantages. Subjective reports can be ana-

lysed at the single trial level. They thus allow comparing objectively identical (DEHAENE ET AL., 2006B), or 

equally distinguishable stimuli (LAU AND PASSINGHAM, 2006; RAHNEV ET AL., 2011, 2012B), which are never-

theless associated with different visibility ratings. However, they are affected by responses biases. Re-

sponse biases refer to the subjects‘ propensity to favour a particular answer. For example, a subject may 

adopt a ―conservative‖ strategy, meaning that he/she rarely reports seeing the stimulus, even in cases 

he/she partially sees it. Such strategies are problematic because trials reported as ―unseen‖ are contami-

nated by an important proportion of trials in which the subject did partially see the stimulus. Any measure 

(brain activity, reaction time, etc.) would thus not be representative of a purely unconscious condition.  

Contrarily, objective measures of perception are robust to response biases. By estimating the dif-

ference of ―seen‖ responses observed when the stimulus is present and when it is absent, one can estimate 

subjects‘ detection sensitivity independently of subjects‘ responses biases. However, such measure is nec-

essarily computed across multiple objectively dissimilar trials. Consequently, objective measures dissociate 

conscious and unconscious processing from objectively different experimental conditions. For example, 

unconscious perception could be established by imposing a heavy masking on a faint stimulus, and making 

sure that subjects‘ detection sensitivity is not different from chance. Subjects‘ behaviour and brain activity 

could then contrasted to second condition, in which the stimulus is highly contrasted and poorly masked, 

so as to produce above chance detection sensitivity. The difference obtained between the two conditions 

may reflect differences related to stimulus properties rather than conscious perception per se (LAU, 2008).  

While keeping these epistemic issues in mind, the term ―unconscious‖ will hereafter be used to re-

fer to either invisible or unseen stimuli, as long as it does not crucially interfere with the interpretation of 

the results. However, and as will be detailed and discussed in CHAPTER 8. , the general approach under-

taken in the present thesis favours subjective reports over objective discrimination performance. This 

positioning stems from the premise that explaining how subjects come to make behavioural reports about 

their own thoughts and sensations is likely to help to understand how they come to report to themselves 

what they perceive.  

1.3.2. CONSCIOUS OR NOT: DISSOCIATING THE STATES OF CONSCIOUSNESS. 

The second family of studies consists in testing how the state of consciousness affects perceptual 

processing. Loss of consciousness can be induced physiologically (sleep), pharmacologically (anaesthesia) 

and pathologically (seizure). 

First, information processing can be compared across different sleep stages (for brief reviews see 

(MCCARLEY AND SINTON, 2008; DIEKELMANN AND BORN, 2010)). Sleep induces a loss of responsiveness that 

can be easily reversed by a sensory stimulation, although the threshold of awakening varies depending on 

sleep stages (RECHTSCHAFFEN ET AL., 1966). Sleep stages are controlled by the ascending reticular activating 

system (ARAS), which modulates the thalamic and cortical activity. These sleep stages are empirically de-

fined according to subjects‘ muscle activity and scalp EEG. Sleep stages 1 and 2 refer to the transition of 

wakefulness to sleep and are marked by the persistence of an important 10 Hz EEG oscillation. Sleep 

stages 3 and 4, also known as ―deep‖ or ―slow wave‖ sleep, are characterized by important low frequency 

oscillation (< 4 Hz, ―delta waves‖). Finally, rapid eye movement (REM) or ―paradoxical‖ sleep present a 

similar EEG activity to wakefulness despite subjects‘ irresponsiveness. The exact state and content of 

consciousness in sleep remains difficult to assess, as dreams may formally constitute a conscious experi-

ence. Dreams generally occur in REM sleep, but have also been reported in non-REM sleep (MANNI, 

2005). Furthermore, external sensory stimulations can be incorporated in dreams (BRADLEY AND MEDDIS, 

1974; IBÁÑEZ ET AL., 2009).  
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A more profound loss of consciousness can be induced pharmacologically, with various anaes-

thetic substances such as propofol and sevofurane. General anaesthesia is closer to a reversible coma than 

to an artificial form of sleep, as subjects i) present a complete loss of responsiveness, ii) cannot be awak-

ened by sensory stimulations and iii) form no memories of the situation. Despite being used in the clinics 

since the 19th century, the precise molecular and biological mechanisms of anaesthesia remain poorly un-

derstood. In particular, it remains debated whether anaesthetic substances primarily and directly affect the 

functioning of cortex by disturbing chemical communications across neurons, disrupting GABA receptors 

(NURY ET AL., 2011), for example, or whether anaesthesia primarily affects the ascending reticular activating 

system, which then deactivates the thalamo-cortical system (ALKIRE AND MILLER, 2006; ALKIRE ET AL., 2008; 

DEHAENE AND CHANGEUX, 2011). Although patients under dissociative anaesthesia, induced by substances 

such as ketamine, can preserve a form of conscious state, it is generally accepted that general anaesthesia 

unambiguously prevents a conscious experience of the environment. 

Finally, loss of consciousness can also be caused by epileptic seizures. Epilepsy is a neurological 

disorder characterized by abnormal, generally excessive, hyper-synchronous neuronal activity. Two spe-

cific types of epilepsy – complex partial seizures and absences – may be particularly relevant to the study 

of conscious and unconscious processes. ―Partial‖ seizures are initially spatially confined, most commonly 

in the temporal lobe, and can subsequently spread within the thalamo-cortical system (FISHER ET AL., 2005). 

When patients lose consciousness, the partial seizure is said to be ―complex‖. After complex partial sei-

zures (post-ictal period), patients may be disorientated, often report being exhausted, and generally reveal 

no memory of the events that occurred during the ictal period (ENGEL, 2013). ―Absences‖ are symptomatic 

of ―petit mal‖ epilepsy, a form of epilepsy most often observed in children and young adolescent. Absence 

mark a brief seizure-induced a loss of consciousness (i.e. lasts a few seconds), that starts and ends abruptly. 

Patients generally continue their activity as if nothing had happened. Unlike sleep and anaesthesia, absence 

and complex partial seizures do not dramatically affect subjects‘ arousal. While these patients are non-

communicating, they remain awake, have their eyes opened and can even demonstrate stereotypical be-

haviour (ENGEL, 2013). Although the degree of consciousness varies between patients and seizures 

(BLUMENFELD, 2005; BAGSHAW AND CAVANNA, 2011), these pathologies offer clear evidence that wakefulness 

and conscious state can be dissociated (BARTOLOMEI AND NACCACHE, 2011; BAYNE, 2011). 

In the various conditions, it is difficult to formally assess patients‘ and subjects‘ state of con-

sciousness. The latter is generally based on a posteriori reports (e.g. do you remember having perceived 

something) or on online command following (e.g. press a button every time you hear a sound). Both of 

these measures are of course dramatically limited. A posteriori reports depend on the integrity of memory 

formation and retrieval, and command following may not always accurately reflect a conscious process 

(e.g. breaking at a red light). As a consequence, the study of consciousness states is necessarily based on a 

variety of convergent evidence rather than on a single key experiment. 

1.3.3. NEURAL CORRELATES, MARKERS, SIGNATURES AND BASES OF CONSCIOUSNESS 

In summary, the two meanings of consciousness (content and state) have led to two main families of 

experimental methods – both of which can be used to identify the neural signatures of consciousness. Note that 

―signature‖ is used deliberately, and differs from the traditional term ―neural correlate of consciousness‖ 

(NCC). Indeed, ―correlate‖ does not imply the notion of specificity and could thus refer to any brain ac-

tivity that has a relationship with consciousness. By contrast, and following the definition of the term in its 

classic meaning (e.g. signing a check), a signature has three properties (according to Wikipedia‘s definition). 

To be a neural signature of consciousness, the brain activity should be:  
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- Specific: it should not be observed in unconscious conditions (e.g. pupil size and heart rate corre-

late significantly with subjective reports. However, since they can vary independently of conscious 

perception, they are not specific enough). 

- A correlate: the pattern of activity recorded is the product and not the mechanism, or ―basis‖ by 

which subjects become conscious (e.g. arguing that gamma power is a neural signature of con-

scious access does not mean that anything oscillating at 40 Hz would represent consciousness). 

- Invariant: the brain activity should be identical across the various ways conscious processing is 

investigated (i.e. a pattern of brain activity identified with a backward masking should be indica-

tive of patients‘ level of anaesthesia). 

As will be exposed in the following section, the unequivocal identification of a neural signature of 

consciousness is difficult. Studying anaesthesia, sleep and seizure-induced loss of consciousness indeed 

implies a number of methodological limitations. For example, significant differences between conscious 

and unconscious states may not be specifically related to consciousness per se, but rather reveal drug, sei-

zure or arousal effects. Similarly, the difference of brain activity observed between masked and unmasked 

stimuli may reflect mask-specific effects rather than consciousness-specific properties. Furthermore, it 

remains possible that sleeping, anesthetized subjects and in patients having a seizure are conscious, but do 

not form any short or long term memory of their perception – in the same way that we dream every night 

and yet forget most of these experiences. Nevertheless, taken together, these various approaches will build 

a body of evidence that will undoubtedly help delineate the neural basis, and therefore signatures, of con-

scious processing. 

The term ―marker‖ will be used to refer to the patterns of brain activity that empirically correlate 

with consciousness in a specific manner. ―Markers‖ will thus be preferred for experimental evidence (e.g. 

―A series of markers of consciousness was found in experiment X‖), whereas ―signature‖ will be reserved 

to the theoretical predictions (e.g. ―Experiment X was designed to detect the signature of consciousness 

Y‖). 

KEY POINTS 

 Theories of consciousness predict that conscious perception should be associated with i) the 

maintenance and ii) the broadcasting/sharing/integration of iii) a limited amount of information. 

 Different neural mechanisms have been proposed to implement such functions: information 

could be shared and bound by i) synchronizing the neuronal activity in the gamma band, ii) en-

gaging a ―global workspace‖ network and/or iii) triggering recurrent activity across distant regions 

via horizontal and top-down connections. 

 Two main families of experimental methods can be used to test these predictions: i) those com-

paring the state of consciousness (e.g. wake versus sleep and anaesthesia) and ii) those comparing 

the content of consciousness (e.g. seen versus unseen stimuli generally presented at perceptual 

threshold). 

1.4. EMPIRICAL FINDINGS 

In spite of the wide range of methods cited above, neuroimaging studies have found converging 

evidence for a number of empirical phenomena related to conscious processing. After quickly reviewing 
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the neural activity that is unequivocally not specific to conscious processing, I will go over five families of 

putative neural signatures of conscious processing. 

1.4.1. THE SENSORY AND ASSOCIATIVE CORTICES CAN BE ACTIVATED UNCONSCIOUSLY  

1.4.1.1. Evidence from the manipulation of perceptual contents 

Until the eighties, behavioural experiments, and priming studies in particular, had already demon-

strated that automatic low level features (e.g. location, shape, etc.) could be rendered subliminal while still 

influencing behaviour. By contrast, it was often proposed that high-level processes such as semantic and 

executive functions necessitated conscious perception of the stimulus. Although several psychophysical 

experiments had already jeopardized this idea (for historical reviews see (MERIKLE, 1982; CHEESMAN AND 

MERIKLE, 1984; GAUCHET, 1992; DEHAENE AND NACCACHE, 2001; KOUIDER AND DEHAENE, 2007; NACCACHE, 

2009) and meta-analysis (VAN DEN BUSSCHE ET AL., 2009)), the possibility of high level unconscious process-

ing became unequivocal with the rise of neuroimaging studies, such as the one from Dehaene and collabo-

rators (DEHAENE ET AL., 2001). The authors asked subjects to silently read briefly flashed words while their 

brain activity was recorded with fMRI. Half of these words were preceded and followed by visual masks 

that rendered the stimuli invisible. Yet, these invisible words elicited a significant brain response in the left 

extra-striate, fusiform and pre-central cortices – a network of brain areas associated with word reading in 

normal visibility conditions (FIEZ AND PETERSEN, 1998).  

 

Numerous experiments have now confirmed that cortical modules could be unconsciously acti-

vated by orthographic or semantic features (BISCHOFF-GRETHE ET AL., 2000; DEHAENE ET AL., 2004; DEVLIN 

ET AL., 2004; NAKAMURA ET AL., 2005; QIAO ET AL., 2010). These results thus contribute to the redefinition of 

the depth of subliminal processing – a level now clearly deeper than basic visual feature recognition (FANG 

AND HE, 2005; EDDY ET AL., 2007; JIANG ET AL., 2007) and subcortical processing (WHALEN ET AL., 1998; 

MORRIS ET AL., 1999; NOMURA ET AL., 2004; PASLEY ET AL., 2004; DANNLOWSKI ET AL., 2007, 2008). Recent stud-

 

FIGURE 1.6 ACTIVATIONS ELICITED BY SUBLIMINAL STIMULI IDENTIFIED IN FMRI STUDIES. 

Undetectable (e.g. invisible) or missed (e.g. unseen) stimuli can elicit activity in various cortical and 
subcortical regions. Note that this non-exhaustive review remains schematic as neither the exact 
location, nor the size, significance and the statistical corrections are mentioned. Note that the 
temporo-polar, prefrontal cortex and dorsal parietal cortex are generally not recruited by subliminal 
stimuli. 
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ies have also confirmed that subliminal processing is not restricted to the ventral stream10. Subliminal 

numbers can activate the parietal area responsible for quantity-estimation (NACCACHE AND DEHAENE, 

2001A). Masked incentive items recruit basal forebrain nuclei such as the ventral striatum, associated with 

value and motivation (PESSIGLIONE ET AL., 2007, 2008). Faint auditory (DIEKHOF ET AL., 2009; SADAGHIANI ET 

AL., 2009; KOUIDER ET AL., 2010) and tactile stimuli (BLANKENBURG ET AL., 2003; TASKIN ET AL., 2008) can acti-

vate the primary auditory and sensory areas respectively even when subjects are unable to detect them. A 

recent study in fact suggests that invisible stimuli can trigger memory-related processes and activate the 

hippocampus – an area associated with explicit memory formation and retrieval (REBER ET AL., 2012). It may 

be noted, however, that these studies unequally control for residual conscious processing. In the last study 

by Reber et al. (REBER ET AL., 2012), for example, the target words were masked with white noise images, an 

unorthodox method that has been shown to only partially mask words (TURVEY, 1973; BREITMEYER AND 

OGMEN, 2000). Still, the accumulation of empirical evidence is undeniable. Multiple independent teams 

regularly demonstrate that a large number of cortical regions can be activated when subjects are unable to 

detect the target. 

 

1.4.1.2. Evidence from the manipulation of consciousness states 

Furthermore, similar findings have been obtained with normal (i.e. supra-threshold) stimuli presented 

to sleeping, anaesthetized and epileptic subjects. For example, various types of sounds have been shown 

to activate the auditory cortex, thalamus and caudate nucleus during non-REM sleep (PORTAS ET AL., 2000; 

CZISCH ET AL., 2002; TANAKA ET AL., 2003; REDCAY ET AL., 2007) including slow wave stages (ISSA AND WANG, 

2011). Furthermore, the left amygdala and left prefrontal cortex (BA 46) differentially respond to pure 

tones and subjects‘ own name during various sleep stages, suggesting an extraction of the emotional con-

tent rather than a purely sensory activation (PORTAS ET AL., 2000). In fact, these neuroimaging studies con-

firm a well known phenomenon in the sleep literature; it has been repeatedly shown that meaningful stim-

uli more easily and more rapidly wake people up than neutral stimuli, suggesting that meaning must be 

partially processed during sleep (OSWALD ET AL., 1960; ZUNG AND WILSON, 1961; LANGFORD ET AL., 1974). 

Similar findings are observed in pharmacologically-induced loss of consciousness. Sounds activate several 

regions of the temporal cortex under deep anaesthesia (PLOURDE ET AL., 2006; DAVIS ET AL., 2007; LIU ET AL., 

2012) and flashes activate the occipital lobe (REDCAY ET AL., 2007), although the depth of processing appears 

to be relatively superficial in this pharmacologically-induced loss of consciousness (PLOURDE ET AL., 2006; 

DAVIS ET AL., 2007). In the fMRI study by Redcay and colleagues, however, the patients were children and 

                                                      
10 The ventral stream designates a series of regions that connect the occipital and the ventral temporal lobes. 

It is generally believed to host object recognition processes (GOODALE AND MILNER, 1992) 

 

FIGURE 1.7 SENSORY ACTIVATION IN UNCONSCIOUS STATES. 

Sensory stimulation can evoke activity in primary and secondary sensory cortices in anesthetized and 
sleeping subjects. 
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their sleep stages were not strictly monitored because of a lack of EEG (REDCAY ET AL., 2007). The results 

should thus be taken as indicative and interpreted cautiously.  

1.4.2. LOCATING CONSCIOUS PROCESSES 

A myriad of cognitive processes and their respective brain regions can be activated without subjects 

becoming aware of them. Nonetheless, this striking finding should not diminish the differences observed 

between conscious and unconscious brain responses. 

1.4.2.1. Unmasked stimuli recruit the fronto-parietal networks 

In Dehaene et al.‘s study for example, subliminal stimuli elicited significant activity in brain areas 

related to reading, but this activity was dramatically reduced as compared to visible stimuli (DEHAENE ET 

AL., 2001). Furthermore, visible targets elicited activity in the prefrontal and parietal cortices, whereas these 

regions remained utterly unresponsive in the subliminal condition. The simultaneous increase of activity in 

specialized areas and the large activation of the multi-modal associative cortices typically distinguishes seen 

from unseen stimuli (REES ET AL., 2002; CARMEL ET AL., 2006; DEHAENE AND CHANGEUX, 2011). This pattern 

of results has been observed with various methods including binocular rivalry (LUMER, 1998), change 

blindness (BECK ET AL., 2001), stimuli presented at perceptual threshold (BOLY ET AL., 2007; DIEKHOF ET AL., 

2009; SADAGHIANI ET AL., 2009), backward masking (GRILL-SPECTOR ET AL., 2000; DEHAENE ET AL., 2001) and 

attentional blink experiments (MAROIS ET AL., 2004). Furthermore, structural neuroimaging studies show 

that the gray matter density of the dorso-lateral cortex as well as the density of its white-matter tracks are 

specifically correlated with subjects‘ meta-cognitive abilities (FLEMING ET AL., 2010) – a process often asso-

ciated with conscious processing (ROSENTHAL, 1997; LAU, 2008; LAU AND ROSENTHAL, 2011). 

 

Intracranial recording studies demonstrate a strong correlation between subjective reports and the 

―level‖ of the cortical regions in the visual processing hierarchy. For example, binocular rivalry experi-

ments showed that only 20% of the cells recorded in V1 and V2 fire when percept changes, whereas this 

proportion is doubled in V4 and V5 and reaches 90% in the infero-temporal cortex and superior temporal 

 

FIGURE 1.8 COMPARING SUBLIMINAL VERSUS SUPRALIMINAL STIMULI. 

Although subliminal stimuli can elicit cortical activation, their amplitude is generally dramatically 
reduced as compared to supraliminal conditions. Furthermore, supraliminal conditions are typically 
marked by the recruitment of multiple brain areas, especially in the prefrontal and parietal cortices. 
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sulcus (LOGOTHETIS ET AL., 1996; SHEINBERG AND LOGOTHETIS, 1997; WILKE ET AL., 2006). fMRI studies have 

shown that activity in early visual areas such as V1 (TONG ET AL., 1998, 2006; POLONSKY ET AL., 2000; HAYNES 

ET AL., 2005A), and even the lateral geniculate nucleus (HAYNES ET AL., 2005A), correlates with perceptual 

changes, but the BOLD response is likely to reflect top-down feedback. Indeed, Maier and collaborators 

have shown that while low-frequency local fields potentials correlated with the BOLD response in V1, 

efferent firing are apparently not affected by this change (MAIER ET AL., 2008). 

1.4.2.2. Wakefulness is associated with fronto-parietal activations 

A similar pattern of results is observed in sleeping and anaesthetized subjects: in these uncon-

scious conditions, sensory stimulations fail to elicit frontal and parietal activations, and are generally asso-

ciated with reduced sensory activity. This is particularly true in deep anaesthesia conditions (BONHOMME ET 

AL., 2001; KERSSENS ET AL., 2005; PLOURDE ET AL., 2006; DAVIS ET AL., 2007; RAMANI ET AL., 2007; LIU ET AL., 

2012) as well as in REM and slow wave sleep (PORTAS ET AL., 2000; TANAKA ET AL., 2003; CZISCH ET AL., 2009; 

ISSA AND WANG, 2011). This reduced depth of cortical processing, and the specific lack of fronto-parietal 

responses fit with the fact that these regions are particularly (although not specifically) inactive during loss-

of-consciousness. Indeed, positron emission tomography (PET) studies have shown that most anaesthetic 

substances lead to a general decrease of brain metabolism (ALKIRE ET AL., 1995, 1997) and particularly affect 

the dorso-lateral prefrontal cortex and the precuneus (KAISTI ET AL., 2002, 2003; LAITIO ET AL., 2007)11. Simi-

larly, although the brain metabolism recorded in REM sleep is close to normal wakefulness (BRAUN ET AL., 

1997; MAQUET, 1997, 2000; BUCHSBAUM ET AL., 2001), NON-REM sleep particularly reduces the metabolism in 

prefrontal and parietal cortices (MAQUET ET AL., 1996; BRAUN ET AL., 1997; MAQUET, 1997; MAQUET AND 

PHILLIPS, 1998). Conversely, fronto-polar activation typically mark lucid dreaming – a state in which sub-

jects claim to be fully conscious but locked in their dream (DRESLER ET AL., 2011). Finally, abnormal pre-

frontal and parietal activity is also observed in partial complex epilepsy in which patients lose conscious-

ness whereas simple partial seizures are characterized by isolated hyper-activation at the epileptic site that 

tends not to propagate to the associative cortices or to the rest of the cortex (SALEK-HADDADI ET AL., 2003; 

BLUMENFELD ET AL., 2004, 2009).  

 

1.4.2.3. A causal role of the prefrontal cortex in conscious perception? 

Beyond this correlational evidence, recent studies suggest that the prefrontal cortex is causally in-

volved in conscious perception. Rounis and collaborators have shown that repetitive transcranial magnetic 

                                                      
11 Note, however, that dissociative anaesthetic substances lead to an increased activity in the prefrontal cor-

tex: e.g. (LEE ET AL., 2013). 

 

FIGURE 1.9 METABOLISM DEFICITS IN THE DIFFERENT TYPES OF LOSS-OF-CONSCIOUSNESS. 

For each physiological (sleep), pharmacological (anaesthesia) and pathological (epilepsy) loss of 
consciousness, the level of metabolism is plotted as compared to normal (Minuses indicate 
hypometabolism, pluses indicate hypermetabolism). 
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stimulation (rTMS) over the dorso-lateral cortex reduces stimulus visibility without affecting discrimina-

tion performance (ROUNIS ET AL., 2010). However, the direct effect was relatively weak, and did not signifi-

cantly differ from the sham TMS12. Furthermore, patients with left prefrontal lesions present an increased 

visibility threshold13 to briefly flashed stimuli (DEL CUL ET AL., 2009). Although patients‘ objective discrimi-

nation performance was also affected, the change of visibility reports is significantly stronger than changes 

in discrimination performance.  

Although most studies report a tight link between conscious perception and fronto-parietal activ-

ity, a few recent studies have shown that the prefrontal cortex could be activated by unconscious stimuli 

(HESTER ET AL., 2005; LAU AND PASSINGHAM, 2007; VAN GAAL ET AL., 2008, 2010; URSU ET AL., 2009; VAN GAAL 

ET AL., 2011). In particular, van Gaal and collaborators implemented a series of experiments demonstrating 

executive functions could be activated unconsciously (VAN GAAL ET AL., 2008; VAN GAAL ET AL., 2009, 2010; 

COHEN ET AL., 2009; VAN GAAL AND LAMME, 2011; VAN GAAL ET AL., 2011). Subjects performed a go/no go 

task in which they were asked to press a key as soon as a central annulus was presented on the screen (go 

trial). On some trials, a faint disk was briefly flashed just before the target, indicating that subjects should 

hold themselves from pressing the key (no-go trial). Crucially, the delay separating the disk from the annu-

lus was varied such that long delays allowed subjects to consciously perceive the disk, whereas short delays 

rendered the disk invisible. Although subjects did press the key when the disk was subliminal, their reac-

tion time significantly increased, suggesting that subliminal information can affect the executive system 

responsible for the go/no go task. Crucially, source reconstruction of subjects‘ EEG suggests this uncon-

scious cognitive control was initiated by the prefrontal cortex. A follow-up fMRI experiment confirmed 

that activity in the pre-supplementary motor area (pre-SMA) was significantly increased by unconscious 

stimuli (VAN GAAL ET AL., 2010). Nevertheless, the unconscious prefrontal activation remained particularly 

small and spatially limited – two features which radically contrast with the visible condition: when the 

target was easily visible, a large activation could be observed over the right dorso-lateral prefrontal cortex, 

the superior and middle frontal gyri, the infero frontal cortex, the anterior cingulate and the parietal cor-

tex. These experiments therefore suggest that, although some regions of the prefrontal cortex can be acti-

vated unconsciously, the large fronto-parietal recruitment remains characteristic of conscious perception. 

1.4.2.4. Involvement of the thalamus in conscious perception 

Finally, another important region that differentiates consciousness states is the thalamus. This 

subcortical structure is known to gate sensory information to the cortex and to participate in regulating 

arousal (COENEN AND VENDRIK, 1972; STERIADE ET AL., 1993; MCCORMICK, 1997). The thalamus responds to 

auditory stimuli in non-REM sleep (PORTAS ET AL., 2000), and generally presents a hypometabolism in slow 

wave sleep (BRAUN ET AL., 1997; MAQUET, 1997, 2000; KAJIMURA ET AL., 1999) and general anaesthesia (FISET 

ET AL., 1999; KAISTI ET AL., 2002). Furthermore, thalamic activity increases in REM sleep when the dorso-

lateral prefrontal cortex and the precuneus are seemingly deactivated (MAQUET ET AL., 1996), suggesting that 

it may participate in restoring a conscious state even during sleep. Finally, the thalamus is generally hyper-

active in generalized and complex partial seizures (SALEK-HADDADI ET AL., 2003; BLUMENFELD ET AL., 2009), 

suggesting that its malfunctioning leads to an impaired conscious states. However, as fMRI and PET have 

a relatively low temporal resolution, it is unclear whether abnormal thalamic activity causes, results from, 

                                                      
12 The fraction of visible trials is significantly reduced by the TMS, but this reduction is not significantly 

larger than the sham condition, thus leaving the possibility of a non-specific effect. The authors proposed using 
another measure than the fraction of visible trials: the difference between d‘ (the ability to discriminate the stimulus) 
and meta-d‘ (the ability to know that the stimulus was correctly discriminate), and demonstrate that this approach 
leads to a significant interaction.  

13 An increased visibility threshold indicates that one needs stimuli with a greater contrast or longer presen-
tation time to make the same subjective visibility report. 
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or only correlates with changes of cortical activity. This issue will be further discussed below in the light of 

time-resolved studies. 

KEY POINTS 

 Numerous subcortical and cortical regions can be activated by stimuli without subjects‘ being able 

to detect them. 

 While sensory cortices can be activated relatively easily unconsciously, higher regions, such as the 

prefrontal cortex, are more rarely recruited by subliminal stimuli.  

 Contrary to invisible stimuli, visible stimuli are marked by a large response in the sensory cortices 

and the recruitment of higher areas, and the fronto-parietal networks in particular. 

 Loss-of-consciousness is associated with a general reduction of brain metabolism which particu-

larly affects the frontal and parietal cortices. 

 Lesions studies suggest that prefrontal impairments leads to reduced visibility reports. 

 fMRI and PET studies suggest that thalamic activity indexes subjects‘ consciousness state. 

1.4.3. TIMING CONSCIOUS PROCESSES 

The differences between conscious and unconscious processes observed with fMRI and PET 

studies can be further characterized by time-resolved neuroimaging techniques. In particular, EEG, MEG 

and intracranial recordings tend to show that unconscious perception early-evoked responses are largely 

preserved but late and sustained brain activity are drastically diminished. 

1.4.3.1. Impact of stimulus visibility on early and late brain responses  

It is perhaps not surprising that the electrophysiological dynamics of conscious and unconscious 

processes were already under scrutiny in the 1960s, given that EEG had been invented ninety years earlier 

(CATON, 1875), and applied to human subjects for thirty years (BERGER, 1929; HAAS, 2003). In 1964/1965, 

three independent teams simultaneously14  discovered a link between the late event-related potentials 

(ERPs) and subjects‘ ability to report the presence of a stimulus (DAVIS, 1964; HAIDER ET AL., 1964; 

DESMEDT ET AL., 1965B; SPONG ET AL., 1965). To only illustrate one of them, Desmedt, Debecker and Manil 

compared the evoked EEG response to a faint tactile stimulus that was either presented alone or was 

predicted by a preceding sound. When predicted, the stimulus was detected 88% of the time, and elicited 

both early (< 300 ms) and late ERPs (> 300 ms). By contrast, detection dropped to 50 % in the absence 

of the auditory cue. While early ERPs in response to the unpredicted stimuli remained identical, late ERPs 

were completely absent. Unfortunately, to avoid a motor-response artefact, the authors asked their sub-

jects to count the number of detected targets, rather than provide a subjective report at each trial. This late 

ERP may thus index counting processes rather than conscious perception per se. A few years later, Hillyard 

and collaborators compared the P300 elicited by the same physical stimulus when it was consciously de-

tected or missed (HILLYARD ET AL., 1971). The authors demonstrated that the P300 was only present when 

subjects were able to report having seen the stimulus. In contrast, early responses, such as the N1 compo-

nent were present even in missed trials (provided that the stimulus intensity was sufficiently strong). Sub-

sequent investigations suggested that ―N1 [relates to] the quantity of signal information received and P3 [reflects] 

the certainty of the decision based upon that information‖ (SQUIRES ET AL., 1973A).  

The P300 component was then dissociated into two components. Whereas the P3a is a transient 

frontal component, probably generated by the frontal cortex, and is elicited by unexpected events (SUTTON 

                                                      
14 Two of these studies were even published in the same issue of Science (DAVIS, 1964; HAIDER ET AL., 

1964)! 
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ET AL., 1965; POLICH, 2007), the P3b, is a sustained components, likely generated by a variety of areas includ-

ing the frontal and parietal cortices, is characterized by a centro-posterior positivity (HALGREN ET AL., 1998; 

DEL CUL ET AL., 2007; POLICH, 2007), and is only elicited by visible and relevant stimuli (SQUIRES ET AL., 

1973B, 1975A, 1975B, 1976; DEHAENE ET AL., 2006B; POLICH AND CRIADO, 2006; POLICH, 2007; DEHAENE AND 

CHANGEUX, 2011). A variety of experimental methods have shown that the P300b, or its magnetic equiva-

lent (VAN AALDEREN-SMEETS ET AL., 2006; GUTSCHALK ET AL., 2008) best indexes conscious perception. This 

includes perceptual threshold (HILLYARD ET AL., 1971; SQUIRES ET AL., 1973A; SEKAR ET AL., 2013), masking 

(DEL CUL ET AL., 2007; GUTSCHALK ET AL., 2008; LAMY ET AL., 2009; SALTI ET AL., 2012), attentional blink 

(VOGEL ET AL., 1998; SERGENT ET AL., 2005), form completion (HEALTH ET AL., 1978; STUSS ET AL., 1992; 

VIGGIANO AND KUTAS, 2000) as well as change blindness experiments (NIEDEGGEN ET AL., 2001; FERNANDEZ-

DUQUE ET AL., 2003; WOODMAN AND LUCK, 2003). Together, these experiments converge on the idea that the 

amplitude of early ERPs do not necessarily correlate with subjective report, whereas the P3b tends to. 

This early – late dissociation is also supported by lesions studies. Faces presented to the neglected 

visual field of neglect patients still elicits an N170 despite being reported as unseen (VUILLEUMIER ET AL., 

2001). Similarly, a cortically-blind two-year-old child presented robust visual evoked potentials between 80 

and 180 ms (WYGNANSKI-JAFFE ET AL., 2009).  Finally, lesions of the dorso-lateral prefrontal cortex diminish 

the ability to perceive a target. In these patients, the N1 component is relatively preserved, but later com-

ponents, including the N2 and the P3b, are drastically reduced in amplitude (BARCELÓ ET AL., 2000).  

 

 

FIGURE 1.10 EARLY VERSUS LATE EVENT RELATED POTENTIAL UNDER DIFFERENT ATTENTION AND VISIBILITY CONDITIONS. 

A. Desmedt, Debecker & Manil asked subjects to detect a brief and faint tactile stimulation 
(DESMEDT, DEBECKER, & MANIL, 1965). (top). When the target was preceeded by an auditory 
cue, detection performance was high, and EEG activity revealed both early and late event 
related potentials (ERP). By contrast, when the same stimulus was presented without any cue, 
detection performance dropped, and late ERP disappeared. 

B. (COMERCHERO & POLICH, 1999). The P3 component can be divided into two types of neural 
events. The P3a refers to a transiant, frontal positivity following the presentation of irrelevant 
stimuli. By contrast, the P3b component is characterized by a sustained posterior positivity 

C. Subjects performed a discrimination task on differentially masked stimuli (DEL CUL, BAILLET, 
DEHAENE, & CUL, 2007). By varying the stimulus onset asynchrony (SOA), visibility of the 
stimulus could be parametrically varied. EEG results suggests that, unlike other components, 
the P300 indexes subjects’ visibility reports. 
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Finally, intracranial recordings also dissociate early and late neural activity (SUPÈR ET AL., 2001; 

ROELFSEMA ET AL., 2002; DECO ET AL., 2007; JONES, 2007; QUIROGA ET AL., 2008; GAILLARD ET AL., 2009). The 

strongest intracranial evidence comes from Roelfsema and Lamme. In a series of experiments, they 

showed that subjective reports systematically correlated with the later 15  part of the neural activity 

(ROELFSEMA ET AL., 1998, 2004; LAMME AND ROELFSEMA, 2000; LAMME ET AL., 2000). In particular, Supèr, 

Spekreijse & Lamme trained monkeys to saccade toward a figure presented in their peripheral visual field 

(SUPÈR ET AL., 2001). Electrical activity showed that figures independently activated the primary visual cor-

tex between ~40 and 100 ms after stimulus onset. However, the subsequent activity was significantly in-

creased when monkeys made a saccade toward the figure as opposed to when they kept fixation. Similarly, 

Gaillard and collaborators investigated the neural activity of implanted patients in a backward masking 

task (GAILLARD ET AL., 2009). The results demonstrated that masked and unmasked stimuli elicit similar 

early brain responses in the occipital, fusiform and frontal cortex. By contrast, later ERPs were markedly 

different between the two visibility conditions. 

 

1.4.3.2. Impact of consciousness states on early and late brain responses 

The temporal dissociation between conscious and unconscious processing is also supported by 

loss of consciousness studies. Several experiment used an ―oddball‖ protocol, in which a series of identical 

auditory stimuli are intermixed with rare deviant tones. These rare events, in normal awake subjects, lead 

to a negative deflation of the N1, referred to as the mismatch negativity (MMN) component (NÄÄTÄNEN 

                                                      
15 This ―later part‖ remains however relatively early: the activity elicited before 100 ms is identical in visible 

and invisible conditions, whereas its later part is correlated with subjective reports. 

 

FIGURE 1.11 IMPACT OF ATTENTION ON THE AMPLITUDE OF THE MMN AND THE P300 

The auditory oddball paradigm consists in presenting a series of identical sounds (green) intermixed 
with rare deviant sounds (red). The change of sounds elicits two components. The mismatch negativity 
(MMN), peaking around 170 ms, is followed by a P300 component. Unlike the P300, the MMN can be 
observed even when subjects are paying attention away from the auditory stimuli. 
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AND PICTON, 1987; NÄÄTÄNEN ET AL., 2007), and are often followed by a P300 component. Following the 

findings mentioned previously, the MMN is very robust, regardless of attention (ZHAO AND LI, 2006; 

BEKINSCHTEIN ET AL., 2009; HAROUSH ET AL., 2011), and is seemingly present at perceptual threshold (SAMS 

ET AL., 1985) although it is unclear whether it can be triggered by a completely subliminal stimulus16. 

Although the amplitude of ERPs tends to dramatically decrease with loss of consciousness 

(PAAVILAINEN ET AL., 1987; BASTUJI ET AL., 1995; ELTON ET AL., 1997; ATIENZA ET AL., 2001), a significant MMN 

can be observed under anaesthesia (SIMPSON ET AL., 2002; HEINKE ET AL., 2004; KOELSCH ET AL., 2006; CZISCH 

ET AL., 2009) as well as in REM sleep (NASHIDA ET AL., 2000; SCULTHORPE ET AL., 2009). Note, however, that 

these findings have not been systematically replicated (SALLINEN ET AL., 1996), and that the presence of the 

MMN in non-REM sleep remains still unclear (PAAVILAINEN ET AL., 1987; NIELSEN-BOHLMAN ET AL., 1991; 

WINTER ET AL., 1995; ATIENZA ET AL., 1997; ELTON ET AL., 1997; VAN HOOFF ET AL., 1997; COTE ET AL., 2000; 

SCULTHORPE ET AL., 2009) (for review of the MMN under various conscious stages see (ATIENZA ET AL., 

2001; NÄÄTÄNEN ET AL., 2007)). In contrast, the vast majority of the above studies indicate that the P3 com-

ponent largely vanishes with subjects‘ loss of consciousness.  

 

Finally, a small number of studies suggest a similar pattern of results in absence and complex par-

tial epileptic seizures. Both animal (INOUE ET AL., 1992) and human studies (ORREN, 1978; DUNCAN ET AL., 

2009; CHIPAUX ET AL., 2013) suggest that early evoked potentials are preserved, and/or that late components 

are largely impaired. In a recent study, Chipaux and collaborators presented visual flashes to epileptic chil-

dren during absence epilepsy (CHIPAUX ET AL., 2013). Although patients were completely unresponsive and 

                                                      
16 Allen and colleagues (ALLEN ET AL., 2000) claimed to a subliminal change in the frequency of a tone could elicit a mis-

match negativity, however the component they report does not clearly resemble the traditional MMN. For example the component peaks at 
350 ms. 

 

FIGURE 1.12 EFFECTS OF VARIOUS TYPES OF LOSS OF CONSCIOUSNESS ON THE MMN AND THE P3. 

(Top) The oddball paradigm has been tested across various states of consciousness. In some studies, 
the MMN is found in light and deep sedation (HEINKE ET AL., 2004) as well as in REM sleep 
(SCULTHORPE, OUELLET, & CAMPBELL, 2009), whereas the P300 is only observed under wakefulness and 
light sedation.  

(Bottom) During seizure induced loss-of-consciousness, auditory and visual stimulations elicit 
preserved early evoked related potentials (N1) but diminished P300 (DUNCAN, MIRSKY, LOVELACE, & 

THEODORE, 2009). 
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presented no recollection of the ictal events, significant visual evoked potentials were observed over the 

occipital electrodes around 250 ms, thus suggesting the existence of residual visual processing in this 

pathological loss of consciousness. However, the study remains subject to potential caveats. The visual 

stimulation was indeed rhythmically presented at 2Hz. Yet, absence seizures are typically characterized by 

a 3-4Hz rhythm (BLUMENFELD, 2005). It is thus possible that evoked potential entrained the thalamic activ-

ity, which would consequently lead to a cortical activation in phase with the visual potential. Furthermore, 

the authors only report the EEG components recorded over the occipital lobe. It thus remains unclear 

whether the P3 component is affected in this specific case.  

1.4.3.3. A complicated link between conscious perception and late event 

related potentials 

Although the precise timing of conscious perception appears to vary as a function of the precise 

experimental set-up, studies commonly suggest that early neural activity can be triggered unconsciously 

whereas late neural responses are tightly linked to stimulus reportability. Nonetheless, several studies may 

complicate this overall picture. 

 

First, the N400, a centro-posterior negative EEG component that is believed to index semantic 

processes (KUTAS AND FEDERMEIER, 2011), can be elicited by stimuli rendered invisible in an attentional 

blink experiment (VOGEL ET AL., 1998; SERGENT ET AL., 2005). Results show that the N400 peaks after the P3, 

and its large intensity appears independent from the visibility of the stimulus. Similar findings have also 

been established in backward masking experiments (KIEFER AND BRENDEL, 2006; EDDY ET AL., 2007). Fur-

thermore, congruous and incongruous words elicit a significantly different N400 in REM and stage II 

sleep (BRUALLA ET AL., 1998; PERRIN ET AL., 2002; IBÁÑEZ ET AL., 2006; DALTROZZO ET AL., 2012) as well as in 

slow wave sleep (BRUALLA ET AL., 1998; LOPEZ ET AL., 2001; IBÁÑEZ ET AL., 2009). To my knowledge, no N400 

has ever been observed under general anaesthesia. Overall, these results advocate against a direct link be-

tween timing and conscious access: late components may remain unconscious. Furthermore, these find-

ings seem to invalidate the idea that early event related potentials could be consciously perceived but rap-

 

 

FIGURE 1.13 EVIDENCE OF A LATE ERP ELICITED BY AN UNCONSCIOUS STIMULUS. 

Sergent et al. (SERGENT, BAILLET, & DEHAENE, 2005) showed in an attentional blink paradigm, which 
consists in detecting two successive stimuli, that a strong N400 component could be elicited by the 
stimuli reported as unseen . Conversely, the following positivity varied as a function of visibility 
reports. 
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idly forgotten (e.g. (WOLFE, 1999)17). Rather, the possibility of a large late unconscious ERP suggests that 

some types of neural activity are consciously accessible and some others remain inaccessible. 

Second, although ―the most consistent finding in non-REM sleep is the lack of P3‖ (LAUREYS, 

2005A), several studies did find unconscious P3 components. Although reduced, the P3 may be elicited in 

REM sleep (SALISBURY ET AL., 1992; PERRIN ET AL., 1999). Cote and Campbell even found a strong P3b com-

ponent in REM sleep. However, it was elicited by a tone presented at  90 dB (the equivalent of a police 

whistle) (COTE AND CAMPBELL, 1999)! Several studies have found significant P3 elicited by invisible (BERNAT 

ET AL., 2001A, 2001B; VAN GAAL ET AL., 2011) and unseen stimuli (DEL CUL ET AL., 2007; HENSON ET AL., 2008; 

LAMY ET AL., 2009). For example, Bernat and colleagues showed that a briefly flashed (1 ms) stimulus elic-

ited a small (2 µV) but significant P3 in spite of subjects‘ inability to detect the target (BERNAT ET AL., 

2001B). Masked stimuli eliciting cognitive control (VAN GAAL ET AL., 2011) or familiarity processes (HENSON 

ET AL., 2008) induce small but significant late centro-posterior positivity. Furthermore, unseen stimuli that 

are correctly discriminated present a larger P3 than unseen but incorrectly identified stimuli (LAMY ET AL., 

2009). Finally, Del Cul, Baillet and Dehaene showed that masked stimuli elicit a large increase of centro-

posterior activity between 200 ms and 600 ms as compared to the conditions with the mask only. The 

increase of the P300 amplitude may therefore not systematically index conscious perception. 

 

Finally, the P300 may not systematically be the first EEG component that dissociates subjective 

visibility reports. For example, Melloni and colleagues have recently shown that the P300 indexes con-

scious visibility only when the stimulus is unexpected (MELLONI ET AL., 2011). By contrast, when subjects know 

which stimulus is going to be presented, visibility reports best correlated with the P200 component. Like-

wise, Pitt, Martinez and Hillyard showed that the P300 only indexes visibility reports when it is task-

relevant. In this study however, visibility was not probed at each trial but was roughly assessed at the end 

of the session (PITTS ET AL., 2012). Following the literature on attentional blindness (MACK AND ROCK, 1998), 

it may thus be the case that they were not as conscious of the stimuli than the experiment suggests. Fur-

ther investigation would thus be necessary to clarify these issues in determine the condition under which 

the P300 sensitively and specifically indexes subjective reports of visibility. 

                                                      
17 In a similar view, Crick & Koch noted that ―[the stimuli used in subliminal perception studies] may affect 

ongoing mental processes, including higher order processes, without being registered in working or long-term mem-
ory.‖ (CRICK AND KOCH, 1990A) 

   

FIGURE 1.14 EVIDENCE OF UNCONSCIOUS P300. 

(Left) In a backward masking paradigm, van Gaal et al. (VAN GAAL, LAMME, FAHRENFORT, & 

RIDDERINKHOF, 2011) showed that a no-go stimulus could elicit a small centro-posterior positive 
component, traditionally associated with conscious perception. However the amplitude of this 
component is drastically reduced as compared to the visible condition. 

(Right) Del Cul et al. showed that the unseen masked stimuli elicit a significantly larger P300 than the 
mask only condition (DEL CUL, BAILLET, DEHAENE, & CUL, 2007). The amplitude of the P300 however 
correlates with subjective visibility reports. 
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Overall, it appears that brain events rising before 200 ms can be easily dissociated from subjects‘ 

ability to report their presence. The processes that occur after 200 ms still need to be clarified. While most 

studies demonstrate that task-relevant stimuli lead to strong and sustained centro-posterior positivity, 

likely elicited by a distributed network of brain regions, the precise neural bases of consciousness when 

stimuli are predictable or task irrelevant remain currently unclear (ARU ET AL., 2012B; SERGENT AND 

NACCACHE, 2012).  

KEY POINTS 

 Event-related potential (ERP) studies indicate that early brain activity can be elicited under un-

conscious states and by undetectable stimuli. 

 Late ERPs tend to correlate with subjective reports and index a conscious and attentive state. 

 The precise timing of the brain activity corresponding to subjective report may vary depending on 

the precise experimental protocols. 

1.4.4. BRAIN RHYTHMS & INFORMATION COMPLEXITY 

Event-related potentials (ERP) represent a small category of the human brain electric responses: 

those whose amplitude is phase-locked to the stimulus. Other forms of responses such as oscillations 

(BUZSAKI, 2009) and scale-free dynamics (MILLER ET AL., 2009) can be investigated after transforming the 

amplitude of single trial signals into time-frequency maps. Five broad frequency ranges are generally used 

to summarize the obtained results, and are denoted by historically- rather than alphabetically- ordered 

Greek letters (delta: 0-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz and gamma:>30 Hz).  

A change of power of each of these frequencies is often referred to with the terms ―synchrony‖ 

(for increasing power) and ―desynchrony‖ (for decreasing power), because it is believed to reflect a local 

(de)synchronization of the neuronal activity. Indeed, a single neuron generates too little changes in the 

electric and magnetic fields to be recorded with scalp EEG or MEG. Rather, electrophysiological re-

cordings reflect the summation of synchronous firing of millions of neurons that have a similar spatial 

orientation (HÄMÄLÄINEN ET AL., 1993). Consequently, an increase of power in a particular frequency sug-

gests a local synchronization (and/or increase) of the neuronal activity. However, to avoid confusion, the 

term ―synchrony‖ will be reserved to signal correlation across distant brain regions which, as detailed be-

low, is assessed by fundamentally different methods. Each of these frequencies has been proposed to 

      

FIGURE 1.15 EXPERIMENTAL CONDITIONS MODULATE THE TIMING OF THE FIRST ERPS INDEXING VISIBILITY REPORTS. 

(Left) Melloni et al. showed in a hysteresis paradigm that stimuli whose identity is correctly expected by the 
subjects, elicit different P200 component as a function of visibility reports (MELLONI, SCHWIEDRZIK, MÜLLER, 
RODRIGUEZ, & SINGER, 2011). 

(Right) Pitts et al. showed that visible stimuli do not elicit the traditional large P300 components when they 
are task-irrelevant (PITTS, MARTÍNEZ, & HILLYARD, 2012). 
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index various brain functions. Although directly linking EEG frequencies and cognitive functions is 

probably a simplistic approach (BUZSAKI, 2009; TALLON-BAUDRY, 2009), several patterns of results deserve to 

be reviewed quickly. 

1.4.4.1. Studies manipulating the content of conscious perception 

 Reviewing the gamma proposal 

 

 

FIGURE 1.16 EEG AND MEG RHYTHM CORRELATING WITH CONSCIOUS PERCEPTION. 

(Top) Tallon-Baudry et al. presented subjects to a Dalmatian hidden in a black and white background 
and compared conditions in which subjects were able to detect the dog, to conditions in which subjects 
were unaware of the presence of the dog (TALLON-BAUDRY, BERTRAND, DELPUECH, & PERNIER, 1997). EEG 
recordings revealed that the perceived conditions was associated with a strong increase in the gamma 
range, around 280 ms after the onset of the stimulus. 

(Middle) A tactile stimulus presented at perceptual threshold elicits a stronger increase in alpha and 
beta power when it is detected than when it is not (PALVA, LINKENKAER-HANSEN, NÄÄTÄNEN, & PALVA, 
2005). 

(Bottom) Wyart and Tallon-Baudry asked subjects to determine the orientation of a poorly contrasted 
grating as well as whether they saw it or not (WYART & TALLON-BAUDRY, 2009). A preceding cue 
indicating most the targets’ location was used to manipulate subjects’ spatial attention. Contrasting 
seen versus unseen targets revealed a significant increase of power around 60 Hz, approximately 220 
ms after the stimulus onset. 
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Conscious perception has repeatedly been associated with an increase of power in the gamma 

range (> 30 Hz). This change is generally observed at the time of the P3 following the recognition 

(TALLON-BAUDRY ET AL., 1997; RODRIGUEZ ET AL., 1999) and detection of a masked (SUMMERFIELD ET AL., 

2002; ARU AND BACHMANN, 2009A; GAILLARD ET AL., 2009; LUO ET AL., 2009), attended (BATTERINK AND 

NEVILLE, 2013) or faint stimulus (WYART AND TALLON-BAUDRY, 2008) – although earlier changes of gamma 

power have also be observed at earlier time window (FISCH ET AL., 2009). Furthermore, the gamma power 

recorded from EEG in blindsight patients distinguished the activity elicited by a stimulus presented in the 

healthy visual field as compared to the impaired one (SCHURGER ET AL., 2006). Similarly, intracranial re-

cordings demonstrated that gamma power (together with firing rate) recorded in area V4 – but not V1 and 

V2 –  strongly correlated with rhesus macaques‘ visibility responses in a perceptual suppression experi-

ment (WILKE ET AL., 2006).  

However, several findings suggest that the gamma band may not be specific to conscious percep-

tion. First, Wyart and Tallon-Baudry recently showed that seen and unseen targets are marked by differ-

ences in the gamma band ~250 ms before the onset of the stimulus (WYART AND TALLON-BAUDRY, 2009). A 

similar, although much noisier, finding was simultaneously reported by an independent team (ARU AND 

BACHMANN, 2009B). Second, small but significant transient gamma responses can be elicited unconsciously 

(PALVA ET AL., 2005; FISCH ET AL., 2009; GAILLARD ET AL., 2009; LUO ET AL., 2009), including in anaesthetized 

subjects (GRAY ET AL., 1989; SUPP ET AL., 2011). For example, Supp et al. have recently demonstrated that 

tactile stimuli induced a transient gamma response over the sensori-motor cortex independently of the 

level of anaesthesia (SUPP ET AL., 2011). By contrast the stimulus-induced theta rhythm (4-8 Hz) disap-

peared as soon as subjects became unresponsive and seemingly unconscious.  

 

As it is well known that attention increases gamma power (ENGEL ET AL., 2001; FRIES ET AL., 2008) 

(FRIES ET AL., 1997, 2001, 2008; SIEGEL ET AL., 2008; WYART AND TALLON-BAUDRY, 2008) – although in poten-

tially distinct specific frequency range (WYART AND TALLON-BAUDRY, 2008) – it may be the case that the 

increase of gamma power reflects a facilitation of bottom-up processing, which itself may facilitate - but 

not necessary index - conscious perception. This possibility is particularly strengthened by two recent 

experiments. Aru et al. parametrically varied the visibility of a complex image by either changing the 

strength of the sensory input, or changing subjects‘ expectation about the stimulus – two psychophysical 

factors known to favor visibility (ARU ET AL., 2012A). The intracranial recording revealed that gamma power 

solely indexed stimulus strength but did not differ as a function of subjective visibility reports. Addition-

ally, Batterink et al. investigated the effect of attentional blink on gamma power (BATTERINK ET AL., 2012). 

 

FIGURE 1.17 CHANGES OF TACTILE-INDUCED OSCILLATIONS AS A FUNCTION OF AESTHETIC CONCENTRATION. 

Supp et al. (2011) showed in a tactile stimulation paradigm, that high frequency power is relatively 
preserved across all levels of anaesthesia, whereas the power in lower frequency ranges, and in the 
theta band in particular, strongly correlates with subjects’ state of consciousness (SUPP ET AL., 2011). 
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The attentional blink experiment consists in asking subjects to detect two subsequent targets T1 and T2. 

When the lag between T1 and T2 is short, T2 is generally not consciously perceived, as subjects attention 

is driven away from it (RAYMOND ET AL., 1997). Batterink et al. showed that, at a short lag, T2 elicited higher 

gamma power when correctly than when incorrectly identified, whereas the P300 did not distinguish these 

two conditions (BATTERINK ET AL., 2012). By contrast, this pattern of results was completely reversed at 

long lag: correctly and incorrectly discriminated trials differed in the amplitude of the P3 but not in the 

power of gamma rhythms. Unfortunately, visibility was not assessed at each trial. It thus remains to be 

confirmed that subjective visibility reports are best indexed by the P300 than by gamma power.  

 

 The paradoxical effects of alpha  

The power changes in the gamma band are generally opposite to the ones observed in the alpha 

band. This 10 Hz oscillation has long-lastingly been observed to anti-correlate with subjects‘ visual atten-

tion towards a relevant stimulus. Particularly present when eyes are closed (ADRIAN AND MATTHEWS, 1934), 

the increase of alpha power typically marks a disengagement of attention from visual inputs (KLIMESCH ET 

AL., 2007). Conversely, attention towards a stimulus tend to induce a strong and lasting decrease of the 

alpha power over the occipito-parietal electrodes (YAMAGISHI ET AL., 2003; PALVA ET AL., 2005; WILKE ET AL., 

2006; JOKISCH AND JENSEN, 2007; RIHS ET AL., 2009; WYART AND TALLON-BAUDRY, 2009). MEG source recon-

struction (SIEGEL ET AL., 2008) and intracranial recordings (BOLLIMUNTA ET AL., 2008) suggest that the alpha 

rhythm is generated by a thalamo-cortical loop involving the layers 5-6 of the occipital cortex. Moreover, 

changes in alpha power succeeds rather than precedes spiking and gamma activity (WILKE ET AL., 2006). 

The alpha rhythm is thus often associated with a top-down mechanisms that allows regulating bottom-up 

information processing (KLIMESCH ET AL., 2007; SADAGHIANI ET AL., 2010; JENSEN ET AL., 2012). In this view, 

the alpha rhythm would disrupt irrelevant/unattended information in order to facilitate the detection of 

relevant/attended information. Accordingly, this mechanism would lead to the paradoxical idea that alpha 

waves are necessary to conscious perception (in order to specifically select relevant information) but are 

anti-correlated with it (the more alpha, the more visual information is discarded). This modulatory hy-

 

FIGURE 1.18 GAMMA POWER CAN BE ELICITED INDEPENDENTLY OF SUBJECTIVE REPORTS 

(Left) Fisch et al. showed with intracranial recordings that gamma power could be elicited by masked 
stimuli even when subjects failed to recognized them (FISCH ET AL., 2009). 

(Middle) Batterink et al. showed in an attentional blink paradigm that gamma power dissociate correct 
from incorrect trials only at short lag (generally corresponding to an invisible condition), whereas the 
P300 well distinguished correct and incorrect trials at long lag (generally corresponding to a visible 
condition) (BATTERINK, KARNS, & NEVILLE, 2012). 

(Right) Aru et al. showed in a noise masking experiment that changing subject’s prior knowledge affect 
visibility threshold, but does not affect gamma power recorded with intracranial electrodes. By 
contrast, gamma power was only affected by the strength of the stimulus evidence (ARU ET AL., 2012). 
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pothesis18 fits with recent studies: not less than five independent teams almost simultaneously showed that 

the phase and the power of alpha waves predict whether or not subjects will detect a subsequent stimulus 

presented at perceptual threshold conditions (HANSLMAYR ET AL., 2007; VAN DIJK ET AL., 2008; BUSCH ET AL., 

2009; MATHEWSON ET AL., 2009; WYART ET AL., 2012), as well as when generated by a TMS pulse (ROMEI ET 

AL., 2008A, 2008B).  

1.4.4.2. Studies comparing brain activity under different states of 

consciousness 

The above studies essentially focused on the way stimulus processing modulates EEG rhythms 

and vice versa. Nonetheless, the resting EEG rhythms are also indicative of subjects‘ state of consciousness. 

In particular, the various types of loss of consciousness are associated with power changes in all frequency 

bands, and predominantly in low frequency rhythms. Indeed, general anaesthesia (KISHIMOTO ET AL., 1995; 

MAKSIMOW ET AL., 2006; LEWIS ET AL., 2012), non-REM sleep (DANG-VU ET AL., 2005; MURPHY ET AL., 2009) as 

well as absence (HOLMES ET AL., 2004; CHIPAUX ET AL., 2013) and complex partial epileptic seizures (LEMIEUX 

AND BLUME, 1986; BLUME AND LEMIEUX, 1988; BLUMENFELD, 2005) are generally marked by a loss of the alpha 

oscillation and by large delta (<4Hz) waves, predominantly observed over anterior electrodes19. Interest-

ingly, recent neuroimaging and computer simulations suggest that delta oscillations are mainly generated in 

the frontal lobe, and subsequently propagate to the rest of the cortex, causing cortical malfunctioning 

(AMZICA AND STERIADE, 1998; DANG-VU ET AL., 2005; MURPHY ET AL., 2009). In particular, the prefrontal hy-

pometabolism is directly correlated with the delta waves amplitude (DANG-VU ET AL., 2005), which suggests 

a direct bridge between the PET, fMRI and time-resolved neuroimaging results. 

 

Recently, the theories of information and dynamical systems have also been used to shed a differ-

ent light on EEG activity (DIMITROV ET AL., 2011). These frameworks provided a series of novel methods 

such as permutation entropy (BANDT AND POMPE, 2002), dimension of activation (GUILLEMANT ET AL., 2004), 

                                                      
18 The hypothesis is sometimes referred to as ―phasic alertness‖ to dissociate it from arousal (wake versus 

sleep) and selective attention (STURM AND WILLMES, 2001; SADAGHIANI ET AL., 2010) 
19 As for the PET studies, some dissociative anaesthetic such as ketamine are not accompanied by an in-

crease in delta power, however the state of consciousness in such cases is less clear as subjects tend to report dream-
like experiences. See (BONHOMME ET AL., 2011) for a recent review. 

 

FIGURE 1.19 DISSOCIATION OF CORTICAL AND THALAMIC ACTIVITY IN THE TRANSITION TO A LOSS OF CONSCIOUSNESS. 

(Left) Using spectral and complexity measures, Velly et al. showed that the dimension of activation 
(Da) of cortical activity successfully indexes subjects’ rapid loss of consciousness (VELLY ET AL., 2007). 
By contrast, the Da of thalamic and/or para-thalamic activity progressively decreases to reach a 
plateau approximately 10 min after subjects’ loss of consciousness.  

(Right) Magnin et al. found a similar dissociation in sleep (MAGNIN ET AL., 2010): thalamic activity 
starts decreasing before sleep onset and progressively diminishes until sleep stage II. By contrast, 
cortical activity is characterized by a high Da during wake and until sleep stage II. Cortical Da drops 
during deep sleep. 
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algorithmic complexity, and spectral entropy. In theory, these measures characterize signal properties that 

are not necessarily unveiled by traditional spectral frequency decomposition (STAM, 2005). In practice, these 

measures show that the complexity of EEG signals is directly correlated with the state of consciousness. 

For instance, permutation entropy, which quantifies the regularity of the EEG signals, after decomposing 

them into a set of discrete temporal pattern, dramatically drops during general anaesthesia (JORDAN ET AL., 

2008; LI ET AL., 2008). Similarly, dimension of activation, which consists in embedding the EEG signal into 

a high dimensional space in order to identify its attractors, drops when subjects fall asleep (REY ET AL., 

2007; MAGNIN ET AL., 2010) or enter a general anesthetized state (VELLY ET AL., 2007). 

Interestingly, these tools showed that the rhythms of the cortex and of the thalamus are dissoci-

able. In REM sleep, the thalamus is characterized by important delta waves while the rest of the cortex 

shows a quasi normal spectrum (MAGNIN ET AL., 2004), suggesting that the cortex may then be functioning 

but disconnected from external inputs. In the wake-sleep transition, the thalamus shifts towards low fre-

quency rhythms before the cortex does (MAGNIN ET AL., 2010). Finally, spectral edge, median power and 

dimension of activation in the scalp EEG are closely related to the state of consciousness of anaesthetized 

subjects, whereas thalamic / para-thalamic areas present little changes across consciousness states (VELLY 

ET AL., 2007). Taken together, these results suggest that the thalamus may not directly host or coordinate 

conscious information processing. Rather, and following neuromimetic modelling (DESTEXHE, 2000), its 

deactivation may result from a decrease of cortico-thalamic feedback (ALKIRE, 2009). 

KEY POINTS 

 Gamma power is likely to reflect increased processing, but may not necessarily index perceptual 

reports. 

 Alpha power is likely to often reflect a filtering mechanism: its presence would thus index a func-

tioning attentional mechanism. 

 Increased low frequency power, and loss of the alpha oscillation traditionally mark loss of con-

sciousness 

 Novel information-theoretic tools can be used to characterize the dynamical patterns of electro-

physiological signals, and show that conscious states are correlated with the complexity of cortical 

but not thalamic activity. 

1.4.5. FUNCTIONAL CONNECTIVITY 

 

 

FIGURE 1.20 STIMULUS INDUCED FUNCTIONAL CONNECTIVITY INDEX VISIBLE AND TASK-RELEVANT STIMULI. 

Maintaining (left), selecting (middle) and detecting (right) a visual stimulus is associated with a 
significant increase of the phase correlation in the beta range across various cortical sites.  
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It is important to note that the dynamics of the electrophysiological signals recorded from scalp 

EEG and MEG present an indirect method to probe the functional architecture of the human brain. In-

deed, none of the complex EEG patterns and oscillations would be observed at the scalp level if neurons 

were disconnected from one another, as the microscopic electric and magnetic fields generated by each 

neuron generates would not sum up to global coherent patterns. Rather, and as mentioned earlier, differ-

ent rhythms are thought to reflect thalamo-cortical horizontal or top-down cortical connections. It should 

be stressed however that these rhythms do not just reflect the brain anatomical structures. As mentioned 

above, brain rhythms can be modulated within a few milliseconds, and thus suggest an underlying func-

tional and dynamical architecture. A number of studies have thus directly attempted to quantify these 

functional connections, by systematically quantifying the amount of correlated signals observed across 

different brain regions.  

1.4.5.1. Functional connectivity induced by conscious and unconscious 

stimuli 

As fMRI studies have shown that conscious perception is associated with stronger and more 

widespread activity over the cortex, it is perhaps not surprising that visible stimuli elicit significantly higher 

functional connectivity than invisible targets (VUILLEUMIER ET AL., 2001; HAYNES ET AL., 2005B). Nonetheless, 

EEG, MEG and intracranial recordings have recently clarified this overall picture and demonstrated that 

long-distance functional connectivity was observed in specific frequency ranges. In particular, seen stimuli 

generally induce higher long distance functional connectivity in the beta band (TALLON-BAUDRY ET AL., 

2001; GROSS ET AL., 2004; GAILLARD ET AL., 2009). Similarly, several backward masking studies have reported 

significantly higher long-distance gamma synchrony in seen than unseen conditions (MELLONI ET AL., 2007; 

GAILLARD ET AL., 2009). It may also be noted that synchrony in the gamma range is particularly affected by 

subjects‘ spatial attention (SIEGEL ET AL., 2008; GREGORIOU ET AL., 2009A, 2009B). By definition, these correla-

tions do not distinguish bottom-up from top-down information flow. This specific issue can be investi-

gated by ―causality‖ analyses, such as Granger causality and transfer entropy. These methods consist in 

estimating whether a given temporal signal is useful to predict the future of a distinct signal. Despite its 

name, causality analyses remains purely observational, and therefore correlational. Granger analyses sug-

gest that the increase in beta synchrony reflect an increase of both bottom-up and top-down information 

flow (GAILLARD ET AL., 2009; GREGORIOU ET AL., 2009A). Furthermore, TMS experiments, in which informa-

tion processing is believed to be specifically and temporally disrupted, suggest that feedback information is 

crucial to conscious perception (PASCUAL-LEONE AND WALSH, 2001; RO ET AL., 2003; BOYER ET AL., 2005; 

SILVANTO ET AL., 2005; LAMME, 2006A). For example, Pascual-Leone & Walsh have shown that visual 

phosphenes20 are elicited when supra-threshold stimulation over MT/V5 is followed 30 ms later by a sub-

threshold stimulation over V1. By contrast, when V1 is stimulated before V5, subjects do not report see-

ing phosphene. This experiment has been proposed to reflect an asymmetrical effect of bottom-up and 

top-down processing on conscious perception: bottom-up information (V1 -> V5) would be less likely to 

be associated with conscious perception than top-down information (V5 -> V1). 

The above studies specifically investigated the functional connectivity induced by sensory stimula-

tion. However, the human brain presents interesting functional connectivity patterns in passive conditions 

too. In particular Raichle et al. (RAICHLE ET AL., 2001) showed that a number of brain areas, including the 

precuneus, medial prefrontal cortex, and bilateral temporo-parietal junctions, were paradoxically more 

active at rest than during demanding cognitive tasks. The discovery of this so-called default mode network 

(DMN), has opened a vast field of research on resting-state functional connectivity (see reviews in 

(BUCKNER ET AL., 2008; NORTHOFF, 2012)), which suggests that brain areas continue to share information 

even when subjects are passive. Furthermore, several networks identified in resting state conditions in-

                                                      
20 Phosphenes are brief and faint visual perceptions elicited by TMS pulses over the visual cortex. 
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clude a prefrontal components (DEHAENE AND CHANGEUX, 2011), suggesting that this area shares informa-

tion with many different circuits. However, the precise link between such resting state networks and con-

scious processing remains debated. On the one hand, the coupling strength of these networks correlates 

with consciousness state (BOLY ET AL., 2009).On the other hand, these networks can be found in sleeping 

(HE ET AL., 2008) and anaesthetized subjects (VINCENT ET AL., 2007; GREICIUS ET AL., 2008). Furthermore, 

some of these networks, such as the DMN, can be suppressed during the presentation of a consciously per-

ceptible target (FOX ET AL., 2006), and this suppression disappears during anaesthesia (HE AND RAICHLE, 

2009). On the contrary, the DMN is particularly active during mind-wandering and auto-biographical tasks 

(BINDER ET AL., 1999; MASON ET AL., 2007) (although see (GILBERT ET AL., 2007)). For example, Christoff et 

al.(CHRISTOFF ET AL., 2009) asked subjects to perform a particularly easy task. On some trials, subjects were 

asked to report whether they were focusing on the task, or mind-wandering. The results show that the 

mind-wandering trials were associated with a stronger DMN activation prior to probe. Overall, while the 

preservation of the resting-state networks is indicative of subjects‘ state of consciousness, each of these 

neural circuits might be recruited by different types of conscious processing such as attention to external 

stimuli or internal processing (BOLY ET AL., 2007; BUCKNER ET AL., 2008; DEHAENE AND CHANGEUX, 2011).  

1.4.5.2. Differences in functional connectivity across consciousness states 

Although the above studies demonstrate a tight link between functional connectivity and con-

scious perception, the empirical evidence obtained in altered states of vigilance suggests a more compli-

cated picture. On the one hand, and as mentioned above, loss of consciousness (partially) preserves the 

neural activity in primary cortical areas but strongly limits their ability to relay sensory information to 

higher order regions (e.g. (MOELLER ET AL., 2009; MARTUZZI ET AL., 2010; BONHOMME ET AL., 2011; LIU ET AL., 

2012)). Furthermore, the spatio-temporal organization of the functional networks recorded at rest is dra-

matically disrupted when vigilance drops. In particular, the default-mode-network is particularly disturbed 

in non-REM sleep and anaesthesia (e.g. (SCHROUFF ET AL., 2011; SCHRÖTER ET AL., 2012), see (GULDENMUND 

ET AL., 2012) for recent review). On the other hand, the presence of large slow waves in deep sleep and 

general anaesthesia (CIMENSER ET AL., 2011; FRANKS AND ZECHARIA, 2011) as well as complex epileptic sei-

zures ((GUYE ET AL., 2006; ARTHUIS ET AL., 2009), although see (AMOR ET AL., 2009) for a more precise de-

scription of the change in synchrony during epileptic seizures), seemingly suggest that the whole brain is in 

fact ―hypersynchronous‖ and therefore highly connected (TONONI AND EDELMAN, 1998). A recent intracra-

nial study may however jeopardize this classic idea. Lewis et al. indeed showed that slow oscillations in-

duced by propofol anaesthesia occur asynchronously over the cortex (LEWIS ET AL., 2012). The authors 

provide evidence that neurons fire in phase with the trough of the local delta wave. Because delta waves 

are asynchronous over the cortex, neurons would generally be at a suppressed phase when they receive 

distant cortical inputs. It remains unclear, however, how such asynchronous delta waves recorded over the 

cortex, eventually lead to such a strong coherent delta activity at the scalp level. 

In any case, an increase of functional connectivity does not necessarily indicate an increase of 

transmitted information across the cortex. As forcefully argued by Tononi and collaborators (EDELMAN 

AND TONONI, 2000; TONONI, 2004; LAUREYS AND TONONI, 2008; TONONI AND KOCH, 2008), although func-

tional connectivity may increase in deep sleep and under anaesthesia, the overall amount of information 

the brain carries is most likely diminished. To take an exaggerated example, if each neuron is connected to 

all other neurons, the hypothetical brain could only store 1 bit of information: either all neurons are active, 

or none are. This high-connectivity/low-information hypothesis fits with the evidence reviewed above: 

information-theoretic analyses of the EEG signals show that unconscious states are typically characterized 

by lower entropy (ANDERSON AND JAKOBSSON, 2004; KUMAR ET AL., 2007; LI ET AL., 2008; SHALBAF ET AL., 2013) 

and a lower dimension of activation (GUILLEMANT ET AL., 2004; GIFANI ET AL., 2007; REY ET AL., 2007; LEE ET 

AL., 2009) which both suggests that the unconscious brain‘s capacity to store information is low.  
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The link between information sharing and consciousness states has been particularly strengthened 

by a series of combined EEG/TMS experiments conducted by Massimini and collaborators (MASSIMINI ET 

AL., 2005, 2010, 2012; FERRARELLI ET AL., 2010; ROSANOVA ET AL., 2012; CASALI ET AL., 2013). The authors show 

that TMS pulses elicit a less complex neuronal activity in non-REM sleep (MASSIMINI ET AL., 2005) and 

anaesthesia (FERRARELLI ET AL., 2010) than in normal wakefulness (CASALI ET AL., 2013). In particular, during 

wakefulness, TMS pulses elicit activity in a series of different brain regions which differ depending on the 

stimulation site. In contrast, stimulations during non-REM sleep and anaesthesia only activate areas in the 

vicinity of the TMS.  

 

KEY POINTS 

 Stimulus-induced increase of functional connectivity correlates with subjective reports. 

 The integrity of intrinsic (resting state) functional networks is strongly correlated with states of 

consciousness. 

 It remains unclear whether the states dominated by low frequency rhythm reflect a hypersynchro-

nous or asynchronous functional connectivity pattern. In any case, the amount of shared informa-

tion across cortical areas is likely to be correlated with the state of consciousness. 

 

FIGURE 1.21 FUNCTIONAL CONNECTIVITY ELICITED BY TMS PULSES INDEX STATES OF CONSCIOUSNESS. 

Massimini and colleagues (MASSIMINI ET AL., 2005, 2010, N.D.; FERRARELLI ET AL., 2010; ROSANOVA ET AL., 
2012; CASALI ET AL., 2013) showed that the pattern of brain activity elicited by a TMS pulse has 
qualitatively different dynamics depending on subjects’ state of consciousness. When subjects are 
unconscious, the TMS pulse elicits a simple activation of the area(s) underneath the TMS, and 
potentially spreads over across the cortex homogeneously (top left). By contrast, when subjects are 
conscious, the TMS pulse elicits a neural response whose main locus varies across time (bottom left). 
(Right) Analyzing the complexity of these patterns using a novel index (Pertubational Complexity 
Index) proved to sensitivity and specifically index the state of consciousness in a variety of 
physiological and clinical conditions (CASALI ET AL., 2013). This last study is further commented in 
COMMENT 2. 
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1.5. TOWARD FINDING THE SIGNATURES OF CONSCIOUSNESS 

IN NON-COMMUNICATING PATIENTS 

1.5.1. INTERIM SUMMARY 

In spite of the diversity of the above experimental methods, neuroimaging studies of conscious-

ness converge on a number of empirical findings and thus allow for testing of the previously reviewed 

theoretical proposals. First, many different cortical regions, including the ventral temporal cortex 

(KOUIDER AND DEHAENE, 2007) and the frontal lobe (VAN GAAL AND LAMME, 2011), can be activated by 

invisible and unseen stimuli. This finding thus strongly challenges the view that recruiting any (ZEKI, 2003) 

or some cortical regions (GOODALE AND MILNER, 1992, 2005) suffices to perceive a stimulus consciously. 

Second, the fronto-parietal network is frequently observed as a key player of conscious perception: i) sub-

jective visibility reports are often marked by a late and large increase of neural activity in these areas (―igni-

tion‖, (DEHAENE AND CHANGEUX, 2011)) and ii) the malfunctioning of these brain regions generally marks a 

loss of consciousness (LAUREYS, 2005B). Third, the presence of local or distant 40 Hz synchrony in both 

subliminal and loss of consciousness conditions, makes it unlikely that this frequency range plays a major 

and specific role in conscious perception (CRICK AND KOCH, 1990A). Finally, the dissociation between con-

sciousness state and thalamic activity weakens the idea that this subcortical structure is a receptacle or a 

crucial coordinator of conscious processing (CRICK AND KOCH, 1990A; TONONI ET AL., 1994).  

By elimination, it may be thus tempting to conclude that conscious perception is directly sup-

ported by the prefrontal cortex (DEHAENE ET AL., 2006B; LAU, 2008) and/or the exchange of information 

across neural assemblies (LAMME, 2006B; DEHAENE AND CHANGEUX, 2011). However, the precise spatio-

temporal features of conscious processing remain insufficiently clear to unequivocally support a single 

theory of consciousness. Depending on the experimental method, and particularly on the way conscious 

perception is experimentally defined and assessed, the first electrophysiological activity that correlates with 

subjective reports can be relatively early (~150 ms) (SUPÈR ET AL., 2001; PINS, 2003; KOIVISTO ET AL., 2006; 

LAMME, 2006A; BOEHLER ET AL., 2008; MELLONI ET AL., 2011) or late (~300 ms) (DESMEDT ET AL., 1965A; 

SERGENT ET AL., 2005; DEL CUL ET AL., 2007; GAILLARD ET AL., 2009; MELLONI ET AL., 2011; NEUROSCIENCE ET 

AL., 2012). Similarly, it is insufficiently clear whether conscious perception is specifically supported by local 

recurrent processing (LAMME AND ROELFSEMA, 2000; PASCUAL-LEONE AND WALSH, 2001; SILVANTO ET AL., 

2005; SCHOLTE ET AL., 2006; FISCH ET AL., 2009), long distance information sharing (BECK ET AL., 2001; 

MELLONI ET AL., 2007; GAILLARD ET AL., 2009; SCHRÖTER ET AL., 2012), frontal cortices (DEHAENE ET AL., 

2006B; LAU, 2008; DEHAENE AND CHANGEUX, 2011), or a combination of these neural substrates. 

One of the critical tests for these neural theories of consciousness relates to their ability to pro-

vide accurate and useful predictions in the clinic. In particular, these theories should be able to discrimi-

nate conscious and unconscious patients independently of their behaviour. As mentioned earlier, the 

comparison between vegetative and minimally conscious state patients offers a particularly interesting 

contrast, as it separates the brain activity of minimally different types of patients who nevertheless present 

supposedly different state of consciousness. The logic is simple: if one of the putative neural signatures of 

consciousness discriminates vegetative from minimally conscious state patients, it may reflect a neural 

mechanism relevant to conscious perception. 

1.5.2. BRAIN ACTIVITY IN THE VEGETATIVE STATE  

The number of neuroimaging studies of vegetative and minimally conscious state patients is rap-

idly increasing (for extensive reviews see (LAUREYS ET AL., 2004; LAUREYS, 2005B; OWEN ET AL., 2009B; 
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LAUREYS AND SCHIFF, 2011)). I will now briefly review the main findings that have been observed over the 

past two decades. 

1.5.2.1. A lowered metabolism in the prefrontal cortex, the precuneus and 

the thalamus 

The brain metabolism of vegetative state patients is extraordinarily reduced and can reach half of 

its normal level (LAUREYS ET AL., 2004). Although this reduction affects the entire thalamo-cortical system 

(LEVY ET AL., 1987; DEVOLDER ET AL., 1990; TOMMASINO ET AL., 1995; RUDOLF ET AL., 2000), the anterio-

cingulate, the medial and lateral prefrontal cortex, as well as the precuneus (posterior cingulate) are par-

ticularly impaired (LAUREYS ET AL., 1999B; BEUTHIEN-BAUMANN ET AL., 2003; BRUNO ET AL., 2010). It is gener-

ally argued that this general hypometabolism is caused by an important neuronal degeneration (OWEN ET 

AL., 2009A)).  

 

1.5.2.2. Locating the brain activity elicited by sensory stimulations: fMRI 

and PET  

In spite of these general impairments, several neuroimaging studies have demonstrated that vege-

tative state patients can process sensory information (GIACINO ET AL., 2006). For example, Menon and col-

laborators showed that complex natural images elicited higher activity in the extra-striate cortex than 

scrambled images (MENON ET AL., 1998)21. Similarly, simple and complex sounds elicit reliable activations in 

the auditory cortices (DE JONG ET AL., 1997; BOLY ET AL., 2004; OWEN ET AL., 2005; COLEMAN ET AL., 2007) and 

tactile stimuli activate the sensory cortex (LAUREYS ET AL., 2002; SILVA ET AL., 2010). Several responses have 

been observed in associative cortices (BOLY ET AL., 2004; SCHIFF ET AL., 2005; DAVIS ET AL., 2007) and even 

prefrontal activations have been reported (SCHIFF AND PLUM, 1999; GIACINO ET AL., 2006; DAVIS ET AL., 2007). 

However, these activations appear dramatically reduced and spatially limited as compared to healthy con-

trols, conscious and even minimally conscious patients. Finally, the activity in the fronto-parietal networks 

is generally not correlated with primary sensory areas (LAUREYS ET AL., 2004; SCHNAKERS ET AL., 2006; 

LAUREYS AND SCHIFF, 2011).  

 

                                                      
21 Although see (SCHIFF AND PLUM, 1999) for potential confounds in this study. 

 

FIGURE 1.22 BRAIN METABOLISM IN CONSCIOUS AND VEGETATIVE SUBJECTS. 

Studies quantifying brain metabolism with Positron Emission Tomography (PET) show that vegetative 
state (VS) patients present an overall decrease of activity both in cortical and in subcortical structures. 
However, following the patterns observed in physiological, pharmacological and clinical loss of 
consciousness (FIGURE 1.9), the dorsolateral prefrontal cortex, the medial prefrontal cortex as well as 
the precuneus appear particularly impaired in VS. 
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1.5.2.3. Timing the brain activity elicited by sensory stimulations: EEG and 

MEG 

 

EEG and MEG studies demonstrate that vegetative state patients can present preserved event re-

lated potentials (ERP). In particular, auditory oddball experiments have been repeatedly implemented to 

 

FIGURE 1.24 SPECIFIC IMPAIRMENT OF LATE ERPS. 

When presented to a variation of the auditory oddball paradigm (BEKINSCHTEIN ET AL., 2009; FAUGERAS 

ET AL., 2011), vegetative and minimally conscious state patients can present a preserved mismatch 
negativity (MMN) in response to deviant tone. The following P300 is however dramatically lowered in 
amplitude and shortened in time. The above figure has been generated from data collected by Frédéric 
Faugeras and Lionel Naccache and generously provided for a technical comment available in 
Supplementary Material (COMMENT 1). 

 

FIGURE 1.23 STIMULUS EVOKED CORTICAL ACTIVITY IN VEGETATIVE STATE PATIENTS. 

(Left) Menon et al. (MENON ET AL., 1998) used PET to compare the brain activity elicited by faces versus 
random images. The results revealed significant activity in the fusiform gyrus, classically associated 
with face processing. 

(Middle) Coleman et al. (COLEMAN ET AL., 2007) presented a variety of auditory stimuli (noise, 
unintelligible sounds, unambiguous speech, ambiguous speech) to vegetative and minimally conscious 
state patients and showed that some 3/7 VS patients presented significant speech processing abilities, 
as assessed by comparing ambiguous and non-ambiguous sentences. The present figure is an example 
of VS patients showing a significantly higher activity to sound versus silence. 

(Right) Similar results can be observed with VS patients recorded with PET during a tactile stimulation 
(SILVA ET AL., 2010). 

Overall, these results suggest that VS patients can present preserved cognitive processing. However, 
and following the patterns of activation elicited by unconscious stimuli (Figure 8-10), the 
corresponding brain activation are generally restricted to limited neural circuits, and do not tend to 
recruit the fronto-parietal networks. 
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test the presence of the mismatch negativity (MMN) component. The results demonstrate that a large 

proportion of unambiguously vegetative state patients present significant MMN (FISCHER ET AL., 2004, 2010; 

DALTROZZO ET AL., 2007; BEKINSCHTEIN ET AL., 2009; FAUGERAS ET AL., 2011) and show that this component 

significantly predict subsequent recovery (FISCHER ET AL., 2004; DALTROZZO ET AL., 2007). Other supposedly 

automatic ERPs can also be observed in vegetative state patients. In particular, the N400 which seemingly 

indexes automatic semantic processes, has been observed in some vegetative state patients (SCHOENLE AND 

WITZKE, 2004; BALCONI ET AL., 2013; STEPPACHER ET AL., 2013). For example, Schoenle and Witzke analyzed a 

large cohort of 120 patients, and showed that 12% of the vegetative state patients presented a significant 

N400, whereas up to 77% minimally conscious patients22 showed a significant N400 (SCHOENLE AND 

WITZKE, 2004). In contrast, the amplitude of the P300 is generally indicative of a patient‘s state of con-

sciousness: the P300 elicited by meaningless auditory oddballs is indeed larger and more often observed in 

conscious and minimally conscious state than in vegetative state patients (PERRIN ET AL., 2006; 

BEKINSCHTEIN ET AL., 2009; FISCHER ET AL., 2010; FAUGERAS ET AL., 2012). Furthermore, several studies have 

shown that the P300 was a significant predictor of subsequent recovery (LUAUTÉ ET AL., 2005; DALTROZZO 

ET AL., 2007; CAVINATO ET AL., 2009; FAUGERAS ET AL., 2012) suggesting that this ERP component could index 

a clinically unobserved restoration of consciousness. 

 

1.5.2.4. Rhythms 

  

Vegetative state patients generally present an abnormal EEG spectrum. As in the sleeping and  

anesthetized states, the EEG is typically dominated by large low frequency waves, especially over frontal 

regions (e.g. (BABILONI ET AL., 2009; LEHEMBRE ET AL., 2012; VAROTTO ET AL., 2013)). Furthermore, alpha oscil-

                                                      
22 The authors refer no “near vegetative state patients” which is not a usual clinical category, but nevertheless grossly resembles 

the minimally conscious state. 

 

     

FIGURE 1.25 ELECTROPHYSIOLOGICAL SPECTRUM AND FUNCTIONAL CONNECTIVITY OF VEGETATIVE, MINIMALLY CONSCIOUS 

AND CONSCIOUS STATE PATIENTS. 

(Left) EEG studies (LEHEMBRE ET AL., 2012; J LEON-CARRION, MARTIN-RODRIGUEZ, DAMAS-LOPEZ, BARROSO 

Y MARTIN, & DOMINGUEZ-MORALES, 2008; JOSE LEON-CARRION ET AL., 2012) suggest that minimally 
conscious, and a fortiori vegetative state patients present a predominance of low frequency rhythms 
(0-4 Hz). An abnormally low alpha oscillation has also been reported (e.g. (LEHEMBRE ET AL., 2012)). 
Furthermore, functional connectivity measures based on phase synchrony in specific frequency bands 
suggests that patients with disorders of consciousness present functional connectivity impairments in 
the alpha band (8 – 13 Hz). 

(Right) fMRI analyses of patients’ default mode network (DMN) suggests that the integrity of this 
circuits is correlated with patients’ state of consciousness (VANHAUDENHUYSE ET AL., 2010). 
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lations, generally peaking over centro-posterior electrodes, are often absent or slowed down to a theta 

rhythm (BABILONI ET AL., 2009; LEHEMBRE ET AL., 2012; VAROTTO ET AL., 2013). The alpha wave amplitude has 

been shown to be correlated with patients‘ recovery (BABILONI ET AL., 2009). Spectral summary and com-

plexity measures revealed similar patterns of results. The bi-spectral index (BIS) is correlated with patients‘ 

states of consciousness, significantly lower in vegetative than in minimally conscious state patients 

(SCHNAKERS ET AL., 2008A). Similarly, EEG entropy is lower in vegetative state patients than in minimally 

conscious state patients, although this difference was found in acute, but not chronic, patients (GOSSERIES 

ET AL., 2011). 

1.5.2.5. Functional connectivity 

Finally, numerous studies suggest that vegetative state patients are characterized by an impaired 

functional connectivity. PET and fMRI studies suggests that thalamo-cortical and cortico-cortical connec-

tivity may be present, but largely impaired in the vegetative state (LAUREYS ET AL., 1999A, 2000A, 2000B; BOLY 

ET AL., 2004; ZHOU ET AL., 2011; KOTCHOUBEY ET AL., 2013). In particular, auditory stimuli induce more wide-

spread activation, and recruit distant brain regions in healthy subjects (LAUREYS ET AL., 2000B, 2002) and in 

minimally conscious state patients (BOLY ET AL., 2004) than in vegetative state patients. Similar results were 

observed with tactile stimuli: contrary to healthy subjects, vegetative state patients‘ bilateral parietal corti-

ces (Brodmann area 40) are less activated and not correlated to the activity in primary sensory motor cor-

tex (SILVA ET AL., 2010). Furthermore, minimally conscious state patients show impaired functional connec-

tivity between sensory cortices and the cortical midline in response to painful stimuli (BOLY ET AL., 2008). It 

has been recently argued that such functional connectivity impairments would solely reflect top-down 

deficits, and that bottom-up information processing would conversely be preserved in vegetative state 

patients (BOLY ET AL., 2011). However, and while this hypothesis remains plausible, we underlined severe 

methodological issues which invalidate the data presented in support of this claim (KING ET AL., 2011) 

(COMMENT 1). 

Numerous studies indicate that resting-state functional connectivity is also impaired. Silva and 

collaborators found that the ascending reticular activating system (ARAS) activity normally correlated with 

the precuneus‘ in healthy subjects but not in vegetative state patients (SILVA ET AL., 2010). The integrity of 

the default mode network is also directly correlated with consciousness states (BOLY ET AL., 2009; CAUDA ET 

AL., 2009; VANHAUDENHUYSE ET AL., 2010) and recovery (LAUREYS ET AL., 2000B). For instance, Vanhauden-

huyse et al. showed that the default mode network is correlated with patients‘ CRS-R score 

(VANHAUDENHUYSE ET AL., 2010), although not necessarily each of the assessed abilities independently 

(BRUNO ET AL., 2010). Note, however, that the detection of resting state connectivity depends on the use of 

adequate series of preprocessing steps that are not always thoroughly applied (ANDRONACHE ET AL., 2013). 

These studies generally demonstrate weak differences between vegetative and minimally conscious 

state patients. Furthermore, they are directly dependent on the way functional connectivity is modelled, 

and can thus be subject to a number of artefacts (ROGERS ET AL., 2007; KING ET AL., 2011; ANDRONACHE ET 

AL., 2013). A more direct method to assess cortico-cortical connectivity is to use combined EEG and TMS. 

As mentioned above, Massimini and colleagues have demonstrated that the electrophysiological activity 

elicited by TMS pulses is more complex in normal wakefulness than in sleep and anaesthesia (MASSIMINI ET 

AL., 2005, 2007; ROSANOVA ET AL., 2012) (COMMENT 2). More specifically, the location of the peak activation 

only changes over time if subjects are awake. Applying this method to vegetative, minimally conscious, 

and conscious state patients as well as locked-in syndrome patients demonstrated a very strong correlation 

between patients‘ clinical states of consciousness and the complexity of the TMS-induced EEG activity 

(ROSANOVA ET AL., 2012; CASALI ET AL., 2013). This result was recently replicated by an independent team 

(RAGAZZONI ET AL., 2013). Not only does this result strongly suggest that functional connectivity is im-
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paired in vegetative state patients, but it provides a method that is independent of the integrity of patients‘ 

afferent and efferent pathways and of their ability to understand instructions.  

The possibility of a causal relationship between patients‘ state of consciousness and the thalamo-

cortical connections is particularly well supported by interventional studies. Giacino, Schiff and colleagues 

showed that stimulating the central thalamus bilaterally with deep brain stimulation (DBS) electrodes re-

stored arousal regulation and improved responsiveness of a minimally conscious state patient, who had 

been unable to communicate reliably for six year prior to the operation (SCHIFF ET AL., 2007). Interestingly, 

after a five-month period, behavioural improvements could be observed even when the electrodes were 

not active. Although promising, this highly invasive study has not been applied to a vegetative state pa-

tient. It thus remains unclear whether central thalamic impairments are the unique cause of disorders of 

consciousness. Although several anatomical studies found centro-thalamic lesions in vegetative state pa-

tients (KINNEY ET AL., 1994; MAXWELL ET AL., 2006), these patients are generally characterized by multi-focal 

white and gray matter injuries (TSHIBANDA ET AL., 2009; NEWCOMBE ET AL., 2010).  

 

 

KEY POINTS 

 Vegetative state (VS) patients‘ brain metabolism is dramatically reduced, especially in the fronto-

parietal regions. 

 VS patients can demonstrate residual sensory activation, but activations of the frontal and associa-

tive cortices are extremely rare. 

 VS patients can present preserved early ERPs (P1, N2, MMN). Late ERPs (P3, N4) are generally 

correlated with consciousness states and recovery. 

 VS patients‘ EEG spectrum at rest is dominated by low frequencies (<4Hz) and an absent, or 

slowed, alpha rhythm (10 Hz). 

 VS patients‘ anatomical and functional thalamo-cortical and cortico-cortical connectivity is largely 

impaired.

 

FIGURE 1.26 EFFECTIVE CONNECTIVITY ASSESSED WITH TMS & EEG IN VEGETATIVE AND MINIMALLY CONSCIOUS STATE 

PATIENTS. 

Rosanova and colleagues quantified the effective connectivity of vegetative and minimally 

conscious state patients with following Massimini et al.‘s original protocol (MASSIMINI ET AL., 2005). The 

results demonstrate that TMS pulses elicit, in vegetative state patients, a peak of activation which is 

stable across time. By contrast minimally conscious patients present a brain response similar to con-

scious subjects (see FIGURE 1.21 and COMMENT 2).  



 

 
 

 

2.1. OUTSTANDING QUESTIONS 

The recent neuroimaging developments have radically changed the theoretical advances in con-

sciousness research. Initiated with metaphors and abstract concepts, the current theoretical proposals now 

provide detailed neural mechanisms. Each of these putative processes predicts that conscious perception 

should be marked by specific patterns of neural activity observable independently of subjects‘ ability to 

behaviourally report their subjective contents. A critical test for these theories thus points towards their 

ability to discriminate two minimally different types of patients: vegetative state patients and minimally 

conscious state patients, who remain either completely or largely impaired in communicating despite their 

preserved arousal. More specifically, these empirical results lead to five specific questions that have moti-

vated the present work: 

 Which of the putative neural signatures of consciousness maximally differentiates vegetative state 

from minimally conscious state patients? 

The putative neural signatures of conscious perception have been established through a number 

of different experimental methods. However, the extent to which each of these markers can be used to 

distinguish vegetative from minimally conscious state patients remains unknown. Two different ap-

proaches will be presented in the present experimental contribution. The first consists in testing the cur-

rent models of consciousness in their respective ability to successfully apply to the vegetative and mini-

mally conscious clinical cohort. The second approach consists in systematically testing a large battery of 

potential markers in order to test whether the present models of consciousness account for all of the dif-

ferences observed between vegetative and minimally conscious state patients. 

 Can the neural markers of conscious processing be used to make predictions at the single subject 

level? Can they be used to make predictions at the single trial level? 

A key challenge to clinical research is to go beyond group statistics and provide tools that are di-

rectly applicable to each patient. While most of the studies reviewed above show statistical differences 

between groups of vegetative and minimally conscious state patients, the sensitivity (does the marker de-

tect consciousness?) and the specificity (does it detect other things than consciousness?) of each putative 

neural signature of consciousness is generally not assessed. A key challenge is thus to quantify the ability of 

each of these putative markers to distinguish vegetative and minimally conscious state patients. Ultimately, 

the most discriminative marker could allow single trial detection and thus open the possibility of monitor-

ing consciousness states in real time. Furthermore, such advance would also offer a new family of experi-

mental paradigms in conscious access could be probed at each trial without asking for subjective report. 

 Can the putative neural markers of conscious processing be compared and combined? 
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As most clinical and empirical studies investigate a single type of brain activity at a time, it is un-

clear whether the various putative signatures of consciousness occur in synergy. Systematically comparing 

and contrasting them could lead to two important consequences. First, it could help differentiate the 

processes that are necessary but not sufficient to consciousness, from those are specific to it. Second, each 

neural marker could contain substantially different information about the underlying conscious processing.  

 What are the computational mechanisms responsible for conscious perception, and do their re-

spective elementary generate different patterns of neural activity?  

Identifying and isolating the computational components allowing one to consciously perceived 

his/her environment is a central question in the present thesis. While a great deal of research has focused 

on determining which brain region, and which types of brain activity index conscious perception, it often 

remains insufficiently clear why these specific neural responses produce conscious perception. For exam-

ple, models emphasizing on the role of gamma synchrony in consciousness (CRICK AND KOCH, 1990A; 

TALLON-BAUDRY AND BERTRAND, 1999) generally rely on the premise that conscious perception is directly 

linked to information binding. Analogously, the global workspace theory (BAARS, 1989; DEHAENE ET AL., 

2006B; DEHAENE AND CHANGEUX, 2011) equates consciousness to information access and, to a lesser extent, 

information maintenance. Yet, the evidence reviewed above questions such premises. For example, un-

conscious semantic priming suggests that complex and integrated semantic information may be processed 

unconsciously (NACCACHE AND DEHAENE, 2001B; KOUIDER AND DEHAENE, 2007). Similarly, blindsight dem-

onstrate that one can use (and thus access) unconscious information for behavioural reports (WEISKRANTZ, 

1986; STOERIG AND COWEY, 2009). Such evidence suggests that the present frameworks and their respective 

computational mechanisms should be clarified and formalized.  

 Can novel methods provide new insights to the theories of conscious access? 

Each theory of consciousness probably arose from methodological advances: time frequency 

analyses were followed by models of conscious access based on synchronous oscillations; event-related 

potentials studies engendered theoretical proposals distinguishing early and late activity; information theo-

retic equations have been tightly linked to the proposals equating complexity and consciousness. To ex-

tend the current models of conscious access, original methods should thus be proposed and tested in the 

context of conscious and unconscious processing. 

2.2. OVERVIEW OF THE THESIS 

The questions outlined above will be tackled along three general axes of research: 

- First, the methods to detect the putative electrophysiological signatures of consciousness will be 

implemented, and supplemented with original analyses characterizing the patterns of brain activity 

associated with conscious and unconscious processes. 

- Second, the ability of the resulting markers to discriminate between vegetative state and minimally 

conscious state patients will be tested. 

- Third, each of these methods will be discussed in terms of their ability to improve the current 

theories of conscious access. 

These general aims are tackled across six distinct studies.  
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In a first study, I show how multivariate pattern analyses (MVPA) can be used to decode, at the 

single subject level as well as at the single trial level, the early and late brain responses to two distinct audi-

tory novelties encountered in an experimental setup introduced by Bekinschtein and collaborators 

(BEKINSCHTEIN ET AL., 2009). The so-called ―Local Global‖ protocol is specifically designed to dissociate 

early and late event related potentials and thus offer an interesting possibility of isolating consciousness-

dependent from consciousness-independent processes. Following the classic oddball task described in the 

literature review, ―local‖ novelties indicate a change of sound within a given trial and elicit a mismatch 

negativity (MMN) around ~150 ms. By contrast, ―global‖ novelties indicate a change of auditory sequence 

across trials and elicit a late P300b but not MMN. After testing the decoding methods with a scalp and 

intracranial EEG as well as MEG, and under different active, passive and distractive tasks, I demonstrate 

that only late ERPs vanish under distraction.  

In a second set of papers, I show how the decoding analyses developed in the first study can be 

extended and used in an original way so as to characterize the dynamics of mental processes. In particular, 

I show that the resulting ―temporal generalization‖ method differentiates serial processes and sustained 

neural responses. The dissociation between serial and sustained processing can be empirically observed in 

an MEG version of the Local Global protocol implemented in the first study. The results demonstrate 

that a change of sound within a given trial (local mismatch) gives rise to a sequence of different brain re-

sponses. By contrast a global change of the auditory pattern elicits a late and sustained brain response. In a 

follow-up paper, I show how the temporal generalization method can be used in a variety of context and 

provide a powerful tool to understand the mechanisms underlying complex neural dynamics.  

These decoding methods are also applied to vegetative and minimally conscious state patients. 

The results demonstrate that early brain responses are partially preserved in both vegetative and minimally 

conscious state patients, but that late brain activity is only observed in minimally conscious state patients. 

While these results fit with several models of conscious processing (DEHAENE ET AL., 2006B; LAMME, 2006B, 

2010; DEHAENE AND CHANGEUX, 2011), their relatively moderate statistical power suggests that, in practice, 

contrastive ERPs may not be suitable to detect consciousness in the clinics. 

Consequently, I turned toward two other types of markers: functional connectivity and complex-

ity. In collaboration with Jacobo Sitt, I first introduce a novel method to quantify the amount of informa-

tion shared between distant brain regions, and demonstrate that this marker efficiently discriminates vege-

tative from minimally conscious state patients. Second, I show that the complexity of patients‘ EEG is 

strongly correlated with their state of consciousness. Third, I systematically compare these original meas-

ures to the traditional putative neural signatures of consciousness and isolate the best candidate markers. 

Finally, I demonstrate that combining these markers with multivariate analyses can usefully diagnose and 

predict the state of consciousness of individual patients. In particular, I show that patients clinically diag-

nosed to be in a vegetative state have greater chances of later presenting signs of conscious behaviour if 

their brain activity resembles those of conscious subjects. 

I conclude this set of neuroimaging studies by going back to subjects‘ behaviour in response to 

conscious and unconscious stimuli. I show that multivariate methods can also provide a useful theoretical 

and empirical framework to tackle conscious and unconscious perception. In particular, I show how this 

approach formally integrates and clarifies the differences between confidence ratings, subjective visibility 

reports and objective discrimination performance. After deriving a number of original predictions from 

this framework, I successfully test one of them in a novel perceptual decision task. 

Finally, I summarize the present findings, discuss their limits and relevance to current theories of 

consciousness, and briefly outline two perspectives for future research. 

 



 

 
 

 

3.1. INTRODUCTION OF THE ARTICLE 

As detailed in the literature review, event related potentials (ERPs) measured with electroencepha-

lography (EEG) can be used to distinguish early processes (believed to be independent from conscious 

access) from late processes (believed to be correlated with conscious access). A critical test thus consists in 

isolating these early and late brain responses in vegetative and minimally conscious state patients. Such 

tests have already been performed and several teams have started to provide within-subject analyses 

(FISCHER ET AL., 2004, 2010; FISCHER AND LUAUTÉ, 2005; DALTROZZO ET AL., 2007; BEKINSCHTEIN ET AL., 2009; 

FAUGERAS ET AL., 2011), which provide useful complements to patients‘ diagnosis. These methods however 

face several challenges. First, vegetative and minimally conscious state patients generally present fluctuat-

ing vigilance and attention: a failure to identify the ERPs of interest may thus results from an inability to 

isolate the single trial responses. Second, patients often present dramatic brain and skull lesions. Conse-

quently, the topographies and latencies of the EEG that are typically identified in healthy subjects may be 

dramatically transformed in these patients. Yet, systematically testing all EEG electrodes at all time sam-

ples increases the probability of identifying random effects, and therefore require more conservative statis-

tical criteria.  

These issues therefore call for developing a method that could, in principle, not only detect a par-

ticular brain activity in a given subject independently of its individual spatial and temporal characteristics, 

but also provide a way to extract this information at the single trial level to ultimately allow for real time 

monitoring of patients‘ brain activity.  

In this first study, I implemented multivariate pattern analyses to maximize the detection of two 

putative neural signatures of conscious and unconscious processing: the MMN and the P3. After demon-

strating that this approach provides accurate single trial prediction in normal subjects, I test its applicabil-

ity in a large cohort of patients. As for the rest of the studies, the clinical recordings were acquired by 

Frédéric Faugeras, Benjamin Rohaut and Lionel Naccache. 
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3.2. ABSTRACT 

Detecting residual consciousness in unresponsive patients is a major clinical concern and a chal-

lenge for theoretical neuroscience. We recently designed an experimental protocol that dissociates two 

electro-encephalographic (EEG) responses to auditory novelty. Whereas a local change in pitch automati-

cally elicits a mismatch negativity (MMN), a change in global sound sequence leads to a late P300b re-

sponse. The latter component is thought to be present only when subjects consciously perceive the global 

novelty. Unfortunately, it can be difficult to detect because individual variability is high, especially in clini-

cal recordings. To optimize detection, the present study investigates the potential of multivariate pattern 

classifiers to extract subject-specific EEG patterns and predict single-trial local or global novelty re-

sponses. We first validate our method with 38 high-density EEG, MEG and intracranial EEG recordings. 

We demonstrate the high sensitivity of our approach in control subjects and confirm that local responses 

are robust to distraction whereas global responses depend on attention. We then investigate 158 clinical 

EEG recordings from vegetative state (VS), minimally conscious state (MCS) and conscious state (CS) 

patients. For the local response, the proportion of patients with significant classifications scores (M=60%) 

does not vary with the state of consciousness. By contrast, for the global response, only 14% of VS pa-

tients present a significant effect, compared to 31% of MCS and 52% of CS patients. In conclusion, sin-

gle-trial multivariate decoding of novelty responses provides valuable information in unresponsive patients 

and paves the way towards real-time monitoring of the state of consciousness. 

3.3. INTRODUCTION 

Despite a recent flurry of experimental discoveries, the neuronal mechanisms that support con-

scious perception remain a major challenge for theoretical neuroscience. Numerous studies have associ-

ated conscious perception with macroscopic neurophysiological phenomena such as synchronous activity 

across distant cortical regions and sustained fronto-parietal activations (SERGENT ET AL., 2005; FAHRENFORT 

ET AL., 2007, 2012; MELLONI ET AL., 2007; GAILLARD ET AL., 2009) which are thought to reflect global informa-

tion integration (TONONI AND EDELMAN, 1998; REES ET AL., 2002; TONONI AND SPORNS, 2003; LAMME, 2006B; 

FISCH ET AL., 2009; DEHAENE AND CHANGEUX, 2011; MELLONI ET AL., 2011; SETH ET AL., 2011). However, iden-

tifying the neuronal signatures of conscious processing is not just a theoretical exercise. Every year, severe 

brain injuries lead thousands of patients to lose their communication abilities and fall into a variety of 

clinical conditions ranging from coma, to vegetative state (VS), minimally conscious state (MCS) or con-

scious but paralyzed patients (locked-in syndrome). Clinically, separating disorders of consciousness 

(DOC) from communication deficits can be difficult. In particular, patients in vegetative states (VS) pre-

sent moments of arousal, during which they open their eyes and produce complex behavioral reflexes. 

Yet, they show no clear signs of intentional behavior, even after careful clinical examination performed by 

experienced teams (BRUNO ET AL., 2011A). Slightly more functional patients, referred to as being in a 

―minimally conscious state‖ (MCS), present some intentional behaviors but seem unable to establish any 

long-lasting communication (GIACINO ET AL., 2002).  

To facilitate clinical diagnosis, brain imaging techniques may play an important role (LAUREYS ET 

AL., 2004; OWEN ET AL., 2006; OWEN, 2008; BYRNE ET AL., 2010; LAUREYS AND SCHIFF, 2011). By directly detect-

ing the neural activity associated with conscious processing, they could be used to circumvent communica-

tion deficits and thus provide crucial information for the diagnosis of these patients. The Local Global 

protocol (BEKINSCHTEIN ET AL., 2009) was designed for this purpose (FIGURE 3.1). This experimental setup 
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allows the isolation of two event related potentials (ERPs) elicited by two types of auditory novelty. First, 

a change in pitch within a five-sound sequence (hereafter referred to as local deviancy) typically leads to a 

frontal mismatch negativity (MMN) ~150ms after stimulus onset. Second, a change in auditory sequence 

in a fixed global context generates a late P300b response over centro-posterior electrodes. Crucially, these 

auditory changes can be arranged to create a 2x2 design in which local deviancy and global deviancy are 

orthogonally manipulated (BEKINSCHTEIN ET AL., 2009).  

 

There is now growing evidence that the MMN reflects a prediction error signal elicited whenever 

the incoming sound does not fit with a prediction constructed on the basis of previous local auditory 

regularities (NÄÄTÄNEN ET AL., 1978, 2010; GARRIDO ET AL., 2007, 2008; WINKLER, 2007; WACONGNE ET AL., 

2011, 2012). Moreover, manipulations of attention, sleep and anaesthesia show that the MMN may persist 

even in unconscious states (ATIENZA ET AL., 1997; BRÁZDIL ET AL., 2001; HEINKE ET AL., 2004; MULLER-GASS ET 

AL., 2007; GARRIDO ET AL., 2008; BEKINSCHTEIN ET AL., 2009; ROHAUT ET AL., 2009; NÄÄTÄNEN ET AL., 2010; 

TZOVARA ET AL., 2012). By contrast, the P300b is thought to reflect a higher-order violation of subjects‘ 

expectations of a given rule, constructed over a longer time period and has thus been closely linked to 

working memory (GOLDSTEIN ET AL., 2002; POLICH, 2007) and conscious access (DEHAENE ET AL., 2006B; 

DEHAENE AND CHANGEUX, 2011). Converging lines of evidence suggest that the dissociation between these 

two neural signatures could discriminate patients in vegetative state (VS) from those in conscious (CS) or 

minimally conscious states (MCS) patients (NACCACHE ET AL., 2005; WIJNEN ET AL., 2007; ROHAUT ET AL., 

2009; FISCHER ET AL., 2010; FAUGERAS ET AL., 2011, 2012). 

However, isolating these event-related responses in single patients can unfortunately be difficult 

for several reasons. First, clinical recordings often present a low signal-to-noise ratio (SNR) because of 

numerous physiological (movements, eye blinks, etc.) and environmental (presence of auditory noise, no 

Faraday cage, etc.) artefacts. Moreover, patients often present severe brain and even skull damages which 

can alter the scalp electrical projections of their cortical activity. This topographical variability can be made 

worse by temporal delays and inter-trial variability caused by processing impairments or white matter 

damage (TSHIBANDA ET AL., 2009; NEWCOMBE ET AL., 2010). In other words, unlike control recordings, a pa-

tient‘s MMN and P300b may not be optimally observed over the frontal and parietal channels at ~150 and 

~350ms respectively. While more liberal analyses testing a greater number of EEG channels and time 

 

FIGURE 3.1 THE LOCAL GLOBAL PROTOCOL 

The Local Global paradigm (BEKINSCHTEIN ET AL., 2009) is an auditory odd-ball experimental setup that 
implicitly tests subjects on their ability to detect two orthogonal types of auditory novelty. Each trial is 
composed of five successive tones (SOA=150 ms). The first four sounds are always identical. Local-
deviant (LD) trials differ from local-standard trials (LS) because their fifth sound deviates in pitch. 
Global-deviant (GD) trials correspond to the presentation of a sequence of five sounds which is rare in 
a given block, compared to the frequent “global standard” sequence (GS). Both local and global 
novelties depend entirely on the fifth sound, which therefore serves as the origin of time scales in all 
subsequent graphs. 
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samples could be implemented, correction for multiple comparisons would largely diminish either sensi-

tivity or confidence in the presence of a given brain response. 

To overcome these issues, we evaluate in the present research the potential of a single-trial multi-

variate pattern (MVP) analysis. We implemented, separately for each subject, a MVP classifier that aims at 

maximally extracting information from each trial by combining evidence from multiple EEG channels and 

multiple time samples. After training on an independent dataset, the classifier estimates the probability 

that each trial contains a local or a global response to auditory novelty. This prediction can be compared 

to trials‘ effective classes. Classification scores can thus indicate whether a given subject is able to detect 

the corresponding type of novelty.  

We first apply our method to EEG, MEG and intracranial EEG recordings acquired from control 

subjects, then to high-density EEG recordings from 158 DOC patients. We consider three successive 

questions: (1) What level of accuracy can be achieved from each type of recordings? (2) Can decoders be 

formed to generalize the detection of novelty from one experimental context to another? (3) Is our method 

sensitive enough to be applied to the detection of residual novelty processing in DOC patients? 

3.4. METHODS 

3.4.1. PROCEDURE, MATERIAL & APPARATUS 

The data analyzed here come from four different experimental settings, using either scalp EEG, 

MEG, or intracranial EEG, which together enables the direct comparison of the utility of each approach 

with regard to single trial decoding. Events Related Potentials (ERPs) and Events Related Fields (ERFs) 

have been partially reported elsewhere (BEKINSCHTEIN ET AL., 2009; WACONGNE ET AL., 2011; FAUGERAS ET 

AL., 2012). All experiments were approved by the relevant regional ethical committees (Comité pour la 

Protection des Personnes Pitié-Salpêtrière and Bicêtre hospitals). Healthy volunteers received a financial 

compensation for their participation. Unless specified otherwise, the procedure used in our experiments 

exactly followed the Local Global protocol (BEKINSCHTEIN ET AL., 2009) which enables the comparison of 

effects engendered by physically identical but contextually different auditory stimuli. In the standard de-

sign, subjects are required to count the global deviant trials and report this number at the end of each 

block, in order to ensure that they pay attention to the task.  

The auditory stimuli were 50 ms-duration sounds composed of 3 sinusoidal tones (either 350, 

700, and 1400 Hz, hereafter sound A; or 500 Hz, 1000 Hz, and 2000 Hz, hereafter sound B), with 7-ms 

rise and 7-ms fall times. Sequences were composed of five stimuli presented at a Stimulus Onset Asyn-

chrony (SOA) of 150 ms, and were separated by a variable silent interval of 1350 to 1650 ms (50 ms 

steps). The sequences could comprise five identical tones (xxxxx) or four identical tones followed by a 

distinct one (xxxxY, where X can be sound A or sound B and Y the other sound). Following the original 

design, in a given block, 80% of trials consisted in one type of sequence (e.g. aaaaB) and 20% of trials were 

global deviants (aaaaa in this example), pseudo randomly distributed at least one and at most six global-

standard trials apart (FIGURE 3.1). In all experiments, trials immediately following a global deviant were 

removed from the analyses. Each block started with a 30s habituation phase during which the frequent 

sound sequences were repeatedly presented to establish the global regularity, before the first infrequent 

stimulus was heard. In experiments 1, 3-5 , sounds were presented via headphones with an intensity of 70 

dB, using E-prime v1.2 (Psychology Software Tools Inc.). In experiment 2, the intracranial recording ap-
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paratus being incompatible with headphones, sounds were directly presented from the computer‘s speak-

ers. 

3.4.1.1. Experiment 1: counting task (EEG) 

In the first experiment (reported in (FAUGERAS ET AL., 2012)), ten healthy adults (Age M = 23.0 

years old, SD = 0.67 years, 3 females) performed the standard Local Global protocol, while EEG was 

continuously recorded using a 256-channel EEG geodesic net (EGI).  

Each subject was recorded for approximately 45 min, comprising 8 blocks of 3-4 min duration, 

each beginning with a 30 s habituation phase in which the global standard stimuli were repeatedly pre-

sented. As for all experiments, trials from these habituation phases were not included in the analyses. Each 

block was interleaved with resting periods of a few minutes. In each block, subjects were instructed to 

mentally count the global deviant trials. This experiment will therefore be referred to as 'counting EEG'. 

Bad sensors, defined as those showing no signal at all, constant white noise, or presenting inter-

mittent signals, were interpolated. Trials during which more than 20% of the sensors were bad, the EEG 

voltages exceeded ± 150 µV, EEG transients exceeded ± 100 µV or electro-oculogram activity exceeded 

± 80 µV were excluded from the analyses. All signals were digitally low-pass filtered at 40 Hz, down-

sampled to 250 Hz, and referenced with a common average. Trials were then segmented from -800 ms to 

736 ms after the critical stimulus onset, and were baseline corrected over a 200 ms window before the 

onset of the first of the five sounds. All EEG processing stages were performed in the EGI Waveform 

Tools Package and with the Fieldtrip toolbox (OOSTENVELD ET AL., 2011) and Matlab 2009b.  

3.4.1.2. Experiment 2: counting task (iEEG) 

In the second experiment, nine patients (Age: M=33 years old, SD=11 years, 5 women) suffering 

from drug-resistant epilepsy, and who had consequently undergone electrode implantation for pre-surgical 

purposes, performed a standard Local Global protocol (two patients were already reported in 

(BEKINSCHTEIN ET AL., 2009)) in 8 consecutive blocks. It should be noted that, although epileptic patients 

cannot be considered as healthy controls, their attention and their state of consciousness were relatively 

comparable to healthy subjects‘. On average, 56 (SD=9) intracranial electrodes (IEEG) sampled at 400 Hz 

and 1kHz (depending on the system) recorded their brain activity from various cortical areas mainly within 

the temporal, the occipital, and the frontal lobes. Electrode locations are reported in SUPPLEMENTARY FIG-

URE 3.7. The task here was exactly as in Experiment 1.  

After removing channels showing inter-ictal activity, analyses were performed on 401 channels. 

All signals were digitally low-pass filtered at 40 Hz. Trials were then segmented from -800 ms to 700 ms 

after the critical stimulus onset, and were corrected for baseline over a 200 ms window before the onset of 

the first of the five sounds. All EEG processing stages were performed with Matlab 2009b and the Field-

trip toolbox (OOSTENVELD ET AL., 2011). 

3.4.1.3. Experiment 3: attentive task (MEG) 

In the third experiment (reported in (WACONGNE ET AL., 2011)), ten healthy adults (Age M=25 

years old, SD=4.7 years, 5 females) performed a modified version of the Local Global protocol (see be-

low) while their brain activity was measured with MEG (Elekta Neuromag® MEG system, Helsinki, 

Finland, comprising 204 planar gradiometers and 102 magnetometers in a helmet-shaped array) and EEG 

(built-in 64 electrodes system). Scalp EEG electrodes were not analyzed in the present study. Data were 

sampled at 1 KHz with on-line analog low-pass filtering at 330 Hz, and on-line analog high-pass filtering 

at 0.1 Hz. The head position with respect to the sensor array was determined by four head position indica-
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tor coils attached to the scalp. The locations of the coils and EEG electrode positions were digitized with 

respect to three anatomical landmarks (nasion and preauricular points) with a 3D digitizer (Polhemus 

Isotrak system®). Then, head position with respect to the device origin was acquired before each 3 - 4 

minute block of MEG/EEG recording.  

Each recording session lasted 1 hour, comprising 14 blocks of 3 - 4 min duration with resting pe-

riods between each block. Subjects were asked to keep their eyes open and to avoid eye movements by 

focusing on a fixation cross displayed in the center of the screen. Subjects were instructed to pay attention 

to the auditory stimuli.  

The MEG task differed from experiment 1 in the following respects: First, in most (n=12) blocks, 

10% of the trials were omission trials composed of only four sounds; in the remaining two blocks, the 

frequent auditory sequence was also made of only four sounds. These conditions were applied in order to 

test the brain responses to expected and unexpected omissions. The corresponding trials were excluded 

from the present analyses, but are reported in detail in (WACONGNE ET AL., 2011). Second, subjects per-

formed more trials than in the previous experiment (780 trials instead of 500). Third, subjects were not 

asked to count the number of globally deviant trials, but were only required to pay attention to the audi-

tory stimuli. This 'attentive MEG' experiment aimed at demonstrating that the previously identified neu-

rophysiological signatures associated with local and global deviant trials were independent of the counting 

task. This control can thus validate the applicability of the Local Global protocol in a clinical setup, in 

which patients may not be able to perform complex instructions such as counting global deviant trials.  At 

the end of the recording, a list of questions was submitted to the subject to check that they had detected 

the various auditory regularities. 

Artefacts arising from outside the sensor array, such as those stemming from limb movement or 

other ambient magnetic disturbances, were reduced by the signal space separation method (SSS) (TAULU ET 

AL., 2004). Additionally, and for each subject separately, a linear transform of the MEG data into harmonic 

function amplitudes via the SSS method was used to estimate the MEG signals corresponding to different 

head positions and to convert the data acquired from several blocks into one common head-centered 

reference frame. This reference head position was determined from all head position measurements done 

at the beginning of each recording session. This data transformation helps the direct comparisons of 

MEG data between conditions and blocks.  

Except if explained otherwise, eye blinks and cardiac artefact were corrected for each type of 

channel (gradiometer, magnetometers and EEG sensors) separately by decomposing the average artefacts 

into principal components, and regressing out those principal components from the continuous recording 

– a technique known as signal space projection (SSP). Noisy MEG sensors were removed with Maxfilter 

in the SSS preprocessing step. All signals were digitally low-pass filtered at 40 Hz and down-sampled to 

256 Hz. Trials were then segmented from -800 ms to 736 ms after the critical stimulus onset, and were 

corrected for baseline over a 200 ms window before the onset of the first of the five sounds. Segmenta-

tion was done with Fieldtrip(OOSTENVELD ET AL., 2011). Trials with more than 20% of bad sensors were 

rejected.  

3.4.1.4. Experiment 4: distracting task (EEG) 

In the fourth experiment (reported in (BEKINSCHTEIN ET AL., 2009)), subjects were actively dis-

tracted by a continuous speeded visual detection task simultaneous with the presentation of the Local 

Global auditory stimuli, while EEG was continuously recorded at 250 Hz using a 128-channel EEG geo-

desic net (EGI) referenced to the vertex. Participants were instructed to detect a visual target in a rapid 

stream of successive letters presented at the fovea and were explicitly asked to neglect the unrelated audi-

tory stimuli. The visual stimuli were twelve 1° x 1° colored upper or lower case letters, and were maximally 
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presented for 1000 ms, using E-prime v1.1 (Psychology Software Tools Inc.). To check that subjects did 

not consciously perceived the global structure of the auditory stimuli, they were asked at the end of the 

experiment whether they had perceived any global regularity or novelty. EEG preprocessing was identical 

to Experiment 1. 

3.4.1.5. Experiment 5: DOC patients (EEG) 

One hundred and fifty eight (158) EEG recordings were acquired from 104 distinct patients suf-

fering or recovering from variably severe disorders of consciousness and/or communication (DOC) while 

they performed the Local Global protocol. The ERPs analyses from 65 recordings have been reported in 

(FAUGERAS ET AL., 2012). As can be observed in Supplementary Table 1, some patients were recorded sev-

eral times. These sessions were performed several days apart, in order to identify a potential recovery of 

consciousness. In most cases, patients‘ states of consciousness vary between different EEG recordings 

and can thus be treated as different samples. Hereafter ―patients‖ refer to distinct EEG recordings. The 

clinical definition of CS, MCS and VS was based on the French version of the Coma Recovery Scale Re-

vised (CRS-R) (SCHNAKERS ET AL., 2008B), and careful neurological examination by trained neurologists (FF, 

LN) immediately before EEG recording. All patients had been without sedation for at least 24 hours prior 

to the recording session. All clinical details are available in table S1.  

After clinical examination, each participant was asked to perform a task identical to Experiment 1 

(count the global deviants). Patients were verbally stimulated between each block (~4 min) to ensure sta-

ble arousal, and instructions were explicitly repeated by the experimenter before each run. Although we 

present results demonstrating that global effects are independent of counting global deviant trials, we 

reasoned that such instructions could help patients paying attention to the auditory stimulations. 

Recording high-density scalp ERPs from non-communicating patients in the intensive care unit or 

a similar environment is very challenging for technical reasons. First, the electro-magnetic environment is 

noisy, and patients were not recorded in a shielded room but at bedside. Second, many patients presented 

physiological artefacts such as EMG, eye-movements and blinks, or other involuntary movements. There-

fore, it is particularly important to systematically evaluate the technical quality of data before statistical 

analysis. Recordings including at least one block with more than 50% of rejected trials were discarded 

from further analyses in order to avoid possible biases across experimental conditions. EEG preprocess-

ing was identical to Experiment 1.  

3.4.2. ANALYSES 

3.4.2.1. Classification 

In the following experiments, we aimed at evaluating, for each subject, the number of trials that 

could be accurately classified in two distinct and orthogonal types of classes: (1) as locally standard (LS, i.e. 

following an aaaaa sequence) versus locally deviant (LD, i.e. following an aaaaB sequence) ('local classifica-

tion'); (2) as globally standard (GS =frequent sequence) versus globally deviant (GD =rare sequence in a 

given block) ('global classification') (see FIGURE 3.1). The Local Standard class corresponds to the union of 

LSGS and LSGD trials, and the Local Deviant class corresponds to the union of LDGS and LDGD trials. 

Similarly, the Global Standard class corresponds to LSGS and LDGS trials, and the Global Deviant class 

corresponds to LSGD and LDGD trials. For each subject, all data were normalized across all artefact-free 

trials in each sample of each sensor. 

A ten-fold stratified cross-validation was implemented for each analysis. Stratified cross-validation 

balances the proportion of each class across folds in order to maximize the classifiers‘ ability to generalize 
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to unknown data. A support vector classifier (SVC) (CHANG AND LIN, 2001).  Was supplemented with a 

continuous output method providing, for each trial, an estimate of the probability of belonging to a given 

class (PLATT, 1999). Among the several advantages of this continuous method, we note that it allows 

across-trial rank statistics and hence avoids the computationally expensive permutation analysis generally 

required with discrete and/or imbalanced classifiers. After training on a random subset of trials, classifica-

tion scores were estimated only from the complement of the training set in the set of all trials (later re-

ferred to as test set).  

Classification scores were estimated with a receiver-operative curve (ROC) analysis applied on tri-

als‘ predicted probabilities and are summarized using the area under the curve (AUC). The ROC analysis is 

a standard 2-class (positive and negative) non-parametric statistical method. It is based on the plotting of 

true positive rate as a function of false positive rate. The result of this function can be summarized by the 

area under its curve (AUC). An AUC of 50% implies that true positive predictions (e.g. trial predicted de-

viant and is deviant) and false positive predictions (e.g. trial predicted as deviant but is standard) are, on 

average, equally probable; an AUC of 100% indicates a perfect positive prediction with no false positive. 

Amongst the advantages of the ROC analysis, we note that, unlike mean accuracy, it is robust to imbal-

anced problems (unlike average accuracy) and remains independent from classes‘ distributions. 

3.4.2.2. Generalization across context 

We implemented a set of generalization analyses which aimed at testing the invariance of the neu-

rophysiological signatures of local and global novelty detection. These generalization analyses consisted in 

training the classifier using data from a fixed context, and subsequently testing it in a different context (see 

FIGURE 3.1 & FIGURE 3.2). Classifiers were for instance trained to discriminate local standards trials from 

local deviant trials using only global standard trials (LSGS versus LDGS). The discriminative hyper-plane 

(w) found was subsequently applied to trials from a different global context, in this case the global deviants 

(LSGD versus LDGD). This approach was also adapted to the contextual generalization of global effects. 

In this case, the classifier was first trained, for instance, to discriminate global effects in a fixed local con-

text (LSGS versus LSGD), and then tested on a different local context (LDGS versus LDGD). This proce-

dure was systematically applied in a symmetrical manner: a classifier was either trained in standard con-

texts and tested in deviant ones, or trained in deviant contexts and tested in standard ones, and the results 

were then averaged over both directions of generalization. Note that, in addition to presenting the difficult 

challenge of identifying neural signatures capable of generalizing across different contexts, this procedure 

divides the number of trials available for training the multivariate classifier in half. 

3.4.2.3. Time-windows of interest  

The selection of temporal windows of interest was based on two conceptually different ap-

proaches. First, a unique classifier was implemented at each time point. This approach repeatedly com-

bines the evidence from different sensors at a fixed time point. Second, we implemented a set of classifiers 

using multiple time samples. These classifiers combined either all or a sub-selection of the time samples 

following the onset of the last sound (t=[0,736] ms): the early time-window refers to t=[0, 367] ms, and 

the late time window refers to t=[367,736] ms. 

3.4.2.4. Classifier 

Each trial was transformed into a p-dimensional vector x, in which each coordinate corresponds 

to a single data sample at a given sensor (p = nsensors . nsamples). The entire dataset can hence be represented as 

a matrix X in which each row i corresponds to one trial xi, and each column corresponds to an attribute. 

Moreover, trial classes (standard or deviant) can also be represented as a binary vector y, in which standard 

trials are labeled as 1, and deviant trials as -1. As for all linear classification analyses, the aim is to find a 



CHAPTER 3. METHODS 

 

74 

 

hyperplane (materialized by a p-dimensional vector of weights w) that discriminates the two classes (ystandard 

and ydeviant). For a new trial xnew, the sign of the dot product xnew . w is then generally used to predict its 

class. In the present case, a cumulative probability distribution function was fitted to the training set using 

Platt‘s method (PLATT, 1999). The signed distance computed from the dot product xnew . w could thus be 

transformed into a continuous value bounded between 0 and 1. This value is directly representative of the 

probability of belonging to one of the two classes. Note that rank statistics are not affected by the trans-

formation of the signed distance between a given trial and w by a monotonous function, such as a cumula-

tive distribution function. When the number of trials is small compared to the number of attributes (here 

up to 56000), there are infinitely many w that can fit the training data equally well. To limit this issue, we 

implemented within the cross-validation, a dimensionality reduction based on a univariate feature-

selection step that selects a subset of attributes prior to the classification analysis. Feature selection was 

performed with an ANOVA nested within the cross-validation step. Various levels of the ANOVA p 

value threshold were explored in Experiment 1 (1%, 5%, 10%, 30% 50%, 100%), and on this basis a fixed 

value of 10% was chosen for all other experiments. No feature selection was used for the decoding of 

each time point as dimensionality was relatively small (e.g. from 40 channels to 306 channels depending on 

the type of recording). SVC‘s regularization parameter was calibrated by nested cross-validation in Ex-

periment 1 (.01, .1, .3, .5, 1, 2) and remained arbitrarily fixed (1) for all other experiments as its values did 

not dramatically affect classification scores. Finally, sample weights were applied in proportion of the trial 

classes (LSGS, LSGD, LDGS, LDGD) so that each of the category would equally contribute to the defini-

tion of the w, and this independently of the contrast of interest (local or global). This step is known to 

contribute to the minimization of imbalanced dataset artefacts and thus maximizes the number of trials 

that can be considered in the training process. In practice this step did not lead to a strong improvement 

of classification performance. All multivariate analyses were performed with the Scikit-learn toolbox 

(PEDREGOSA ET AL., 2011). 

3.4.2.5. Statistics 

ROC analyses and AUC are methods to estimate the size of a given effect, and in our case, the 

classifiers‘ ability to discriminate two types of trials. To test for statistical significance within subjects, we 

performed Mann-U-Whitney analyses across trials. Because the classifier attributes a continuous estimate 

to each trial (its predicted probability of belonging to a given class C), we can indeed efficiently compare 

those predicted probabilities across the two levels of the trials‘ true classes. For instance, for each trial, the 

classifier outputs a predicted probability of belonging to the standard class (S). Note that the probability of 

belonging to the other, deviant class (D) can be calculated as P(D) = 1 - P(S). We can then compare the 

predicted probability of belonging to S depending on whether the trials truly are standard (y=S) or not 

(y=D) and thus apply a traditional Mann-U-Whitney between P(S|y=S) and P(S|(y=D).  

Similarly, across-subjects statistics were performed using Wilcoxon Signed Ranks Tests based the 

mean predicted probability conditional of trials‘ true classes. For each subject, the predicted probability of 

belonging to the standard class (S) is averaged across standard trials (y=S) and, separately, over deviant 

trials (y=D), yielding P(S|y=S) and P(S|y=D). For each subject i, we can thus compute the sum of posi-

tive ranks and perform a Wilcoxon test. 

A correction for multiple comparisons was performed using the standard False Discovery Rate 

(FDR) correction, and is referred to as pFDR. Statistical analyses were performed with R and Matlab 2009b. 
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3.5. RESULTS 

The Local Global protocol enables the isolation of two types of neurophysiological activity: either 

the response to a change in pitch within a five-sound sequence (local effect), or the response to a rare 

auditory sequence within a block dominated by another frequently repeated sequence (global effect, FIG-

URE 3.1). 

 

3.5.1. TOPOGRAPHICAL ANALYSES 

Traditional ERP analyses revealed topographies and time courses similar to the ones observed in 

previous studies (BEKINSCHTEIN ET AL., 2009; KING ET AL., 2011; WACONGNE ET AL., 2011; FAUGERAS ET AL., 

2012). EEG results, summarized in FIGURE 3.2, showed that local effects arose between approximately 130 

ms and 350 ms and mainly evoked a frontal negativity (MMN) followed by a central positivity (P300a). In 

contrast, global effects were mainly observed from 200 ms onwards, and were characterized by a sustained 

centro-posterior positivity (P300b) peaking between 300 ms and 500 ms. These two effects replicate the 

EEG components previously reported in this type of experimental protocol. Interestingly, and as can be 

seen on FIGURE 3.2, a vast amount of inter-individual variability can be observed in the single-subject data.  

This variability thus highlights the potential usefulness of tailoring the analyses to each subject. 

3.5.2. DECODING ACROSS TIME 

To maximize the detection of the neurophysiological responses elicited by local and global novel-

ties, we applied, to each subject separately, a multivariate pattern (MVP) classifier. The classifications 

 

FIGURE 3.2 INTER-INDIVIDUAL VARIABILITY IN THE TOPOGRAPHY OF EEG EFFECTS IN EXPERIMENT 1. 

In the two central rows, control EEG topographies of the mean local effect (LD>LS) and of mean the 
global effect (GD>GS) are plotted as a function of time following the onset of the fifth sound. Black 
dots correspond to EEG channels presenting significant differences between standard and deviant 
conditions, corrected for multiple comparisons with FDR. The top and bottom rows show the 
topography in individual subjects, separately for the local and global effects in their respective time 
windows of interest. Local deviant trials elicit significant differences over anterior regions with an 
initial negativity peaking around 150 ms followed by a short central positivity between 200 and 300 ms. 
Global deviant trials elicit a centro-posterior sustained positivity mainly from 300 ms onwards. While 
the group statistics replicate the traditional MMN and P3b associated with the Local Global paradigm 
(BEKINSCHTEIN ET AL., 2009), individual analyses reveal substantial topographical variability in healthy 
subjects, and thus highlight the usefulness of tailoring the analyses to each subject. 
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scores of each classifier reported below refer to the area under the curve (AUC) estimated from a receiver 

operative curve analysis (see methods).  

We first aimed at characterizing the dynamics of classifications scores across time, and thus 

trained a different classifier for each time sample. As expected, during the time period preceding the onset 

of the last sound, both local and global decoding remained at chance level (AUC did not differ from 50%). 

Accuracy of the local decoder exceeded chance level earlier in the epoch than did the accuracy of the 

global decoder. As can be seen on FIGURE 3.3.A., two peaks of local decoding were observed in each ex-

periment between 150 ms and 300 ms after stimulus onset. Mean single-trial local classification scores 

across subjects varied from 62.0% to 77.8% of trials depending on the experimental apparatus (all 

pFDR<.05).  

The dynamics of global effects were more variable across experiments. Experiment 1, in which 

subjects were instructed to count rare global deviant trials, revealed a quick rise of EEG-based classifica-

tions scores around ~130 ms, followed by a sustained period during which global classification remained 

above chance almost throughout the epoch (between 300 ms and 730 ms). However, in intracranial EEG 

(Experiment 2), despite similar instructions, only a transient period of global decoding was seen, peaking 

at ~260 ms, then dropping back to chance level. Finally, Experiment 3, in which subjects were recorded 

with MEG and were instructed to merely pay attention to the sounds, demonstrated sustained global clas-

sifications scores from 200 ms onwards (AUC=66%). These results suggest that the neurophysiological 

signatures of novelty detection seem relatively independent from task instructions. 

Interestingly, a sharp increase in global classifications scores was observed as early as 150 ms in 

the attentive MEG condition (Experiment 3). Although much smaller (AUC=55.0%, pFDR<.05) a similar 

trend was also apparent in the counting EEG condition (Experiment 1). Finally, intracranial recordings, 

mainly taken from the temporal cortices (SUPPLEMENTARY FIGURE 3.7) presented significant global classifi-

cation performance between 100 ms and 300 ms (max AUC=66.1%, pFDR<.05). Taken together, these 

results suggest, contrary to what was previously suggested (BEKINSCHTEIN ET AL., 2009), that global novelty 

can affect early processes too. 

Finally, subjects who were distracted by a concurrent visual task (Exp 4.) presented lower but still 

significant local classifications scores (AUC=63.7%, pFDR < .05). Moreover, distraction dramatically im-

paired global classifications scores, which consequently failed to reach significance across subjects 

(AUC=54.0%, pFDR>.05).  

Overall decoding local and global effects across time showed that multivariate pattern classifiers 

could extract qualitatively similar effects as the ones observed from ERPs (for ERFs see (WACONGNE ET 

AL., 2011)) but could also reveal subtle effects such as an early global effect unreported in previous studies. 
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FIGURE 3.3 LOCAL AND GLOBAL MULTIVARIATE DECODING SCORES. 

a. Decoding of the local effect (red) and of the global effect (blue) was applied successively to each time 
sample of the scalp EEG, MEG and intracranial EEG recordings obtained under different experimental 
conditions: subjects either counted the global deviant trials (Experiments 1-2), were attentive to the 
sounds (Experiment 3), or were distracted by a visual task (Experiment 4). Results demonstrate a non-
sustained decoding of the local effect (~130-400 ms), with above-chance performance regardless of 
recording apparatus and experimental condition. Decoding of the global effect appeared later and was 
more sustained in time, but was absent in the distracted condition.  

b. Comparison of the decoding scores based on the best time point (left dot in each graph) or the full 
trial dynamics (right dot). Each dot represents the decoding score of an individual subject. All subjects 
but one presented significant local decoding scores. All experiments led to significant global decoding 
scores, except for the distracted condition. Local and global decoding scores based on the dynamics of 
the electrophysiological signal across multiple time samples (tall) led to a significant improvement of 
decoding scores in most scalp recordings.  
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3.5.3. USING DYNAMICS TO FACILITATE DECODING 

Decoding a spatial topography at each time sample, as was done in the previous section, can 

overcome individual topographical variability but remains dependent on the precise timing of a given 

effect. To maximize the extraction of local and global effects, we thus trained another decoder using the 

full dynamics of brain signals on a given trial. For each subject separately, and for local and global effects, 

this decoder was trained to distinguish the standard and deviant trials based on all the information avail-

able on a given trial (all channels x all time samples). Results are presented in FIGURE 3.3.B. 

Overall, this dynamic approach provided better classifications scores than in the previous section. 

To prove this, we compared it to the performance of the best time sample of the previous section. Note 

that is a very conservative test. Indeed, the a posteriori selection of the best time sample is not cross-

validated, and thus likely overestimates the actual scores one could hope to obtain if an independent data 

sample was available (see e.g. (VUL ET AL., 2009B)). Still, an ANOVA across subjects, contrasts (local and 

global) and type of classifier (dynamic versus best single time point) revealed a significant main effect of 

classifier type, F(1,37) = 47.9, p<10-10, indicating better classification overall with the dynamic approach 

(mean AUC =72.0%) than with the previous approach (63.7%). This improvement was robust across 

recording methods (all p<.05) except for intracranial EEG (p>.33), and therefore suggests that the classi-

fier manages to exploit the time course of brain signals to provide information at the single-trial level (See 

SUPPLEMENTARY FIGURE 3.6 for a depiction of single trials‘ local and global prediction in Experiment 3). 

In more detail, using the dynamic approach, the local classifications scores reached an average 

AUC of 77.8% (p<.01) in the counting EEG condition (Experiment 1), 73.2% (p<.01) in the counting 

intracranial condition (Experiment 2), 73.5% (p<.01) in the distracted EEG condition (Experiment 4) and 

89.8% (p<.01) in the attentive MEG condition (Experiment 3). The latter performance, interestingly, was 

higher than the one obtained from high-density EEG (all p<.01) and even than intracranial recordings 

(p<.05). Importantly, across four experiments, all but one subject (from the distracted group) presented 

significantly above chance local classifications scores. 

Similar results were obtained for global classifications scores across experiments 1-3.  The count-

ing EEG condition (Experiment 1) led to an average AUC of 67.9% (p<.01), the counting intracranial 

condition (Experiment 2) led to an average AUC of 66.1% (p<.01) and the attentive MEG condition (Ex-

periment 3) led to an average AUC of 72.3% (p<.01). Amongst the 28 subjects who were paying attention 

to the sounds, only one subject failed to present a significant global decoding score.  

Crucially, global classifications scores were dramatically reduced in distracted subjects (p<.01 as 

compared to EEG and MEG recordings (Experiments 1 and 3); p<.05 as compared to intracranial re-

cordings (Experiment2)). Not only was the global decoding score not-significantly different from chance 

for distracted subjects (AUC=55.0%, p>.05), but 8 out of 10 subjects did not present any significant 

global decoding. 

In summary, by maximizing the extraction of information from individual recordings, these re-

sults demonstrate that the human brain response to auditory deviancy, both local and global, can be de-

tected in single trials and a fortiori in individual subjects. It also confirm that this information is not en-

tirely dependent on the fact that subjects are asked to count the rare global deviant trials, but remains 

present under the instruction to merely attend to the sounds. Finally, the comparison between the active 

and the distracted conditions confirms the automaticity of processes underlying local novelty detection, 

and the necessity of attention in the detection of global novelty.  
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3.5.4. GENERALIZATION OF EFFECTS ACROSS CONTEXTS 

The above analysis, while sensitive, could be partially affected by a contextual modulation of the 

local mismatch effects (MMN). The MMN elicited by an AAAAB sequence, indeed, is stronger when this 

sequence is rare than when it is frequent (WACONGNE ET AL., 2012). This effect could be used by the global 

decoder to provide early above-chance classification of global deviants from global standards, even though 

it does not reflect a genuine response to global novelty. To address this issue, we reasoned that cross-

context generalization would provide a stricter criterion for a physiological signature of the brain‘s re-

sponse to global novelty. For instance, a neuronal process responding to rare sequences, if generic, should 

be found whenever a rare global deviant sequence is presented, whether this sequence is aaaaB (in blocks 

where aaaaa is the frequent stimulus) or aaaaa (in blocks when aaaaB is the frequent stimulus). Such a 

generalization analysis could sort out the genuine signatures of global effects from the modulations of 

local novelty effects. With this idea in mind, we investigated the generalization of global classification 

across different local contexts (and vice-versa see methods), and restricted the local and the global analy-

ses to the early (0-368 ms) and to the late (368-736 ms) time windows respectively. As intracranial classifi-

cations scores were not significant in the late time window (FIGURE 3.3), we tested this analysis on experi-

ments 1, 3 and 4. Results are presented in FIGURE 3.4. 

An ANOVA across subjects, contrasts (local or global) and type of classifier (using both contexts 

or within-context decoding) showed that classifications scores resulting from within-context decoders 

were smaller than those obtained from decoders using all trials (section I): F(2,28)=26.56, p<10-6. This is 

expected as restricting the decoder to trials performed in a given context automatically reduces the num-

ber of trials available for the training set. Note however that the within-context classifications scores re-

mained significantly above chance in all experimental conditions: Local: Experiment 1: 69.1% (p<.01), 

Experiment 3: (71.2 % p < .01), Experiment 4: 68.8% (p<.01); Global: Experiment 1: 66.0% (p<.01), 

Experiment 3: 63.2% (p<.01), Experiment 4: 56.7% (p < .05).  

Cross-contexts generalization scores appeared significantly worse than within-context classifica-

tions scores (Local: Experiment 1: p<.01, Experiment 3-4: p<.05), Global: Experiment 1: p<.01, Experi-

ment 3-4: p<.1). As can be seen in FIGURE 3.4.A. presenting the MEG generalization scores across time, 

the differences between within-context and across-contexts scores were mainly visible i) in early time win-

dows; and ii) in the global contrast. This result suggests that part of the early global effect observed in 

section I was due to an early modulation of novelty responses that did not generalize across contexts. 

However, the overall reduction of cross-context generalizations suggests that this conceptually more suit-

able analysis may, in practice, be less appropriate when the signal-to-noise ratio is low. 

Crucially, whereas all local generalization scores remained significantly above chance (Experiment 

1: 57.1%, Experiment 3: MEG: 66.3%, Experiment 4: 61.5%, all p<.01), global generalization scores were 

now exclusively significant in subjects who were paying attention to the sounds (Experiment 1: 57.9%, 

Experiment 3: 60.2%, both p < .01). Distracted subjects did not present any significant global generaliza-

tion scores (48.1%, p>.1), and the latter were significantly smaller than the ones obtained in the counting 

(Experiment 1: p< .001) and the attentive (Experiment 3: p<.0001) conditions. 

Finally, it is interesting to note that global generalization scores steadily increased from 180 ms af-

ter stimulus onset, until they eventually reached, at the end of the epoch, scores that resembled those ob-

tained with the within-context decoding analysis in MEG (FIGURE 3.4.A). This pattern of results suggests 

that distinct neurophysiological signatures were initially elicited by the two forms of global deviancy tested 

here. Most likely, the rare xxxxY sequence was easily detected in an xxxxx context, whereas, conversely, 

the rare xxxxx sequence took a longer time to be detected in an xxxxY context. Late in the epoch, how-

ever, the neuronal activity that they evoked eventually converges to the same state, thus permitting similar 

levels of within-block classification and cross-block generalization. 
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3.5.5. PATIENTS: DECODING ACROSS TIME AND DYNAMICS 

The above results demonstrate that multivariate classifiers efficiently capture the dynamics of the 

brain responses to local and global deviancy. In particular, we confirmed that the processing of local nov-

elty was relatively independent of attention, while the late effects elicited by global novelty only emerged 

and generalized across contexts in attentive subjects. These analyses allowed us to formulate a simple hy-

pothesis: in patients with communication disorders, cerebral activity in the early and late time windows, 

respectively, could provide useful markers of automatic versus conscious processing of auditory regulari-

ties. We thus applied the present method to 158 EEG recordings acquired from patients suffering from 

disorders of consciousness (DOC). Individual and group results are summarized in FIGURE 3.5. 

 

FIGURE 3.4 GENERALIZATION OF THE MULTIVARIATE DECODING ACROSS EXPERIMENTAL CONTEXTS. 

Generalization analyses consist in training the classifier in a given context (e.g. local standard trials 
only) and testing the ability of the classifier to generalize to another context (e.g. local deviant trials 
only). For example, we train the classifier to discriminate global deviants from global standards, within 
the context of local standard trials, and then we test the performance of the classifier on the same task, 
but within the context of local deviant trials. 

a. Local (red) and global (blue) scores obtained from within-context (D) and cross-context (G) 
generalization analyses are plotted as a function of time. Local effects generalized early on (orange) 
and rapidly vanished. Global effects generalized increasingly well over time (cyan) until generalization 
performance did not differ significantly from decoding performance (blue).  

b. Each dot represents the decoding and generalization score of an individual subject. Although the 
generalization of local effects was significantly smaller than decoding performance, it remains above 
chance in all experiments. Generalization of global effects was however only significant in the attentive 
and counting condition. 
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First, it appeared that the decoding of the EEG dynamics of DOC patients was qualitatively simi-

lar to what was observed in healthy controls: local classifications scores were maximal between 150 ms 

and 300 ms after stimulus onset, whereas global effects, if present, appeared later and were relatively sus-

tained between 250 ms and 700 ms (see FIGURE 3.5.A). Classifiers based on the full dynamics of the EEG 

signals (see methods) were again superior to selecting the best time point obtained from healthy controls 

(local: p<.10-5, global: p<.01) or directly from DOC patients (local: p<.0001, Global: positive trend n.s.). 

These results therefore confirm the utility of our decoding approach. 

Despite similar qualitative results, quantitative comparisons with healthy controls (Experiment 1) 

showed that DOC patients presented lower local classifications scores (AUC=56.3%, p<10-5) and lower 

global classifications scores (AUC=51.7%, p < 10-5). Interestingly, when comparing DOC patients to 

healthy distracted subjects (Experiment 4), results demonstrated significant differences only in local classi-

fications scores (p<10-4) but not in global classifications scores (p>.1). 

 

FIGURE 3.5 LOCAL AND GLOBAL DECODING IN PATIENTS WHOSE STATE WAS DIAGNOSED AS VEGETATIVE (VS), MINIMALLY 

CONSCIOUS (MCS) AND CONSCIOUS (CS). 

a. Local (top) and global (bottom) decoding scores are plotted as a function of time. Overall, local and 
global decoding scores follow the same qualitative trends as the ones observed in healthy subjects 
(Figure 2). CS patients (blue) presented higher local and global decoding scores over time than either 
MCS (green) or VS (red) patients.  

b. Decoding scores obtained from the EEG dynamics of each trial are summarized for each state of 
consciousness. The graphs give the mean and standard error of the decoding scores in each group, its 
significance relative to chance level, and the significance of pair-wise group comparisons. Pie charts 
summarize the proportion of patients who presented significant decoding scores.  
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Despite being reduced, the patients‘ classifications scores were not at chance. Local AUCs were 

ranged on average from 55.3% amongst VS patients, 56.1% amongst MCS patients, to 60.0% amongst CS 

patients. These values were above chance within each group of patients (all p<.0001). Local classifications 

scores of VS and MCS patients were not significantly different from one another (p>.1). However, CS 

patients presented significantly higher local classifications scores than both MCS (p<.05) and VS (p<.01) 

patients.  

Crucially, for global decoding, the scores were above chance for MCS (AUC=51.7%, p<.01) and 

CS (AUC=56.2%, p<.001) patients, but VS patients, on average, did not present any significant global 

decoding effects: AUC=50.2%, p>.1. Moreover, the global decoding AUCs of VS patients were signifi-

cantly smaller than both those of CS patients (p<.0001) and those of MCS patients (p<.05). Note that the 

latter also presented lower global classifications scores than CS patients (p<.01).  

The above group differences could be due to a minority of subjects, or to an overall group effect. 

An advantage of the present single-trial MVP analysis is that it provides within-subject significance. We 

thus quantified the proportion of patients who presented significant local and global classifications scores. 

The results, summarized in FIGURE 3.5.B. showed that 51% of the VS patients, 65% of the MCS patients 

and 70% of the CS patients presented significant local classifications scores. This suggests the presence of 

an MMN amongst these subjects. The proportions of patients with significant Local classifications scores 

did not differ across groups, neither with full (VS versus MCS versus CS) nor with pair-wise (VS versus MCS, 

MCS versus CS, and CS versus VS) chi-square tests (all p>.1).  

The results were quite different for global decoding, as the proportion of patients presenting sig-

nificant global classifications scores nearly doubled across states of consciousness. First, only 14% of VS 

subjects showed significant global decoding. Amongst these 14%, half presented scores which resisted a 

FDR correction for multiple comparisons across subjects. Like other studies, this result suggests that a 

small proportion of carefully diagnosed VS patients may still have residual consciousness (BYRNE ET AL., 

2010). Second, in contrast, 31% of the MCS patients and 52% of the conscious patients presented signifi-

cant global scores. The proportions of significant global scores across the three states of consciousness 

were significantly different from one another: χ2(2, N=158)=13.73, p<.001. Pair-wise chi-square tests 

confirmed this finding by showing a smaller proportion of patients with global decoding in VS relative to 

MCS (χ2(1, N=135)=4.39, p=.036) and to CS (χ2(1, N=93)=11.74, p=.0001). No differences were ob-

served between the proportions of CS and MCS patients with significant global decoding (χ2(1, 

N=88)=2.50, p=.113). 

 To increase the specificity of the present results, we also applied the generalization method de-

tailed above. Scores obtained from within-context classification were similar to but lower than the classifi-

cations scores obtained from the joint analysis of both contexts (unsurprisingly given that the number of 

training trials was halved). For the local effect, while not differing from one another (VS-MCS: p=.252), 

local scores from VS (AUC=56%, p<.0001) and MCS (AUC=57%, p<.0001) were significantly smaller 

than those obtained than CS patients (AUC=61%, p<.0001, CS-VS: p=.005, CS-MCS: p=.039). Global 

within-context classifications scores presented a similar pattern: VS (AUC=54%, p<.0001) and MCS 

(54%, p<.0001) scores did not differ from each other (p=.969), but were significantly smaller from CS 

(59%; both p=.001). Finally, cross-context generalization scores were low (all below 53%). Local cross-

context generalization performance was lower for VS patients than for MCS (p=.038) and CS (p=.003) 

patients, but none of the global cross-context generalization scores differed from one another (all p>.287). 

In summary, by quantifying the proportion of patients with significant local and global effects, we 

confirmed the earlier finding that DOC patients may still exhibit similar local mismatch effects, relatively 

independently of their conditions (FISCHER ET AL., 1999; NACCACHE ET AL., 2005; BEKINSCHTEIN ET AL., 2009; 
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FAUGERAS ET AL., 2012; TZOVARA ET AL., 2012), and found that the capacity to show global effects was 

strongly modulated by the state of consciousness. A classifier based on the whole set of trials and their 

temporal dynamics proved the most sensitive tool to detect these local and global effects. Cross context 

generalization was unable to dissociate the three types of patients, presumably because of a halving of the 

number of training trials. 

3.6. DISCUSSION 

In this study, we investigated, at the single trial level, the neuronal response following the viola-

tion of two embedded auditory regularities structured across two different time ranges (―local‖ and 

―global‖). We implemented, for this purpose, a series of multivariate pattern (MVP) analyses extracting 

this information from the temporal dynamics of the neurophysiological activity recorded with high-density 

EEG (Experiment 1 and 4, n=19), intracranial EEG (Experiment 2, n=9) or MEG (Experiment 3, n=10). 

Analyses were performed on attentive and distracted healthy control subjects, as well as on three types of 

patients suffering from disorders of consciousness (DOC), namely patients in vegetative state (VS, n=70), 

minimally conscious state (MCS, n=65) and conscious state (CS, n=23), all recorded with high-density 

EEG for clinical purposes. 

Results from control experiments revealed that when subjects were attentive, single-trial classifica-

tion could lead to AUCs between 73% and 90% for local novelty, and between 66% and 72% for global 

novelty, depending on the recording apparatus (Experiment 1-3). Remarkably, MEG recordings achieved 

classification scores comparable to, or even higher than, intracranial EEG data. Moreover, we showed that 

providing the decoder with multiple time samples systematically improved classification as compared to a 

decoder trained on the single best time sample. This result therefore demonstrates the utility of MVP clas-

sifiers in the present context, and confirms that this method can reliably and automatically extract neu-

ronal dynamics specific to each subject in order to efficiently classify each trial.  

It should be noted that our method, although different in technical details, follows a similar ap-

proach to that taken in a recent study (TZOVARA ET AL., 2012). Tzovara and collaborators decoded, from 

EEG recordings of coma patients, the difference between regular and irregular trials, that is, the equiva-

lent of the local effect in the present study. To classify each trial, the authors used a different type of clas-

sifier which modeled the ERPs with a mixture of Gaussians. Advantages and disadvantages can be identi-

fied in each of these classification methods. Our approach does not make any Gaussian assumptions, can 

make use of imbalanced training dataset and can extract a large number of different types of topographies 

by searching across all channels – which therefore are not restricted to EEG. In contrast, de Lucia and 

collaborators first transform the ERPs into components. This computational step reduces the dimension-

ality of the data, and thus likely improves the efficiency of the ensuing classification process. However, 

their classifier is unable to optimally use imbalanced datasets, which are necessarily encountered in this 

type of novelty experiment. Taken together, these differences may explain why our approach provided 

slightly better classifications scores (AUC=77.8%) than theirs (AUC=71%) in similar control subjects 

recorded with EEG. Future efforts should capitalize on a combination of these methodological technicali-

ties. 

Crucially, our MVP classifiers replicated and extended previous observations on the key electro-

physiological properties of local and global effects (BEKINSCHTEIN ET AL., 2009). As expected, local novelty 

mainly affected the early part of the neural signal (< 300 ms) and remained unaffected by visual distrac-

tion. In sharp contrast, global novelty elicited late and stable effects in both counting and attentive sub-
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jects, but most distracted subjects presented dramatically reduced, and in fact, non significant global classi-

fications scores.  

The present decoding approach allowed us to investigate whether the neuronal activities elicited 

by local and global novelty are specific and reproducible enough to generalize from one context to the 

other. Specifically, we asked which aspects of the neuronal response to global novelty could generalize 

from a context in which the AAAAB sequence was rare (in AAAAA blocks) to another in which the 

AAAAA sequence was rare (in AAAAB blocks), and vice-versa. Generalizations of the global effects con-

firmed a progressive increase in the similarity of these two types of global novelty responses from 180 ms 

onwards, until they eventually fully resembled each other at the end of the trial. Conversely, local novelty 

detection showed a significant generalization across contexts only in the early part of the event-related 

response. Taken together, these results reveal a double dissociation. Local effects are attention independ-

ent, context dependent and are not maintained across time. By contrast, late global effects are attention 

dependent, context independent and stable for a prolonged temporal duration.  

One of the major motivations of the Local Global protocol is to provide a minimal design that 

dissociates two types of auditory novelty processing – one generating the MMN followed by a P300a, 

both likely being automatic, and the other generating the P3b which depends on working memory and 

conscious access. This goal is of particular importance for DOC patients. Despite an increasing interest 

for this clinical population (LAUREYS ET AL., 2004; OWEN ET AL., 2009B), unambiguously distinguishing pa-

tients suffering from communication disorders from those with a genuine loss of conscious processing 

remains a challenging task (OWEN ET AL., 2006; LAUREYS AND SCHIFF, 2011). In this context, our present ca-

pacity to dissociate, from EEG alone, an automatic process of local novelty detection from a later process 

that depends on conscious processing thus opens up the possibility of detecting states of consciousness 

independently of the patient‘s ability to communicate. 

We applied our MVP classifier to 158 EEG recordings acquired at bedside from patients suffer-

ing, or recovering from a DOC. The results demonstrated that, at the group level, our method could accu-

rately distinguish neuronal responses elicited by local deviants relative to local standard sounds: 51 % of 

VS, 65% of MCS and 70% of CS patients presented significant local classifications scores. Moreover, 

whereas CS patients presented significantly higher classifications scores, VS and MCS patients did not 

differ from one another, suggesting that the cerebral processes that detect local novelty are not unique to 

conscious processing and can remain functional in all states of consciousness. These results are in line 

with a series of studies demonstrating the presence of the MMN in many DOC patients (WIJNEN ET AL., 

2007; BEKINSCHTEIN ET AL., 2009; FISCHER ET AL., 2010; FAUGERAS ET AL., 2012), including coma patients 

(KANE ET AL., 1996, 2000; TZOVARA ET AL., 2012). Indeed, they confirm that the effects elicited by local 

changes in pitch, as observed in the auditory odd-ball experiment, are poor predictors of the state of con-

sciousness (BEKINSCHTEIN ET AL., 2009; TZOVARA ET AL., 2012). The lack of a detectable local effect in some 

patients could be due to a variety of causes, including poor signal-to-noise, excessive number of artefacted 

trials, or an impairment to auditory pathways. 

The situation was quite different for the global effect. Crucially, the detection of global deviants 

was considerably reduced in DOC patients as compared to healthy controls. As a group, VS patients did 

not present any significant global effects, and their classifications scores were smaller than those of MCS 

and CS patients. Taking advantage of the fact that the present analyses allow for single-subject predictions, 

we showed that only a small proportion (14%) of VS patients exhibited a significant global decoding 

score, and that this proportion was significantly smaller than the proportions of MCS (31%) and CS (52%) 

patients in whom a global effect could be significantly detected. This finding confirms that global effects 

provide a reliable, although partial, index of the state of consciousness.  



CHAPTER 3. ACKNOWLEDGMENTS 

 

85 

 

Further studies will need to assess the sensitivity and specificity of the global effect as a test of 

consciousness. Although a small fraction of VS patients still showed a significant global effect, note that 

this need not necessarily imply a failure of our test, but rather may indicate that the clinical label of VS 

may not be fully reliable. Indeed, fMRI studies also reveal that a fraction of VS patients, continue to pre-

sent complex cortical responses that suggest preserved consciousness (BYRNE ET AL., 2010). We have previ-

ously reported that two VS patients with a significant global effect moved to the MCS category within the 

next few days (FAUGERAS ET AL., 2011).  

In the converse direction, unfortunately, our test clearly lacks sensitivity since about half of CS pa-

tients and two-third of MCS patients did not present any significant global classifications scores. Further 

research should determine if this problem can be remedied, for instance using a larger number of trials, 

different days of testing, or better noise reduction techniques, or if it reflects a genuine cognitive limit, 

whereby patients are conscious but too cognitively impaired to successfully detect global novelties. An 

important issue is that the global effect is known to vanish under conditions of inattention (BEKINSCHTEIN 

ET AL., 2009). However, our auditory stimuli are monotonous and devoid of interest, and some patients are 

likely to lose focus during the 40 min recording session. In the future, special efforts should thus be dedi-

cated to enhance the patients‘ motivation and attention towards the stimuli, as well as to improve the qual-

ity of EEG recordings. 

These difficulties are not unique to our test. Most other tests of consciousness currently require 

patients to understand and maintain, for several minutes, a complex instruction such as imagining playing 

tennis (OWEN ET AL. 2006B), or retrieving the answer to a spoken question (MONTI ET AL. 2010). These tests, 

like ours, are therefore asymmetrical: when positive, they are highly indicative of preserved consciousness, 

but they may also fail to detect residual consciousness if the patient suffers from hearing, linguistic, atten-

tional or working memory deficits. For instance, in the Monti et al (BYRNE ET AL., 2010)‘s study, 30 out of 

31 MCS patients, who therefore gave occasional behavioral signs of consciousness upon clinical examina-

tion, showed no signs of communication via imagined tennis playing or spatial navigation. Relative to 

these fMRI studies, the current approach presents at least two advantages. First, it relies on a method 

(EEG) which is easy to implement, available in all clinics and applicable at bedside. Second, it only de-

pends on subjects‘ attention to the stimuli and does not require complex task instructions. 

Alternative ways of investigating consciousness, which bypass entirely the need to attend to exter-

nal stimuli, are also being developed. For instance, Massimini and collaborators have developed a TMS-

EEG apparatus that tests the complexity and the functional connectivity of brain responses to TMS 

pulses. The results demonstrate that this artificial probe differentiates the states of consciousness in sleep 

(MASSIMINI ET AL., 2010), anaesthesia (FERRARELLI ET AL., 2010) and DOC patients (ROSANOVA ET AL., 2012). 

Our own research, again using only high-density EEG, also suggests that the intrinsic complexity of the 

EEG and, especially, the amount of information shared across distant electrode sites, provides an index 

that usefully complements the present approach (King, Sitt et al, submitted; Sitt, King, et al, in prep). Ulti-

mately, a combination of simple experimental protocols with sophisticated signal post-processing, as at-

tempted here, may prove crucial for the automatic diagnosis of non-communicating subjects. 
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3.8. SUPPLEMENTARY MATERIALS 

 

 

FIGURE 3.6 SINGLE TRIAL PROBABILITIES FOR EACH SUBJECT IN 

EXPERIMENT 3 (ATTENTIVE MEG). 

Each graph represents the decoding results for a single subject, 
in either local decoding (top row) or global decoding (bottom 
row). Each dot shows the predicted probability of being 
standard for a given trial, as estimated from an independent 
classifier using the full time window ([0 736] ms). Red and blue 
histograms indicate the distributions of these probabilities 
over trials, separately for trials with a deviant (red) or a 
standard sequence (blue). The separation of these 
distributions therefore indicates a good decoding performance, 
while their overlap indicates inter-trial variability that could 
not be resolved by the decoder. 
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MVPAs extract the dynamics of the brain signals 

We show that a single classifier using a large time window outperforms the best classifier using 

single time points (FIGURE 3.3.B). Two non-exclusive hypotheses could account for the improved classifica-

tion performances obtained with a single classifier:  

H0) The slow-frequency nature of ERPs/ERFs account: consecutive time sample contain the same in-

formation but are affected by different noises.  

H1) The extraction of ERPs/ERFs dynamics account: consecutive time sample contain different infor-

mation. 

If H0 entirely explains the present findings, providing the average of consecutive time samples to 

a classifier should lead to similar decoding performances as a single classifier using the very same time 

samples separately. We thus compared the results obtained from: 

- a unique classifier using the dynamics of all time points between 0 and 700 ms (red) 

- distinct classifiers tested at each time point (purple) 

- distinct classifiers tested on the average time course of the ERFs over a time window of 16 ms 

(yellow), 32 ms (green) and 64 ms (turquoise). 

 

FIGURE 3.7 .INTRACRANIAL ELECTRODE LOCATIONS AND DECODING SCORES FOR EACH ELECTRODE. 

Each dot represents one of the 401 electrodes implanted in 9 epileptic patients. Large circles indicate 
significant decoding scores (pFDR<.05). Dots’ color codes for the decoding AUC obtained from classifier 
using all time samples following stimulus onset.  
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The results appear in SUPPLEMENTARY FIGURE 3.8. The AUC of different classifiers applied to Ex-

periment 3 is plotted as a function of time. The purple line depicts the decoding scores obtained with 

distinct classifiers tested at each time point. The red line depicts the decoding scores obtained with a 

unique classifier based on the entire signal dynamics between 0 and 700 ms. The yellow, green and tur-

quoise lines refers to the performance obtained with distinct classifier based on the averaged time course 

of a sliding 16 ms, 32 ms  or 64 ms window.  

The results show that, at best, averaging the brain signals across consecutive time-samples did not 

improve classification performances. Importantly, the classifiers using the dynamics of the signals re-

mained systematically better than the classifier using averaged ERF signals. These results demonstrate that 

the present approach enables the extraction of the ERF dynamics and thus outperforms a traditional aver-

aging approach. 

 

FIGURE 3.8 MVPAS CAPTURE THE SIGNAL DYNAMICS 
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FIGURE 3.9 EXPERIMENT 5: SUPPLEMENTARY STATISTICS. 

Mean local and global AUCs are plotted effects for each group of patients. Error bars indicate the SEMs 
across subjects. Two additional statistical analyses were implemented to i) show statistical robustness 
and ii) test whether the classification performance could result from block-specific artefacts such as 
muscle contraction and eye movements. Both shuffling the trial labels(“permuted”) and applying the 
classifier to the time period preceding the onset of the last sound (“pre-stimulus”) led to chance-level 
AUCs. These results contrast with the significant classification of post-stimulus onset, and therefore 
strongly suggest that the present results are not imputable to movement artefacts or issues related to 
the block design (GOLDFINE ET AL., 2012B). 
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FIGURE 3.10 SCHEMA OF THE DECODING METHODS. 

a. Univariate analyses compare the distributions of the signals recorded in a single EEG 
channel at a single time point (e.g. t2) in two conditions (A and B). By contrast, the 
present multivariate pattern analyses compare A and B trials in an n-dimensional space.  

b. A multivariate classifier using all channels at a given time can be used to extract the 
information present in the topography (i.e. the information contained across all channels 
recorded at t2). The linear classifier aims at finding the linear function (w) that separates 
the two sets of trials in the resulting n-dimensional space. 

c. A multivariate classifier using all channels across multiple time samples can extract both 
the topography and the dynamics of the signal. 

d. Decoding techniques are traditionally based on a discrete classification: each trial is 
classified depending on the sign of its signed distance from w.  

e. Here, using Platt’s method (PLATT, 1999), we provide a continuous decoding output , which 
estimates the actual probability of belonging to a given class depending on the signed 
distance from w. 

f. This continuous approach can be particularly useful for generalization analyses: if the 
classifier is trained/fitted to discriminate A from B, and tested on its ability to 
discriminate C from D, then a continuous output will be robust to overall biases toward a 
given class. 
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Patients‘ complete details are available online (Table S1). 

  

 

 

 

 

FIGURE 3.11 DECODING FLOW CHART. 



 

 
 

 

4.1. INTRODUCTION OF THE ARTICLE 

In the first study, the decoding approach was essentially used in order to maximize the signal to 

noise ratio and provide within subjects statistics. One of the putative neuronal signature of consciousness 

(the presence of a late P300b following a rare auditory sequence), especially emphasized in the global neu-

ronal workspace theory (DEHAENE AND NACCACHE, 2001; DEHAENE ET AL., 2006B; DEHAENE AND CHANGEUX, 

2011), was isolated in each subject and patient as a result of this method. However, the global neuronal 

workspace theory makes a more specific prediction about the P300b. This component, according to the 

model, reflects conscious access because it indexes the ignition of the global workspace which itself allows 

relevant information to be maintained over time, and thus be integrated by the various parallel processors 

that constitute the cortex. In other words, not only should conscious access be marked by the presence of 

the late event relate potential mark, but this brain activity should be sustained over time. 

In the present article, a variation of the decoding technique described in CHAPTER 3. is presented 

in order to test this idea. As detailed in the following article, this technique simply consists in training a 

distinct classifier at each time point and systematically testing its ability to discriminate all other time 

points. Interestingly, this method revealed fundamentally different patterns of results when it decoded a 

local change of tone (local effect) and when it decoded a global change of auditory sequence (global ef-

fect). This simple method turned out to highlight a feature that is generally left out in traditional time-

resolved analyses - the extent to which a particular process is implemented by the sequential activation of 

different brain regions, or the maintenance of a single (set of) brain area(s). In other words, this simple 

technique characterizes the dynamics elicited by a particular stimulus.  

4.2. ABSTRACT 

The brain response to auditory novelty comprises two main EEG components: an early mismatch 

negativity and a late P300. Whereas the former has been proposed to reflect a prediction error, the latter is 

often associated with working memory updating. Interestingly, these two proposals predict fundamentally 

different dynamics: prediction errors are thought to propagate serially through several distinct brain areas, 

while working memory supposes that activity is maintained over time within a stable set of brain areas. 

Here we test this temporal dissociation by showing how a new method, generalization across time, can 

characterize the dynamics of the brain activity. We apply this method to magnetoencephalography (MEG) 

recordings acquired from healthy participants who were presented with two types of auditory novelty. 

Following our predictions, the results show that the mismatch evoked by a local novelty leads to the se-
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quential recruitment of distinct and short-lived neuronal assemblies. In sharp contrast, the global novelty 

evoked by an unexpected sequence of five sounds elicits a sustained state of brain activity that lasts for 

several hundreds of milliseconds. The present results highlight how MEG combined with multivariate 

pattern analyses can characterize the dynamic of human cortical processes. 

4.3. INTRODUCTION 

When faced with an unexpected sensory event, the brain must perform two major computations: 

i) identify the most probable reason for the novelty and ii) determine whether this novel information is 

relevant to future decisions. Indeed, when comparing the brain response elicited by expected sounds 

(―standard‖) and unexpected sounds (―deviant‖), two radically different electro-enphalography (EEG) 

components are observed: the mismatch negativity (MMN), peaking over centro-anterior EEG sites be-

tween ~100 and 150 ms (NÄÄTÄNEN ET AL., 2010), and the P300 over centro-posterior electrodes 

(GOLDSTEIN ET AL., 2002). The MMN is primarily generated within superior temporal areas (HARI ET AL., 

1984; HALGREN ET AL., 1995; NÄÄTÄNEN ET AL., 2007; GARRIDO ET AL., 2009), whereas the P300 involves dis-

tributed areas of the frontal, parietal and temporal lobes (POLICH, 2007; BEKINSCHTEIN ET AL., 2009). The 

MMN and P300 are also functionally dissociable. The MMN is robust to instructions, subjects‘ attention, 

and the subjects‘ state of consciousness (TIITINEN ET AL., 1994; NÄÄTÄNEN ET AL., 2007; BEKINSCHTEIN ET AL., 

2009; GARRIDO ET AL., 2009; FISCHER ET AL., 2010; FAUGERAS ET AL., 2011, 2012; WACONGNE ET AL., 2011; 

CHENNU ET AL., 2013; KING ET AL., 2013A). Conversely, the full-scale P300 is highly sensitive to whether or 

not subjects consciously detect the novelty (POLICH, 2007; BEKINSCHTEIN ET AL., 2009; KING ET AL., 2013A). 

Finally, any low-level novelty in pitch, duration, identity, triggers an MMN (GARRIDO ET AL., 2009; 

NÄÄTÄNEN ET AL., 2010) whereas the P300 requires the violation of relevant rules constructed over several 

seconds (POLICH AND MARGALA, 1997; BEKINSCHTEIN ET AL., 2009; WACONGNE ET AL., 2011; KING ET AL., 

2013A).  

The two components may thus reflect two different computations: the P300 is thought to index a 

working memory update, passing relevant information to the next trial (SQUIRES ET AL., 1975B; DEHAENE ET 

AL., 2006B; POLICH, 2007), whereas the MMN would reflect a prediction error signal (GARRIDO ET AL., 2007, 

2009; WACONGNE ET AL., 2012), elicited whenever an incoming stimulus differs from its internally generated 

prediction (RAO AND BALLARD, 1999; POUGET ET AL., 2002; FRISTON, 2005).  

Crucially, working memory and predictive coding imply fundamentally different dynamics: fast se-

rial for MMN, and slow and stable for P300. Predictive coding stipulates that errors propagate through a 

series of different areas until the appropriate internal model cancel the prediction error (RAO AND BALLARD, 

1999; POUGET ET AL., 2002; FRISTON, 2005), while working memory implies an active maintenance of infor-

mation in a stable activity pattern. 

Here, we put these predictions to a test using magnetoencephalography (MEG) recordings and 

multivariate decoding. To characterize the two predicted dynamic patterns, we first trained a multivariate 

pattern classifier to discriminate standard from deviant trials at each time sample, and then examined their 

ability to generalize to new time samples. We thus obtained a temporal generalization matrix that can distin-

guish two types of dynamics (FIGURE 4.2). We applied this approach to two different violations of auditory 

regularities originally designed to isolate the MMN and the P300 components (FIGURE 4.1) (BEKINSCHTEIN 

ET AL., 2009). 
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4.4. METHODS 

4.4.1. PROCEDURE, MATERIAL & APPARATUS 

The Local Global protocol (BEKINSCHTEIN ET AL., 2009) enables the comparison of effects engen-

dered by physically identical but contextually different auditory stimuli (FIGURE 4.1). Traditional analyses 

(topography, sources, etc.) of the present MEG have been partially reported elsewhere (WACONGNE ET AL., 

2011; KING ET AL., 2013A). Each recording session comprised 14 blocks (780 trials) of ~3.5 minutes dura-

tion. Nine healthy volunteers (Age M = 25 years old, SD = 4.7 years, 5 females) were asked to pay atten-

tion to the auditory stimuli while keeping their eyes opened and fixated at a central cross. All subjects gave 

written informed consent to participate to this study, which was approved by the local Ethics Committee 

(Comité de protection des personnes "Ile-de-France VII", hôpital de Bicêtre, 78 rue du Général-Leclerc, 

94270 Le Kremlin-Bicêtre). 

Signal space separation (SSS, TAULU ET AL., 2004) was applied to suppress external magnetic inter-

ference, interpolate noisy MEG sensors and realign MEG data into a subject-specific head position. This 

reference head position was determined from head position measurements acquired at the beginning of 

each recording session. Eye blink and cardiac artefacts were corrected separately for each type of channel 

(gradiometer and magnetometers) using signal space projection (SSP, UUSITALO AND ILMONIEMI, 1997). 

Noisy MEG sensors were removed with Maxfilter software application (Elekta Neuromag®) in the SSS 

preprocessing step. All signals were digitally low-pass filtered at 40 Hz and down-sampled to 256 Hz. 

Trials were then segmented from -800 ms to 700 ms after the critical stimulus onset, and were corrected 

for baseline over a 200 ms window before the onset of the first of the five sounds. Trials with large arte-

facts remaining after correction for ocular and cardiac artefacts were identified manually and excluded 

from the present analyses.  

 

4.4.2. CONTRASTS AND CLASSES 

Two classifications were attempted (FIGURE 4.1): (1) local standard (LS, i.e. an xxxxx sequence) 

versus local deviant (LD, i.e. an xxxxY sequence); (2) global standard (GS, frequent sequences) versus 

 

FIGURE 4.1 VIOLATING TWO TYPES OF AUDITORY REGULARITIES. 

The Local Global experimental design (BEKINSCHTEIN ET AL., 2009) is a variation of the auditory oddball 
paradigm. It consists in presented series of 5-sound sequences which are composed of five identical 
tones (local standard) or four identical tones followed by a deviant one (local deviant). The global 
regularity is established across trials by making 80% of the trials identical (global standard).  The 
design thus dissociates the violation of local predictions (change of tone) and global predictions 
(change of sequence). 
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global deviant (GD, rare sequences). Both of these analyses contrast trials that are evenly distributed 

across blocks and are therefore free of potential block-design artefacts (LEMM ET AL., 2011). 

4.4.3. MULTIVARIATE PATTERN ANALYSIS (MVPA) 

Multivariate pattern analyses (MVPA) were implemented to systematically track the dynamics of 

neuronal processes. Our method is based on the principle that when a brain area – or set of areas – is 

activated, its electric and magnetic fields project to the MEG sensors in a specific spatial pattern. This 

specificity is obviously limited by the spatial resolution of the MEG: if two distinct areas are very close to 

one another or too far from the scalp, the resulting pattern will be indistinguishable. MVPA identifies each 

of these projections directly at the sensor level and for each subject separately.  

4.4.3.1. SVM & cross validation 

The detailed procedure of the multivariate pattern analysis is reported in KING ET AL. (2013). A ten-

fold stratified cross-validation was implemented for each within-subject analysis. For each fold and at each 

time sample, a linear support vector machine (SVM, (CHANG AND LIN, 2001)) was fit on 9/10 of the trials 

(training set) to find the hyperplan (w) that best discriminated standard and deviant trials. Classification 

performance was then computed with a Received Operative Curve (ROC), based on the signed distance 

separating w and the trials from an independent test set (1/10). All multivariate analyses were performed 

with the Scikit-Learn toolbox (PEDREGOSA ET AL., 2011). 

4.4.3.2. Time generalization  

Crucially, once we have fitted t linear classifiers (where t is the duration of a trial expressed in time 

samples), each of these classifiers is tested on its ability to discriminate the two types of trials at any time t’. 

This method thus leads to a temporal generalization matrix of training time x testing time. In each cell of the 

matrix, decoding performance is summarized by the Area Under the Curve (AUC). Classifiers trained and 

tested at the same time point correspond to the diagonal of this t² matrix, and are thus referred to as ―di-

agonal‖ decoding. The decoding performance obtained when t’ differ from t is referred to as ―off-

diagonal‖ decoding. Note that the cross-validation was applied independently of the temporal generaliza-

tion analyses: the trials used in the training set at time t were never included in the generalization at time t‘ 

as consecutive time samples are not independent. 

To compute the average duration over which temporal generalization remained significant, we 

computed the number of time samples during which each classifier could significantly predict the trials‘ 

classes, using false discovery rate (FDR) to correct for multiple comparison. To avoid underestimating the 

mean generalization-time, we only considered the time window during which the diagonal classifiers per-

formed above chance (~82 ms – 450 ms). 

4.4.3.3. Statistics & effect sizes  

To test for statistical significance within subjects, we performed Mann-Whitney U tests on the 

signed distance to w depending on the trials classes (standard or deviant), with trials as the random vari-

able. Similarly, across-subjects statistics were performed using Wilcoxon Signed Rank Tests based on the 

mean signed distance within each of the true trial classes. Effect sizes are summarized with the AUC com-

puted from empirical ROC analyses. An AUC of 50% implies that true positive predictions (e.g. trial was 

correctly predicted to belong to class α) and false positive predictions (e.g. trial was erroneously predicted 

to belong to class α) are, on average, equally probable; an AUC of 100% indicates a perfect prediction 

with no false positives. In principle, for the diagonal decoding, classification performance should not sys-

tematically yield AUCs that are significantly below 50%. However, decoding performance during generali-
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zation to a time sample different from the classifier‘s fitting time can be significantly below 50%, as the 

pattern of brain activation carrying the discriminative information can be flipped in sign between t and t’. 

Statistical analyses were performed with MATLAB 2009b.  

4.4.3.4. Modelling 

To test our method, we ran a series of simulations. For each class, 50 trials (50% in each class) 

were generated across 20 simulated sensors and 80 time-samples (t). Each generator (g), simulating one or 

several brain areas, projected on a random combination of sensors (C), and was activated (A) with a tem-

poral profile specific to each simulation. Each generator was thus defined by a vector of 20x1 features of 

normally distributed values, as well as by a second vector of t time-samples indicative of its activity. Each 

trial (S(c,t)) corresponded to the sum of the generators‘ activities in the direction of the class (class y=[-1, 

1]):  

 

Subsequently, Gaussian white noise was added to all signals. Signal-to-noise ratio was set to 0.5. 

Finally, each simulation was repeated ten times to simulate a group of subjects. In the simulation of a se-

quential pattern, 10 generators were successively active for 6 time samples each. In the simulation of sus-

tained brain activity, a single generator was active for 60 time samples (FIGURE 4.2). 

 

4.5. RESULTS 

We applied the generalization across time analyses to nine subjects who performed the Local 

Global protocol while their brain activity was recorded with MEG. Traditional analyses, including source 

reconstruction, are reported in WACONGNE ET AL. (2011) AND KING ET AL. (2013). 

 

FIGURE 4.2 DETECTING TWO TYPES OF BRAIN DYNAMICS BY GENERALIZING ACROSS TIME MULTIVARIATE CLASSIFICATION 

PATTERNS 

Multivariate decoding leads to temporal generalization matrices that reflect the underlying pattern of 
brain activity. (left) When the stimulus evokes a serial chain of brain activations, a classifier can 
extract stimulus information at each time point, but cannot generalize across time samples because 
the underlying active regions keep changing. The result is a diagonal generalization matrix. (right) In 
contrast, a decoder trained on sustained brain activity at one time point generalizes to others, leading 
to a square generalization matrix. 
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A traditional ―diagonal‖ decoding method, consisting in repeatedly training and testing a classifier 

with the MEG sensor data recorded at each time point, revealed the presence of decodable information 

between approximately 100 ms and 450 ms following the onset of the fifth sound (all pFDR < .05). Local 

auditory violations lead to a decoding peak at 120 ms (AUC = 69.6% ± 7.9, p = .003) whereas global vio-

lations lead to a stable decoding performance from ~150 ms to 700 ms (e.g. t = 350ms: AUC = 66.3% ± 

4.0, p = .003). This result confirms previous analyses showing a mismatch response  around 120 ms (HARI 

ET AL., 1984; WACONGNE ET AL., 2011) and significant local and global effects ranging from 200 ms to 700 

ms (BEKINSCHTEIN ET AL., 2009; WACONGNE ET AL., 2011; FAUGERAS ET AL., 2012; KING ET AL., 2013A). 

Crucially, generalization across time demonstrated remarkably different dynamics for the local and 

for the global effects (FIGURE 4.3). In the local contrast (decoding of local standards versus local deviants, 

corresponding to the classical mismatch response), none of the classifiers generalized to the full time win-

dow. Although the traditional diagonal decoding indicated the presence of decodable information about 

local auditory novelty within a long time interval of approximately 400 ms, each classifier significantly 

generalized for only ~100 ms on average (pFDR < .05), and was not significantly different from the diago-

nal decoder over a time window of only ~50 ms (pFDR < .05). Six of the classifiers, trained between 100 

and 600 ms and the full temporal generalization matrix for all classifiers is presented in FIGURE 4.3 (top). 

The results show a clear diagonal pattern of temporal generalization and thus indicate that each classifier 

only generalizes for a limited amount of time: each time sample is thus associated with a slightly different 

pattern of MEG activity. This result suggests that different brain regions are serially recruited, each for a 

short-lived time period, in response to a local auditory violation. 

Interestingly, the classifiers trained around 120 ms generalized in the opposite direction around 

200 ms. For example, a classifier trained at 114 ms led to a high AUC at this time point (AUC = 70.7% ± 

7.2,  p = .003), but generalized to an AUC below 50% at 200 ms (AUC = 34.3% ± 11.3, p = .003). This 

result means that trials were predicted to belong to the opposite class (e.g. standard trials were systemati-

cally predicted as deviant). This below-chance performance suggests that the pattern of brain activity is 

inverted between these two time points. To test whether this reversal reflects the polarity reversal of a 

single pattern, we compared the initial peak of diagonal decoding performance to the peak of anti-

generalization performance (i.e. AUC(t,t) versus (1-AUC(t,t‘)) and vice versa. The results showed that diago-

nal performance was significantly higher than anti-generalization performance (F(8,1) = 5.75, p = .024). 

This result thus suggests that this reversal is only partial, and that a qualitatively different pattern of brain 

activity is elicited at 110 and 200 ms respectively. This result is further supported by the fact the diagonal 

decoding performance is always significantly above chance between these two time samples (all p < .004) 

whereas a simple polarity inversion would lead the diagonal decoding performance to drop to chance in 

the middle part of the reversal. However, as this pattern remains more complex than what we initially 

predicted, we would argue that only the late part of the diagonal (150 – 450 ms) unambiguously follows 

the prediction of a serial processing (FIGURE 4.2).  
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FIGURE 4.3 GENERALIZATION ACROSS TIME OF THE LOCAL AND GLOBAL RESPONSES TO AUDITORY NOVELTY 

At each time point, a classifier was trained to extract the pattern of neuronal activity that 
distinguishes local-standard from local-deviant trials (“oddball” or mismatch effect top) or to contrast 
global-standard from global-deviant trials (bottom). Each classifier was subsequently tested on its 
ability to generalize this discrimination to all other time samples. 

(left) Differential pattern of brain activity of a single representative subject (standard – deviant). For 
simplicity purposes, only the magnetometers are plotted (n=102/306 channels). 

(middle) Generalization of six different classifiers trained at regularly spaced times between 100 ms and 
600 ms (purple), compared to the traditional “diagonal” decoding method where a different classifier is 
trained and tested at the same time point (black). The thick lines indicate significant decoding scores. 
The yellow areas indicate when the diagonal performance was significantly different from the 
generalization across time. 

(right) Generalization matrix. Decoding performance is plotted as a function of training time (y axis) 
and testing time (x axis) for all classifiers. Decoding of the local-violation effect leads to a diagonal-
shaped decoding performance from 82 ms to 508 ms (AUC over 50% in red), demonstrating that each 
classifier was only able to predict trials’ classes for a short amount of time. Decoding of the global-
violation effect leads to a square generalization matrix, suggesting that the underlying brain activity is 
essentially stable during this time period. Early classifiers (< 350 ms) are slightly lower than the 
traditional “diagonal” decoding performance, thus suggesting only a small change in the underlying 
pattern of activity. 
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Applying these analyses to the global contrast (global standard – global deviant) led to a strikingly 

different pattern of decoding performance. Within a broad temporal window, a nearly ―square‖ pattern of 

temporal generalization indicated that most classifiers, regardless of their training time, produced very 

similar decoding performance across all testing times. Decoding performance was statistically significant 

from approximately 125 ms until the end of the trial (700 ms). Sample classifiers trained between 100 ms 

and 600 ms and the full temporal generalization matrix is presented in FIGURE 4.3 (bottom). Overall, these 

findings show that a similar combination of MEG sensors can discriminate frequent auditory sequences 

from rare auditory sequences across many different time points. These results thus suggest that the under-

lying patterns of brain activity are sustained in a stable form for several hundreds of milliseconds. We only 

observed a small but significant difference between the temporal generalization of the early classifiers (< 

350 ms, all pFDR < .05) and the traditional ―diagonal‖ classifiers. This suggests that the early brain response 

to a global violation was partly changing over time, and became fully stable from 350 ms on. 

4.6. DISCUSSION  

We characterized the dynamics of the brain response to two types of auditory novelty detection. 

We predicted that i) local novelties should elicit a serial propagation of prediction error in successive brain 

areas whereas ii) global novelties should lead to an active maintenance of a particular pattern of brain ac-

tivity. Traditionally, multivariate pattern classifiers are trained and tested at a given time point – an ap-

proach hereafter referred to as ―diagonal decoding‖. Here, by contrast, we trained a classifier to distin-

guish standard from deviant trials at each time sample, and evaluated its ability to generalize to different 

time samples. The results showed that the two types of auditory violations are characterized by strikingly 

distinct dynamics.  

4.6.1. VIOLATION OF A LOCAL AUDITORY EXPECTATION LEADS TO THE SERIAL 

RECRUITMENT OF SHORT-LIVED NEURONAL ASSEMBLIES 

Decoding local-standard versus local-deviant trials revealed a diagonally-shaped pattern of tempo-

ral generalization, together with a partial reversal of decoding performance in an early time window.  

The diagonally-shaped decoding performance suggests that the pattern of neuronal activity 

changes continuously over time. This result therefore shows that the violation of a low-level auditory 

regularity recruits a series of different areas for a short time period. This novel result supports the early 

proposal that the brain response to low-level auditory novelties is generated by several different generators 

(NÄÄTÄNEN AND PICTON, 1987). More generally, it also fits predictive-coding theories, which postulate that 

distinct brain regions compare internally generated predictions to the incoming bottom-up evidence (RAO 

AND BALLARD, 1999; POUGET ET AL., 2002; FRISTON, 2005). Subtracting the sensory evidence and the predic-

tion leads to a ―prediction error‖ signal, which is passed on to higher areas that iteratively search for an 

internal model making sense of the incoming data. Empirical and modeling studies have shown that the 

MMN could reflect a prediction error (WACONGNE ET AL., 2011, 2012). The results supplements this pro-

posal by confirming that unexpected sounds lead to a serial propagation of neuronal activity.  

Furthermore, the early reversal of decoding performance (―worse-than-chance‖ generalization be-

tween 120 ms and 200 ms) implies that the pattern of brain activity that distinguishes between standard 

and deviant tones partly reverses between these time points. One interpretation is that the neuronal as-

sembly which is initially activated is subsequently inhibited (or vice versa). This interpretation fits with 
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intracranial recordings (HALGREN ET AL., 1995; BEKINSCHTEIN ET AL., 2009) and source reconstruction ana-

lyses (HARI ET AL., 1984; WACONGNE ET AL., 2011) which typically show a similar reversal in the primary audi-

tory cortex. However, the physiological interpretation of this pattern remains ambiguous. For example, 

the above excitation/inhibition hypothesis is indistinguishable from a reversal of the current flow hy-

pothesis. Indeed, if the neural currents first flow out the cortex (bottom-up) and then flow back in (top-

down), the magnetic field would also reverse. Such a reversal may occur if an early feedforward prediction 

error signal is followed, in the same region, by a later top-down cancellation signal. 

4.6.2. VIOLATION OF A GLOBAL AUDITORY REGULARITY LEADS TO A SINGLE SUSTAINED 

ACTIVITY PATTERN 

In sharp contrast with the local-violation results, decoding global standard versus global deviant 

trials leads to a nearly square-shaped temporal generalization matrix. This pattern results from the fact that 

whenever a classifier is trained at a given time sample, it generalizes almost perfectly to any other informa-

tive time sample. This result thus suggests that the underlying neuronal activity is essentially stable from 

200 to 700 ms approximately. In other words, a single sustained neuronal assembly appears to be recruited 

and maintained during this time window. 

Although temporal stability is the dominant feature of this temporal generalization, we also ob-

served, between 200 and 350 ms, a small but significant advantage along the diagonal compared with off-

diagonal decoding performance (i.e. generalizing over time). This pattern suggests that, during this period, 

a small temporal evolution of brain activity coexists with the main effect of stable maintenance. Interest-

ingly, the global effect rises slightly later than the local violation one, and thus fits with the idea that this 

more abstract violation recruits higher levels of processing than the local novelties. Together with fMRI 

(BEKINSCHTEIN ET AL., 2009) and source analyses (WACONGNE ET AL., 2011), these results fit with the idea 

that this type of violations durably engages working memory resources allocated by the prefrontal, parieto-

temporal cortex (KOJIMA AND GOLDMAN-RAKIC, 1982; ROMO ET AL., 1999; FUSTER, 2008). The meta-stable 

activity of this network has also been proposed as a hallmark of information broadcasting and conscious 

access (DEHAENE AND CHANGEUX, 2011). It is unclear, however, whether the present activity corresponds 

to the content of working memory or to a more transient updating process.  

4.6.3. A SYSTEMATIC METHOD TO CHARACTERIZE THE TEMPORAL DYNAMICS OF BRAIN 

ACTIVITY 

The present method, generalization across time, presents several advantages for the systematic 

analysis of the dynamics of brain signals. With advances in neuroimaging, the number of brain signals that 

are simultaneously recorded increases rapidly and it becomes difficult to embrace all of the data at once. 

The present recordings were, for instance, obtained from 206 gradiometers and 102 magnetometers, each 

capturing different directions of the magnetic fields. Yet, the relationship between MEG sensors and brain 

areas dramatically varies as a function of subjects‘ anatomy and position in the scanner. Source analysis 

provides a way to put these different signals in a common space across subjects but suffers from strong 

methodological difficulties and often generates an even larger dimensionality problem than scalp analyses. 

Given these issues, the method of multivariate decoding followed by temporal generalization presents 

several major advantages. First, it combines all simultaneous recordings into a unique information esti-

mate. Second, each classifier is fitted on a single subject separately, which maximizes sensitivity. Third, we 

have shown here how decoding can be used to identify the sequence of cortical activity patterns without 

relying on the strong hypotheses associated with source reconstruction. Generalization across time analy-

ses therefore provides a powerful supplement to source reconstruction and paves the way to a systematic 

characterization of the dynamics subtending cognitive processes. 
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5.1. INTRODUCTION OF THE ARTICLE 

In CHAPTER 4. , I showed how a slight adaptation of classic decoding techniques could characterize 

and discriminate the neural dynamics elicited by two different types of auditory novelties. A specific 

search across the literature later revealed that similar techniques to the temporal generalization method 

had employed sporadically across the literature. Consequently, in the following opinion paper, I formalize 

the generic principles and the specific advantages of the temporal generalization method. I show, from a 

series of simulations and empirical examples, that a limited number of canonical dynamics can be evi-

denced thanks to this simple method. Beyond the specific questions of conscious and unconscious proc-

essing, I argue that this technique may prove helpful to a broad audience of cognitive neuroscientists. 

5.2. ABSTRACT 

Parsing a cognitive task into a sequence of operations is a central problem in cognitive neuros-

cience. We argue that a major advance is now possible thanks to the application of pattern classifiers to 

time-resolved recordings of brain activity (electroencephalography, magneto-encephalography, or intra-

cranial recordings). By testing at which moment a specific mental content becomes explicitly decodable in 

brain activity, we can characterize the time course of cognitive codes. Most importantly, the manner in 

which the trained classifiers generalize across time, and from one experimental condition to another, sheds 

light on the temporal organization of information-processing stages. This method identifies a repertoire of 

canonical dynamical patterns that recur across various experiments and brain regions. 

5.3. INTRODUCTION: ISOLATING A SEQUENCE OF 

PROCESSING STAGES 

Understanding how mental representations unfold in time during the performance of a task is a 

central goal for cognitive psychology. Donders (DONDERS, 1969) first suggested that mental operations 
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could be timed by comparing the subjects‘ response times in different experimental conditions. This 

“mental chronometry” was later enriched with several methodological inventions, including the addi-

tive-factors method (STERNBERG, 1969) and the psychological refractory period method (PASHLER, 1994). 

While these behavioral techniques can provide considerable information on the temporal organization of 

computations, they remain fraught with ambiguities. For instance, they cannot fully separate serial from 

parallel processes (TOWNSEND, 1990), or processes organized into a discrete series of steps from those op-

erating as a continuous flow or “cascade‖ of overlapping stages (MCCLELLAND, 1979). 

More recently, the advent of brain-imaging techniques has provided unprecedented access into 

the content and the dynamics of mental representations. Electro-encephalography, magneto-

encephalography, local field potentials and neuronal recordings can provide a fine-grained dissection of 

the sequence of brain activations (see e.g. (DEHAENE, 1996; NISHITANI AND HARI, 2002)). Here, we show 

how the analysis of these time-resolved signals can be enhanced using multivariate pattern analysis 

(MVPA), also known informally as “decoding‖. We argue that temporal decoding methods offer a vast 

and largely untapped potential for the determination of how mental representations unfold over time. 

5.4. DECODING MENTAL CONTENTS FROM BRAIN ACTIVITY: 

FMRI. 

MVPA was first introduced to brain imaging in order to refine the analysis of functional magnetic 

resonance imaging signals (fMRI). Temporal resolution aside, functional Magnetic Resonance Imaging 

(fMRI) is an efficient tool to isolate and localize the brain mechanisms underlying specific mental repre-

sentations. Initially, fMRI was primarily used with binary contrasts that revealed major differences in re-

gional brain activity (e.g. faces versus non-faces in the fusiform cortex (KANWISHER ET AL., 1997)). MVPA, 

however, led to a considerable refinement of such inferences, because it proved able to resolve, inside an 

area, the fine-grained patterns of brain activity that contain detailed information about the stimulus or the 

ongoing behavior (for review, see (HAYNES AND REES, 2006; QUIAN QUIROGA AND PANZERI, 2009; 

KRIEGESKORTE AND KIEVIT, 2013)).  

Using MVPA, subtle details of mental representations can be decoded from fMRI activity pat-

terns. It is now possible to decode low-level visual features such as orientation (KAMITANI AND TONG, 2005; 

HARRISON AND TONG, 2009; FREEMAN ET AL., 2011; KOK ET AL., 2012) or color (BROUWER AND HEEGER, 2009), 

and determine how their cortical representation is changed, tuned or suppressed according to subjects’ 

goals (HARRISON AND TONG, 2009) and prior knowledge (KOK ET AL., 2012). Using distributed activity over 

the ventral visual pathway, it is possible to reconstruct which static images (THIRION ET AL., 2006; MIYAWAKI 

ET AL., 2008; GALLANT ET AL., 2009; KAY AND GALLANT, 2009; GRAMFORT ET AL., 2012), moving objects (VAN 

GERVEN ET AL., 2011) or movies (NISHIMOTO ET AL., 2011) the subject is watching. The identification of 

these mental contents is not limited to sensory information: in the absence of any stimulus, purely mental 

objects can still be decoded, for instance during mental imagery (LEE ET AL., 2012; ALBERS ET AL., 2013), 

working memory (CHRISTOPHEL ET AL., 2012; ALBERS ET AL., 2013), or even dreams (HORIKAWA ET AL., 2013). 

More recently, MPVA has also been used to decode non-visual representations, including auditory 

(FORMISANO ET AL., 2008; GIORDANO ET AL., 2013), mnemonic (RISSMAN ET AL., 2010), numerical (KNOPS ET 

AL., 2009), and executive information (COLE ET AL., 2013; ZHANG ET AL., 2013). 
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5.5. DECODING THE DYNAMICS OF INFORMATION 

PROCESSING 

MVPA applied to fMRI signals does not reveal much about the dynamics with which mental re-

presentations are activated and manipulated (although some slow processes can be tracked with fMRI: e.g. 

(KAMITANI AND TONG, 2005; HARRISON AND TONG, 2009; ALBERS ET AL., 2013)). Here, we focus specifically on 

the less explored question of what MVPA may bring to our understanding of the dynamics of information 

processing in the brain. 

Methodologically, MVPA readily applies to EEG, MEG or intracranial recording data where time 

can be considered as an additional dimension, besides the spatial information provided by the sensors. In 

order to obtain time-course information, a series of classifiers can be trained, each using as an input a 

BOX 5.1 METHODOLOGICAL ISSUES IN DECODING FROM TIME-RESOLVED BRAIN-IMAGING DATA 

The ability of multivariate pattern analysis (MVPA) to extract information from a complex 
multidimensional dataset has rendered this statistical technique indispensable to the neuroimaging 
community (KRIEGESKORTE AND KIEVIT, 2013). By concentrating the information distributed in several 
data points, MVPA increases the signal-to-noise ratio and facilitates single-trial decoding. These 
advantages are particularly useful when signals present a high inter-individual variability that prevents 
spatial averaging. MVPA simplifies such complex dataset by presenting the results in an information 
space of direct relevance (SHEPARD, 1987; KRIEGESKORTE AND KIEVIT, 2013), in which data from multiple 
subjects can readily be averaged.  

Here we specifically emphasize the usefulness of MVPA applied to time-resolved intracranial, MEG and 
EEG recordings. MVPA projects such multidimensional data into a smaller-dimensionality space 
whose axes are the cognitive codes of interest (e.g. stimulus features, subject response, etc.). The 
output axes are shared across individuals, but the projection is optimized for each subject and each 
time point. In MEG for example, this approach allows maximizing the spatial resolution of the signals 
without necessarily addressing the difficult issue of source localization. 

In fMRI, MVPA is often used in combination with a search light method (KRIEGESKORTE ET AL., 2006; 
HAYNES ET AL., 2007), which consists in sliding a small spatial window over the data in order to detect 
which segments contain decodable information. By analogy, with time-resolved signals, a sliding time 
window can be used to detect periods of optimal decodability. Furthermore, this approach can be 
extended by testing whether a classifier is able to generalize to other moments in time. Not only can 
decoding determine when and for how long a given piece of information is explicitly present in brain 
activity, but with generalization, it becomes able to characterize whether this information recurs in 
time, and when.  

When applied systematically, the method yields a full temporal generalization matrix where 
classifiers are trained and tested at all available time points (Figure 1). A variety of methods can be 
used to build such a matrix, including support vector machines (e.g. (KING ET AL., N.D.; NIKOLIĆ ET AL., 
2009)), linear discriminant analyses (e.g. (CARLSON, 2011; CARLSON ET AL., 2013)), or even simple linear 
regression (e.g. (MEYERS ET AL., 2008; ZHANG ET AL., 2011; SCHURGER ET AL., 2013)). To avoid data over-
fitting, MVPA must be nested inside a cross-validation loop, such that performance is only measured 
on novel left-out data samples (for both diagonal and off-diagonal time points). To evaluate classifier 
performance, “criterion free” estimates should be preferred over mean accuracy, because the latter may 
lead to systematic biases during generalization (i.e. all trials may be classified in the same category). 
We favor using the area-under-the-curve (AUC), a sensitive non-parametric criterion-free measure of 
generalization. 
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specific time slice of the original data (see BOX 5.1). The output is a curve representing decoding perfor-

mance as a function of time, which specifies the time window(s) when a certain piece of information be-

comes explicitly encoded in brain activity. Multiple such classifiers can be trained to decode distinct fea-

tures of the trial, thus dissecting a trial into a series of overlapping stages. Recently, for instance, in a sim-

ple response-time task, we decoded successively the location of the stimulus, the subject’s required re-

sponse, his actual motor response (which differed on error trials), and whether the brain detected whether 

the response was correct or erroneous (CHARLES ET AL., N.D.). 

 

Even scalp EEG recordings contain a lot of information sufficient to discriminate a variety of 

processing stages. Duncan et al. (DUNCAN ET AL., 2010), for instance, showed that the orientation of a large 

visual grating can be reconstructed from EEG signals – a result recently replicated with MEG 

(GARCIA ET AL., 2013; RAMKUMAR ET AL., 2013). EEG even permits decoding the covert production of im-

agined syllables (DENG ET AL., 2010). Auditory information (KING ET AL., 2013A), including conceptual and 

semantic information (CHAN ET AL., 2011; SUDRE ET AL., 2012) and even music samples (SCHAEFER ET AL., 

2010) have also been decoded from EEG and MEG recordings.  

Decoding is typically performed on raw signals in the time domain. However, the expansion of 

brain signals through a time-frequency transform may increase their decodability and reveal information 

spread over both frequency and time (DENG ET AL., 2010; FUENTEMILLA ET AL., 2010; SCHYNS ET AL., 2011).  

 

FIGURE 5.2  THE PRINCIPLES UNDERLYING TEMPORAL DECODING AND TEMPORAL GENERALIZATION 

At each time point t, a multivariate pattern classifier w(t) is trained to identify the linear combination 
of measurements (weights of EEG electrodes, MEG sensors, individual neurons, etc.) that best 
discriminates two experimental conditions (A and ). This combination may vary with time, as the 
underlying pattern of activity changes. Classifier performance is assessed, not only at the time used for 
training (e.g. classifier w(t1) tested at t1, w(t2) tested t2 …, hereafter referred to as “diagonal decoding”), 
but also on data from other time samples (e.g. classifier w(t1) is tested at all times t1, t2, t3…; hereafter 
referred to as “off-diagonal decoding”). The outcome is a temporal generalization matrix 
representing the decoding performance of each classifier at each time point. By convention, we depict 
this matrix with training time on the y axis and generalization time on the x axis. With this 
convention, horizontal “slices” through the matrix show the time course of activation of the brain 
systems identified by a given classifier. 
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Two approaches can be used to simultaneously obtain a high spatial and temporal resolution. 

First, source reconstruction analyses may provide an approximate location of the neural generators under-

lying scalp recordings. Second, intracranial recordings can now be acquired from dozens or even hundreds 

of different cortical and subcortical sites. Decoding intracranial recordings has revealed a rich temporal 

dynamics of fine-grained codes. For example, in the olfactory bulb of the zebra fish, decoding identified a 

sequence of neuronal responses to odors, revealing that ambiguous mixtures of odors are initially coded 

continuously and become categorically represented later in time (NIESSING AND FRIEDRICH, 2010). In hu-

mans, decoding has been used to show that perceived phonemes are categorically represented in the post-

erior superior temporal gyrus, with a peak as early as 110 ms following sound onset (CHANG ET AL., 2010). 

Similarly, the production of spoken syllables can be deciphered from sensori-motor somatotopic cortex, 

with a sequential activation of distinct codes for the initial consonant and the subsequent vowel 

(BOUCHARD ET AL., 2013).  

5.6. GENERALIZATION ACROSS TIME 

Applying decoding techniques to successive time slices can identify when, and for how long, a 

specific piece of information is represented in the brain. However, the underlying neuronal code may 

change with time. The MVPA approach can be extended to ask whether the neuronal code is stable or 

dynamically evolving (BOX 5.1 & FIGURE 5.2). The principle is simple: instead of applying a different clas-

sifier at each time point, the classifier trained at time t can be tested on its ability to generalize to time t’. 

Generalization implies that the neuronal code that was identified at time t recurred at time t’. 

 

 

FIGURE 5.3  EXAMPLE OF GENERALIZATION ACROSS TIME (ADAPTED FROM KING ET AL, UNDER REVISION). 

In this auditory mismatch MEG paradigm, classifiers are trained to determine whether the last sound 
of a sequence is identical to the four preceding tones or different from them, thus generating a 
mismatch response. Each classifier only generalizes over a transient time period, as indicated by the 
diagonal generalization matrix (right) and the fact that diagonal performance (black line) is 
systematically superior to off-diagonal temporal generalization (6 pink lines, each indicating a 
classifier trained at the indicated time). The changing topographies (left) confirm that the difference in 
magnetic field evolves over time. These findings suggest that the same stimulus (an unexpected sound) 
elicits a series of distinct patterns of brain activity over time.  
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Systematically adopting this approach leads to a two-dimensional temporal generalization matrix, 

in which each row corresponds to the time at which the classifier was trained, and each column to the 

time at which it was tested. For instance, when we apply this method to the decoding of novel versus 

habitual sounds (KING ET AL., 2014), we find that mismatch signals, classically assigned to a single “mis-

match response”, actually correspond to an extended sequence of distinct brain activation pat-

terns (FIGURE 5.4). Although sound novelty can be decoded over a long time window, each of the classifi-

ers is time specific and does not generalize over a long time period. All of this information is apparent in 

the temporal generalization matrix, which takes a diagonal form. 

The simulations presented in FIGURE 5.4 exemplify how the temporal generalization method may 

distinguish fundamentally different dynamics of brain activity to which traditional sliding-window classifi-

ers can be blind (FIGURE 5.4). So far, this capacity has only been used sporadically in the literature. The few 

available examples suggest that the diagonal pattern, indicative of a series of processing stages, is only one 

of several canonical dynamics modes of brain activity (FIGURE 5.5). For instance, when we analyze a 

slightly different response to auditory novelty, the late brain response to frequent versus rare auditory me-

lodies (KING ET AL., 2014), we find that it obeys a strikingly different dynamics from the mismatch re-

sponse, with a square generalization matrix indicating a stable neural code (compare FIGURE 5.5.G and 

FIGURE 5.5.H). A similar square matrix was observed for categories of visual pictures in infero-temporal 

cortex during a simple attention task (ZHANG ET AL., 2011). Interestingly, other experiments (MEYERS ET AL., 

2008; STOKES ET AL., 2013) find that the same area, as well as the prefrontal cortex, may switch to a diagonal 

pattern during a delayed match-to-sample task (FIGURE 5.5.A and FIGURE 5.5.B). These examples suggest 

that, in different contexts, either a stable state or a time-changing code is used by the brain to bridge 

across a long temporal delay. 

 

 

FIGURE 5.4 GENERALIZATION ACROSS TIME: PRINCIPLES AND POSSIBILITIES. 

The temporal generalization matrix contains detailed information about the underlying brain 
processes. For illustration, we simulated seven different temporal structures. For each of them, the 
generators, their time course, the diagonal decoding performance and the full temporal generalization 
matrix are displayed. Isolated: Three simulated brain regions are differentially activated at three 
distinct times, leading to three isolated patterns of above-chance decoding performance. Sustained: 
Analysis of a single process maintained over time leads to a square-shaped decoding performance. 
Chain: Decoding a chain of distinct generators leads to a diagonal-shaped decoding performance, as 
each component generalizes over a brief amount of time only. Reactivated: A given generator 
reactivates at a later time, leading to transient off-diagonal generalization. Note that the maintained, 
chain and reactivated conditions are indistinguishable from their diagonal performance, but are easily 
separated by their matrices. Oscillating:  An oscillatory or reversing component leads to transient 
below-change performance. Ramping: Slowly increasing activity leads to a subtle asymmetry: 
temporal generalization is higher when the classifier is trained with high signal-to-noise data and 
tested with noisier signals, than in the converse condition. Jittered: Temporal jitter in activation onset 
smoothes the generalization matrices both horizontally and vertically. 
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Other types of dynamics may exist. Fuentemilla and collaborators (FUENTEMILLA ET AL., 2010) 

trained a multivariate pattern classifier during the presentation of indoor or outdoor stimuli. When testing 

during the delay period of a working memory task, they obtained above-chance performance which, inte-

restingly, oscillated at the theta rhythm (4-8 Hz), indicating that a working-memory code recurred cyclical-

ly. Carlson et al. trained a classifier to decode the position of a visual stimulus. They showed that, after 

training a classifier at the onset of the image, the classifier led to below-chance predictions at the time of 

stimulus offset, suggesting that the neural activity pattern recurred with a reversed polarity (CARLSON, 

2011). Similar off-diagonal below-chance generalization has been observed by others (NIKOLIĆ ET AL., 2009; 

CARLSON, 2011; CARLSON ET AL., 2013; KING ET AL., 2014). Understanding when and why such reversals occur 

is an interesting question for further research.  

 

 

FIGURE 5.5  EXAMPLES OF EMPIRICAL FINDINGS. 

Temporal generalization has been used with both invasive neuronal recordings and non-invasive MEG 
data. Although the classifier (Support Vector Machine, Linear Discriminant Analysis, etc.) and 
performance measure varied (accuracy, d’, area-under-the-curve (AUC) or correlation index r’), the 
results illustrate some of the major dynamic structures postulated in figure 3: diagonal chain (e.g. A, C, 
D, F), reactivation at the time of a second stimulus (E, F) or at stimulus offset (C), sustained activity 
(B, G) or transition from diagonal to sustained (H). Reversing brain patterns are visible as below-
chance generalization performance (blue patches in panels A, C, D). Note that across studies, the same 
region (e.g. infero-temporal cortex) seems capable of generating very distinct dynamics (compare 
panels E and G). 
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5.7. GENERALIZATION ACROSS TIME AND CONDITIONS 

The principle of generalization across time can be further extended to generalization across expe-

rimental conditions. Ever since Donders and Sternberg, the manipulation of various experimental factors 

(e.g. attention, expectation, picture contrast, etc.) has been used to selectively accelerate, slow down, re-

move, insert, or reorder specific processing stages. The temporal generalization matrix may directly reveal 

such changes in processing architecture (FIGURE 5.6). The logic consists in training at time t in condition c 

and testing at time t‘ in condition c’. An acceleration of some stages will then be perceptible as a displace-

ment of the generalization window outside of the diagonal. The method can identify at what time, and for 

how long, the acceleration occurred. Other changes, such as the deletion or insertion of processing stages 

or their temporal reordering, can be similarly characterized. 

 

A striking example of temporal reorganization is provided by the decoding of spatial location 

from single-cell recordings. Capitalizing on the earlier demonstration that rat location could be accurately 

decoded from hippocampal place-cell activity (WILSON AND MCNAUGHTON, 1994), Louie and Wilson (LOUIE 

AND WILSON, 2001) identified a sequence of place-cell firing that reproducibly tagged the animal‘s move-

ment through a circular track. They then showed that the same sequence was replayed during REM sleep, 

at approximately the same speed or slower (see also (POE ET AL., 2000)). Subsequently, Lee and Wilson (LEE 

AND WILSON, 2002) showed that place-cell activity, which could be used to detect the location and direction 

of actual animal movement, was also replayed at 20-times faster speed during slow wave sleep, while the 

animal was, of course, immobile. Accelerated replay was also observed in the awake state (DAVIDSON ET 

AL., 2009). Recently, Pfeiffer and Foster (PFEIFFER AND FOSTER, 2013) found that brief bouts of place-cell 

activity could be decoded into single-trial goal-directed trajectories that anticipated, at an accelerated pace, 

the subsequent movement of the rat on the very same trial. Place-cell firing may also recur in reverse order 

(FOSTER AND WILSON, 2006), perhaps reflecting a form of goal-based problem solved by means-ends analy-

sis. Those examples prove that temporal accelerations and reversals do occur in brain activity, and invite a 

search for their occurrence in other cognitive domains (e.g. bird song (DAVE AND MARGOLIASH, 2000)), using 

the temporal generalization matrix as a telling signature. 

 

FIGURE 5.6 GENERALIZATION ACROSS TIME AND EXPERIMENTAL CONDITIONS 

When data is available from two experimental conditions (c and c’), the pattern of generalization 
across time and conditions provides diagnostic information about the organization of brain processes. 
The four simulations shown indicate how changes in activation intensity, latency, branching, or 
ordering each lead to a distinct cross-condition generalization matrix. 
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5.8. CONCLUSION 

In the brain-imaging community, multivariate pattern classifiers are primarily used to analyze 

brain-imaging data at a fine spatial scale. Here, we summarized a number of ideas and empirical studies 

which suggest that it can also be used to probe the fine temporal organization of brain activity. Characterize 

the building blocks of cognitive processes in time, rather than in space, presents many challenges and 

open issues (see BOX 5.8), for which we hope that the temporal generalization method may prove useful. 

 

BOX 5.7 DOES THE BRAIN OPERATE AS A DECODER OF ITS OWN SIGNALS?  

Multivariate pattern analysis is a powerful method. Could it also be considered as a metaphor for some 
brain operations? Consider the problem of identifying a face from retinal inputs. The primary visual 
area contains all the information needed to identify a flashed face, yet this information is “entangled” 
in a complex manifold of firing rates (DICARLO ET AL., 2012). The hierarchy of areas in the ventral visual 
stream may “disentangle” the information until it is no longer implicit in distributed activity, but is 
explicitly coded in the firing rate of a small neuronal population. For IT neurons, learning to become 
sensitive to a specific face may consist in learning a classification function that, given the input firing 
rates, separates instances of this face from any other stimulus. Similarly, training on a psychophysical 
experiment implies that the prefrontal and parietal areas learn to weigh evidence from the relevant 
sensory neurons and disregard uninformative cells. Each brain area may thus be confronted with a 
multivariate classification problem similar to that of the neuroscientist attempting to sift through a 
pile of recorded data.  

Asking whether a brain area acts as a decoder of its afferent inputs leads to interesting questions. For 
instance, is the brain confronted with issues of over-fitting and, if so, does it use regularization or 
penalization schemes, as some pattern classification algorithms do (e.g. SVM (CHANG AND LIN, 2001))? 
Does it reject outlier data? Does it suffer from a “curse of dimensionality”, and if so, does the pyramidal 
neuron’s limited dendritic span provide a solution by drastically reducing the data under 
consideration? Does every single neurons operate as a high-level decoder, as in the classical “grand-
mother cell” scheme? Or is information decodable only at the population level, with neurons failing to 
provide invariant information individually, yet collectively providing a linearly separable code to the 
next hierarchical level (LI AND DICARLO, 2010)? 

The brain-as-a-decoder metaphor suggests novel experiments. It implies that the activity of a neuron, 
voxel or brain region could be modeled as a linear combination of other brain signals (a cortico-
cortical extension of the concept of “receptive field”) (HEINZLE ET AL., 2011). Furthermore, the metaphor 
justifies the use of linear MVPA, such as linear discriminant analysis or linear support machine, in 
order to analyze brain signals. A non-linear MVPA would exceed the power available to a typical 
single-layer neural network (MINSKY AND PAPERT, 1988) and would therefore decode implicit 
information which is probably not available to the brain itself (e.g. faces from V1). Identifying a 
temporal sequence of neuronal codes, as proposed here, would not be possible if an exceedingly 
powerful non-linear MVPA was used, because even abstract information could then be extracted from 
early areas. Ideally, MVPA should aim to decipher precisely those signals that the brain uses for its 
internal computations, no more, no less. Thus, MVPA should attain the same performance as the 
behavior or brain system of interest (e.g. (LI AND DICARLO, 2010; RUST AND DICARLO, 2010)), and should 
fail on exactly the same trials (WILLIAMS ET AL., 2007). 
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BOX 5.8 OUTSTANDING QUESTIONS 

 What factors make certain cerebral operations appear as “diagonal” and others as “square” in 
temporal generalization matrices? 

 What other dynamical patterns may appear in brain activity? Does the brain rely on a limited 
repertoire of canonical dynamical patterns that recur in very different types of computations? 

 Does each brain region possess a characteristic repertoire of dynamical patterns (e.g. serial 
flow in the ventral stream, evidence accumulation in parietal cortex, all-or-none maintenance 
in prefrontal cortex…)? 

 Is there a systematic correspondence between dynamical patterns at the microscopic (single-
neuron) and macroscopic (neuronal population) levels? 

 Does sensory processing consist in a discrete series of stages (as suggested by the labels of 
EEG components P1, N1, P2, etc), or does it involve a continuous cascade of events? 

 Why do we often see a reversal of generalization, leading classifiers to worse-than-chance 
performance when tested away from their initial training time? 

 How do experimental factors such as expectation, task relevance or task difficulty affect the 
dynamics of neuronal encoding and decoding? Do they systematically modulate, delay, or 
reorganize brain activity? 



 

 
 

 

6.1. INTRODUCTION OF THE ARTICLE 

Event related potential only reflect one of the putative neuronal signatures of conscious process-

ing. As detailed in the literature review, a series of other electrophysiological markers have been proposed 

by neural theories of conscious access. In particular, several models converge on the idea that the amount 

of information shared across brain regions should particularly well index subjects‘ state of consciousness.  

Assessing information sharing across brain solely with EEG can be particularly difficult. Indeed, 

each EEG electrode is not influenced by a unique and specific brain region but captures a mixture of dif-

ferent brain areas. Furthermore, several scalp electrodes can record a signal generated by a single brain 

area. As a consequence, correlating the signals across EEG channels is very different from correlating 

signals across brain regions. Finally, clinical data is terribly noisy and thus makes functional connectivity 

analyses difficult for two main issues. First, ocular and muscle movements introduce a common signal to 

most EEG channels. Second, patients often present important brain and even skull lesions, which drasti-

cally limits the possibility of solving the inverse problem and compute functional connectivity in the 

source space.  

In the present paper, I developed, together with Jacobo Sitt, a novel method to overcome these 

issues. We propose a simple analysis to compute the mutual information across qualitatively distinct pat-

terns of EEG signals. The logic is simple: if the patterns of two EEG signals are qualitatively different, 

then they cannot be generated by a common source – should it be cortical, ocular or muscular. If these 

two patterns systematically co-occur, then it indicates that their respective generators are functionally con-

nected. The analysis therefore consists in i) transforming the EEG signals into different qualitative dy-

namical patterns (―symbols‖) , ii) masking the pairs of patterns that can be trivially explained by common 

sources and iii) computing the mutual information across the remaining pairs of symbols. 

It may be interesting to note that the present finding beneficiated from serendipity. In the initial 

submission of the present work, the analysis did not include the weighing step. Although this first measure 

significantly discriminated vegetative from minimally conscious state patients, we imagined and imple-

mented the weighing feature during the revision of the manuscript. The subsequent results were particu-

larly striking, as they not only reached significance and thus validated our first finding, but they largely 

outperformed the initial measure.  
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6.2. ABSTRACT 

Neuronal theories of conscious access tentatively relate conscious perception to the integration 

and global broadcasting of information across distant cortical and thalamic areas (TONONI AND EDELMAN, 

1998; REES ET AL., 2002; DEHAENE ET AL., 2006B; TONONI AND KOCH, 2008; LAMME, 2010; DEHAENE AND 

CHANGEUX, 2011). Experiments contrasting visible and invisible stimuli support this view and suggest that 

global neuronal communication may be detectable using scalp electro-encephalography (EEG) (REES ET 

AL., 2002; SERGENT ET AL., 2005; DEHAENE ET AL., 2006B; DEL CUL ET AL., 2007; FISCH ET AL., 2009; GAILLARD ET 

AL., 2009; DEHAENE AND CHANGEUX, 2011; MELLONI ET AL., 2011). However, whether global information 

sharing across brain areas also provides a specific signature of conscious state in awake but non-

communicating patients remains an active topic of research (FAUGERAS ET AL., 2012; FINGELKURTS ET AL., 

2012A; LEHEMBRE ET AL., 2012; ROSANOVA ET AL., 2012). We designed a novel measure termed ―weighted 

symbolic mutual information‖ (wSMI) and applied it to 181 high-density EEG recordings of awake pa-

tients recovering from coma and diagnosed in various states of consciousness. The results demonstrate 

that this measure of information sharing systematically increases with consciousness state, particularly 

across distant sites. This effect sharply distinguishes patients in vegetative state (VS), minimally conscious 

state (MCS) and conscious state (CS) and is observed regardless of etiology and delay since insult. The 

present findings support distributed theories of conscious processing and open up the possibility of an 

automatic detection of conscious states, which may be particularly important for the diagnosis of awake 

but non-communicating patients. 
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6.3. INTRODUCTION 

We evaluated whether measures of brain-scale information sharing, derived from 181 high-density 

electro-encephalography (EEG) recordings, could discriminate, within awake patients, those showing 

clinical signs of consciousness from those who do not. Our research capitalizes on experimental studies in 

normal subjects showing that consciously perceived stimuli, relative to subliminal stimuli, lead to a late 

ignition of fronto-parietal networks and to an increased sharing of information in the brain (DEHAENE AND 

CHANGEUX, 2011). Several theories share the hypothesis that this global communication between distant 

cortical areas defines what we experience as a conscious content (BAARS, 1989; TONONI AND EDELMAN, 1998; 

LAMME AND ROELFSEMA, 2000; REES ET AL., 2002; DEHAENE ET AL., 2006B; TONONI AND KOCH, 2008; LAMME, 

2010; DEHAENE AND CHANGEUX, 2011; SETH ET AL., 2011).  

To quantify global information sharing, we introduced a novel measure, weighted Symbolic Mu-

tual Information (wSMI), which evaluates the extent to which two EEG signals present non-random joint 

fluctuations, suggesting that they share information (FIGURE 6.1). This method presents three main advan-

tages. First, it looks for qualitative or ―symbolic‖ patterns of increase or decrease in the signal which al-

lows a fast and robust estimation of the signals‘ entropies. The symbolic transformation depends on the 

length of the symbols (here, k = 3) and their temporal separation (here, τ = 4, 8, 16 or 32 ms, see methods 

and (BANDT AND POMPE, 2002)). Second, wSMI makes few hypotheses on the type of interactions and pro-

vides an efficient way to detect non-linear coupling. Third, the wSMI weights discard the spurious correla-

tions between EEG signals arising from common sources and favor non-trivial pairs of symbols, as con-

firmed by simulations (SUPPLEMENTARY FIGURE 6.5).  

 

           

FIGURE 6.1  WEIGHTED SYMBOLIC MUTUAL INFORMATION (WSMI). 

(a) The transformation of continuous signals (X) into sequences of discrete symbols (A, B … F) enables 
an easy and robust estimation of the mutual information shared between two signals. The τ parameter 
refers to the temporal separation of the elements that constitute a symbol, composed of 3 elements. (b) 
By computing the joint probability of each pair of symbols, we can estimate the Symbolic Mutual 
Information (SMI) shared across two signals. (c) To compute wSMI, the SMI is weighted to disregard 
conjunctions of identical or opposite-sign symbols, which could potentially arise from common-source 
artefacts. 
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6.4. METHODS 

Detailed experimental procedures and clinical details are provided in the Supplementary Materials 

and Table S1. 

6.4.1. PARTICIPANTS 

181 EEG recordings (75 VS, 68 MCS, and 24 CS patients, as well as 14 Healthy controls) were 

obtained from 126 subjects (Age: M=47 years old, SD=18 years, males: 72 %) who performed an auditory 

experiment for clinical purposes (BEKINSCHTEIN ET AL., 2009). All patients had been without sedation for at 

least 24 hours prior to the recording session, which was performed to help assess their diagnosis and their 

state of consciousness. Before each EEG recording, trained neurologists (FF, BR, LN) performed a clini-

cal evaluation of the patients with the Coma Recovery Scale Revised (CRS-R) from which patients‘ arousal 

and state of consciousness was derived (SCHNAKERS ET AL., 2008B). Note that CS patients differed from 

healthy subjects as they presented important brain lesions, were often recovering from a VS or an MCS, 

and were recorded at bedside. Data from healthy subjects were only used to verify the consistency of the 

proposed measure of consciousness.  

6.4.2. EXPERIMENTAL DESIGN & EEG PREPROCESSING 

Analyses were based on 800 ms time-periods during which subjects were presented to 4 consecu-

tive identical tones.  EEG preprocessing is described in Supplementary Materials. 

6.4.3. WEIGHTED SYMBOLIC MUTUAL INFORMATION (WSMI) 

EEG signals were first transformed in a series of discrete symbols defined by the ordering of k 

time samples separated by a temporal separation τ (FIGURE 6.1). Analysis was restricted to a fixed symbol 

size (k = 3) and four different values of τ (τ = 4, 8, 16 or 32 ms between time samples). To avoid aliasing 

artefacts, signals were low-pass filtered at corresponding frequencies (40, 20 and 10 Hz for τ = 8, 16 and 

32 ms respectively). Then wSMI was estimated for each pair of transformed EEG signals by estimating 

the joint probability of each pair of symbols. To reduce spurious correlations between signals, the joint 

probability matrix was multiplied by binary weights. The weights were set to zero for pairs of identical 

symbols, which could be elicited by a unique common source, and for opposed symbols, which could 

reflect the two sides of a single electric dipole.   

Cluster analyses were performed by averaging wSMI obtained across the 256*(256-1)/2 channel 

pairs within 16*(16-1)/2 manually selected regions. The distance separating EEG channels was calculated 

along a straight line using default electrode coordinates. 

6.4.4. STATISTICS 

Except if stated otherwise, statistical analyses were performed with R and MATLAB (2009b) and 

non-parametric two-tail tests (Wilcoxon, Mann-Whitney U tests and MATLAB‘s robust and stepwise 

regressions). Effect sizes are reported using Receiver Operating Curve (ROC) and Area Under the Curve 

(AUC) analyses. False discovery rate (FDR) was used to correct for multiple comparisons (noted as pFDR). 
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6.5. RESULTS 

We focused our analyses on patients with preserved arousal abilities. Within this category, vegeta-

tive state (VS) patients present no clinical signs of conscious behavior, whereas minimally conscious state 

(MCS) patients demonstrate fluctuating but consistent deliberate responses (GIACINO ET AL., 2002). 

6.5.1. WSMI INDEXES THE STATE OF CONSCIOUSNESS 

When considering the median wSMI across all channel pairs, analyses with τ = 32 ms revealed 

that VS patients (n = 75) presented significantly lower information sharing than MCS patients (n = 68; U 

= 3737, p < 10-5, AUC = .73), conscious (CS) patients (n = 24; U = 1445, p<10-5, AUC = .80), and 

healthy (H) controls (n = 14; U = 890, p < 10-4, AUC = .85) (FIGURE 6.2.A). A robust regression con-

firmed that median wSMI predicted the clinical group to which the subjects belonged (1: VS, 2: MCS, 3: 

CS, 4: Healthy; p < 10-6). These effects were observed for all temporal separation parameters τ, except the 

shortest value of τ = 4 ms (SUPPLEMENTARY FIGURE 6.6.A).  

 

6.5.2. WSMI IS CONSISTENT ACROSS ETIOLOGIES AND DELAY SINCE INSULT 

We tested the robustness of wSMI to variability in etiologies and delay since the initial insult. An 

ANOVA across patients, consciousness states and etiologies  showed a main effect of consciousness state 

(F(2,119) = 11.96, p <10-4), but no main effect of etiology (F(3,119) = 1.83, p = .145). The difference in 

median wSMI between VS and MCS patients remained significant within cases of anoxia (n = 23 VS, 9 

MCS); U=181, p = .001, AUC = .87), traumatic brain injury (n = (21, 27); U = 126, p = .001, AUC = .78) 

and stroke (n= (18, 20); U = 102, p = .024, AUC = .72) (FIGURE 6.2.B).  

Similarly, when we categorized the patients according to the time delay between disorder onset 

and EEG recording (acute [<25 days], intermediate [25-50 days] or chronic [>50 days]), we again found a 

main effect of consciousness state (F(2,132) = 10.01, p < 10-4) but no main effect of delay (F(2,132) = 

 

FIGURE 6.2 WSMI INDEXES CONSCIOUSNESS INDEPENDENTLY OF ETIOLOGY AND DELAY SINCE INSULT. 

(a) The median wSMI across current sources is depicted for each state of consciousness. Error bar 
represent standard error of the mean (SEM). Significant pair-wise comparisons are denoted with stars. 
Analyses were reproduced for each (b) etiology and (c-d) delay since insult. The results showed that 
median wSMI is mainly affected by the state of consciousness, and does not vary significantly across 
etiology or delays. 
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2.24, p = .110). The difference in median wSMI between VS and MCS patients remained significant within 

chronic (n = (23 VS, 18 MCS); U = 295, p = .022, AUC = .71) and intermediate (n = (25, 25); U = 98, p 

< 10-4, AUC = .84) patients, and was marginal in acute subjects (n = (28, 24); U = 443, p = .054, AUC = 

.66) (FIGURE 6.2.D). Patients tested just after the insult (<10 days) presented a significant effect too (n = (6, 

6); U = 36, p = .002, AUC = 1.00; FIGURE 6.2.C). 

6.5.2.1. Relationship between wSMI and other entropy or spectral 

measures 

Does wSMI merely detect a difference which is also present in simpler measures? First, mutual in-

formation need not covary with the entropies of the two signals, but is bounded by them. Empirically, we 

found that permutation entropy significantly increased with consciousness states (SUPPLEMENTARY FIGURE 

6.6.I). Crucially, the differences in wSMI between VS and MCS patients remained significant after normal-

izing the symbolic mutual information by local permutation entropy (SUPPLEMENTARY FIGURE 6.6.J). Thus, 

wSMI did not simply reflect changes in local entropies. 

Similarly, the power in various frequency bands correlated partially with wSMI (Table S2) and was 

informative about the patients‘ state of consciousness (SUPPLEMENTARY FIGURE 6.6.G). Nevertheless, in a 

stepwise regression, median wSMI at τ = 16 and 32 ms systematically outperformed power spectrum 

measures in discriminating VS and MCS patients. Furthermore, once wSMI was entered in the model, 

spectral differences were no longer predictive. At shorter τ (4 or 8 ms), the converse pattern was ob-

served: power spectrum measures contributed to the prediction of consciousness state whereas wSMI did 

not (Table S3). Therefore, for long τ, wSMI provides robust information about consciousness, over and 

above power spectral densities. 

A distinct question is which frequency bands carry the effects detected by wSMI. Each selection 

of a τ value sensitizes wSMI to a different frequency range (~4-10 Hz for τ = 32 ms; ~8-20 Hz for τ = 16 

ms; SUPPLEMENTARY FIGURE 6.6.H). Further band-pass filtering prior to wSMI computation suggested that 

the difference between VS and MCS was particularly driven by events in the q band (4–8 Hz). However, 

no consistent group differences were found in phase-locking value or phase-locking index at 4Hz or 

above, and phase-locking alone did not suffice to explain the difference in wSMI (Tables S4, S5).  

6.5.3. WSMI IMPAIRMENTS PREDOMINATE OVER CENTRO-POSTERIOR REGIONS 

Topographies summarizing the amount of information that each EEG channel shares with others 

suggest that the information sharing deficit in VS patients was present over most scalp regions (pFDR<.05 

in more than 97% of the current sources, FIGURE 6.3.A). When comparing VS to MCS patients, the median 

wSMI over frontal areas was less impaired than over the posterior regions (Fz versus Pz EEG channels; U 

= 2035, p = .038, AUC = .60). 

To facilitate the interpretation of the very large number of channel pairs (FIGURE 6.7.C-E), we re-

duced our data to 16 clusters composed of ~16 current sources each. The results confirmed that VS pa-

tients exhibited an overall reduction of information sharing mainly with centro-posterior areas (FIGURE 

6.3.B): 48% of the 120 cluster pairs showed significantly smaller wSMI in VS than in MCS or in CS patients 

(pFDR < 0.05). 
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6.5.4. VARIATIONS WITH INTER-CHANNEL DISTANCE 

 

To test the hypothesis of a change in brain-scale information sharing, we investigated the relation-

ship between wSMI and the Euclidian distance separating the channels. For distances below 5 cm, wSMI 

quickly dropped towards zero, as expected given that this measure was designed to eliminate common 

source artefacts (FIGURE 6.4.A & SUPPLEMENTARY FIGURE 6.8.A). We therefore avoided these short distances 

  

FIGURE 6.4  WSMI AS FUNCTION OF INTER-CHANNEL DISTANCE. 

(A, top) wSMI is plotted as a function of the Euclidian distance separating each pair of EEG channels. 
While wSMI is relatively stable between 8 and 23 cm, it drops towards zero as inter-channel distances 
diminish, which thus confirms its robustness to common source artefacts. (bottom) Histogram 
plotting the density of channels pairs as a function of inter-channel distance. (B) VS patients presented 
lower wSMI than MCS and CS patients particularly over medium and long inter-channel distances (>10 
cm). 

 

FIGURE 6.3 WSMI INCREASES WITH CONSCIOUSNESS PRIMARILY OVER CENTRO-POSTERIOR REGIONS. 

(a) The median wSMI that each EEG channel shares with all other channels is depicted for each state of 
consciousness. (b) 120 pairs formed by 16 clusters of EEG channels are depicted as 3D arcs, whose 
height is proportional to the Euclidian distance separating the two clusters. Line color and thickness 
are proportional to the mean wSMI shared by the corresponding cluster pair. 
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and restricted our analyses to five equally spaced distances for which the median wSMI was comparable at 

τ = 32 ms. wSMI discriminated VS from MCS at all but the shortest inter-channel distance (FIGURE 6.4.C). 

The interaction of distance with consciousness state (VS versus MCS) was significant when pitting the 

shortest distance against any of the longer ones (all p < 0.028). Thus, wSMI is robust to variations in inter-

channel distance, except in the very short range, suggesting that loss of consciousness is associated with an 

impairment in information sharing over medium to long distances. With non-weighted SMI, the difference 

between VS and MCS was weaker and was invariant to inter-channel distance (SUPPLEMENTARY FIGURE 

6.8.C-D). 

6.6. DISCUSSION 

Several theoretical models of consciousness predict that brain-scale information sharing should 

provide a consistent signature of conscious processing (BAARS, 1989; TONONI AND EDELMAN, 1998; LAMME 

AND ROELFSEMA, 2000; REES ET AL., 2002; DEHAENE ET AL., 2006B; TONONI AND KOCH, 2008; LAMME, 2010; 

SLIGTE ET AL., 2010; DEHAENE AND CHANGEUX, 2011; SETH ET AL., 2011). In agreement with this prediction, 

we show that wSMI, which estimates the amount of information shared by two EEG signals, increases as 

a function of consciousness state and separates vegetative state (VS) from minimally conscious state 

(MCS) patients. This increase appears particularly prominent across centro-posterior areas and across 

medium and long inter-channel distances.  

These results supplement recent EEG studies investigating the relationship between information 

sharing and loss of consciousness using spectral-based functional connectivity measures (FINGELKURTS ET 

AL., 2012B; LEHEMBRE ET AL., 2012). The present work relies on a large group of patients, which allowed us 

to demonstrate the independence of our findings from etiology and delay since insult. Moreover, our 

measure, unlike several traditional synchrony measures, minimizes common-source artefacts and improves 

the discriminability of consciousness states. Finally, we show that its changes cannot be simply reduced to 

local changes in entropy or power spectrum, but reflect a genuine change in information sharing particu-

larly detectable over medium and long distances across the scalp. A similar change may also exist at 

shorter distances, but due to common-source artefacts, scalp EEG is unlikely to provide conclusive in-

formation on this point.  

The observed change in brain-scale information sharing fits with earlier observations showing that 

the state of consciousness can be affected by diffuse anatomical lesions to the cortex and the underlying 

white matter, as well as to the thalamic and brain stem nuclei. In particular, several studies have underlined 

the prominent role of diffuse white matter lesions in persistent VS (AMMERMANN ET AL., 2007; NEWCOMBE 

ET AL., 2010; FERNÁNDEZ-ESPEJO ET AL., 2011; GALANAUD ET AL., 2012). These anatomical lesions may lead to 

functional deficits in thalamo-cortical (LAUREYS ET AL., 2000B; ZHOU ET AL., 2011) as well as cortico-cortical 

communication (LAUREYS ET AL., 1999A; CAUDA ET AL., 2009; VANHAUDENHUYSE ET AL., 2010; ROSANOVA ET 

AL., 2012) and to abnormal default mode network activity in VS patients (CAUDA ET AL., 2009; 

VANHAUDENHUYSE ET AL., 2010; BRUNO ET AL., 2011C; CRONE ET AL., 2011; FERNÁNDEZ-ESPEJO ET AL., 2011; 

SODDU ET AL., 2012), all of which would result in reduced mutual information over long cortico-cortical 

distances, as observed here.  

wSMI could be computed after cortical source modeling, but this step remains fraught with inac-

curacies, particularly given the patients‘ frequent brain and skull damage (KING ET AL., 2011). Instead, our 

analyses were performed after applying a current-source-density transform to EEG recordings, which 

coarsely focalizes the effects over the corresponding cortical regions. Topographically, the largest differ-



CHAPTER 6. ACKNOWLEDGEMENTS 

 

121 

 

ences in information sharing between VS and MCS patients were found over centro-posterior regions. 

Although this effect may appear at odds with the preponderant role of the prefrontal cortex in conscious 

processing (DEHAENE ET AL., 2006B; LAU, 2008; DEHAENE AND CHANGEUX, 2011), it fits with the recent identi-

fication of posterior cingulate and precuneus as essential hubs of cortical networks (DEHAENE AND 

CHANGEUX, 2011) and the correlation of mesio-parietal activity with the state of consciousness (ALKIRE ET 

AL., 2008). In particular, numerous studies have highlighted a frequent hypoactivation of the precuneus and 

posterior cingulate in VS patients (LAUREYS AND SCHIFF, 2011). These areas participate in the default mode 

network and have been repeatedly associated with the representation of self and others, episodic memory 

and mental imagery (BUCKNER ET AL., 2008; NORTHOFF, 2012), i.e. processes which are characteristic of the 

conscious brain. 

Our study could be criticized for pooling over a group of VS patients, while recent functional 

magnetic resonance imaging (fMRI) results suggest that some of them may actually show preserved con-

sciousness undetectable by classical clinical examination (OWEN ET AL., 2006; MONTI ET AL., 2010). However, 

recent estimates suggest that this may concern ~15-20% of VS patients (MONTI ET AL., 2010). Although 

their presence in our data cannot be excluded, it would minimally affect our conclusions and would only 

reduce our effect sizes. Nevertheless, it would be interesting to measure wSMI separately in VS patients 

with versus without a capacity for fMRI-based communication. In the former, we predict that wSMI 

should remain quantitatively unimpaired. 

Our findings are compatible with theories that associate consciousness with recurrent loops in 

posterior networks (LAMME, 2010), a distributed brain-scale global workspace (DEHAENE ET AL., 2006B; 

DEHAENE AND CHANGEUX, 2011), or a global ―dynamic core‖ (TONONI AND KOCH, 2008). They add to the 

panoply of behavioral and neuroimaging tools available to diagnose disorders of consciousness (LAUREYS 

AND SCHIFF, 2011). Our measure has the advantage of using EEG, a measure available in all clinics, rather 

than the complex and costly method of fMRI combined with instructions such as imagining playing tennis 

(OWEN ET AL., 2006) or answering a spoken question (MONTI ET AL., 2010). In a recent fMRI study (MONTI 

ET AL., 2010), 28 out of 33 MCS patients with consistent behavioral signs of consciousness showed no 

fMRI markers of deliberate communication. Future research should investigate whether the present tech-

nique, which may detect any residual brain-scale information sharing, proves more sensitive. Ultimately, a 

combination of neuroimaging and behavioral measures is likely to prove most useful in the clinic. 
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6.8. SUPPLEMENTARY MATERIALS 

6.8.1. SUPPLEMENTARY FIGURES 

 

FIGURE 6.5  SIMULATIONS ESTABLISHING THE EFFICIENCY OF WSMI IN ESTIMATING THE COUPLING BETWEEN TWO DISTANT 

REGIONS WHILE MINIMIZING COMMON SOURCE ARTEFACTS.  

Each horizontal set of graphs depicts the outcome of a simulation, using different hypotheses 

about source coupling. The figure depicts, for each simulation, the diagram of the simulation (i), the single 

and joint probabilities matrices at the source (ii) and at sensor level (iii), and the SMI and wSMI both esti-

mated at the sensor level (X, Y) (iv).  

(i), Circles represent two simulated sources (U, V) whose actual coupling strength is indicated by 

the width of the horizontal bar joining U and V. Squares represent sensors (X, Y), which may capture 

either a pure estimate or a heterogeneous mixture of signals from source U and V. The amount of signal 

they receive from U and V is represented by the width of the colored lines. Blue lines indicate a signal 

recorded on the positive side of the simulated ―electric field‖ whereas red lines indicate recorded signals 

with the opposite sign. Line-width is proportional to the respective simulated values.  

(ii) After transforming the continuous signals into symbolic sequences (U, V, X, Y), the single 

probability of each symbol can be computed for the time series corresponding to each source (P(U), 

P(V)). The joint probability matrix depicts the probability of each symbol v to occur in V if u  is in U 
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(P(U, V)). (iii) Similar single probabilities and joint probabilities at the sensor level (P(X), P(Y), P(X, Y)) 

can be computed too. 

(iv) Qualitative SMI and wSMI results as estimated from sensor signals (X, Y). 

Five scenarios were explored: three scenarios in which there is a strong non-linear U-V coupling 

(a-c), and two in which there is a very small coupling (d, e). Note that wSMI, contrarily to SMI, recovers 

the correct nature of the source coupling (iv). 

(a) In this scenario, sensors capture quasi pure signals (95%) from their respective source and only a 

small proportion of the other source (5%). In this trivial case, SMI and wSMI applied at the sen-

sor level both provide good estimates of the U-V coupling. 

(b) In this scenario, sensors capture heterogeneous signals (65%) from their respective source but are 

largely contaminated by the other source (35%). wSMI continues to correctly estimate the UV 

coupling. 

(c) A similar case to (b), except that one of the sensors is located at the opposite side of U and V – 

mimicking the bipolar characteristics of electric fields.  

(d) In this scenario, sensors capture a 65% mixture of U and V, although the UV coupling is close to 

zero. SMI thus overestimates the amount of UV coupling because it captures mutual information 

observed at the sensor level. Indeed, the sensor joint-probability matrix overestimates the down-

ward diagonal. In contrast to SMI, wSMI remains robust to this common source artefact. In this 

difficult case, only wSMI indicates the genuine nature of the UV coupling. 

(e) A similar case to (d), except that one of the sensor is located on the opposite side of the sources. 

Note that the joint probability matrix now overestimates the opposite diagonal. Again, in contrast 

to SMI, wSMI remains here robust to common source artefacts. 
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FIGURE 6.6  COMPLEMENTARY ANALYSES TESTING THE ROBUSTNESS AND THE SPECIFICITY OF WSMI.  

a. The figure shows the median wSMI obtained for all tested τ values (4, 8, 16, or 32 ms). The 
main effect of consciousness state is robust across all τ values but τ = 4 ms (all p < .05). 
Discrimination of VS and MCS patients is only significant for the higher values of τ (16 and 32 
ms). At τ = 4 ms, the analysis captures patterns of relatively high frequencies (panel h) and did 
not consistently vary across consciousness states.  
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b. A few DOC patients were evaluated and recorded several times in order to assess potential 
improvements of their consciousness state (see Methods). Here we replicated the main 
analysis (shown in panel a) but using only a single EEG recording per patient diagnosed in a 
given state of consciousness. The obtained results closely match those observed in (a). 

c. Median wSMI obtained for the discriminatory τ parameters (16 and 32 ms) after band-pass 
filtering the EEG signals (4-8, 8-13 or 13-30 Hz) to further isolate the frequencies responsible 
for the wSMI differences across consciousness states. The results suggest that wSMI 
variations are mainly due to events observed in the θ frequency range (4 – 8Hz).  

d. Robustness to sampling rate. Median wSMI obtained for all tested time-scale parameters (τ = 
8, 16, or 32 ms) after down-sampling the EEG recordings to 125 Hz. The results closely match 
those obtained from recordings sampled at 250 Hz (panel a). Note that at 125 Hz, it is not 
possible to compute wSMI with τ = 4 ms. 

e. Distribution of wSMI values. The figure shows the median wSMI (τ = 32 ms) obtained in each 
individual EEG recording (black dot) as a function of consciousness state. Although wSMI 
differs across consciousness states, their respective distributions partially overlap. 

f. Sensitivity – specificity analyses estimated with an empirical Receiver-Operating Curve. 
Sensitivity percentages are reported for all comparisons (red: VS-MCS, blue: VS-CS & green: 
MCS-CS) with a criterion fixed at a specificity of 75%. 

g. Mean power spectrum densities (PSD, computed from non-facial EEG channels) for each state 
of consciousness. PSD in the δ, α and low β frequency bands significantly predict 
consciousness states. 

h. Sensitivity of wSMI to pure-frequency signals. The results obtained from simulation analyses 
in which pairs of signals were constructed from phase-locked sinusoids (phase = π/2). wSMI is 
plotted for each temporal separation (τ) parameter, and for each frequency of the simulated 
signals. The results show that changing the value of τ makes the wSMI measure sensitive to 
different frequency ranges. To avoid aliasing artefacts, low-pass filtering is systematically 
applied as a function of τ (vertical lines, see Supplementary Method). 

i. Permutation entropy (PE), computed for each channel separately, significantly indexes 
consciousness states for τ = 16 or 32 ms. 

j. We calculated the symmetric uncertainty in order to test whether the changes in wSMI as a 
function of consciousness state were simply driven by local changes in entropy. The results for 
τ = 32 ms showed that symmetric uncertainty was significantly smaller in VS than in MCS and 
CS patients. Thus, wSMI discriminates consciousness states over and above PE. 
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FIGURE 6.7  3D REPRESENTATION OF NON-CLUSTERIZED WSMI VALUES ACROSS STATES OF CONSCIOUSNESS.  

The color of each arc indicates the wSMI for each corresponding pair of channels or clusters. As in the 
cluster analysis (FIGURE 6.3), results show that the mutual information between a priori distinct cortical 
sources increases with the state of consciousness. (a-b) Front and top views corresponding to cluster 
analyses (FIGURE 6.3). (c-e) For each clinically defined state of consciousness, all 32,640 pairs of current 
sources are plotted in 3-dimensions following the principles described in FIGURE 6.3.   
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FIGURE 6.8 COMPLEMENTARY ANALYSES OF INTER-CHANNEL DISTANCE FOR EACH “FUNCTIONAL CONNECTIVITY” MEASURE. 

a. wSMI as a function of inter-channel distance is presented for all other tested temporal 
separation parameters (τ = 4, 8, or 16 ms).  

b. Replication of the inter-channel distance analyses performed on wSMI (τ = 32 ms), but now 
using a different time period of the EEG recordings (post auditory stimulation). The obtained 
results closely match the ones obtained from signals acquired during the auditory stimulation. 
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c. Non-weighted SMI at τ = 32ms is displayed. The results show that contrarily to wSMI, SMI 
rapidly increases when the distance separating two EEG sensors drops towards zero, as 
expected given the sensitivity of SMI to common-source artefacts. Statistical analyses across 
the five distances (6.3 – 21.8 cm) revealed that VS had lower SMI than MCS and CS 
independently from inter-channel distance. 

d. Analyses comparing the sensitivity of SMI (left) and wSMI (right) to consciousness states 
revealed that wSMI was a better predictor of consciousness state than SMI. 

e. Traditional measures of “functional connectivity” / signal correlation such as Phase Locking 
Value (PLV) and Phase Lag Index (PLI) were also tested. The results are displayed as a 
function of inter-channel distance for each consciousness state and frequency of interest. 
Inter-channel distance is different from the previous analyses in order to plot the most 
representative values. Overall, none of these analyses was as powerful as wSMI in 
distinguishing the various states of consciousness. Statistical analyses of PLV and PLI suggest 
difference that VS have higher “functional connectivity” in the δ frequency band (0 – 4 Hz). 
None of these results significantly interacted with inter-channel distances. 

 

6.8.1.1. Supplementary Tables 

Table S1. Patients’ clinical details 

See online spreadsheet. 

Table S2. Robust regression adjusted R² between wSMI and PSD 

  
Frequency (Hz) 

  
0 - 4 4 - 8 8 - 13 13 - 30 30 - 45 

τ (ms) 

4 0.01 0.00 0.05 0.30 0.42 

8 0.00 0.00 0.08 0.25 0.27 

16 0.14 0.02 0.12 0.08 0.04 

32 0.18 0.02 0.10 0.01 0.00 

 

Values correspond to the adjusted R² obtained with robust regressions. Bold values indicate a sig-

nificant (uncorrected) correlation between wSMI at a given τ and the power in a given frequency band. 

wSMI at longer τ values mainly correlated with the power in low frequency-bands whereas at shorter τ 

wSMI mainly correlated with the power in higher frequency-bands. 

 

Table S3. Stepwise regression: wSMI and PSD 

      Frequency power (Hz) 

   
0 - 4   4 - 8   8 - 13   13 - 30   30 - 45 

      PSD wSMI   PSD wSMI   PSD wSMI   PSD wSMI   PSD wSMI 

τ 

(ms) 

4   **** -   - -   *** -   ** *   - - 

8 
 

**** - 
 

- - 
 

*** - 
 

* - 
 

- - 

16 
 

* **** 
 

- **** 
 

- **** 
 

- **** 
 

- **** 

32   * ****   * ****   - ****   - ****   - **** 
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Stepwise regressions were applied to test whether PSD and wSMI independently predicted con-

sciousness states. Stars indicate a significant contribution of the corresponding regressor (* p < .05, **** p 

< 10-4, uncorrected) and dashes (-) indicate that the corresponding regressor was not selected by the step-

wise regression. At τ = 16 and 32 ms, wSMI ms always remained a significant predictor of consciousness 

states.  

 

Table S4. Stepwise regression: wSMI and PLV 

      Frequency power (Hz) 

   
0 - 4   4 - 8   8 - 13   13 - 30   30 - 45   

      PLV wSMI   PLV wSMI   PLV wSMI   PLV wSMI   PLV wSMI   

τ 
(ms) 

4   ** -   ** -   **** -   - -   - - 

 8 
 

** - 
 

** - 
 

**** - 
 

- - 
 

- - 

 16 
 

- **** 
 

- **** 
 

- **** 
 

* **** 
 

* **** 

 32   - ****   *** ****   * ****   - ****   - ****   
 

Stepwise regressions were applied to test whether PLV and wSMI independently predicted con-

sciousness states. At τ = 16 and 32 ms, wSMI ms always remained a significant predictor of consciousness 

states.  

 

Table S5. Stepwise regression: wSMI and PLI 

      Frequency power (Hz) 

   
0 - 4   4 - 8   8 - 13   13 - 30   30 - 45   

      PLI wSMI   PLI wSMI   PLI wSMI   PLI wSMI   PLI wSMI   

τ 
(ms) 

4   ** -   **** *   **** -   - -   - - 

 8 
 

** - 
 

**** - 
 

**** - 
 

- - 
 

- - 

 16 
 

- **** 
 

* **** 
 

- **** 
 

** **** 
 

** **** 

 32   - ****   **** ****   * ****   - ****   - ****   
 

Stepwise regressions were applied to test whether PLI and wSMI independently predicted con-

sciousness states. At τ = 16 and 32 ms, wSMI ms always remained a significant predictor of consciousness 

states.  

6.8.2. SUPPLEMENTARY METHODS  

6.8.2.1. Participants 

181 high-density EEG recordings (75 VS, 68 MCS, 24 Conscious patients (CS), and 14 Healthy 

(H) controls) were obtained from 126 distinct subjects (Age: M=47 years old, SD=18 years, males: 72 %). 

Another set of seven patients were excluded from the present study as they were diagnosed in a coma 

state or had less than 200 non-artifacted trials. As detailed in the Table S1, CS patients refer to patients 

with severe brain damage but who were still capable of functional communication and therefore did not 

belong to the MCS category. Note that 60% of CS patients had actually recovered from a VS or an MCS 
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state. 16 patients were recorded twice during their stay at the hospital, and 13 other were recorded be-

tween 4 and 6 times. Each of these subsequent recordings were performed between 1 and 673 days (mean 

= 74 days, SD = 157 days) following the initial EEG recording, and were aimed at tracking potential im-

provements in the patients‘ clinical state. We categorized each EEG recording in one of three types of 

delay (acute, intermediate and chronic) separating their accident from the time of EEG recording. Delay 

thresholds were determined from percentile analyses: the acute state refers to the third of patients with the 

shortest delays between the accident and the EEG recording (< 25 days) whereas the chronic state refers 

to the third of patients with the longest delays (> 50 days). We reasoned that 25 days was already away 

from a typical ―acute‖ stage. We thus also report statistical analyses using patients examined and recorded 

within 10 days following their accident (n = 12). 

Aetiologies were typical of DOC patients: 23% had gone through an anoxia or a hypoxia, 34% 

had had a stroke (either ischemic infarcts or intra-cerebral haemorrhages), and 25% suffered from a trau-

matic brain injury (TBI). The rest of the patients had suffered from other miscellaneous or mixed aetiolo-

gies. A chi-square testing the interaction between aetiology (hypoxia, stroke, TBI or other) and conscious 

state (VS, MCS or CS patients) revealed no significant result: χ(6, N=172) = 7.13, p > .308, thus suggest-

ing that our analyses looking at the correlations between EEG measures and patients‘ states of conscious-

ness will not be confounded by aetiology. The delay separating the accident and our EEG study was vari-

able (mean = 187 days, SD = 533 days), and mainly depended on the necessity for the patients to get an 

EEG to facilitate clinical diagnosis. 

All patients had been without sedation for at least 24 hours prior to the recording session. Trained 

neurologists (FF, BR, LN) performed a careful clinical evaluation of patients‘ conscious state based on the 

French version of the Coma Recovery Scale Revised (CRS-R) (SCHNAKERS ET AL., 2008B) before each EEG 

recording. The CRS-R is a clinical examination that tests several abilities (arousal state, attentional orienta-

tion, communication etc) and allows a formal classification of DOC patients in comatose, vegetative, 

minimally conscious and conscious states (Table S1). 

Note that EEG recordings of healthy subjects differed from the patients‘ in many respects that 

are irrelevant to conscious states: EEG recordings were performed in a quiet EEG room rather than at 

bedside, without any surrounding clinical equipment, subjects were fully attentive to instructions, clearly 

understood the task etc. Thus, we focus primarily on statistical comparisons between the clinical groups of 

VS, MCS and CS patients. The results from healthy subjects are nevertheless useful in the sense that they 

inform on the consistency of a given measure across consciousness states. 

6.8.2.2. Experimental design 

The EEG recordings were obtained during an auditory stimulation following Bekinschtein et al ‘s 

original design (BEKINSCHTEIN ET AL., 2009). Patients undertook this experiment for clinical purposes. The 

auditory stimuli were 50 ms-duration sounds composed of 3 sinusoidal tones (350, 700, and 1400 Hz, 

hereafter sound A; or 500 Hz, 1000 Hz, and 2000 Hz, hereafter sound B), with 7 ms rise and 7 ms fall 

times. Sequences were composed of five stimuli presented at a stimulus onset asynchrony of 150 ms, and 

were separated by a variable silent interval of 1350 to 1650 ms (50 ms steps). The sequences could com-

prise five identical tones (xxxxx, where X can be sound A or sound B) or four identical tones followed by 

a distinct one (xxxxY). In a given block, 80% of trials consisted in one type of sequence (frequent) and 

20% of trials were of the other type (rare sequence), pseudo randomly distributed at least one and at most 

six frequent trials apart. Each block started with a 30s habituation phase during which the frequent sound 

sequences were repeatedly presented to establish the global regularity, before the first rare sequence was 

heard. Sounds were presented via disinfected headphones with an intensity of 70 dB, using E-prime v1.2 

(Psychology Software Tools Inc.). At the beginning of each block, the experimenter gave a spoken instruc-
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tion to count the rare sequences. The instructions attempted to motivate the patient to pay attention to 

the sounds, and patients were then systematically called by their first names. All subjects heard at least 8 

blocks in a pseudo-random fixed-rule order (two runs of aaaaa, bbbbb, aaaaB, bbbbA as frequent se-

quences). Up to four additional blocks could be performed in case of highly noisy recordings. 

Unlike previous studies (BEKINSCHTEIN ET AL., 2009; FAUGERAS ET AL., 2011, 2012), all trials were 

pooled independently of the condition of auditory stimulation, because our goal was to probe information 

exchanges in ongoing brain activity. Analyses were performed over 800 ms epochs, during the initial pe-

riod of auditory stimulation (-200 ms before 1st sound until the beginning of last sound which could differ 

across conditions). This time period was identical across all trials. Further analyses were replicated on the 

time period following the beginning of the last sound (+600 ms to +1336 ms) for control purposes. 

6.8.2.3. EEG recording and preprocessing 

EEG recordings were sampled at 250 Hz with a 256-electrode geodesic sensor net (EGI, Oregon, 

USA). Recordings were band-pass filtered (0.2-45 Hz). Trials were then segmented from −200 ms to 

+1336 ms relative to the onset of the first sound. Trials in which voltages exceeded ±150 μV, eye-

movements activity exceeded ±80 μV or eye-blinks exceeded ±150 μV were rejected. All of these process-

ing stages were performed in the EGI Waveform Tools Package. Trials were baseline-corrected over the 

first 200 ms window preceding the first sound onset. Channels with a rejection rate superior to 20% 

across trials were rejected. Bad channels were interpolated with non-artefacted neighboring channels. Tri-

als with more than 20 bad channels were rejected. Current Source Density (CSD) estimates – also known 

as Laplacian transforms – were applied on each subject separately using Kayser & Tenke (KAYSER AND 

TENKE, 2006A)‘s script. CSD is close to subtracting, from each channel, the activity of neighboring sensors; 

this technique thus coarsely diminishes volume conduction and increases the spatial focalization of EEG 

information. 

Analyses specifically referring to Fz, Cz and Pz EEG channels were based on an average of six 

EEG channels surrounding each of them. 

Finally, power spectral density (PSD) was estimated on each trial using the Welch method 

(WELCH, 1967). For each trial, each channel was divided in 500-ms sections with 400 ms of overlap. Sec-

tions were windowed with a Hamming window and zero padded to 212 samples. The power in each fre-

quency band of interested was calculated as the integral of the log-scaled power spectral density (PSD) 

within each frequency bands. Except if stated otherwise, frequency-bands of interest were: delta (δ: 1-4 

Hz), theta (θ: 4-8 Hz), alpha (α: 8-13 Hz), beta (β: 13-30 Hz) and low gamma (γ: 30-45Hz). Higher fre-

quencies were not estimated as they are generally difficult to measure in an artefact-free manner with scalp 

EEG. 

6.8.2.4. Computing indices of information sharing 

In order to quantify the mutual information between sensors we introduce a novel marker: 

weighted symbolic mutual information (wSMI). wSMI is an extension of the permutation entropy analysis 

(BANDT AND POMPE, 2002) and is calculated between each pair of channels, and for each trial, after the 

transformation of the EEG time series into a string of discrete symbols. As explained below, the advan-

tage of this measure is its ability to easily and efficiently detect non-linear coupling as well as its robustness 

to the traditional EEG artefacts.  

Permutation Entropy (PE) and symbolic transform 

Permutation entropy (PE), introduced by Bandt & Pompe (BANDT AND POMPE, 2002), is an effec-

tive method to compare time series and distinguish different types of behavior (i.e. periodic, chaotic or 
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random) in the signal (also see (STANIEK AND LEHNERTZ, 2008)). The main advantages of this method are 

(1) the identification of non-linear patterns in the signal (2) the reduction of the problem space to a limited 

set of discrete symbols and (3) its robustness to noise. The basic principle of this method consists in trans-

forming a signal into a sequence of discrete symbols (FIGURE 6.1) and to quantify the entropy of the signal 

from the probability densities of those symbols. The transformation is performed by first extracting sub-

vectors of the signal, each comprising k measures separated by a fixed time delay (τ). The parameter τ thus 

determines the broad frequency range to which the symbolic transform is sensitive. Because using τ values 

larger than 1 time sample can induce aliasing, we applied a low-pass filter to the continuous signal, before 

the symbolic transformation. The cut-off frequency of each low-pass filter was set according to the fol-

lowing formula: fLowPass = (80 Hz) / (τ time samples). Each sub-vector was then assigned a unique symbol, 

depending only on the order of its amplitudes. For a given symbol size (k) there are k! possible orderings 

and thus k! symbols. We calculated the symbolic transformation for every channel/trial with the following 

parameters: k = 3 time samples (sampled at 250 Hz) and τ = 4, 8, 16 or 32 ms (i.e. 1, 2, 4 or 8 time sam-

ples). The parameter k determines the number of possible symbols (k!). k was fixed to 3, so as to robustly 

estimate the symbols probability densities. This value has been shown to be sufficient to detect dynamical 

changes in EEG during anaesthesia (OLOFSEN ET AL., 2008). Unfortunately, considering the trials‘ duration 

(~800ms), it was presently not possible to compute wSMI with τ > 32 ms, and/or k > 3. Indeed, with k = 

4, there exist 4! = 24 distinct symbols, and thus 242 = 576 combinations of symbols across two signals 

thus requiring much longer time series to robustly estimate wSMI. Symbolic transform of a signal will be 

hereafter referred to as X.  

Symbolic Mutual Information (SMI) 

A non-directional estimate of the coupling between two EEG recordings can be obtained by 

computing the mutual information between two time series (FIGURE 6.1). In our case, we computed the 

mutual information between each pair of electrodes after doing the previously described symbolic trans-

formation. We refer to this measure as Symbolic Mutual Information (SMI), which is estimated as follow:  

 

where x and y are all symbols present in signals X and Y respectively; p(x, y) is the joint probability 

of co-occurrence of symbol x in signal X and symbol y in signal Y; p(x) and p(y) are the probabilities of 

those symbols in each respective signal and k! the number of symbols – used to normalize the MI by the 

signals‘ maximal entropy. 

For a directional estimate of symbolic transfer entropy (STE) across two signals see (STANIEK AND 

LEHNERTZ, 2008; MARTINI ET AL., 2011; LEE ET AL., 2013). 

Weighted Symbolic Mutual Information (wSMI) 

Weighted Symbolic Mutual Information (wSMI) is introduced in order to disregard trivial con-

junction of symbols across two signals. Indeed, EEG is notorious for being subject to a series of artefacts, 

including muscle contraction, eye blinks and volume conduction, which may artificially inflate the similar-

ity of EEG patterns recorded from two distinct EEG sensors. Notably, methods like phase locking value 

(PLV (LACHAUX ET AL., 1999)) and spectral coherence are highly affected by these various sources of com-

mon noise (STAM ET AL., 2007). The logic of wSMI consists in applying weights that emphasize conjunction 

of symbols which are less likely to be caused by common sources and, conversely, attribute a zero weight 

to conjunctions of symbols that may be due to common-source artefacts. With a symbol size of k = 3, the 

trivial conjunction patterns correspond to the conjunctions of identical items (SX = SY), as well as to the 

conjunctions of opposed items (SX = –SY). Opposed items could indeed be found if two EEG sensors 
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record each of the two sides of a common electric dipole. In FIGURE 6.1 & SUPPLEMENTARY FIGURE 6.5, 

these two sets of symbol pairs (identical and opposed) correspond to the two diagonals of the joint prob-

ability matrix. The computation of wSMI obeys the same formula as SMI, but with added weights (w) 

(GUIASU, 1977):  

 

Note that because MI cannot be negative, it has a systematic positive bias. In the present case, we 

only compare the SMI and wSMI values between groups; the comparisons, always based on non-

parametric statistics, are therefore not strongly affected by this bias. However, to estimate whether MI is 

significantly above chance in a given subject (or in a given group of subjects), one must build an estimate 

of the null distribution. Barrett and colleagues recently proposed an efficient method to achieve such es-

timate (BARRETT ET AL., 2012). 

Symmetric uncertainty 

Although MI need not be correlated with the entropy of the signals, it is bounded by them. To 

test whether the SMI and wSMI across channels predict consciousness state over and above any change in 

the local entropy, we computed the symmetric uncertainty, also known as redundancy, of each channel 

pair (PRESS ET AL., 2007). This measure basically normalizes MI by the entropy of the signals and is defined 

as follow: 

SU(x,y) = 2 [MI(x,y) / (H(x) + H(y)] 

where SU is the symmetric uncertainty, and H the entropy of the signal. In the present case we 

computed SU based on the wSMI and the PE values obtained for each pair of signal at the single trial 

level. 

Phase Locking Value (PLV) and Phase Lag Index (PLI) 

To confront our wSMI to already existing methods, we computed the phase locking value (PLV 

(LACHAUX ET AL., 1999)) and the phase lag index (PLI (STAM ET AL., 2007)) across each pair of channel. Both 

of these measures are based on the phase difference observed between signals (Δφi,j). PLV consists in 

computing the amplitude of the average vector of phase differences across time samples in a given trial 

whereas PLI measures the asymmetry of the distribution of phase differences in a given trial by computing 

the absolute value of the average of the sign of the phase differences. The advantage of PLI, as compared 

to traditional ―functional connectivity‖ / correlation analyses such as cross-spectrum coherence and PLV, 

(as well as to the SMI method introduced above), is that it avoids spurious assignment of a high functional 

connectivity value to two EEG channels that both reflect the same underlying neural source. Indeed, 

whenever two channels record voltages arising from a shared source, their instantaneous phase difference 

is essentially 0 ± π, leading PLI to converge towards 0 (STAM ET AL., 2007). 

To estimate PLI and PLV, signals were first band-passed filtered at a given frequency range and 

Hilbert transformed (in the present study: 0-4 Hz, 4-8Hz, 8-13Hz, 13-30Hz, 30-45Hz). The difference in 

instantaneous phase was then computed for each pair of CSD estimate, at each time point and for each 

trial.  

Both PLV and PLI methods are affected by the number of time samples they consider. At the ex-

treme, if only one time-sample is considered, PLV equals to 1 and PLI equals to 1 or -1, even if the two 

channels are fully independent. The more time samples are considered, the less PLV and PLI overestimate 

the correlation between two channels. As there was a variable amount of non-artefacted trials performed 
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by each patient, we first computed PLV and PLI estimate for each trial by averaging the vectors of phase 

differences (PLV) or the signs of the phase difference (PLI) across all time samples within each trial. Each 

trial had the same number of time samples; these values could therefore be compared with one another. 

For each subject, the value of these single-trial PLVs and PLIs were then averaged across trials to yield a 

final PLV and a final PLI estimate. As a consequence, trial number only affected the precision of the PLV 

and PLI estimates, and did not introduce a systematic bias related to the number of trials. 

6.8.2.5. Topographical, cluster and distance analyses 

Analyses were performed on each pair of CSD transform of EEG signals. As a result, we ob-

tained 32,640 (256*(256-1)/2) values for each subject. As this huge dimensionality leads to an important 

multiple comparison issue, statistics were performed on summary measures (e.g. median across all pairs) or 

in smaller search spaces.  

Except if stated otherwise, topographies represent the median wSMI each CSD estimate share 

with all other non-facial channels. It thus estimates the amount of information shared by a given area with 

other regions.  

Fz and Pz refer to an averaged cluster of 6 EEG channel surrounding the EGI net‘s Fz and Pz 

channel. 

Cluster analyses were performed in order to make the interpretation of our results more straight-

forward and minimize the issues associated with multiple comparisons. Once wSMI was estimated for 

each channel pair, the 256 channels were summarized to 16 regions (symmetric across the antero-posterior 

axis). We then calculated, within each of the cluster pairs, a summary measure by averaging the median 

connectivity that every channel of the first cluster shared with every channel of the second cluster.  

Distance analyses were performed to estimate how wSMI varies with the spatial distance separat-

ing two channels. Distance between channels was calculated along a straight line in a 3-dimensional 

Euclidian space using the EGI default electrode coordinates. 

6.8.2.6. Statistics 

Statistical analyses were performed with R and MATLAB (2009b), and, except if stated otherwise 

with non-parametric methods and two-tail tests (based on Wilocoxon and Mann-Whitney U tests as well 

as MATLAB‘s robust regression methods). Significance level was set to p < .05, and false discovery rate 

(FDR) was used to correct for multiple comparisons (hereafter noted as pFDR). 

6.8.3. SUPPLEMENTAL RESULTS 

6.8.3.1. Simulations 

Effect of mixture of sources on SMI and wSMI 

To test the validity of our measure, we ran a series of simulations in which we tested the ability of 

wSMI to detect the coupling of two distinct sources from two simulated scalp sensors capturing a hetero-

geneous mixture of these two sources. These simulations are presented in order to show i) how common 

source artefacts affect SMI and ii) why wSMI is robust to the latter. Because several signal and noise pa-

rameters were set arbitrarily, we only present results in a qualitative manner in SUPPLEMENTARY FIGURE 6.5.  

We considered two main scenarios: i) the presence, and ii) the absence of coupling between two 

sources (U and V). First, in case of the presence of a coupling between U and V, we generated a random 
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joint probability matrix C ([k!, k!]) as well as a random prior probability vector P(U) ([1, k!]) of each sym-

bol S to belong to U. From P(U), we then pseudo-randomly constructed a symbolic sequence U as a se-

quence of 1000 symbols. The Vsymbolic sequence was then constructed by pseudo-randomly generating 

1000 consecutive symbols following the transformation of U by the joint probability matrix. 

Finally, continuous signals U and V were generated from the symbolic sequences U and V, by 

generating two random (with a Gaussian distribution) numbers α and β for each time point. Each of the k 

ordinal elements of each symbol was then transformed into a continuous time point accordingly: x = x * α 

+ β, where x is a given symbol made of ordinal numbers, and α and β are two random variables generated 

from a normal distribution centered around 0, with a standard deviation of 1. 

In the second scenario, U and V symbolic sequences were generated from a quasi homogeneous 

joint probability matrix indicative of very little coupling in the space of interest. Continuous signals U and 

V were then generated as in the first scenario. 

In each scenario, two simulated EEG sensors were generated by creating more or less homoge-

nous mixtures of the two continuous signals. Each simulated sensor captures γ% of the neighboring 

source – and thus (100-γ)% of the other source. White noises were independently added to each sensor 

with a signal to noise ratio of 10. Such setup mimics, two EEG sensors (X, Y) respectively located to-

wards the electric fields‘ projections of U and V sources.  

Effect of τ on the frequency-specificity of wSMI 

Although SMI and wSMI cannot be fully expressed in terms of frequencies, it is useful to see the 

broad frequency range of information sharing to which wSMI can be sensitive. As mention in the Sup-

plementary Methods, the temporal separation parameter of the symbols (τ) affects this frequency range. 

Sinusoidal signals were thus generated at each frequency ranging between 0 and 60 Hz and sampled at 250 

Hz. Pairs of signals were synchronized at π/2 (90°). wSMI was estimated for each pair of signals at τ = [4, 

8, 16, 32] ms. The results, presented in SUPPLEMENTARY FIGURE 6.6.H, show that none of the tested τ values 

captures very low frequency components (< 4Hz), and that the shorter τ, the wider and the higher the 

range of frequencies to which SMI is sensitive.  

6.8.3.2. Robustness of wSMI 

Replication of wSMI results using different time periods of recordings 

It is possible that our results are specific to the auditory stimulations presented during this ex-

periment. We therefore replicated our analyses on different time periods following auditory stimulations 

(see Supplementary Methods). The obtained results were very similar to the ones reported in the main 

manuscript. At τ = 32 ms, wSMI was significantly lower in VS than in MCS (U = 3686, p < 10-5, AUC = 

.72) and than in CS patients (U = 1437, p < 10-4, AUC = .80) whereas MCS and CS patients did not pre-

sent significantly different wSMI (U = 971, p = .169, AUC = .59).  At τ = 16 ms, similar differences were 

observed (all p < .045, all AUC > .63) whereas shorter τ did not show consistent differences of wSMI 

with consciousness states. Similarly, distance analyses led to results closely matching the ones obtained 

from the auditory stimulation time periods (SUPPLEMENTARY FIGURE 6.8.B). 

Together, these results show that VS patients‘ impairment in wSMI is not specific to a single type 

of auditory condition. To strengthen these results, future studies should however investigate the variation 

of wSMI in other conditions such as during sleep, resting state and other tasks requiring subjects‘ atten-

tion. 



CHAPTER 6. SUPPLEMENTARY MATERIALS 

 

136 

 

Effect of sampling frequency 

To check that the present results are not solely dependent on the EEG sampling rate, we repli-

cated the analyses after down-sampling the EEG recordings to 125 Hz. Analyses of the wSMI at τ = [8, 

16, 32] ms revealed very similar patterns as the ones observed using a sampling frequency of 250 Hz SUP-

PLEMENTARY FIGURE 6.6.D). Note that because of the sampling rate, it was not possible to test τ = 4 ms. 

Overall, these results demonstrate that the present wSMI results are robust to sampling rates. 

Frequency-range sensitivity of wSMI  

By definition, wSMI can capture dynamics spread over a relatively large frequency range (SUPPLE-

MENTARY FIGURE 6.6.H). To further isolate the frequency ranges of interest, we replicated the wSMI analy-

ses after band-pass filtering the EEG signals at more specific frequencies to which wSMI was sensitive (4-

8, 8-13 and 13-30 Hz for τ = 32, 16 ms). The only robust difference found across consciousness states 

was obtained with τ = 32 ms in the θ frequency band (4-8 Hz, SUPPLEMENTARY FIGURE 6.6.C). VS also pre-

sented a lower wSMI computed from EEG signals band-pass filtered from 13 – 30 Hz, however this dif-

ference was relatively weak (U = 3073, p = .022) and did not reach significance when comparing VS to CS 

patients (U = 764, p = .722). Together, these results suggest that the wSMI differences between VS and 

MCS are particularly driven by events in the θ band (4-8 Hz).  

6.8.3.3. Detailed results 

Distance analyses: all temporal separation parameters (τ) 

We replicated the distance analyses reported in the main manuscript using three other τ values [4, 

8, 16 ms] (SUPPLEMENTARY FIGURE 6.8.A). At τ = 16 ms, the results were similar to those obtained with τ = 

32 ms: wSMI was not different between VS, MCS, and CS at the short inter-channel distance (6.3 ± .3 cm, 

all p > .199) and VS had lower wSMI than MCS and CS patients at most longer distances (all p < .002). A 

noticeable difference with the main results (τ = 32 ms) was observed for the 21.8 cm distance at which VS 

and MCS did not show significantly different wSMI (p = .186). Note that because the number of channel 

pairs dramatically drops at this distance, the robustness of our analyses could be diminished. Finally, simi-

lar trends could be observed at τ = 8 ms, but did not consistently reach significance. No differences were 

observed for τ = 4 ms (all p > .05). 

Together, these results show that the parameter τ changed the sensitivity of our test. However, 

when a difference of wSMI was observed across consciousness states, it was consistent with the main 

results obtained with τ = 32 ms: VS patients repeatedly showed lower wSMI over medium and long dis-

tances, and appeared to present non-significantly different wSMI at a short distance. These results there-

fore support the hypothesis that the loss of information-sharing characterizing the vegetative state is par-

ticularly easy to observe over medium- and long-distances. 

SMI results 

Symbolic mutual information (SMI) between two channels is a similar measure to wSMI, except 

that it equally considers all conjunction of symbols observed across two signals. SMI is however subject to 

multiple artefacts. Indeed, head movement, eye blinks, muscles contractions as well as the volume conduc-

tion of electric fields all tend to generate common signals in different EEG sensors. SMI is thus very likely 

to overestimate the amount of information sharing across distinct cortical sources. 

Contrarily to wSMI, SMI rapidly increases as the distance between two EEG sensors diminishes 

(SUPPLEMENTARY FIGURE 6.8.C). Interestingly, VS patients appeared to present SMI values weakly but sys-

tematically lower than MCS and CS patients at all distances (all p < .05, uncorrected). Finally, SMI proved 
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to be less discriminative of consciousness states than wSMI (SUPPLEMENTARY FIGURE 6.8.D). This result 

empirically strengthens the utility of the weights in the MI computation. 

6.8.3.4. Relationships between wSMI and other measures indexing 

consciousness state 

Permutation Entropy (PE) correlates with patients’ states of consciousness 

Do other simpler methods correlate with consciousness-states too? PE is an efficient method to 

estimate the entropy of a given signal and has proved to be a useful marker of consciousness states in 

anaesthesia (BANDT AND POMPE, 2002; JORDAN ET AL., 2008; OLOFSEN ET AL., 2008). We tested whether this 

local measure of entropy could also discriminate the state of consciousness of the present cohort. 

The results demonstrated that at τ = 32ms, the median PE across non-facial EEG channels was 

much lower in VS patients as compared to MCS (U = 3494, p < .001, AUC = .69) and CS patients (U = 

1391, p < 10-4, AUC = .77) (SUPPLEMENTARY FIGURE 6.6.I). MCS and CS patients‘ PE did not significantly 

differ from one another: U = 996, p = .111, AUC = .61). At τ = 16ms, PE did not was not different be-

tween VS and MCS patients (U = 2841, p = .240, AUC = .56), but the latter had significantly smaller PE 

than CS (VS-CS: U = 1301, p = .001, AUC = .72; MCS-CS: U = 1119, p = .007, AUC = .69). For other τ 

values, none of the comparisons reached statistical significance.  

These results show that PE can also be used to index the state of consciousness.  

Symmetric Uncertainty demonstrates that wSMI indexes consciousness states 

independently of the signals’ entropies. 

The mutual information of two signals need not be related to the entropy of the signals but is 

bounded by them. Because PE also correlates with patients‘ states of consciousness, it is important to 

assess whether the present wSMI results are fully explainable by this simpler method. Symmetric uncer-

tainty, also known as redundancy, can be used to tackle this issue. Symmetric uncertainty consists normal-

izing the mutual information observed across two signals by the sum of their respective entropy. Beyond 

its theoretical interpretation, symmetric uncertainty can thus be used to test whether MI discriminates 

consciousness states independently of PE. 

The results demonstrated that at τ = 32ms, the median symmetric uncertainty across non-facial 

channels was significantly lower in VS patients as compared to MCS (U = 3527, p < .001, AUC = .72) and 

CS patients (U = 1317, p < 10-4, AUC = .73) (SUPPLEMENTARY FIGURE 6.6.J). MCS and CS patients‘ sym-

metric uncertainty did not significantly differ from one another: U = 845, p = .715, AUC = .53. The VS-

MCS difference remained significant for all τ but τ = 4 ms (all ps < .03) although the effect was smaller at 

shorter τ values (τ = 4 ms: AUC = .51; 8 ms: AUC = .60; 16 ms: AUC = .61). 

These results demonstrate that wSMI indexes the state of consciousness independently the en-

tropy of the signals, computed from a similar decomposition of the EEG signals. They thus reinforce 

both the validity and the utility of wSMI in indexing patients‘ consciousness states. Taken together, PE 

and symmetric uncertainty analyses show that the conscious brain is characterized by more complex but 

also more integrated neuronal signals. This view particularly fits with an Integrated Information Theory of 

consciousness (TONONI AND KOCH, 2008). 

Relationships between wSMI and the power spectral densities (PSD) 

To further investigate the relationship between wSMI and frequency, we tested the extent to 

which the wSMI differences observed across consciousness states could be explained by simpler effects 

observable directly in the EEG power spectrum densities (PSD). 
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First, robust regression analyses revealed that the state of consciousness could be predicted by the 

power in the δ band (0 – 4 Hz: adjusted R² = .11, p < 10-5), in the α band (8 – 13 Hz: adjusted R² = .06, p 

= .001), and in the β band (13 – 30 Hz: adjusted R² = .02, p .018) (SUPPLEMENTARY FIGURE 6.6.G). Fur-

thermore, the power in multiple frequency bands correlated with the median wSMI (results summarized in 

Table S2). Overall, PSD in low frequency bands (δ, θ) correlated more with longer τ values (32 and 16 ms) 

whereas PSD in higher frequency bands (β: 13 – 30 Hz, low γ: 30 – 45 Hz) correlated with shorter τ val-

ues (8 and 4 ms). This set of results fits with the typical sensitivity of wSMI to various frequencies depend-

ing on its τ parameter (SUPPLEMENTARY FIGURE 6.6.H).  

PSD and wSMI share common information and can both predict consciousness states. Are these 

two measures capturing the same phenomena? To compare the information carried by wSMI and PSD 

about the patients‘ states of consciousness, we applied multiple stepwise regression analyses. The results, 

reported in Table S3, demonstrated that for the discriminative τ (τ = 16 and 32 ms), wSMI systematically 

remained a significant predictor of patients‘ state of consciousness (all p < 10-4) even after controlling for 

PSD; the predictive power of PSD barely reached significance (min p > .01). By contrast, for shorter τ (4 

ms and 8 ms) which generally failed to discriminate patients‘ states of consciousness, nearly all the predic-

tive power was captured by PSD. This analysis therefore suggests that the wSMI results obtained with 

short τ values could be simply explained by variation in frequency powers. 

Together, these results show that while PSD and wSMI correlates with one another, wSMI (at the 

discriminative τ values: 16 and 32 ms) is a partially independent, and indeed a better predictor of the state 

of consciousness than the power spectrum. 

PLV and PLI 

We also analyzed the present data with more traditional indices of ―functional connectivity‖ such 

as phase locking value (PLV) and phase lag index (PLI). The corresponding results are summarized in 

SUPPLEMENTARY FIGURE 6.8.E-F.  

As expected, distance analyses showed that PLV presented a similar pattern to SMI: PLV rapidly 

increases towards 1 as the distance between two EEG channels approaches 0. Contrarily PLI did not, and 

either presented a similar pattern to wSMI or presented values in a similar range throughout all distances. 

Comparison across states of consciousness and distances only revealed that low frequencies (< 4 

Hz) phases were more synchronous in VS than in MCS patients. Note that SMI and wSMI were not here 

sensitive to these low frequencies (SUPPLEMENTARY FIGURE 6.6.H). Distance analyses applied to each fre-

quency band did not show any significant pattern. 

Could PLV and PLI nevertheless explain the wSMI differences across consciousness states? Fol-

lowing the method described in the PSD section, we applied a series of stepwise regressions to test 

whether wSMI was an independent predictor of consciousness states from PLV and PLI. The results, 

reported in Tables S4 and S5, demonstrated that for the discriminative τ (τ = 16 and 32 ms), wSMI sys-

tematically remained a significant predictor of subjects‘ state of consciousness (all p < 10-4) even after 

controlling for PLI and PLV. At these τ values, the predictive power of the latter rarely reached statistical 

significance. Contrarily, for shorter τ values (4 ms and 8 ms) which, generally failed to discriminate pa-

tients‘ states of consciousness, wSMI was never used as a predictor of consciousness state by the stepwise 

regression. The latter selected the δ, θ and α bands, in both PLI and PLV analyses.  

Together these results confirm that the wSMI is an independent and indeed better predictor of 

consciousness states than PLV and PLI.  
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7.1. INTRODUCTION OF THE ARTICLE 

In the preceding chapter, I showed how a novel method, weighted symbolic mutual infor-

mation (wSMI) could reliably quantify the amount of mutual information across different brain 

regions. This simple measure proved to significantly distinguish vegetative patients from minimally 

conscious and conscious patients. This result thus suggests that wSMI may reliably capture an im-

portant signature of consciousness. 

However, finding a significant marker raises several questions. In particular, it remains to 

be determined whether wSMI is i) relevant to theories of consciousness ii) useful in the clinics, 

especially with regard to the already existing measures such as the MMN, the P300, the CNV etc. 

Indeed, and as outlined in the introduction of this thesis, one of the critical challenges of con-

sciousness research is to sort the different markers in terms of their redundancy, theoretical rele-

vance and clinical robustness.  

In the present study carried out in close collaboration with Jacobo Sitt, I aimed at system-

atically implementing the various electrophysiological markers of consciousness proposed across 

the attention, subliminal, sleep and anesthetized literatures.  

7.2. ABSTRACT 

In recent years, numerous electrophysiological signatures of consciousness have been pro-

posed. Here, we perform a systematic analysis of these EEG markers by quantifying their efficiency 

in differentiating vegetative state patients from those in a minimally conscious or in a conscious 

state. Based on a review of previous experiments we identified a total of 92 possible markers, which 

we organize based on current theories along four dimensions: (1) event-related potentials versus 

ongoing EEG activity; (2) local dynamics versus inter-electrode information exchange; (3) spectral 

patterns versus information complexity; (4) average versus fluctuations over the recording session. We 

analyzed a large set of 181 high-density EEG recordings from a 30-minute paradigm. We show that 
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low-frequency power, EEG complexity, and information exchange constitute the most effective 

signatures of conscious states. When combined, these measures synergize to enable an automatic 

classification of patients‘ state of consciousness. 

7.3. INTRODUCTION 

In spite of intense experimental and theoretical efforts, the neural signatures of conscious 

processing remain a highly debated issue: are they to be found in early (SUPÈR ET AL., 2001; PINS, 

2003; KOIVISTO ET AL., 2006; MELLONI ET AL., 2007) or late (SERGENT ET AL., 2005; GAILLARD ET AL., 

2009) responses to sensory stimulations? Is conscious processing systematically associated with 

reentrant top down processing (LAMME AND ROELFSEMA, 2000; PASCUAL-LEONE AND WALSH, 2001)? 

Does consciousness depends on a massive exchange of information across distant cortical sites 

(LUMER AND REES, 1999; VUILLEUMIER ET AL., 2001; REES ET AL., 2002; MAROIS ET AL., 2004; GAILLARD ET 

AL., 2009) with prefrontal cortex and cingulate cortices acting as critical communication hubs 

(SAHRAIE ET AL., 1997; DEHAENE AND NACCACHE, 2001; LAU AND PASSINGHAM, 2006)? Or, instead, can it 

emerge solely from localized reverberating activity (LAMME AND ROELFSEMA, 2000; PINS, 2003)? Does 

it simply require a global integration of information independently of any specific anatomical struc-

ture (TONONI, 2004)? 

From a cognitive psychology perspective, it has proven equally difficult to identify opera-

tions unique to the conscious brain. Whereas a large variety of cognitive processes can unfold un-

consciously, ranging from low-level perception to abstract semantic processing (KOUIDER AND 

DEHAENE, 2007), attention orienting (KENTRIDGE ET AL., 1999), motivation (PESSIGLIONE ET AL., 2007) 

and executive inhibition (VAN GAAL AND LAMME, 2011), the ability to actively maintain information 

in working memory and to flexibly distribute it to distant processors may be unique to conscious 

processing (BAARS, 1989; DEHAENE AND CHANGEUX, 2011). Several models thus share the view that 

long-distance information integration and coordination of distributed areas may be one of the spe-

cific properties of conscious processes (LAMME AND ROELFSEMA, 2000; TONONI, 2008; DEHAENE AND 

CHANGEUX, 2011). 

The identification of reliable signatures of conscious processing goes beyond theoretical re-

search, and has critical practical implications in the clinic. In particular, detecting these signatures is 

essential for patients with Disorders of Consciousness (DOC) who, even during wakefulness, are 

seemingly unable to communicate. To better describe these disorders, a distinction has been intro-

duced between the vegetative state (VS) and the minimally conscious state (MCS). Both exhibit 

similarly preserved arousal, but MCS patients show signs of intentional behavior while VS patients 

remain largely unresponsive. Yet, even in the latter case, science and modern medicine remain hard-

pressed to decide whether a patient diagnosed as VS may still be conscious but unable to communi-

cate (LAUREYS, 2005B; SCHNAKERS ET AL., 2009B; LAUREYS AND SCHIFF, 2011). For instance, Owen and 

collaborators have shown that functional MRI could detect consciousness in some VS patients 

(OWEN ET AL., 2006) and, in a few cases even restore communication (BYRNE ET AL., 2010). Similar 

results may be obtained using scalp electroencephalography (EEG), a more economical and prac-

tical technique that can be easily applied at bedside (CRUSE ET AL., 2011; FAUGERAS ET AL., 2011; 

GOLDFINE ET AL., 2011). We recently introduced a measure (weighted symbolic mutual information, 

wSMI) which evaluates long-distance cortical information sharing from scalp EEG and discrimi-

nates VS and MCS patients (KING ET AL., 2013B). Another recent method based on the quantifica-
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tion of the complexity in the EEG evoked responses to TMS pulses has also been shown to effi-

ciently detect consciousness in DOC patients (CASALI ET AL., 2013). Nevertheless, there is still no 

consensus amongst clinicians as to which measure may be best suited to detect residual conscious-

ness. Part of this results from the fact that the putative signatures of consciousness have been pro-

posed and tested in independent studies, in distinct populations and with different criteria and me-

thodologies.  

The multiplicity of theoretical proposals and the practical need to improve the diagnosis of 

DOC patients call for a systematic assessment of the ability of each of these measures to index 

states of consciousness. To address this issue, we provide an extensive analysis of empirically and 

theoretically derived measures of conscious activity that can be extracted from a large database of 

EEG recordings in DOC patients. We show that local low-frequency power and complexity meas-

ures, together with information exchange, are privileged markers of conscious states. These meas-

ures and their respective fluctuations can be used in synergy in an automatic classification system in 

order to improve the diagnosis of VS patients. 

7.4. METHODS 

7.4.1. PATIENTS 

Patients underwent EEG recording for clinical purposes. The auditory paradigm they were 

presented to (BEKINSCHTEIN ET AL., 2009) elicits event related potentials (ERPs) that help assessing 

patients‘ present and future state of consciousness (FISCHER ET AL., 2004; WIJNEN ET AL., 2007; 

BEKINSCHTEIN ET AL., 2009; SCHNAKERS ET AL., 2009A; FAUGERAS ET AL., 2011, 2012). Patients were rec-

orded without sedation since at least 24 h in order to maximize their arousal and their cognitive 

abilities during the auditory stimulation. We performed a total of 173 patient recordings. Six record-

ings were discarded because they presented less than 200 non-artifacted trials (see below). The re-

maining 167 valid recordings were acquired from 113 distinct patients (79 males and 34 females, 

sex-ratio = 2.32), aged from 16 to 83 years (mean = 48 ± 17 years). Patients were recorded from 

one to six times. Their etiologies matched the one typically observed in DOC: anoxia (24%), intra-

cranial hemorrhage (35%), traumatic brain injury (24%), and other etiologies (17%)(see supplemen-

tary Table 3 for details). Our cohort had variable delays separating the incident and the acquisition 

of the EEG (mean = 178 days since DOC onset; median = 35 days; SD = 532 days; earliest = 6 

days; latest = 4383 days). 

7.4.2. HEALTHY SUBJECTS 

Experiments were approved by the Ethical Committee of the Salpêtrière hospital. All14 

healthy subjects (mean age = 21.3 ± 2.9; sex-ratio (M/F) = 2.5) gave written informed consent.  

7.4.3. BEHAVIORAL ASSESSMENT OF CONSCIOUSNESS 

Clinical evaluation of consciousness was based on the French version of the Coma Recov-

ery Scale Revised (CRS-R) scale (SCHNAKERS ET AL., 2009B), and careful neurological examination by 

trained neurologists (FF, BR, LN). This scale consists of 23 items forming six subscales addressing 

auditory, visual, motor, oromotor, communication and arousal functions. CRS-R subscales are 
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comprised of hierarchically arranged items. The scale enables a distinction between conscious (CS), 

minimally conscious (MCS) and vegetative (VS) states (SCHNAKERS ET AL., 2009B). Clinical examina-

tion and behavioral assessment were systematically performed right before EEG recording. 

7.4.4. AUDITORY STIMULATION 

Subjects were stimulated using the ―Local Global‖ auditory protocol (BEKINSCHTEIN ET AL., 

2009). Each trial was composed of a series of five 50-ms duration sounds presented via headphones 

with an intensity of 70 dB and a 100ms interval between each sound (stimulus onset asynchrony 

[SOA] = 150 ms). Each sound was composed of three superimposed sinusoidal tones (either a low-

pitched sound composed with a mixture of 350, 700 and 1400 Hz tones, hereafter sound X; or a 

high pitched sound composed with a mixture of 500, 1000 and 2000 Hz tones, hereafter sound Y). 

Tones were prepared with 7ms rise and 7ms fall times. Four different series of sounds were used, 

the first two using the same five sounds: xxxxx or yyyyy (hereafter denoted as xx); and the other 

two with the final sound differing from the four other: xxxxY or yyyyX (hereafter denoted as XY). 

Trials were separated by a variable interval of 1350–1650ms (50ms steps). Blocks were arranged to 

contain the XY trials, either as a rare (block type 1: 80% XX & 20% XY); or as a frequent (block 

type 2: 80% XY & 20% XX) series of sounds. Both blocks presented a local (the fifth sound could 

be deviant or identical to previous sounds) and a global regularity (one of the series of sounds was 

rarer than the other). In order to unambiguously establish the global regularity, each block started 

with ~30-secondhabituation time period during which only trials with series of sounds of the fre-

quent type were presented. Following the original design (BEKINSCHTEIN ET AL., 2009), habituation 

trials following a rare auditory sequence were discarded from the analyses. In each block the num-

ber of rare trials varied between 22 and 30. Auditory stimulations were presented with Eprime v1.1 

(Psychology Software Tools Inc., Pittsburgh, PA). Instructions to pay attention to the stimuli and to 

count deviant stimuli were delivered verbally to all patients at the beginning of each block. All sub-

jects performed eight blocks (3–4 min duration) in a fixed order (two runs of XX, YY, XY, YX 

frequent stimulation). 

7.4.5. HIGH-DENSITY SCALP EEG RECORDINGS 

EEG recordings were sampled at 250 Hz with a 256-electrode geodesic sensor net (EGI, 

Oregon, USA) referenced to the vertex. Recordings were band-pass filtered (form 0.2 to 45 Hz). 

Trials were then segmented from −200ms to +1336ms relative to the onset of the first sound. Tri-

als with voltages exceeding ±150 V, eye-movements activity exceeding ±80 mV and eye-blinks 

exceeding ±150 mV were rejected. Trials were baseline corrected over the first 200 ms window 

preceding the onset of the first sound. Electrodes with a rejection rate superior to 20% across trials 

were rejected and were interpolated. Trials with more than 20 corrected electrodes were rejected. 

The remaining trials were digitally transformed to an average reference. All these processing stages 

were performed using the EGI Waveform Tools Package. 

Connectivity measures were based on a spatial Laplacian transformation of the EEG - a 

computation also known as Current Source Density (CSD) estimate (KAYSER AND TENKE, 2006B). 

CSD consists, roughly, in subtracting, from each electrode, the activity of its neighboring elec-

trodes. This has the main advantage of increasing spatial resolution and minimizing the influence of 

common sources on multiple distant electrodes. 
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7.4.6. CALCULATION OF PUTATIVE EEG MEASURES OF CONSCIOUSNESS 

We calculated the entire set of EEG measures (m) independently for each individual sub-

ject, trial and for every electrode (ne=256) or pair of electrodes (ne=32640). Connectivity measures 

were summarized by calculating the median value from each electrode to all of the other scalp 

(non-facial) electrodes. Note that, given the spatial distribution of the electrodes, this procedure 

enhances the weight of long-distance connections on the computed measure. As a final result, all 

measure distributions ended up with the same number of values per subject and trial 

(ne=256). Finally, for each subject, these values were again collapsed to two scalars by considering 

the mean and the standard deviation across trials.  

Except for ERP measures, analyses were performed on EEG data recorded during the time 

period when subjects were presented with undifferentiated series of tones (from 200 ms prior to 

the onset of the first tone to the onset of the fifth tone). Thus, all trials were pooled independently 

of the condition of auditory stimulation.  

See supplementary materials for a detailed description of each measure and its computa-

tion.  

 

7.4.7. STATISTICS 

7.4.7.1. Univariate ROC 

Pair-wise comparisons were performed across the three clinical groups (VS, MCS and CS), 

leading, for each measure, to three statistical comparisons (1:VS-MCS, 2:MCS-CS, 3:VS-CS). We 

implemented a non-parametric statistical method (Mann-U Whitney test) and report the effect size 

as the empirical Area Under the Curve (AUC) from an empirical Receiver Operating Curve (ROC) 

analysis. The ROC plots the false positive rates (FPR) as a function of true positive rates (TPR). 

 

TABLE 1. EXPERIMENTAL PROTOCOL AND RELATED ELECTROPHYSIOLOGICAL MARKERS 

Measures can be conceptually organized along several dimensions: First, we distinguish measures of 
stimulus processing from. The former (event-related potentials or ERPs) are further subdivided into 
early versus late components. The latter are classified according to the theoretical background used to 
derive the measure: (1) Local dynamics versus connectivity: some measures are computed within each 
electrode, while others index the interactions between electrodes; (2) Spectral (Fourier frequency 
analysis) versus Information Theory. Finally, for each measure, inter-trial average (computed as the 
mean across trials) or inter-trial fluctuations (computed as the standard deviation) were studied. 
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For example, in a comparison of the alpha power between CS and VS patients, one can observe the 

percentage of CS patients (TPR) who show a higher alpha power than an arbitrarily setup criterion 

C, and the corresponding percentage of VS patients (FPR). By testing all possible empirical criteria, 

we can draw the ROC curve and compute the AUC (see SUPPLEMENTARY FIGURE 7.10). Values high-

er than 50% means that CS patients have on average higher alpha power than VS patients, and 

values lower than 50% implies that CS patients have lower alpha power than VS patients. 

Note that the estimates of statistical effect size are intrinsically problematic in mass-

univariate analyses, as one tends to look at the effect size of significant tests only. However, the 

effect size itself is an estimate and thus subject to error. We decided to make all values available to 

the reader, but we stress that it would be incorrect to pick the best measure as this may overesti-

mate its effects size (KRIEGESKORTE ET AL., 2009; VUL ET AL., 2009B). Each measure is intrinsically 

high dimensional, as it was measured on each EEG electrode (n=256) or on each pair of EEG 

electrodes (n=32640). To sum up these large datasets, we thus summarized each multidimensional 

measure in a single value. ERP measures were summarized as the mean value observed in regions 

of interests traditionally used in the literature (see Supplementary Materials). Connectivity measures 

computed for each pair of EEG electrodes were summarized as follow: for each non-facial elec-

trode, we computed the median value it shared with all other non-facial electrode. We then aver-

aged these 224 values to summarize the amount of shared information across the scalp. All other 

measures were summarized by averaging the 224 values non-facial electrodes. 

To account for the large number of statistical tests (n = 92 measures x 3 comparisons), sta-

tistical significance was systematically corrected for multiple comparison with a false discovery rate 

method (FDR at alpha=.05) across all measures and comparisons.  

7.4.7.2. Topographical analysis 

Topographical analyses were performed using a similar approach to the method above. 

Pair-wise comparisons across clinical states were performed with Mann-U Whitney tests on each 

electrode separately. Robust regression analyses were performed across the four groups (VS:1, 

MCS:2, CS:3, Healthy:4) to test for the monotony of the changes observed across states of con-

sciousness. Statistical significance are reported after correction for multiple comparison across elec-

trodes (FDR at alpha=.05).  

7.4.7.3. Multivariate Pattern Analyses  

In the present case, each analysis aimed at predicting the clinically-defined state of con-

sciousness (VS, MCS or conscious) of each subject from the EEG-based measures of conscious 

processing. For this purpose, we used a Support Vector Classifier (SVC) (PEDREGOSA ET AL., 2011) 

with a probabilistic output calibration. See supplementary methods for a detailed description of the 

computational steps.  

7.5. RESULTS 

We analyzed a large set of 181 high-density 256-channel EEG recordings, corresponding to 

all 167 patients admitted at the Pitié-Salpêtrière Hospital and referred to us in the 2008-2010 period 

for a clinical evaluation of their state of consciousness. In total, 75 VS patients, 68 MCS patients, 
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and 24 brain-injured but conscious patients (CS) were recorded one to six times each (see methods 

for details). Fourteen additional recordings were obtained from healthy control subjects. Recordings 

were acquired in the ―Local Global‖ protocol, a thirty-minute paradigm designed to probe the 

depth of processing of auditory regularities at two hierarchical levels (BEKINSCHTEIN ET AL., 2009) 

(FIGURE 7.1). This procedure allowed us to jointly quantify the event-related potentials (ERPs) 

evoked by exogenous stimuli and the presence of endogenous fluctuations in the EEG, while max-

imizing and homogenizing the patients‘ attention and vigilance. For each recording, we systemati-

cally extracted a set of measures organized according to a theory-driven taxonomy (Table 1). Full 

details and motivations for each measure can be found in the Supplementary Materials. Here we 

briefly describe the most relevant aspects of each measure.  

We propose to organize EEG measures according to several major dimensions (Table 1). A 

first distinction separates measures of the processing of external stimuli (auditory ERPs) from 

measures which are not locked to the stimuli and rather reflect ongoing brain activity. Current theo-

ries of consciousness differ in their attribution of conscious awareness of an external stimulus to 

early or late brain responses (DEHAENE AND CHANGEUX, 2011). Therefore, we classified event related 

potentials according to their latency (early, < 250 ms, versus late, >300 ms). Measures of ongoing 

EEG activity were further classified based on: 1) dynamics of brain signals at a single electrode site 

versus assessment of functional connectivity between two brain sites; and 2) whether the measure is 

based on spectral frequency content or on information-theoretic estimates of signal complexity, 

which do not presume strong specific hypotheses about the frequency content of the signal. For 

each measure we computed, the inter-trial average, which reflects the overall mean value during the 

half-hour recording session, and the fluctuation of this measure (standard deviation) during the 

recording period, which tests the hypothesis that stability may be a hallmark of consciousness 

(SCHURGER ET AL., 2010). 

 

7.5.1. TOPOGRAPHICAL DIFFERENCES ACROSS MEASURES AND GROUPS 

First we inspected whether differences in amplitude and spatial distribution of the com-

puted measures could discriminate patients‘ state of consciousness. This analysis also aims at eva-

luating whether different measures present specific scalp topographies, and thus i) highlight optimal 

recording regions for clinical practice and ii) suggest different underlying neural systems. FIGURE 7.2 

 

FIGURE 7.1 EXPERIMENTAL SETUP AND RELATED SIGNATURES OF CONSCIOUSNESS  

Description of the paradigm used for patient auditory stimulation. Spectral and information-theory 
measures were computed in the early time window (which is identical for all trials), while event-related 
potentials (ERPs) were computed on the late window (response specific to the trial condition).  
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depicts a representative set of measures; the full set of topographies is presented in SUPPLEMENTARY 

FIGURE 7.6-.9. The specific results obtained for each marker is discussed below. 
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FIGURE 7.2 SCALP TOPOGRAPHY OF THE MOST DISCRIMINATORY MEASURES.  

The topographical 2D projection (top = front) of each measure (contingent negative variation (CNV), 
mismatch negativity (MMN) and P300b (ΔP3b), normalized power in delta (|δ|n) and alpha (|α|n) 
bands, spectral entropy (SE), permutation entropy in theta band (PEϴ), Komolgorov-Chaitin 
Complexity (Kzip) and weighted Symbolic Mutual information (wSMIϴ)) is plotted in panel a for each 
state of consciousness (columns). The fifth column indicates whether the VS and MCS patients were 
significantly different from one another (light gray: p<.05, black: p<0.01, uncorrected). The sixth 
column shows the statistics of a regression analysis of the measure across the four states of 
consciousness (VS<MCS<CS<Healthy controls). 
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7.5.1.1. Event related topographies show low 

sensitivity to discriminate patients’ groups 

Only two out of seven sound-related potentials (BEKINSCHTEIN ET AL., 2009) differed signifi-

cantly between VS and CS patients (SUPPLEMENTARY FIGURE 7.6). None of them could significantly 

discriminate VS and MCS patients. The MMN and the P300, two event related potentials which 

both signal the detection of violations of auditory regularities, only showed modest differences 

between the groups of patients. Although the MMN discriminated VS from CS and MCS from CS, 

confirming that it increases when consciousness recovers (WIJNEN ET AL., 2007), it did not discrimi-

nate VS from MCS. More surprisingly, univariate, electrode-by-electrode statistics of the P300 to-

pography also failed to reveal any discrimination of VS from MCS. This finding, which partially 

contradicts earlier results with smaller patient samples (BEKINSCHTEIN ET AL., 2009), may be ascribed 

to large inter-individual variability in EEG topography (KING ET AL., 2013A), as discrimination im-

proves when using multivariate decoding (see below). 

7.5.1.2. Theta and alpha band power efficiently index 

the state of consciousness 

Contrarily to ERPs, most of the power spectrum measures appeared to be efficient indexes 

of consciousness states. These measures appeared maximally informative for electrodes over the 

parietal region (SUPPLEMENTARY FIGURE 7.2). All spectral measures showed monotonic effects from 

VS to CS patients groups, and six out of ten succeeded in discriminating VS from MCS. Within the 

lower frequencies, normalized delta (1-4 Hz) showed decreasing power from VS to CS, significantly 

separating VS from non-VS patients. On the contrary, normalized theta (4-8 Hz) and normalized 

alpha power (8-13 Hz) increased significantly from VS to CS. Both frequency bands showed in-

creasing power in parietal regions and significantly discriminated VS from the other groups of pa-

tients. Normalized beta power failed to discriminate between VS and MCS patients, but significant-

ly discriminated CS from the other groups of patients. 

Because of these opposing variations of low (delta) and higher (alpha and above) frequen-

cies, spectral summaries such as the median spectral frequency (MSF), which summarize the relative 

distribution of power in the frequency spectrum, were particularly efficient. The spectral entropy 

(SE) analysis showed that CS and MCS patients presented a less predictable spectral structure 

(higher entropy) than VS patients. 

7.5.1.3. EEG complexity increases with conscious state 

Algorithmic (or Kolmogorov-Chaitin) complexity (K) estimates the complexity of a se-

quence based on its compressibility. Several theories predict that the complexity of information 

integration (TONONI, 2008) or distributed processing (DEHAENE AND CHANGEUX, 2011) is elevated 

during conscious states. In agreement with this prediction, we found that the computed measure of 

complexity, based on EEG compression, increased in patients with a higher clinical state of con-

sciousness. This measure significantly discriminated VS from MCS patients, particularly for a set of 

electrodes over the parietal region (SUPPLEMENTARY FIGURE 7.8). A complementary mathematical 

approach is permutation entropy (PE) which evaluates the regularity of the probabilistic distribu-

tions of temporal patterns in the signal (BANDT AND POMPE, 2002). PE can be computed in distinct 

frequency bands; we found that PE-based measures were particularly efficient in the theta frequen-

cy range, discriminating VS from the other groups. Again, a greater value of PE, especially over 

centro-posterior regions (FIGURE 7.2), indicating a more complex and unpredictable distribution, 

indexed a higher state of consciousness.  



CHAPTER 7. RESULTS 

 

149 
 

7.5.1.4. Information sharing across brain regions 

indexes conscious state 

Similarly to the spectral measures at a single recording site, measures of functional connec-

tivity between two recording sites proved particularly efficient at lower frequencies (SUPPLEMENTARY 

FIGURE 7.9). Amongst the spectral connectivity measures, only the phase-locking index (PLI) in the 

delta band was significant, progressive deficits in consciousness being accompanied by greater delta 

synchrony. Connectivity measures based on information theory, such as weighted symbolic mutual 

information (wSMI), demonstrated a higher sensitivity: as previously reported (KING ET AL., 2013B), 

inter-electrode information exchanges increased from VS to CS. VS patients presented significant 

lower wSMI than both MCS and CS patients in the theta and alpha bands, consistent with the theo-

retical notion that loss of consciousness in VS reflects an impaired exchange of information across 

brain areas, and particularly over medium-to-long cortico-cortical distances (KING ET AL., 2013B). 

7.5.2. QUANTIFYING THE EEG DIFFERENCES BETWEEN GROUPS OF DOC 

PATIENTS 

While the above analysis evaluated the topographical differences across groups, judging 

discrimination capacity in sensor space, while correcting for multiple comparisons over the large 

number of available electrodes, poses a difficult statistical problem. To reduce dimensionality and 

quantify the discriminative power of each measure, we summarized spatial information by consider-

ing the average over predefined electrodes forming a priori regions of interest. All individual trial 

measures were summarized in their inter-trial average and in their fluctuation (standard deviation) 

during the recording period. In the case of event related measures, we also applied a systematic 

within-subject decoding approach for local and global responses to auditory novelty, following the 

procedure described in (KING ET AL., 2013A), which enhanced the discrimination of these conditions. 

This approach ultimately yielded a total of 92 measures per subject (see Supplementary Tables 1 

and 2 for numerical summaries of each measure in each group). 

In order to investigate which measures showed significant differences across groups of pa-

tients, we implemented receiver operator curves (ROC, SUPPLEMENTARY FIGURE 7.10) and quantified 

classification performance with the area under curve (AUC).A strict criterion based on false discov-

ery rate (FDR) was applied to correct for multiple comparisons (92 values * 3 tests: VS-MCS, MCS-

CS, and VS-CS). An AUC of 50% corresponds to chance classification. An AUC larger than 50% 

implies that the measure increases with conscious state (i.e. MCS > VS), while AUC < 50% implies 

a decrease with conscious state (i.e. MCS < VS). 

7.5.2.1. Average spectrum, complexity, connectivity, 

and global responses to novelty provide 

efficient signatures of consciousness 

Analysis of the discrimination performance of the EEG measures revealed that the most 

discriminative measure was weighted symbolic mutual information, which separated VS from MCS 

(wSMIθ AUC = 74%, pFDR<.0001) and CS patients (wSMIθ: AUC = 78%, pFDR<.001). Power spec-

trum measures also performed well: increased normalized delta power separated VS from MCS 

(AUC=31%, pFDR<.001) and from CS patients (AUC=19%, pFDR<.0002), while the converse oc-

curred in higher frequency bands, with decreased normalized alpha power segregating VS from 

MCS (AUC= 72%, pFDR<.0002) and from CS patients (AUC= 85%, pFDR<10-4). A third variable 

affording accurate classification was permutation entropy in theta frequency range, discriminating 
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VS from the other groups ( : MCS>VS, AUC=72%, pFDR<.0002, CS>VS, AUC=83%, 

pFDR<10-4). Finally, the decoding of the global effect (the ERP response to deviant auditory se-

quences (BEKINSCHTEIN ET AL., 2009; KING ET AL., 2013A)) also separated VS from MCS (AUC = 

62%, pFDR<0.05) and CS patients (AUC = 81%, pFDR<.0002). 

 

One issue is that the vigilance level can be confounded with VS-MCS differences. Indeed, 

the clinical assessment of the coma recovery scale-revised (CRS-R) subscore corresponding to the 

arousal level showed a small increase in the MCS group as compared to the VS group (mean ± 

 

FIGURE 7.3 DISCRIMINATION POWER FOR ALL MEASURES.  

Each line provides a summary report of its respective measure. The meaning of each acronym can be 
found in supplementary methods. The measures are ordered according to the taxonomy presented in 
Table 1. The location of each dot corresponds to the area under the curve (AUC) for a pair-wise 
comparison between two states of consciousness (see Methods). Chance level corresponds to AUC = 
50% (central vertical line). An AUC bigger than 50% suggests that the corresponding measure is 
correlated with the state of consciousness (from VS to MCS and CS) whereas AUC < 50% suggests that 
the measure is anti-correlated with the state of consciousness. Dot color and size indicate the type and 
significance of the comparison (see Legend). The red color highlights the minimal contrast between the 
MCS and VS states of consciousness. 
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SEM, MCS: 1.53 ± 0.07, VS: 1.30 ± 0.05, p = 0.013). In order to rule out this potential confound 

and isolate the variations specifically due to consciousness, we replicated the previous analysis in 

the subset of VS and MCS patients with CRS-R arousal subscore of 1, corresponding to patients 

that presented eye opening only to stimulation (VS: 52 patients, MCS: 32 patients). Performance of 

the EEG measures was essentially unchanged in this vigilance-controlled subset of patients as com-

pared to the overall comparison (SUPPLEMENTARY FIGURE 7.11  and SUPPLEMENTARY TABLES 3 AND 4). 

7.5.2.2. Fluctuation of measures across trials convey 

independent information 

 

The stability of evoked activity has been proposed as a marker of consciousness (SCHURGER 

ET AL., 2010). We then hypothesized that EEG variability over time, quantified as the fluctuations of 

a given measure across trials might add independent information about consciousness, relative to its 

mere average value. The results confirmed that EEG fluctuations add important discriminative 

information (FIGURE 7.3). Interestingly, we did not always observe a positive correlation between 

the classifying power of a given measure based on its average and on its fluctuations. FIGURE 7.4 

provides a graphical comparison of discrimination power based on the mean or the fluctuation of 

each measure for the MCS-VS contrast. Different types of measures can be distinguished. Some 

simply fail to separate these two groups (e.g. low gamma power). Others show a significant increase 

in both the average and the fluctuation over time for MCS compared to VS (this is the case for 

power in theta, alpha and beta bands, MSF and wSMIθ). Yet other measures exhibit dissociation 

between average and fluctuation. In particular, the state of consciousness is associated with a high 

average but a low fluctuation of K, PEθ and PEα, indicating that a stable and lasting increase in 

complexity and entropy reflects a conscious patient. Conversely, the state of consciousness is asso-

 

FIGURE 7.4 SUMMARY OF THE MEASURES DISCRIMINATING VS AND MCS PATIENTS.  

Each measure is plotted in a two-dimensional graph. Acronyms meanings can be found in the 
supplementary methods. The x axis indicates discriminatory power for each measure’s average across 
trials, while the y axis indicates discriminatory power for their respective fluctuations across trials. For 
instance, the Kolmogorov-Chaitin complexity (K) measure appears in the bottom right quadrant, 
suggesting that its average value is significantly higher in MCS than in VS, while its standard 
deviation, conversely, is higher in VS than in MCS. Large circles indicate significant measures 
(pFDR<0.05). Non-significant measures are indicated with small dots. 



CHAPTER 7. RESULTS 

 

152 
 

ciated with a low average and high fluctuation of power and PLI in the delta band: while fluctuating 

slow cortical potentials, covering the delta range, are typical in the normal conscious brain (HE AND 

RAICHLE, 2009), stable and intense delta waves are a sign of unconsciousness in anesthesia and deep 

sleep (FRANKS, 2008). Finally, the remaining measures were discriminative only for averages (i.e., SE) 

or for fluctuations across trials (i.e., PLI in beta and alpha bands). The latter finding suggests that 

consciousness implies a constantly fluctuating stream of transiently phase-locked brain states. 

7.5.3. COMBINING MEASURES IMPROVES DISCRIMINATION  

We next examined whether these EEG measures could be combined to improve discrimi-

nation of the different states of consciousness, particularly in the crucial VS-MCS comparison. One 

goal was to determine whether these markers act in concert, and can thus combine in synergy to 

improve discrimination between groups or whether these measures are highly redundant. In this 

latter case, the best measure would provide information comparable to the entire set of measures. 

To this aim we used a multivariate classification method based on a support vector machine (SVM) 

(PEDREGOSA ET AL., 2011). The SVM was applied to all VS and MCS recordings. To avoid over-

fitting the SVM was repeatedly fitted and evaluated on independent datasets using stratified nested 

cross-validation. It took as input a measure or set of measures, and output the estimated probability 

for a given recording to belong to the VS group. Results showed that the best cross-validated single 

measure reached an AUC of 71% for the VS-MCS comparison. By contrast, using the whole set of 

measures, AUC was significantly higher than when using the best single measure: VS-MCS: 78% (p 

< .001). In other words, measures were not entirely redundant, and the SVM provided an efficient 

way to identify which combination led to a better discrimination of the patients‘ states of con-

sciousness. 

7.5.4. AUTOMATIC CLASSIFICATION OF PATIENTS’ STATE OF 

CONSCIOUSNESS 

A main clinical objective of this work was to develop an automatic system that potentially 

helps physicians to detect consciousness in non-communicating patients. For this, we evaluated the 

performance of the SVM classifier to differentiate VS patients from MCS patients, i.e. to reliably 

identify the presence of a clinically detectable state of consciousness. The classifier achieved above-

chance levels of accuracy (χ2(2, N = 143) = 26.7, p = 10-7): 67% (50 out of 75) of VS-diagnosed 

patients and 76% (52 out of 68) of MCS-diagnosed patients were classified in their respective clini-

cal categories solely from their brain activity (FIGURE 7.5). To test for robustness, we also evaluated 

whether the same classifier, trained to detect consciousness in VS and MCS patients, generalized to 

CS patients and healthy subjects. The great majority of these recordings (89%, 34 out of 38) were 

classified as conscious (MCS rather than VS).  

To train our classifier, we relied on clinical labels (VS and MCS) that derive solely from be-

havioral observations and need not provide a perfect ―gold standard‖ (OWEN ET AL., 2006). A disa-

greement between the automatic classification and the clinical label may represent an error of the 

classifier, but it may also indicate the presence of EEG-based information not accessible to the 

clinician. To investigate whether the information derived from neurophysiological activity may 

improve diagnosis, we tested whether VS patients classified as MCS from their EEG activity would 

later show signs of intentional behavior that may have been missed at the time of the recording. 

Most patients classified as VS on both clinical and EEG-based criteria showed no signs of regaining 

consciousness in the six weeks following EEG recording (recovery<21 days: 10 (20%); recovery< 

42 days: 1(2%); no recovery: 39 (78%)). By contrast, among the clinically VS patients classified as 
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MCS based on their EEG activity, the proportion of those who later showed signs of conscious-

ness significantly increased (recovery < 21 days: 8 (32%); recovery < 42 days: 3 (12%); no recovery: 

12 (48%); unknown: 2 (8%)).The number of subjects who recovered consciousness was significant-

ly higher for VS patients classified as MCS than for those classified as VS (χ2(2, N = 73) = 4.99, p 

= 0.025). It should be emphasized that clinical assessment at the time of the recording, based on 

the full Coma Recovery Scale-Revised (CRS-R) or its sub-scores, neither predicted the VS patients‘ 

recovery nor the automatic classification category (see supplementary results). Hence, within a be-

haviorally indistinguishable group of clinical VS patients, neurophysiological measures provided 

substantial information about the future improvement of consciousness, suggesting a better func-

tional status at the time of recording. 

 

 

FIGURE 7.5 COMPARISON OF EEG-BASED CLASSIFICATION WITH CLINICAL DIAGNOSIS AND PATIENTS’ OUTCOME.  

a. Confusion matrix showing, on the y axis, the clinical diagnosis (VS, MCS or CS-Healthy), and on the 
x axis, the prediction using the automatic classifier based on EEG measures (VS or MCS). The number 
of recordings and their respective percentages within each clinical state category are reported in each 
cell. For VS and MCS patients EEG-based classification matches the clinical diagnosis in a majority of 
cases. Using the same classifier (trained to predict VS or MCS state) the top cells show the predicted 
condition for CS and Healthy subjects. The majority of these recordings were classified as MCS. Non-
matching cells can suggest inappropriate classifications, but may also indicate that EEG measures are 
detecting information unseen by clinicians. 

b. The pie charts show the clinical outcome of the VS patients, as a function of whether EEG measures 
classified them as VS or in a higher state of consciousness (MCS or CS). The probability of recovery 
was significantly higher (p = 0.02) for patients classified into a higher state of consciousness than for 
patients predicted to be truly VS. 
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7.6. DISCUSSION 

We systematically evaluated putative signatures of consciousness in a large dataset of high-

density bedside EEG recordings of patients suffering or recovering from disorders of conscious-

ness (DOC). An important feature of our study is that we included all DOC patients within a nearly 

two-year period, thus ensuring an unbiased sampling and maximizing clinical relevance. By testing a 

total of 92 candidate measures arising from previous empirical and theoretical research, we showed 

that EEG contains many useful features that discriminate between VS and CS. Each of these meas-

ures can thus index consciousness - either directly, or indirectly through its consequences on arous-

al, instruction understanding, active maintenance of stimuli and instructions in working memory, 

task monitoring, etc. Crucially, only a few of these measures were effective in discriminating the 

minimal contrast between VS and MCS patients. We focus the discussion on this subset of meas-

ures, which appear most relevant to the objective identification of conscious processing from the 

patterns of EEG activity.  

Spectral power analysis revealed that alpha and theta power was significantly lower in VS 

than in MCS patients, whereas delta power showed the opposite pattern. Similar increases in low-

frequency oscillations are a classical observation in coma and deep sleep (POSNER ET AL., 2007). Here 

we demonstrate their relevance to distinguish VS from MCS patients, as recently reported in smaller 

groups of patients (FELLINGER ET AL., 2011; LEHEMBRE ET AL., 2012; LECHINGER ET AL., 2013).The fron-

to-parietal topography of these spectral effects is consistent with a crucial role of fronto-parietal 

networks in a ‗global workspace‘ (GW) mediating a serial stream of conscious states at theta-like 

frequencies (100-300 ms per state) (ALKIRE ET AL., 2008; VANHAUDENHUYSE ET AL., 2010; DEHAENE 

AND CHANGEUX, 2011; LAUREYS AND SCHIFF, 2011).This regional hypothesis should be confirmed with 

cortical source analysis, which was not attempted here given the difficulty of obtaining an accurate 

source model in patients with massive brain and skull damage (KING ET AL., 2011).  

Spectral measures also exhibited greater fluctuations in MCS than in VS patients. This find-

ing agrees with the definition of MCS as a fluctuating state (GIACINO AND KALMAR, 2005) and shows 

that, contrariwise, a stable state of increased delta and reduced alpha-theta power is a solid sign of 

unconsciousness. Finally, the structure of the EEG spectrum, as measured by spectral entropy, was 

increased in MCS and CS as opposed to VS patients. This finding was previously reported to be 

relevant only in the acute stage and in a much smaller subset of patients (14 VS versus 9 MCS) 

(GOSSERIES ET AL., 2011). 

Multiple EEG measures of signal complexity (SE, PE, K) discriminated VS from MCS pa-

tients. Indeed, both the average and the inter-trial stability of EEG complexity increased monotoni-

cally with the patients‘ state of consciousness. This result confirms that the complexity of cortical 

activity indexes consciousness, as explicitly formulated for instance by the dynamic core model of 

Tononi and colleagues (TONONI, 2004, 2008). According to this model and related ones (SETH ET AL., 

2011), a minimal level of complexity in neuronal signals is required to encode a rich and differen-

tiated representation, thus singling it out from the vast repertoire of potential contents of con-

sciousness. Regions specifically implicated in the coding of conscious representations would thus 

show higher complexity during conscious than during unconscious states, as observed here.  

We found that consciousness was indexed not only by a high information complexity, but 

also by a stability of this complexity, with reduced fluctuations during the 30-minute recording. This 

result extends to spontaneous EEG the findings of a recent fMRI study showing that neural activa-

tion patterns are more reproducible when evoked by a visible than by an invisible stimuli 
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(SCHURGER ET AL., 2010). We hypothesize that one property of the conscious brain is to achieve both 

a reproducible perception of identical sensory stimuli and an internal stream of computations of 

roughly constant complexity even in the absence of sensory stimulation.  

One of the most striking differences between patients was an increase in functional con-

nectivity measures around the theta (4-8 Hz) frequency band (wSMI theta) in MCS as compared to 

VS patients. This result strengthens previous findings relating long-distance synchronization with 

conscious states in DOC patients in similar frequency bands (SCHIFF ET AL., 2005; LEHEMBRE ET AL., 

2012; LEON-CARRION ET AL., 2012). In addition to generalizing this finding to a large dataset, our re-

sults clarify the topography of this large-scale increase in communication. We observed a maximal 

effect over mesio-parietal areas, in close agreement with recent work showing the crucial role of 

precuneus and posterior cingulate as ‗hubs‘ in a long-distance cortical network that may underlie 

conscious integration (SCHIFF ET AL., 2005; VOGT AND LAUREYS, 2005). Future research should investi-

gate whether a more detailed description of this functional connectivity network, possibly aided by 

directional connectivity analyses such as Granger causality (GAILLARD ET AL., 2009; BARRETT ET AL., 

2012), may also help to distinguish these clinical groups.  

The importance of long-distance cortical communication and signal complexity in con-

sciousness fits with a set of perturbational TMS-EEG studies conducted in DOC patients 

(ROSANOVA ET AL., 2012), sleep (MASSIMINI ET AL., 2005) and anesthesia (FERRARELLI ET AL., 2010), 

which revealed that the prolonged propagation of TMS-induced activation to distant sites systemat-

ically correlates with consciousness. More recently a quantification of the structure of EEG-evoked 

responses to the TMS pulse has been presented (CASALI ET AL., 2013). In a small cohort of normal 

subjects and patients, this measure, coined pertubational complexity index (PCI), was found to 

discriminate conscious state across a broad range of physiological, pharmacological and pathologi-

cal conditions. Further research should test whether a similar measure can be obtained without the 

TMS excitation (SITT ET AL., 2013). It may not be irrelevant that, in the present study, long-distance 

communication and complexity were measured while patients were stimulated with a series of audi-

tory tones. Our results may partially reflect the brain state evoked by these stimuli, thus paralleling 

those triggered by a TMS pulse. Recording EEG while patients are stimulated with a challenging set 

of auditory stimuli, as we did here, presents several advantages, including increased vigilance and 

the capacity to simultaneously evaluate evoked and spontaneous brain activity patterns. Neverthe-

less, future research will be needed to disentangle which of our measures would continue to be 

discriminative when applied to resting-state EEG.  

We also found larger fluctuations of functional connectivity in MCS than in VS patients, in 

particular in PLI (from delta to ) and in wSMI . Recent studies conducted with epileptic patients 

with implanted electrodes (SEEG) for pre-surgical mapping reported that loss of consciousness 

during the transition from partial simple to partial complex seizures was marked by a sudden exces-

sive increase in cortico-cortical and thalamo-cortical synchrony (LAMBERT ET AL., 2012). Our results 

lead to the testable prediction that this excessive synchrony, also observed in propofol anesthesia 

(SUPP ET AL., 2011), would cause a marked decrease of information complexity, which would in turn 

mark the loss of consciousness.  

EEG studies using active cognitive paradigms to probe conscious states often use ERPs as 

their main outcome measure (BEKINSCHTEIN ET AL., 2009; SCHNAKERS ET AL., 2009A). Indeed, the audi-

tory regularities violation task used here was designed to dissociate the automatic and unconscious 

MMN from the P3b complex associated with conscious access. We previously demonstrated that 

this P3b component, which indexes the detection of the violation of a global regularity, can be use-

ful as a specific marker of consciousness in individual patients, sometimes in advance of a clinical 
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diagnosis (FAUGERAS ET AL., 2011, 2012). The present results, however, indicate that this traditional 

ERP averaging approach lacks sensitivity in comparison to other EEG-based measures. ERP com-

ponents may still contribute importantly to diagnosis, but mostly when analyzed with a multivariate 

pattern analysis procedure that deals with inter-individual differences (KING ET AL., 2013A), particu-

larly in patients whose ERP topography may be significantly distorted relative to the normal popu-

lation. 

The present results also show that ERP fluctuations across trials provide a sensitive meas-

ure of conscious state. Consistent with a previous fMRI study (SCHURGER ET AL., 2010), conscious-

ness was characterized by more stereotyped responses to external stimuli. This result could also 

reflect the fact that VS patients presented a greater power of spontaneous low-frequency EEG 

signals, non-phase-locked with incoming stimuli and thus interfering with the reproducibility of 

evoked signals. 

Our conclusions are backed up by a large sample of patients with various etiologies, robust 

methods controlling for multiple comparisons, and a focus on the minimal contrast between VS 

and MCS patients. It could be argued that differences in vigilance, rather than consciousness, also 

distinguish MCS and VS patients. Indeed, the CRS-R sub-score of vigilance, measured just prior to 

the recording session, appeared slightly larger in MCS than in VS patients. However, most of the 

identified measures that distinguished VS from MCS patients remained significant when contrasting 

individuals with matched levels of vigilance. Thus, vigilance per se is unlikely to contribute to the 

identification of the relevant measures. 

A significant gain in discrimination was obtained by combining several EEG measures. 

This is an important result for both theoretical and clinical reasons. Theoretically, this gain of in-

formation suggests that our markers do not simply reflect distinct facets of the same neural process, 

but tap onto distinct and dissociable features of conscious states. From the medical perspective, our 

results stress the usefulness of combining a subset of EEG measures (spectral, informational and 

connectivity based).  

While most patients were correctly decoded on the basis of their EEG measures, the num-

ber of disagreements between the automated and clinical diagnoses remained too high for individu-

al diagnosis. In particular, 24% of MCS patients, who manifested clear-cut behavioral signs of con-

sciousness on some occasions, were classified as VS. We note, however, that the present study was 

based on a single half-hour EEG recording. As the minimal conscious state is defined by the pres-

ence of fluctuating signs, assessed by repeated clinical evaluation, it seems entirely possible that our 

examination was performed at a moment when these patients‘ consciousness lapsed. In the future, 

multiple sessions or even 24-hour EEG recordings might yield an improved clinical discrimination. 

While our accuracy in discriminating patients is roughly comparable to that reported by other 

groups (e.g. (SCHNAKERS ET AL., 2008A; FELLINGER ET AL., 2011; GOSSERIES ET AL., 2011; FINGELKURTS ET 

AL., 2012A; LEHEMBRE ET AL., 2012)), these previous studies used smaller sample sets and were fo-

cused on quantifying the power of a single EEG measure in discriminating pre-selected groups of 

well-differentiated patients (e.g. non-overlapping CRS-R scores for MCS and VS groups). The 

present study, by contrast, tackles the more difficult problem of identifying residual consciousness 

in a serial cohort of all patients admitted to our clinic. Structural magnetic resonance imaging was 

also reported to be efficient in discriminating patients (FERNÁNDEZ-ESPEJO ET AL., 2011). Further 

work will explore if the combination of multimodal (MRI+EEG) information can achieve a better 

performance. 
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In the converse direction, 33% of clinically VS patients were classified as MCS by their 

EEG patterns. Not all of these misclassifications may be errors, however. Rather, in a subset of 

clinically defined VS patients, our decoder demonstrably discovered information indicating a better 

functional status, as indicated by a higher rate of clinically detectable recovery in the months follow-

ing EEG recording. This result fits with previous fMRI findings indicating that the vegetative state 

is not a homogeneous category, and that some VS patients may actually be minimally or even fully 

conscious (OWEN ET AL., 2006). 

In conclusion, because EEG is a time-resolved, low-cost, widespread, and easily repeatable 

method, it may prove more efficient than MRI or fMRI in order to identify VS patients with resi-

dual consciousness or with a potential for future recovery. Our results point to the possibility that a 

reduced set of EEG measures, selected for example on the basis of their individual discrimination 

power, and potentially computed from a few scalp electrodes, could ultimately serve as a reliable 

bedside tool to probe consciousness in DOC patients. 

7.7. SUPPLEMENTARY MATERIALS 

7.7.1. MOTIVATIONS FOR EACH MEASURE  

In this section we provide a detailed description of the motivations for each measure used 

in this study. For details of the computations see the supplementary methods. 

7.7.1.1. Event related potentials 

The auditory paradigm (BEKINSCHTEIN ET AL., 2009) was originally designed to elicit and iso-

late early and late event-related potentials (ERPs). Recent theories of consciousness indeed argue 

that early components correspond to unconscious processing stages, whereas late components are 

associated with conscious access (see review in (DEHAENE ET AL., 2006A; SERGENT AND NACCACHE, 

2012)). In addition to early auditory P1 and N1 components, our auditory protocol allows identify-

ing three responses related to the detection and the expectation of an auditory novelty: the contin-

gent negative variation (CNV), the mismatch negativity (MMN) and the P3b component.  

The CNV is a slow negative drift generally observed over the frontal electrodes when sub-

jects expect an informative stimulus and terminates when such stimulus is presented (WALTER ET 

AL., 1964). This component is believed to be generated by a large network and necessitate subjects to 

be attentive and actively engaged in the task (ROSAHL AND KNIGHT, 1995; NIEDERMEYER, 2003; GÓMEZ 

ET AL., 2007; CHENNU ET AL., 2013). As these two conditions are generally associated with conscious 

perception (DEHAENE ET AL., 2006A; DEHAENE AND CHANGEUX, 2011) the CNV could sensitively 

mark a conscious state. Indeed, in a similar experimental protocol, Faugeras et al. has observed a 

negative drift ranging from the first to the last sound of each trial, proved which distinguished pa-

tients in various states of consciousness (FAUGERAS ET AL., 2012).  

The MMN is elicited by a change in pitch in the last of the five tones (e.g. xxxxx versus 

xxxxY) (NÄÄTÄNEN ET AL., 1978). This component has been repeatedly reported under non-

conscious conditions, although its amplitude can be modulated by subjects‘ attention 

(BEKINSCHTEIN ET AL., 2009) and conscious state (in sleep (NASHIDA ET AL., 2000) and in DOC pa-
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tients (FISCHER ET AL., 2004, 2010; KOTCHOUBEY ET AL., 2005; NACCACHE ET AL., 2005; WIJNEN ET AL., 

2007; BEKINSCHTEIN ET AL., 2009; SCHNAKERS ET AL., 2009A; MORLET AND FISCHER, 2013). 

The P300b (P3b) component is observed across a wide variety of tasks and is generally eli-

cited by visible relevant target (e.g. (SQUIRES ET AL., 1975B; SERGENT ET AL., 2005; POLICH, 2007)). This 

component is believed to reflect a large activation of the fronto-parietal cortices, and has thus been 

repetitively linked to working memory updating processing (POLICH, 2007) and conscious access 

(DEHAENE AND CHANGEUX, 2011). Specifically in the present experimental protocol, the P300 re-

sponse to unexpected (rare) sound sequences has only been observed in conscious and attentive 

subjects (BEKINSCHTEIN ET AL., 2009; FAUGERAS ET AL., 2011, 2012).  

7.7.1.2. “Ongoing” activity 

The rest of our measures were derived from the EEG activity preceding the onset of the 

last sound (early time window on FIGURE 7.1). We refer to this time periods as ―ongoing activity‖. It 

should be noted however that neutral auditory stimuli were presented during these time periods, 

which are thus different from traditional resting state conditions. However, we reasoned that it may 

be possible to quantify the ―ongoing‖ EEG activity that dominates over evoked responses by ap-

proximately one order of magnitude. Furthermore, one should note that classical resting state con-

ditions are generally uncontrolled stimulation conditions. Finally, the controlled auditory stimula-

tions here limit drowsiness by repeatedly calling the patient‘s attention, and could thus help to diffe-

rentiate MCS from VS patients.  

―Ongoing‖ EEG measures were organized according to two dimensions: i) whether they 

capture local dynamics or connectivity; and ii) whether their theoretical background lies in a spectral 

decomposition of the EEG signal, or in information theory. 

7.7.1.3. Measures of EEG spectrum 

Local dynamics refer to measures computed within a given EEG electrode. At this level, 

spectral measures are traditionally applied to quantify EEG oscillations or broadband frequency 

patterns, many of which have been proposed to distinguish conscious states in anesthesia (SUPP ET 

AL., 2011), sleep (FINELLI ET AL., 2001) and DOC patients (FELLINGER ET AL., 2011; FINGELKURTS ET AL., 

2012A). A classical finding is that unconscious subjects, compared to conscious ones, exhibit a re-

duction in power in the alpha band (8-13 Hz) and an increase in low frequencies such as the delta 

band (1-4 Hz). In our dataset we estimated power in five frequency bands (delta to low gamma). 

Frequency analyses were supplemented with spectrum summary measures that summarize the dis-

tribution of power over various frequencies using a single value, for instance its median or its spec-

tral entropy (SE, characterizing the complexity of the spectrum). These measures of spectrum 

summaries have been previously used to characterize the EEG recordings of DOC patients 

(SCHNAKERS ET AL., 2008A; GOSSERIES ET AL., 2011) and subjects under anesthesia (VAKKURI ET AL., 

2004; VELLY ET AL., 2007; LAITIO ET AL., 2008). 

7.7.1.4. Measures of complexity 

Novel techniques from the fields of dynamical systems and information theory also pro-

vide insights into normal and perturbed neural mechanisms (DIMITROV ET AL., 2011). These measures 

can be used to detect characterize changes in the EEG that may not be unveiled using traditional 

spectral frequency content methods (STAM, 2005).  
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We included a representative set of information theory measures of local dynamics. In par-

ticular, permutation entropy (PE) is an increasingly used method to detect dynamical changes in a 

time series (CAO ET AL., 2004), which is known for its high resistance to low signal-to-noise ratios 

compared to other similar methods (BANDT AND POMPE, 2002). PE has been successfully applied to 

the EEG-based detection of loss of consciousness under anesthesia (JORDAN ET AL., 2008; LI ET AL., 

2008). As described in detail below, PE estimates the entropy of a signal transformed into a se-

quence of discrete ―symbols‖. These symbols are generated from the qualitative (i.e. ranking) up 

and downs of the signal.  

We introduce an original method to quantify the complexity of EEG signals based on the 

application of the Kolmogorov-Chaitin complexity (K). This measure quantifies the algorithmic 

complexity (see (KOLMOGOROV, 1965; CHAITIN, 1974)) of a single sensor‘s EEG by measuring his 

degree of redundancy. Algorithmic complexity of a given string (in this case an EEG sequence) can 

be described as the length of shortest computer that can generate it. A short program corresponds 

to a less complex sequence. We estimated K by quantifying the compression size of the EEG using 

variants of the Lempel-Ziv zip algorithm (LEMPEL AND ZIV, 1976). This measure has been previously 

applied to detect changes in the cortical activity in anesthetized animals(SHAW ET AL., 1999) and more 

recently to index conscious state in human subjects from the evoked response to a TMS pulse 

(CASALI ET AL., 2013). 

7.7.1.5. Measures of information sharing 

Connectivity, in the sense of information sharing across distant cortical areas, has been 

proposed as a key element of several theories of consciousness (BAARS, 1989; REES ET AL., 2002; 

TONONI, 2008; DEHAENE AND CHANGEUX, 2011). Recent advances in theoretical neuroscience have 

shown that long-distance communication could be marked (GAILLARD ET AL., 2009; DEHAENE AND 

CHANGEUX, 2011) or established (FRIES, 2005; SAALMANN ET AL., 2012) by a frequency-specific syn-

chronization across different brain areas (FRIES, 2005). Intracranial recordings and M/EEG compar-

ing neural processing elicited by subliminal and visible images revealed an association between con-

scious perception and long-range synchrony in the beta and gamma bands (GROSS ET AL., 2004; 

GAILLARD ET AL., 2009; HIPP ET AL., 2011). Moreover, recent EEG studies suggest that VS patients 

present lower functional connectivity than MCS and CS patients (FINGELKURTS ET AL., 2012A; 

LEHEMBRE ET AL., 2012). In the present study, we evaluated synchrony with two traditional spectral 

methods: phase lag index (PLI) and the imaginary part of coherence (ICOH). The two measures 

were favored over as they are robust to volume conduction, common source and muscular and eye 

movements artefacts (NOLTE ET AL., 2004; STAM ET AL., 2007).  

However, such spectral methods are poorly sensitive to non-oscillatory functional connec-

tivity. To address this issue, we also computed an original method for quantifying information shar-

ing: weighted symbolic mutual information (wSMI). wSMI can robustly quantify non-oscillatory 

functional connectivity by transforming the EEG signals into symbolic sequences and estimating 

the non-trivial association of symbols across sensors. In a previous study, we have successfully 

applied wSMI to distinguish vegetative from minimally conscious and conscious states patients 

(KING ET AL., 2013B). 

7.7.1.6. Mean value versus fluctuations across trials  

For all measures, we introduced a final distinction between their average value and their 

fluctuation across time (computed as the standard deviation across trials). First, over the course of 

an hour, vegetative state patients, and a fortiori minimally conscious state patients present strongly 
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fluctuating vigilance and attention (LAUREYS ET AL., 2004). Measuring the fluctuation of each EEG 

marker may thus help distinguishing different states of consciousness. Second, fluctuation proved 

to capture independent information from the BOLD signal in a recent fMRI experiment (GARRETT 

ET AL., 2010). As a consequence, we studied both the mean (μ) and standard deviation (σ) of each 

measure across trials.  

7.7.2. DETAILS OF THE COMPUTATION OF EACH MEASURE 

In this section we describe the procedures applied to compute all measures. 

7.7.2.1. Event-Related Potentials (ERPs) 

Mid-latency auditory potential corresponding to the first sound (P1)  

In the present study, the P1 was computed by averaging the voltage of a cluster of 7 EEG 

electrodes surrounding Fz (electrodes [15, 22, 14, 6, 7, 16, 23] in the EGI 256-electrode net) be-

tween 68 ms and 116ms following the onset of the first sound and across all trials. 

Contingent Negative Variation (CNV) 

Following previous methods (e.g. (FAUGERAS ET AL., 2012)), the CNV was computed by aver-

aging the slope of the EEG electrodes‘ voltage observed between the onset of the 1st sound to the 

onset of the 5th sound (Linear regression, from 0 to 600 ms). For univariate analyses, the CNV was 

summarized as the average slope of a cluster of 7 EEG electrodes surrounding Fz (electrodes [15, 

22, 14, 6, 7, 16 and 23] in the EGI net). 

P3a  

Following previous findings (e.g. (BEKINSCHTEIN ET AL., 2009; MORLET AND FISCHER, 2013)), 

the P3a component was computed by averaging the EEG electrodes‘ voltage between 280 ms to 

340 ms following the onset of the 5th sound and across local deviant trials only (xxxxY). For univa-

riate analyses, the P3a was summarized as the average voltage of a cluster of 7 EEG electrodes 

surrounding Fz (electrodes [15, 22, 14, 6, 7, 16 and 23] in the EGI net)  

P3b 

Following previous findings (e.g. (BEKINSCHTEIN ET AL., 2009; FAUGERAS ET AL., 2012; KING ET 

AL., 2013A)), the P3b component was computed by averaging the EEG electrodes‘ voltage between 

400 ms to 600 ms following the onset of the 5th sound and across global deviant trials only (rare 

sequences). For univariate analyses, the P3b was summarized as the average voltage of a cluster of 5 

EEG electrodes surrounding Cz (electrodes [9, 186, 132, 81 and 45] in the EGI net).  

Mismatch negativity (ΔMMN) and Contrasted P3a (ΔP3a) 

The MMN was estimated by contrasting the local deviant trials (LD = xxxxY) versus the lo-

cal standard trials (LS = xxxxx). Each subjects‘ MMN was thus summarized as the 256-electrode 

topography of the LD-LS difference in the time window between 140 ms to 192 ms after the onset 

of the 5th sound. For the univariate analysis, this value was averaged over a subset of electrodes 

around Fz and Cz (electrodes [15, 22, 14, 6, 7, 16, 23, 9, 186, 132, 81 and 45] in the EGI net) 

Similarly, the ΔP3a was estimated using the same contrast than for the MMN but averaging 

a time window from 280 ms to 340 ms after the onset of the 5th sound. The same electrodes as for 

the MMN were used for the univariate analysis. 
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Contrasted P3b (ΔP3b) 

The ΔP3b was contrasted between the rare global deviant (GD) trials and the frequent 

global standard (GS) trials (BEKINSCHTEIN ET AL., 2009). Each subjects‘ ΔP3b was then summarized 

as the 256-electrode topography of the GD-GS difference in the time window between 400 ms to 

600 ms after the onset of the fifth sound. For the univariate analysis, this difference was averaged 

over a subset of electrodes around Cz and Pz (electrodes [9, 186, 132, 81, 45, 101, 100, 129, 128, 

119 and 110] in the EGI net) Following the Local Global protocol (BEKINSCHTEIN ET AL., 2009), the 

late P3b component was isolated by contrasting frequent and expected auditory sequences to rare 

and thus unexpected auditory sequences. For instance, in a given block, subjects were repeatedly 

presented with xxxxY trials. On rare occasions (20%), an xxxxx sequence was presented. In another 

block, subjects were frequently presented with xxxxx, and rarely with xxxxY. Contrasting rare and 

frequent trials can thus be orthogonally tested to the local change in pitch. 

Decoding the MMN and P300b 

As patients often present significant brain and skull lesions, they may present extremely va-

riable topographies from one subject to another. Following a previous study (KING ET AL., 2013A), 

we thus implemented multivariate pattern classifiers (MVPA) to optimize the detection of ΔMMN 

and ΔP300 effects. The MVPA can indeed identify the topographies that best discriminate standard 

and deviant trials for each subject separately.  

Two types of classifiers were trained: (1) local standard versus local deviant (―local classifica-

tion', similar to ΔMMN); (2) global standard versus global deviant (‗global classification‘, similar to 

ΔP300).  

A standard ten-fold stratified cross-validation was implemented to avoid over-fitting and 

circular analysis (KRIEGESKORTE ET AL., 2009; VUL ET AL., 2009B). In each fold, a support vector classi-

fier (SVC) (CHANG AND LIN, 2001) was fitted to the training set and supplemented with a probabilis-

tic output method (PLATT, 1999) (see multivariate pattern analysis section). This continuous classifi-

cation method was then assessed on its ability to accurately predict the class of the test set.  

The amplitude of each electrode at multiple time points was provided to the classifier. To 

minimize the number of irrelevant features, a time window of interest was used for each classifica-

tion: Local: [0, 367] ms; Global: [367,736] ms after the onset of the last sound. Each trial was then 

transformed into a p-dimensional vector x, in which each coordinate corresponds to a single data 

sample at a given sensor (p =nsensors . ntime samples). The entire dataset can hence be represented as a ma-

trix X in which each row i corresponds to one trial xi, and each column corresponds to one attrib-

ute. All data were normalized (x – μ(xtrain))/σ(xtrain) across all artefact-free trials in each sample of 

each sensor. Following a previous study, univariate feature selection was performed with a fixed 

rate of 10%. The SVC was fitted to find the hyperplane w that best separates standard from deviant 

trials. To minimize imbalance effects, sample weights were applied in proportion of the trial local 

and global classes (frequent xxxx & xxxY; rare xxxx & xxxY) so that each category equally affects 

the fitting of w. Finally, a cumulative probability distribution function was then fitted to the training 

set using Platt‘s method (PLATT, 1999). The signed distance of the dot product w . x can thus be used 

to determine the probability of a given trial to belong to the deviant class. Finally, classification 

scores, summarized with the area under the curve (AUC), were estimated from the predicted prob-

abilities of the trials from the testing set. All multivariate analyses were performed with the Scikit-

learn toolbox (PEDREGOSA ET AL., 2011). 



CHAPTER 7. SUPPLEMENTARY MATERIALS 

 

162 
 

7.7.2.2. Local dynamics (within electrodes) 

Spectral analysis 

Power spectral density on each trial was estimated using the Welch method (WELCH, 1967). 

For each trial, each electrode was divided in 500-ms sections with 400 ms of overlap. Sections were 

windowed with a Hamming window and zero padded to 4096 samples. The power in each frequen-

cy band was calculated as the integral of the power spectral density (PSD) within each frequency 

bands, and finally log scaled. Frequency-bands of interest were: Delta (δ: 1-4 Hz), Theta (θ: 4-8 Hz), 

Alpha (α: 8-13 Hz), Beta (β: 13-30 Hz) and Gamma (γ: 30-45 Hz). Higher frequencies were not 

estimated as they are generally difficult to measure in an artifact-free manner with scalp EEG. Mul-

titaper analyses (MITRA AND BOKIL, 2007) revealed similar phenomena to the Welch method. How-

ever, as they do not easily provide a single trial estimates, we opted to only report Welch results.  

Estimation of the PSDs can be influenced by several phenomena (e.g. electrode imped-

ances, eye movements, etc.) creating inter-individual variance in the absolute EEG power. To by-

pass this problem, following the method proposed in (VOGT ET AL., 1998), normalized powers were 

also estimated by dividing the power in each band by the total energy in the trial (thus setting the 

total power in the five frequency bands to 100%). These estimates are referred to δn, θn, αn, βn, and 

γn respectively.  

Spectral summaries 

 Power spectrum centroids (MSF, SEF) 

Spectral summaries were estimated using the following measures: median power frequency 

(MSF), spectral edge 90 (SEF90) and spectral edge 95 (SEF95) (reviewed in (RAMPIL, 1998)). These 

measures are defined as the particular frequencies that divide the power spectrum into two parts of 

equal area (MSF), a lower part equal to 90% of the total area and a higher part equal to 10% 

(SEF90), or a lower part equal to 95% of the total area and a higher part equal to 5% (SEF95).In all 

cases, these measures were estimated using the power spectral density for each electrode in each 

trial. 

 Spectral entropy (SE) 

The entropy of a time series is a measure of signal predictability and is thus a direct estima-

tion of the information it contains (MACKAY, 2003). Entropy can be measured in the time domain 

but also in the spectral domain. Spectral entropy basically quantifies the amount of organization of 

the spectral distribution (INOUYE ET AL., 1991). We implemented the spectral entropy (SE) measure 

using the algorithm described for anesthesia monitors (Viertiö-Oja et al., 2004). The SE index for 

each electrode in each trial was estimated with the following procedure: i) the power spectral densi-

ty of each trial was normalized (PSDn) by dividing it by the total energy in that trial; ii) SE was cal-

culated, using the Shannon Entropy formula for all frequency bins (f): 

 

Signal complexity 

 Permutation entropy 

Permutation entropy (PE), introduced by Bandt & Pompe (BANDT AND POMPE, 2002), is an 

effective method to compare time series and distinguish different types of behavior (e.g. periodic, 
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chaotic or random). One key feature of the method is its robustness to low signal to noise ratios 

compared to other similar methods (BANDT AND POMPE, 2002). The basic principle of this method is 

the transformation of the time signal into a sequence of symbols before estimating entropy. The 

transformation is made by considering consecutive sub-vectors of the signal of size n. These sub-

vectors can be made of either consecutive elements or of elements separated by τ samples (where τ 

is an integer). The τ parameter thus defines a broad frequency-specific window of sensitivity for this 

measure (see SUPPLEMENTARY FIGURE 7.6 for the spectral sensitivity of the method given the present 

parameters). Since using τ values larger than 1 induce aliasing effects, the signal was low-pass fil-

tered before PE calculation, in order to maintain the frequency-band specificity of each measure. 

Cutoff frequencies were set according to the following formula: fLP= 80 Hz / τ , appropriate given 

our sampling rate. Each sub-vector of length  is associated with a unique symbol, based solely on 

the ordering of its n signal amplitudes. Given the parameter n there are n! possible vectors, corres-

ponding to distinct categories of signal variations. After the symbolic transform, the probability of 

each symbol is estimated, and PE is computed by applying Shannon‘s classical formula to the prob-

ability distribution of the symbols. In our case we computed PE for every electrode and in every 

trial with parameters n = 3 and τ = [8, 4, 2, and 1], corresponding respectively to PEθ, PEα, PEβ, 

PEγ respectively. Repeating the analysis with n = 4 yielded very similar results. However PE be-

comes harder to robustly estimate for larger n values, because the size of the estimated probability 

matrix increases rapidly.  

 Kolmogorov Chaitin complexity  

Algorithmic information theory has been introduced by Andreï Kolmogorov and Gregory 

Chaitin as an area of interaction between computer science and information theory. The concept of 

algorithmic complexity or Kolmogorov-Chaitin complexity (K) is defined as the shortest descrip-

tion of a string (or in our case a time series). That is to say, K is the size of the smallest algorithm 

(or computer program) that can produce that particular time series. However, it can be demonstrat-

ed by reductio ad absurdum that there is no possible algorithm that can measure K (CHAITIN, 1995). To 

sidestep this issue, we can estimate an upper-bound value of K(x). This can be concretely accom-

plished by applying a lossless compression of the time series and quantifying the compression size. 

Capitalizing on the vast signal compression literature, we heuristically used a classical open-source 

compressors gzip (SALOMON, 2007) to estimate K(x). Is important to normalize the method of repre-

sentation of the signal before compression in order to avoid non-relevant differences in complexity. 

To compute K(x)  

(1) the time series were transformed into sequences of symbols. Each symbol represents, 

with identical complexity, the amplitude of the corresponding channel for each time point. The 

number of symbols was set to 32 and each one corresponds to dividing the amplitude range of that 

given channel into 32 equivalent bins. Similar results were obtained with binning ranging from 8 to 

128 bins.  

(2) The time series were compressed using the compressLib library for Matlab, this library 

implements the Gzip algorithm to compress Matlab variables.  

(3) K(x) was calculated as the size of the compressed variable with time series divided by 

the size of the original variable. Our premise is that, the bigger the size of the compressed string, 

the more complex the structure of the time series, thus potentially indexing the complexity of the 

local neural processing captured by that sensor 
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7.7.2.3. Information sharing (across electrodes) 

All information sharing measures were computed on a spatial Laplacian transformation of 

the EEG - a computation also known as Current Source Density (CSD) estimate (KAYSER AND 

TENKE, 2006B). 

Phase Lag Index (PLI) 

The Phase Lag Index (PLI), initially proposed by Stam, Nolte & Daffertshofer (STAM ET AL., 

2007) measures the asymmetry in the distribution of phase differences between two signals. We 

computed PLI using a series of traditional steps: (1) For each frequency-bin of interest (f, in δ [1-4 

Hz], θ [4-8 Hz], α [8-13 Hz], β [13-30 Hz] and γ [30-45 Hz]), each pair of electrodes, and at each 

trial, the signal X and Y were band-passed filtered at f. (2) Then we applied the Hilbert-

transformation to estimate the instantaneous phase φ(τ) and amplitude ψ(τ) of X and Y at each time 

point τ. (3) The phase difference (φΔ) between the two signals X and Y was then calculated as: 

φΔ(τ) = φx(τ) - φy(τ) 

Finally, the sign of the angle of the difference between φx(τ) and φy(τ) was calculated, and 

averaged across time.  

 

The mean PLI was calculated for each trial, and then averaged across trials. Note that al-

though PLI is related to Phase Locking Value (PLV (LACHAUX ET AL., 1999)), PLV can more easily 

conclude that two EEG electrodes are synchronized, because it is sensitive to common sources. By 

contrast, the PLI is insensitive to perfect, zero-phase synchrony and therefore focuses on connec-

tivity between two electrodes which does not originate from a single common source. Finally, be-

cause the PLI is signed across pairs of electrodes, when we needed a summary value of PLI across 

electrode pairs, we averaged the absolute value of PLI.  

weighted Symbolic Mutual Information  

In order to quantify the coupling of information flow between electrodes we computed the 

weighted symbolic mutual information (wSMI, (KING ET AL., 2013B)). This method is based on the 

PE analysis and is calculated between each pair of electrodes, and for each trial, after the transfor-

mation of the time series into sequence of symbols (see methods for permutation entropy). Identi-

cally to PE, the symbolic transformation depends on the applied tau parameter (in our case: τ = 8, 

4, 2, 1 time sample(s) corresponding to wSMIθ, wSMIα, wSMIβ, wSMIγ). Then, wSMI was estimated 

for each pair of transformed EEG signals by estimating the joint probability of each pair of sym-

bols. The joint probability matrix was multiplied by binary weights to reduce spurious correlations 

between signals. The weights were set to zero for pairs of identical symbols, which could be elicited 

by a unique common source, and for opposed symbols, which could reflect the two sides of a single 

electric dipole. wSMI is calculated using the following formula: 
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 where n is the size of the vector used for the symbolic transformation, x and y are 

all symbols present in signals X and Y respectively, w(x,y) is the weight matrix and p(x,y) is the joint 

probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally p(x) and p(y) 

are the probabilities of those symbols in each signal. 

7.7.2.4. Multivariate Pattern Analyses computation 

Multivariate Pattern Analyses (MVPAs) have proven to be an efficient neuroimaging tool 

to combine multiple sources of evidence within a single test (HAYNES, 2011). In our case we imple-

mented the MVPA to automatically classify the state of consciousness of each patient. 

A support vector classification (SVC) method was used to distinguish VS from MCS pa-

tients. As described in the multivariate pattern analysis section, the SVC aims at finding the optimal 

linear combination of features (w) that separates the training samples with distinct classes in the 

hyperspace of features. As there are more features than samples (f >> n), there is an infinity of 

possible w. A penalization parameter is thus used to find a solution which is likely to generalize to 

another dataset, and hence avoid over-fitting. Here, the penalization parameter C, was chosen by 

nested cross-validation among the values = [.001 .01 .1 .2 .5 1 2 10] using a grid-search method 

(PEDREGOSA ET AL., 2011) nested in the cross-validation (see below). 

The SVC can provide a continuous probability by fitting the distribution of the samples 

with regard to w (PLATT, 1999). To do so, a sigmoid function is fitted from the distributions of the 

signed distances separating the train samples and w. This sigmoid fit is then used to monotonically 

transform the signed distance separating the test samples and w into a meaningful probability 

(PLATT, 1999). 

The data provided to the classifier corresponds to the 92 EEG measures, topographically 

summarized as the mean and the standard deviation across non-facial electrodes. Similarly to topo-

graphical analyses, connectivity measures were first averaged as the median value each electrode 

shared with all other non-facial electrodes, and subsequently summarized as the mean and standard 

deviation across these non-facial averages. The data provided to the classifier thus corresponded to 

a matrix X of n samples (EEG recordings) by f features (f = 92 EEG measures * 2 topographical 

summaries) and a vector y of n samples corresponding to subjects‘ states of consciousness (1: VS, 2: 

MCS).  

The Support Vector Classifier (SVC) was repeatedly cross-validated with stratified k-

folding (k = 8). Cross validation is a method aiming at testing the performance of a predictive mod-

el. It consists in repeatedly fitting this model on a subset of the data (training set) and subsequently 

testing it on the remaining data (test set). Stratified k-folding consists in arranging the partitioning 

of the data so that training and test sets keep constant proportion of each category samples. Strati-

fied folding thus aims to minimize fold-specific effects.  

Within each fold, we applied two successive preprocessing steps fitted on the train samples 

and subsequently applied to the test samples. 1) Normalization of each feature (remove mean, di-

vide by standard deviation). 2) Feature selection (best single feature or best 20%) based on F-tests. 

The classifier is fitted on the train set and subsequently assigns, to each test sample, a con-

tinuous probability of belonging to each class (VS, MCS). To minimize folding effects, the pre-

dicted probabilities of each sample were averaged across 250 repetitions of the SVC, each using 

pseudo-randomly partitioned stratified folding.  
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All MVPAs analyses were performed with the Scikit-learn package (PEDREGOSA ET AL., 

2011). 

7.7.3. SUPPLEMENTARY RESULTS 

7.7.3.1. Automatic classification and recovery: comparison of 

EEG versus the CRS-R scale 

To assess whether the recovery of the patients from the VS state could be predicted from 

the Coma Recovery Scale Revised (CRS-R) scores at the moment of clinical evaluation of con-

sciousness, we compared the CRS-R between the clinical VS patients that did recover and the VS 

patients that did not recover. None of the CRS-R subscores or the full sum distinguished between 

the two groups (Mann-U Whitney, p > 0.08 for CRS1, p > 0.24 for CRS2, p > 0.28 for CRS3, p > 

0.60 for CRS4, 1 for CRS5, p > 0.35 for CRS6 and p > 0.55 for sum of CRS-R subscores).  

The analysis was then repeated but specifically compared clinically VS patients‘ CRS-R 

scores depending on whether they were classified by the SVC as ―VS‖ or as ―MCS‖. None of the 

CRS-R subscores could differentiate between these two groups. (Mann-U Whitney, p > 0.07 for 

CRS1, p > 0.07 for CRS2, p > 0.26 for CRS3, p > 0.87 for CRS4, 1 for CRS523, p > 0.08 for CRS6 

and p > 0.14 for sum of CRS-R subscores). This shows that, none of the clinical descriptions as-

sessed on the patients at the moment of the recording could predict the distinction done by the 

EEG-based classifier. 

                                                      
23 Since all VS patients have a score of zero in Subscore 5 of the CRS-R scale a comparison 

cannot be computed. 
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7.7.4. SUPPLEMENTARY FIGURES 

 

 

FIGURE 7.6 SCALP TOPOGRAPHY OF ALL COMPUTED EEG EVENT RELATED POTENTIALS (ERPS) MEASURES  

The topographical 2D projection (top = front) of each measure is plotted for each state of 
consciousness (columns 1 = VS, 2 = MCS, 3 = CS, 4 = Healthy control = CS). The fifth to seventh column 
indicates whether significant differences were observed across these states (p<.05, light gray black and 
p<0.01, uncorrected). The eight column shows the statistics of a robust regression analysis of the 
measure across the four states of consciousness (VS<MCS<CS<Healthy controls. light gray indicates 
p<0.05, black p<0.01 uncorrected).  
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FIGURE 7.7 SCALP TOPOGRAPHY OF ALL COMPUTED EEG SPECTRAL MEASURES  

The topographical 2D projection of each spectral measure is plotted for each state of consciousness 
following the same nomenclature as in FIGURE 7.6.  
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FIGURE 7.9 SCALP TOPOGRAPHY OF ALL COMPUTED EEG CONNECTIVITY MEASURES  

The topographical 2D projection of each summary of the connectivity measures is plotted for each 
state of consciousness following the same nomenclature as in FIGURE 7.6.  

 

FIGURE 7.8 SCALP TOPOGRAPHY OF ALL COMPUTED EEG COMPLEXITY MEASURES  

The topographical 2D projection of each complexity measure is plotted for each state of consciousness 
following the same nomenclature as in FIGURE 7.6.  
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FIGURE 7.10 EXAMPLES OF RECEIVER OPERATING CHARACTERISTIC (ROC) CALCULATION.  

 ROC curves are calculated from a comparison of the distributions of a spectral entropy (SE) (left) and 
normalized delta power (|δn|) (right) for all clinical groups. a) Histograms summarizing the spectral 
entropy (SE) of each state of consciousness. The black dots depict single EEG recordings. b) True 
positive rate (FPR) and True positive rates (TPR). c) Empirical areas under the curve (AUC) observed in 
b) are summarized, following FIGURE 7.2’s nomenclature. A similar analysis is plotted for normalized 
delta power in d-f. Because in this case, the measure is anti-correlate with consciousness, AUCs are 
below 50%.   
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7.7.5. SUPPLEMENTARY TABLES 

 

Table 1  

Statistics for all comparisons. Areas under the curve (AUC) and Mann-Whitney, 

FDR corrected, p values for all comparisons.  

 

Table 2 

Median value and standard error for each measure in each clinical group (VS, MCS 

and CS). 

 

FIGURE 7.11 UNIVARIATE EQUATED VIGILANCE 

This figure is identical to FIGURE 7.3, where each line provides a summary report of one measure, but 
focuses on the comparison between VS and MCS patients who presented similar arousal (VS: 52 
patients, MCS: 32 patients).  
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Table 3  

Statistics for all comparisons. Areas under the curve (AUC) and Mann-Whitney, 

FDR corrected, p values for the VS-MCS patients comparison with equated arousal. 

 

Table 4 

Median value and standard error for each measure for VS and MCS patients with 

equated arousal. 

 

Table 5  

Detailed clinical description of the patients 
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Table S1 

Measure 

Average across trials Fluctuations across trials 

VS (n=75)-MCS (n=68) MCS(n=68)-CS (n=24) VS(n=75)-CS (n=24) VS (n=75)-MCS (n=68) MCS(n=68)-CS (n=24) VS(n=75)-CS (n=24) 

AUC U pFDR AUC U pFDR AUC U pFDR AUC U pFDR AUC U pFDR AUC U pFDR 

P1 55,3% 2818 4,2E-01 53,4% 871 7,5E-01 59,5% 1071 2,9E-01 52,1% 2659 7,7E-01 25,6% 417 3,4E-03 29,3% 528 1,5E-02 

CNV 57,5% 2934 2,4E-01 55,2% 901 5,9E-01 66,1% 1189 5,9E-02 46,7% 2383 6,4E-01 24,0% 392 1,6E-03 21,6% 388 4,5E-04 

P3a 44,6% 2275 4,1E-01 41,4% 675 3,5E-01 36,3% 653 1,1E-01 45,7% 2333 5,3E-01 25,2% 412 3,0E-03 22,8% 411 8,0E-04 

P3b 47,3% 2413 7,1E-01 56,2% 918 5,2E-01 54,1% 973 6,8E-01 50,1% 2557 9,8E-01 31,0% 506 2,8E-02 32,7% 589 4,6E-02 

Δ MMN 49,0% 2499 9,0E-01 66,4% 1084 5,7E-02 70,4% 1267 1,6E-02 42,1% 2148 2,1E-01 58,6% 957 3,5E-01 48,7% 877 9,1E-01 

Δ P3a    55,8% 2845 3,7E-01 47,6% 777 8,3E-01 53,1% 955 7,8E-01 44,4% 2262 3,9E-01 60,1% 981 2,7E-01 56,2% 1012 5,2E-01 

Δ P3b    45,9% 2340 5,4E-01 61,2% 999 2,1E-01 58,6% 1055 3,5E-01 46,3% 2363 5,9E-01 51,4% 839 9,0E-01 46,9% 845 7,7E-01 

Decod Local  54,1% 2761 5,4E-01 65,9% 1076 6,3E-02 70,1% 1261 1,8E-02 56,4% 2875 3,3E-01 66,7% 1089 5,2E-02 72,4% 1304 7,6E-03 

Decod Global  62,0% 3161 4,8E-02 70,8% 1156 1,5E-02 81,2% 1461 1,9E-04 61,2% 3122 6,3E-02 77,8% 1269 7,5E-04 85,2% 1534 6,4E-05 

δ 45,6% 2327 5,2E-01 28,7% 468 1,3E-02 26,6% 479 5,0E-03 46,9% 2391 6,5E-01 32,5% 531 4,6E-02 30,4% 548 2,2E-02 

δN 31,4% 1599 1,3E-03 34,9% 569 8,0E-02 19,3% 347 1,8E-04 61,8% 3150 5,3E-02 49,7% 811 9,8E-01 59,9% 1078 2,7E-01 

θ 65,1% 3321 1,2E-02 33,9% 554 6,2E-02 49,2% 885 9,4E-01 63,5% 3237 2,6E-02 36,3% 592 1,2E-01 50,3% 905 9,8E-01 

θN 63,7% 3248 2,3E-02 54,1% 883 6,8E-01 68,7% 1236 2,8E-02 60,3% 3077 9,0E-02 47,7% 778 8,3E-01 58,7% 1056 3,5E-01 

α 73,5% 3748 8,9E-05 40,2% 656 2,8E-01 62,6% 1127 1,5E-01 71,7% 3655 2,0E-04 41,4% 676 3,5E-01 63,4% 1142 1,2E-01 

αN 72,0% 3673 2,0E-04 65,6% 1071 7,0E-02 84,8% 1527 4,3E-05 70,9% 3616 3,0E-04 57,7% 941 4,1E-01 79,7% 1434 3,0E-04 

β 63,9% 3258 2,1E-02 52,5% 856 8,2E-01 66,1% 1190 5,8E-02 62,0% 3163 4,8E-02 47,4% 773 8,1E-01 60,4% 1087 2,5E-01 

βN 61,3% 3124 6,3E-02 72,1% 1176 1,0E-02 77,2% 1390 8,1E-04 60,0% 3061 1,0E-01 68,7% 1121 3,1E-02 75,1% 1351 2,2E-03 

γ 58,1% 2961 2,0E-01 52,1% 851 8,4E-01 61,4% 1105 2,0E-01 59,5% 3036 1,2E-01 47,1% 769 7,9E-01 58,5% 1053 3,5E-01 

γN 55,3% 2819 4,2E-01 66,7% 1089 5,2E-02 70,2% 1263 1,7E-02 55,8% 2846 3,7E-01 62,8% 1025 1,5E-01 67,3% 1212 4,5E-02 

MSF 66,5% 3392 5,4E-03 66,7% 1088 5,2E-02 78,4% 1411 4,5E-04 62,2% 3174 4,6E-02 63,2% 1031 1,4E-01 71,3% 1284 1,2E-02 

SEF90 60,5% 3084 8,6E-02 71,1% 1161 1,4E-02 75,9% 1366 1,5E-03 55,4% 2826 4,1E-01 62,8% 1025 1,5E-01 67,8% 1221 3,8E-02 

SE 64,7% 3299 1,5E-02 71,2% 1162 1,4E-02 79,2% 1426 3,1E-04 48,5% 2473 8,4E-01 51,5% 841 8,9E-01 48,8% 879 9,1E-01 
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K zip 62,3% 3175 4,6E-02 73,0% 1192 6,6E-03 81,9% 1475 1,3E-04 45,9% 2340 5,4E-01 36,8% 600 1,3E-01 32,8% 591 4,5E-02 

PE θ 72,0% 3672 1,8E-04 65,4% 1068 7,4E-02 82,8% 1490 8,2E-05 31,3% 1594 1,2E-03 37,1% 605 1,4E-01 20,6% 370 3,0E-04 

PE α 60,9% 3104 7,4E-02 69,8% 1139 2,1E-02 74,6% 1343 2,8E-03 35,3% 1801 1,5E-02 35,4% 578 9,3E-02 23,6% 425 1,2E-03 

PE β 46,8% 2386 6,4E-01 63,5% 1037 1,2E-01 60,0% 1080 2,7E-01 53,5% 2728 6,1E-01 34,9% 570 8,1E-02 37,9% 683 1,7E-01 

PE γ 46,5% 2374 6,1E-01 62,1% 1014 1,7E-01 57,9% 1042 3,9E-01 55,4% 2826 4,1E-01 35,1% 573 8,5E-02 40,9% 736 3,2E-01 

PLI δ 38,0% 1936 4,8E-02 48,2% 787 8,7E-01 37,3% 671 1,4E-01 38,1% 1943 5,0E-02 47,1% 769 7,9E-01 34,9% 629 7,7E-02 

PLI θ 49,4% 2519 9,4E-01 42,2% 689 4,1E-01 39,0% 702 2,2E-01 49,3% 2514 9,3E-01 42,3% 690 4,1E-01 38,5% 693 1,9E-01 

PLI α 50,5% 2578 9,4E-01 41,1% 670 3,4E-01 40,1% 721 2,7E-01 50,8% 2592 9,2E-01 40,4% 659 2,9E-01 40,4% 728 2,9E-01 

PLI β 58,5% 2986 1,7E-01 41,1% 670 3,4E-01 50,5% 909 9,6E-01 59,7% 3044 1,2E-01 40,2% 656 2,8E-01 50,6% 910 9,6E-01 

PLI γ 54,3% 2770 5,2E-01 57,0% 930 4,6E-01 61,7% 1111 1,8E-01 55,2% 2817 4,2E-01 55,8% 910 5,5E-01 62,2% 1120 1,6E-01 

AEC δ 53,8% 2742 5,8E-01 54,5% 889 6,5E-01 58,2% 1048 3,7E-01 37,8% 1928 4,5E-02 41,3% 674 3,5E-01 30,4% 548 2,1E-02 

AEC θ 48,1% 2455 8,1E-01 41,4% 675 3,5E-01 39,8% 717 2,6E-01 45,9% 2341 5,4E-01 57,1% 932 4,5E-01 51,9% 935 8,6E-01 

AEC α 47,5% 2423 7,3E-01 47,7% 778 8,3E-01 44,4% 799 5,5E-01 38,5% 1962 5,7E-02 41,2% 672 3,4E-01 32,6% 586 4,4E-02 

AEC β 44,9% 2290 4,4E-01 43,8% 715 5,2E-01 39,6% 712 2,5E-01 49,2% 2508 9,2E-01 40,1% 654 2,8E-01 39,9% 719 2,7E-01 

AEC γ 48,2% 2459 8,1E-01 41,0% 669 3,3E-01 39,2% 705 2,2E-01 48,5% 2472 8,4E-01 31,7% 518 3,5E-02 30,7% 553 2,3E-02 

ICOH δ 42,6% 2175 2,5E-01 49,3% 805 9,5E-01 42,0% 756 3,8E-01 37,0% 1885 3,2E-02 49,4% 807 9,6E-01 38,2% 688 1,8E-01 

ICOH θ 45,7% 2331 5,2E-01 37,1% 605 1,4E-01 34,0% 612 5,9E-02 46,1% 2350 5,6E-01 43,7% 713 5,2E-01 37,9% 683 1,7E-01 

ICOH α 53,0% 2704 6,7E-01 49,5% 808 9,6E-01 51,1% 920 9,2E-01 40,1% 2046 1,1E-01 44,7% 730 5,9E-01 34,9% 628 7,7E-02 

ICOH β 59,1% 3014 1,5E-01 55,1% 900 5,9E-01 63,3% 1140 1,2E-01 45,0% 2297 4,5E-01 45,7% 746 6,6E-01 39,4% 709 2,4E-01 

ICOH γ 51,9% 2648 8,0E-01 67,2% 1097 4,7E-02 68,2% 1228 3,3E-02 47,4% 2415 7,1E-01 36,1% 589 1,1E-01 33,1% 595 4,8E-02 

wSMI θ 73,6% 3752 1,1E-04 55,3% 903 5,8E-01 77,7% 1398 6,7E-04 71,1% 3625 3,0E-04 51,8% 846 8,7E-01 71,5% 1287 1,1E-02 

wSMI α 70,4% 3589 4,4E-04 51,7% 844 8,7E-01 71,6% 1288 1,1E-02 58,1% 2961 2,0E-01 43,8% 715 5,2E-01 54,5% 981 6,4E-01 

wSMI β 57,3% 2922 2,6E-01 52,0% 848 8,5E-01 61,6% 1108 1,9E-01 52,2% 2660 7,7E-01 46,3% 756 7,2E-01 50,3% 905 9,7E-01 

wSMI γ 47,8% 2436 7,7E-01 56,7% 925 4,9E-01 55,1% 991 5,9E-01 51,6% 2632 8,3E-01 43,7% 713 5,2E-01 45,9% 826 6,8E-01 

 

Table S2 
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Measure 

Average across trials Fluctuation across trials 

VS(n=75) MCS(n=68) CS(n=24) VS(n=75) MCS(n=68) CS(n=24) 

MEAN S.E. MEAN S.E. MEAN S.E. MEAN S.E. MEAN S.E. MEAN S.E. 

P1 0,419 0,09246 0,536 0,09739 0,69 0,1338 9,556 0,38417 10,881 1,01108 7,339 0,46702 

CNV 0,299 0,31808 0,963 0,42501 1,99 0,54373 26,685 1,22161 28,027 2,09814 16,766 1,26915 

P3a 0,579 0,17689 0,437 0,17289 -0,216 0,28424 14,797 0,62912 15,646 1,33271 10,117 0,71622 

P3b -0,157 0,09152 -0,128 0,11826 -0,056 0,11121 12,01 0,49845 14,009 2,06977 9,56 0,64193 

Δ MMN 0,445 0,15208 0,196 0,24457 1,149 0,19252 -0,17 0,1384 0,16 0,63683 0,02 0,20015 

Δ P3a    -0,071 0,10937 0,084 0,14172 -0,04 0,25167 -0,072 0,10582 -0,156 0,35066 0,28 0,3271 

Δ P3b    0,024 0,1198 -0,272 0,16346 0,206 0,17543 0,005 0,08828 0,522 0,98308 0,146 0,34234 

Decod Local  0,557 0,00661 0,569 0,00942 0,607 0,01432 0,077 0,004 0,085 0,00486 0,11 0,00862 

Decod Global  0,499 0,00526 0,524 0,00824 0,569 0,01399 0,045 0,00294 0,058 0,00427 0,09 0,00766 

δ 6,672 0,10071 6,679 0,08967 6,033 0,16475 6,906 0,0963 6,968 0,09916 6,345 0,17603 

δN 0,623 0,01703 0,537 0,01615 0,463 0,02516 0,192 0,00302 0,203 0,00228 0,201 0,00492 

θ 4,967 0,09377 5,387 0,08101 4,998 0,14857 4,903 0,08815 5,309 0,10224 4,913 0,14173 

θN 0,18 0,00838 0,218 0,0097 0,227 0,01359 0,119 0,00366 0,13 0,00371 0,13 0,00364 

α 3,795 0,07803 4,362 0,08569 4,142 0,13067 3,668 0,07994 4,217 0,11457 3,941 0,12309 

αN 0,064 0,00367 0,088 0,00422 0,111 0,00928 0,053 0,00193 0,066 0,00226 0,073 0,00387 

β 3,831 0,10668 4,316 0,12615 4,22 0,13411 3,689 0,12328 4,206 0,16256 3,944 0,15705 

βN 0,077 0,00864 0,088 0,00795 0,12 0,01002 0,055 0,00358 0,063 0,00318 0,079 0,00414 

γ 3,192 0,14617 3,693 0,20886 3,558 0,20893 3,258 0,17426 3,913 0,24627 3,568 0,24841 

γN 0,049 0,00681 0,058 0,00888 0,067 0,00814 0,042 0,004 0,049 0,00508 0,057 0,0058 

MSF 4,251 0,36033 5,1 0,39385 5,57 0,37563 2,675 0,22798 3,148 0,28194 3,359 0,28688 

SEF90 13,74 0,96614 15,738 1,01946 19,318 1,17769 6,676 0,34582 7,096 0,32069 8,316 0,4127 

SE 5,141 0,04568 5,296 0,04077 5,496 0,04993 0,403 0,0096 0,393 0,00838 0,396 0,01575 

K zip 0,753 0,0049 0,771 0,0047 0,798 0,00469 0,069 0,00122 0,067 0,00149 0,063 0,00317 

PE θ 1,529 0,00767 1,575 0,00651 1,606 0,00963 0,122 0,00354 0,103 0,00292 0,091 0,00416 
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PE α 1,495 0,00997 1,522 0,00803 1,559 0,0092 0,095 0,00239 0,086 0,00189 0,079 0,0027 

PE β 1,619 0,0105 1,61 0,01116 1,654 0,01188 0,077 0,0031 0,08 0,00318 0,067 0,00367 

PE γ 1,368 0,00909 1,359 0,00994 1,391 0,01085 0,069 0,00208 0,073 0,00224 0,063 0,00276 

PLI δ 0,56 0,00506 0,543 0,00508 0,54 0,00962 0,326 0,001 0,323 0,00111 0,321 0,00196 

PLI θ 0,411 0,00166 0,41 0,00199 0,405 0,00218 0,279 0,00085 0,279 0,00105 0,276 0,00118 

PLI α 0,357 0,00118 0,356 0,00094 0,355 0,00189 0,251 0,00065 0,25 0,00053 0,25 0,00102 

PLI β 0,189 0,00146 0,189 0,00082 0,187 0,0009 0,141 0,0011 0,141 0,00058 0,139 0,00066 

PLI γ 0,199 0,00095 0,199 0,0008 0,199 0,00075 0,147 0,00078 0,148 0,00095 0,147 0,0005 

AEC δ 0,243 0,0074 0,254 0,00873 0,261 0,01316 0,467 0,00123 0,462 0,00152 0,459 0,00257 

AEC θ 0,367 0,00279 0,369 0,00442 0,36 0,00579 0,382 0,00067 0,382 0,0008 0,383 0,0014 

AEC α 0,257 0,00301 0,258 0,0045 0,255 0,00508 0,371 0,00062 0,37 0,00123 0,369 0,00225 

AEC β 0,058 0,00523 0,055 0,00638 0,048 0,00652 0,244 0,00186 0,245 0,00363 0,243 0,00613 

AEC γ 0,056 0,00475 0,057 0,00651 0,052 0,00785 0,255 0,00169 0,257 0,00359 0,253 0,00593 

ICOH δ 0,506 0,00127 0,5 0,00262 0,501 0,00306 0,175 0,00105 0,172 0,00174 0,172 0,00288 

ICOH θ 0,507 0,00159 0,503 0,00267 0,501 0,00287 0,17 0,00044 0,17 0,00133 0,17 0,00253 

ICOH α 0,5 0,00121 0,499 0,0024 0,5 0,00243 0,149 0,00052 0,149 0,00142 0,149 0,00274 

ICOH β 0,478 0,00163 0,479 0,00247 0,481 0,00267 0,084 0,00089 0,085 0,00204 0,084 0,00379 

ICOH γ 0,487 0,00146 0,486 0,00252 0,49 0,00299 0,088 0,00079 0,09 0,00208 0,089 0,00375 

wSMI θ 0,088 0,00045 0,091 0,00061 0,093 0,00134 0,052 0,00056 0,057 0,001 0,059 0,00214 

wSMI α 0,045 0,00026 0,046 0,00049 0,046 0,0008 0,037 0,00068 0,039 0,00121 0,039 0,00183 

wSMI β 0,028 0,00035 0,029 0,00076 0,029 0,00097 0,028 0,00073 0,03 0,00177 0,029 0,00212 

wSMI γ 0,027 0,00029 0,028 0,00082 0,028 0,00068 0,021 0,00049 0,023 0,00167 0,022 0,00164 

 

Table S3 

Measure 
Average across trials Fluctuations across trials 

VS (n=52)-MCS (n=32) VS (n=52)-MCS (n=32) 
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AUC U pFDR AUC U pFDR 

P1 57,9% 964 6,7E-01 53,8% 895 8,4E-01 

CNV 66,6% 1108 7,9E-02 51,4% 855 9,4E-01 

P3a 43,5% 724 6,7E-01 49,0% 816 9,5E-01 

P3b 48,0% 799 9,1E-01 55,2% 918 7,1E-01 

Δ MMN 43,3% 720 6,7E-01 44,4% 739 6,8E-01 

Δ P3a    53,4% 888 8,4E-01 43,1% 718 6,8E-01 

Δ P3b    42,0% 699 7,1E-01 44,5% 741 6,8E-01 

Decod Local  54,4% 905 7,6E-01 56,0% 932 6,9E-01 

Decod Global  57,8% 961 6,4E-01 54,6% 908 7,6E-01 

δ 51,1% 851 9,4E-01 54,9% 913 7,4E-01 

δN 32,6% 542 7,0E-02 64,3% 1070 1,7E-01 

θ 69,8% 1161 3,3E-02 67,4% 1121 6,6E-02 

θN 67,1% 1116 6,9E-02 62,7% 1044 2,6E-01 

α 77,3% 1287 2,6E-03 72,1% 1200 1,1E-02 

αN 72,4% 1204 1,4E-02 76,0% 1264 3,2E-03 

β 61,1% 1017 4,1E-01 58,5% 974 6,6E-01 

βN 56,9% 946 7,0E-01 56,2% 935 6,9E-01 

γ 53,1% 884 8,5E-01 54,6% 908 7,5E-01 

γN 48,1% 801 9,1E-01 48,0% 799 9,0E-01 

MSF 63,1% 1050 2,4E-01 58,7% 976 6,6E-01 

SEF90 55,6% 926 7,0E-01 51,2% 852 9,4E-01 

SE 61,4% 1021 4,0E-01 47,5% 791 8,9E-01 

K zip 55,6% 926 6,9E-01 52,2% 868 9,0E-01 

PE θ 72,3% 1203 1,2E-02 32,2% 535 6,5E-02 

PE α 57,3% 954 6,7E-01 34,3% 570 9,8E-02 

PE β 39,8% 663 4,6E-01 55,8% 928 7,0E-01 
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PE γ 39,6% 659 4,7E-01 57,5% 957 6,6E-01 

PLI δ 39,4% 656 4,6E-01 41,7% 694 6,7E-01 

PLI θ 52,3% 871 9,0E-01 51,3% 853 9,4E-01 

PLI α 57,8% 962 6,7E-01 56,8% 945 6,7E-01 

PLI β 58,9% 980 6,4E-01 60,3% 1004 4,6E-01 

PLI γ 43,4% 722 6,7E-01 44,5% 740 6,8E-01 

AEC δ 50,1% 833 1,0E+00 46,7% 777 8,3E-01 

AEC θ 53,7% 893 8,2E-01 42,2% 702 6,5E-01 

AEC α 52,3% 871 8,9E-01 42,8% 712 6,7E-01 

AEC β 46,9% 780 8,3E-01 52,8% 879 8,7E-01 

AEC γ 48,3% 804 9,2E-01 50,2% 836 1,0E+00 

ICOH δ 43,9% 730 6,8E-01 43,0% 715 6,9E-01 

ICOH θ 51,5% 857 9,3E-01 50,6% 842 9,7E-01 

ICOH α 56,2% 935 7,1E-01 46,3% 770 8,2E-01 

ICOH β 53,6% 892 8,1E-01 50,8% 845 9,6E-01 

ICOH γ 46,3% 770 8,3E-01 49,9% 830 1,0E+00 

wSMI θ 73,1% 1216 1,3E-02 68,4% 1138 5,6E-02 

wSMI α 66,3% 1103 8,4E-02 52,5% 873 9,1E-01 

wSMI β 50,1% 834 1,0E+00 44,1% 734 6,9E-01 

wSMI γ 42,0% 699 6,8E-01 45,3% 753 7,4E-01 

 

Table S4 

Measure 

Average across trials Fluctuation across trials 

VS(n=52) MCS(n=32) VS(n=52) MCS(n=32) 

MEAN S.E. MEAN S.E. MEAN S.E. MEAN S.E. 

P1 0,402 0,09727 0,592 0,16385 9,595 0,45128 12,384 2,07281 
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CNV 0,181 0,4016 1,668 0,55732 27,064 1,5452 31,719 3,86449 

P3a 0,574 0,2133 0,329 0,21267 14,853 0,77643 17,656 2,63366 

P3b -0,158 0,11411 -0,031 0,20091 12,094 0,6208 16,885 4,30376 

Δ MMN 0,301 0,15607 -0,231 0,39463 -0,323 0,17958 0,631 1,33751 

Δ P3a    -0,087 0,1315 0,125 0,15129 -0,081 0,12849 -0,046 0,7212 

Δ P3b    0,165 0,13937 -0,324 0,26527 0,037 0,1143 1,308 2,09126 

Decode Local  0,551 0,0068 0,557 0,00975 0,073 0,00439 0,081 0,00601 

Decode Global  0,503 0,00592 0,515 0,00882 0,046 0,00377 0,05 0,00494 

δ 6,637 0,1223 6,84 0,14008 6,861 0,1178 7,195 0,16912 

δN 0,628 0,02061 0,557 0,02239 0,192 0,00367 0,205 0,00326 

θ 4,908 0,11298 5,492 0,13959 4,86 0,10762 5,478 0,19165 

θN 0,174 0,00982 0,22 0,01262 0,117 0,00467 0,133 0,00501 

α 3,783 0,08672 4,468 0,14955 3,675 0,09297 4,368 0,22198 

αN 0,063 0,00377 0,091 0,00612 0,053 0,00212 0,071 0,0033 

β 3,825 0,12671 4,262 0,21185 3,675 0,1502 4,15 0,29643 

βN 0,078 0,01115 0,074 0,00754 0,056 0,00438 0,059 0,00419 

γ 3,168 0,17523 3,557 0,37959 3,211 0,2108 3,754 0,46289 

γN 0,05 0,00863 0,048 0,01313 0,042 0,00481 0,042 0,00847 

MSF 4,309 0,48341 4,64 0,5418 2,686 0,27291 2,866 0,4653 

SEF90 13,699 1,15843 14,256 1,38304 6,645 0,42615 6,612 0,47465 

SE 5,133 0,05516 5,235 0,05383 0,406 0,01203 0,392 0,01021 

K zip 0,752 0,00584 0,759 0,00617 0,068 0,00148 0,07 0,00214 

PE θ 1,526 0,00908 1,572 0,00925 0,124 0,00447 0,107 0,00436 

PE α 1,496 0,0119 1,511 0,01073 0,096 0,00301 0,087 0,00244 

PE β 1,619 0,01278 1,588 0,01689 0,078 0,00353 0,083 0,00431 

PE γ 1,368 0,01099 1,341 0,01527 0,07 0,00235 0,074 0,00298 

PLI δ 0,562 0,00623 0,549 0,00821 0,326 0,00121 0,324 0,00165 
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PLI θ 0,41 0,00196 0,412 0,00268 0,279 0,00101 0,279 0,00138 

PLI α 0,357 0,00156 0,358 0,00134 0,251 0,00086 0,252 0,00074 

PLI β 0,19 0,00198 0,19 0,001 0,141 0,00151 0,141 0,00072 

PLI γ 0,199 0,00136 0,198 0,00157 0,148 0,00112 0,148 0,00197 

AEC δ 0,246 0,00921 0,258 0,01668 0,467 0,00153 0,466 0,00233 

AEC θ 0,367 0,00336 0,377 0,00803 0,382 0,00086 0,382 0,00143 

AEC α 0,258 0,0041 0,267 0,00899 0,371 0,00079 0,373 0,00248 

AEC β 0,061 0,00721 0,066 0,01305 0,244 0,00248 0,252 0,0075 

AEC γ 0,059 0,00668 0,066 0,01338 0,255 0,00222 0,263 0,00743 

ICOH δ 0,505 0,00158 0,497 0,00536 0,175 0,00136 0,176 0,0033 

ICOH θ 0,506 0,00198 0,503 0,00506 0,169 0,00054 0,173 0,00266 

ICOH α 0,499 0,00164 0,496 0,00493 0,149 0,0007 0,152 0,00292 

ICOH β 0,477 0,00226 0,474 0,00505 0,084 0,0012 0,089 0,00422 

ICOH γ 0,487 0,00201 0,481 0,00516 0,088 0,00106 0,093 0,00434 

wSMI θ 0,088 0,00054 0,091 0,00094 0,052 0,00067 0,057 0,00186 

wSMI α 0,045 0,00035 0,047 0,00099 0,037 0,00089 0,04 0,00244 

wSMI β 0,028 0,00049 0,03 0,00161 0,029 0,00101 0,032 0,00372 

wSMI γ 0,027 0,0004 0,029 0,00172 0,021 0,00067 0,025 0,00347 

 



 

 
 

Table S5 

Name age sex state delay 
CRS 

Etiology 
1 2 3 4 5 6 All 

1 67 M VS 66 2 1 1 1 0 2 7 anoxia 

2 49 M 
MCS 31 2 3 2 2 0 1 10 anoxia 

CS 48 4 5 6 3 2 2 22 anoxia 

3 62 M CS 47 4 5 6 3 2 2 21 stroke 

4 62 M 

VS 19 1 1 2 1 0 2 7 stroke 

MCS 

27 3 0 2 1 0 2 8 stroke 

41 3 0 2 1 0 2 8 stroke 

55 2 0 3 1 0 1 7 stroke 

70 3 0 4 1 0 2 10 stroke 

5 33 F MCS 
10 1 3 2 2 0 2 10 stroke 

40 2 3 2 3 1 1 12 stroke 

6 71 M VS 
17 1 0 1 1 0 1 4 anoxia 

22 1 0 1 1 0 1 4 anoxia 

7 61 M 
MCS 6 3 0 2 2 1 1 9 anoxia 

CS 20 4 5 6 3 2 3 23 anoxia 

8 35 F CS 137 4 5 6 3 2 2 22 anoxia 

9 47 F VS 54 1 0 1 0 0 1 3 anoxia 

10 22 M 

VS 16 1 0 1 1 0 2 5 anoxia 

MCS 29 3 1 2 1 0 2 9 anoxia 

CS 38 4 5 6 3 2 2 22 anoxia 

11 42 F MCS 46 3 0 1 1 0 1 6 stroke 

12 73 F VS 62 1 1 2 2 0 1 7 stroke 

13 21 M MCS 22 1 3 1 1 0 2 8 tbi 

14 34 M MCS 
19 2 2 4 1 0 1 10 tbi 

26 2 3 4 1 0 2 12 tbi 

15 73 M VS 9 0 0 2 1 0 1 4 anoxia 

16 48 M VS 200 1 0 2 1 0 1 5 stroke 

17 45 M MCS 31 3 3 5 2 1 2 16 stroke 

18 46 M VS 155 1 0 1 1 0 2 5 anoxia 

19 24 M MCS 1258 1 3 2 2 0 2 10 tbi 

20 62 M VS 30 0 0 0 0 0 1 1 other 

21 53 F MCS 47 3 4 5 3 1 2 18 stroke 

22 21 F MCS 
21 3 1 2 1 0 1 8 tbi 

24 2 1 3 1 0 1 8 tbi 

23 29 M 
VS 33 2 1 2 1 0 1 7 tbi 

MCS 40 1 2 2 1 0 1 7 tbi 

24 63 M VS 25 1 0 2 1 0 2 6 other 

25 59 M MCS 9 3 3 2 1 0 1 10 anoxia 

26 56 M MCS 134 1 3 0 1 0 1 6 other 



CHAPTER 7. SUPPLEMENTARY MATERIALS 

 

182 
 

27 44 M VS 204 1 0 1 1 0 1 4 anoxia 

28 62 M MCS 23 0 3 2 1 0 1 7 stroke 

29 64 M 
MCS 48 3 5 1 1 1 1 12 stroke 

CS 97 4 5 1 1 2 2 15 stroke 

30 42 M MCS 28 1 3 2 1 0 2 9 tbi 

31 21 M CS 14 4 5 6 2 2 2 21 anoxia 

32 19 M VS 
22 1 1 1 0 0 1 4 tbi 

25 1 1 1 1 0 2 6 tbi 

33 37 F 

VS 
194 1 0 2 0 0 1 4 stroke 

195 1 0 2 0 0 1 4 stroke 

MCS 
866 1 3 2 1 0 1 8 stroke 

867 1 3 1 1 0 2 8 stroke 

34 74 F VS 610 1 1 1 1 0 1 5 anoxia 

35 31 M VS 7 1 0 0 1 0 1 3 anoxia 

36 57 M CS 30 4 5 6 2 2 2 21 anoxia 

37 29 F 
VS 26 0 0 1 1 0 2 4 anoxia 

MCS 38 3 3 5 2 0 2 15 anoxia 

38 80 M VS 20 1 1 2 1 0 1 6 other 

39 41 F VS 7 0 0 2 1 0 1 4 anoxia 

40 39 M MCS 26 3 3 1 1 0 2 10 stroke 

41 69 M MCS 25 3 1 2 1 1 1 9 stroke 

42 43 M VS 26 2 1 1 1 0 1 6 other 

43 29 F VS 85 1 0 1 1 0 1 4 stroke 

44 44 M VS 42 1 0 1 1 0 2 5 stroke 

45 40 M VS 

41 1 1 2 1 0 1 6 tbi 

51 1 1 2 1 0 1 6 tbi 

62 1 1 2 1 0 1 6 tbi 

72 1 1 2 1 0 1 6 tbi 

46 62 M VS 10 2 1 1 2 0 1 7 anoxia 

47 59 M VS 30 1 0 0 1 0 1 3 tbi 

48 23 M 

VS 
43 2 0 0 0 0 2 4 other 

56 1 0 0 0 0 2 3 other 

MCS 
87 2 3 0 1 0 2 8 other 

183 4 5 3 2 1 2 17 other 

49 16 F CS 697 4 5 6 3 2 3 23 anoxia 

50 51 F MCS 14 1 3 2 1 0 1 7 other 

51 65 F VS 20 1 0 1 1 0 1 4 anoxia 

52 21 F MCS 21 3 4 5 2 1 3 18 other 

53 27 M VS 194 1 0 1 2 0 1 5 anoxia 

54 61 M MCS 36 3 3 5 1 1 2 15 stroke 

55 64 F VS 23 1 1 2 1 0 2 7 other 

56 16 M MCS 30 3 3 4 1 0 1 12 tbi 
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57 67 M VS 25 1 1 1 1 0 1 5 stroke 

58 45 M VS 19 2 1 1 1 0 2 7 anoxia 

59 65 F VS 31 1 1 0 1 0 1 4 anoxia 

60 37 F VS 62 1 1 1 1 0 1 5 stroke 

61 24 M 
VS 

30 1 0 1 1 0 1 4 tbi 

38 1 0 1 1 0 1 4 tbi 

45 1 0 1 1 0 1 4 stroke 

MCS 62 3 3 1 1 0 1 9 tbi 

62 48 M CS 11 4 5 0 2 2 3 16 tbi 

63 38 F MCS 17 3 3 5 2 1 1 15 anoxia 

64 76 F 
VS 46 2 1 2 2 0 1 8 anoxia 

MCS 53 3 3 1 1 0 2 10 anoxia 

65 48 F VS 14 0 0 1 1 0 1 3 anoxia 

66 44 M CS 4383 4 5 3 1 2 3 18 tbi 

67 20 M MCS 25 3 3 2 1 0 2 11 tbi 

68 31 M VS 8 0 0 2 0 0 1 3 anoxia 

69 60 M MCS 24 3 1 1 2 0 2 9 stroke 

70 41 M VS 350 1 0 1 2 0 1 5 stroke 

71 22 M 

VS 27 2 1 2 1 0 1 7 tbi 

MCS 
33 2 3 2 1 0 1 9 tbi 

39 3 4 2 1 0 2 12 tbi 

CS 49 4 5 3 1 2 2 17 tbi 

72 30 M CS 2190 3 3 1 2 2 2 13 other 

73 28 M MCS 151 3 2 2 2 0 2 11 anoxia 

74 58 M VS 41 1 0 1 1 0 1 4 sttroke 

75 62 F CS 517 4 5 5 2 2 3 21 stroke 

76 51 M 

VS 11 0 0 1 1 0 1 3 tbi 

VS 15 1 1 1 1 0 1 5 tbi 

MCS 22 3 0 1 1 0 1 6 tbi 

VS 29 2 1 1 1 0 1 6 tbi 

77 78 F MCS 27 1 1 3 1 0 1 7 other 

78 45 M CS 883 4 5 6 2 2 1 20 stroke 

79 75 F MCS 657 1 3 1 1 0 2 8 tbi 

80 38 F VS 30 1 1 2 1 0 2 7 stroke 

81 43 F VS 2554 1 0 1 1 0 2 5 tbi 

82 41 M MCS 2611 4 5 1 3 1 3 17 tbi 

83 55 M 
MCS 7 2 3 1 1 0 1 8 stroke 

MCS 23 2 3 1 1 0 1 8 stroke 

84 47 M VS 11 0 0 1 1 0 1 3 anoxia 

85 44 M CS 83 4 5 2 2 2 1 16 stroke 

86 69 M MCS 9 3 3 4 2 0 1 13 anoxia 

87 26 F VS 469 0 0 1 1 0 1 3 other 
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88 52 M CS 2537 4 5 6 3 2 3 23 stroke 

89 67 M MCS 11 2 3 2 0 0 1 8 stroke 

90 63 M 
MCS 

35 3 0 1 1 0 1 6 stroke 

41 3 3 1 1 0 2 10 stroke 

CS 57 4 5 6 3 2 2 22 stroke 

91 70 F VS 17 1 1 2 1 0 1 6 stroke 

92 62 F VS 25 0 0 0 0 0 1 1 other 

93 76 M MCS 110 2 1 2 3 1 2 11 other 

94 28 M VS 1486 1 0 1 1 0 2 5 tbi 

95 52 M MCS 25 2 2 3 1 1 2 11 tbi 

96 39 M VS 
37 1 1 1 1 0 2 6 stroke 

42 1 0 1 1 0 1 4 stroke 

97 64 M VS 57 0 0 1 1 0 1 3 stroke 

98 52 F MCS 34 4 5 5 2 1 2 19 other 

99 18 M VS 
10 0 0 1 0 0 1 2 anoxia 

11 0 0 1 0 0 1 2 anoxia 

100 36 M MCS 24 1 1 0 1 1 2 6 stroke_brainstem 

101 56 M MCS 10 3 3 5 2 1 1 15 anoxia 

102 59 F 
VS 21 1 1 2 1 0 1 6 stroke_cortical 

28 0 1 2 1 0 1 5 stroke_cortical 

MCS 34 1 3 2 1 0 2 9 stroke_cortical 

103 23 M VS 20 1 0 0 0 0 2 3 other 

104 80 M VS 62 1 1 2 1 0 2 7 tbi 

105 83 M CS 

11 4 5 0 2 2 3 16 other 

46 3 5 0 2 1 3 14 other 

53 4 5 0 2 2 3 16 other 

62 4 5 0 2 2 3 16 other 

117 4 5 0 2 2 3 16 other 

106 45 M MCS 20 0 0 4 1 0 1 6 tbi 

107 45 M 

VS 27 2 1 2 1 0 2 8 stroke 

MCS 

36 3 3 4 2 1 2 15 stroke 

44 3 4 4 2 1 1 15 stroke 

50 3 4 4 2 1 1 15 stroke 

CS 
58 4 5 6 2 2 3 22 stroke 

93 4 5 6 2 2 2 21 stroke 

108 79 F VS 

30 1 0 1 1 0 1 4 other 

66 2 0 2 1 0 2 6 other 

29 1 1 1 1 0 2 6 other 

109 59 F MCS 60 2 0 3 3 1 0 9 other 

110 28 M MCS 17 1 3 0 1 0 1 6 tbi 
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33 2 3 5 2 1 2 15 tbi 

111 54 M MCS 21 2 3 2 1 0 2 10 stroke 

112 46 M VS 89 1 0 1 1 0 2 5 stroke 

113 61 M VS 25 0 0 0 1 0 2 3 stroke 
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8.1. INTRODUCTION OF THE ARTICLE 

I conclude this series of neuroimaging studies by going back to theoretical considerations.  

So far, the approach undertaken in the present thesis has been to compare the brain activity ob-

served in different states of consciousness. As explained in the CHAPTER 1. , the obtained results therefore 

heavily depend on the adopted definition of consciousness. 

Patients‘ state of consciousness is defined according to their abilities to interact with their envi-

ronment, as formally delineated by the revised version of the Coma Recovery Scale (GIACINO ET AL., 2004; 

SCHNAKERS ET AL., 2008B). Similarly, the subjects‘ content of consciousness is experimentally assessed via 

subjective reports and confidence ratings. In other words, the state and the content of consciousness are 

defined on a (set of) behaviour(s).  

An obvious question thus follows: on what bases, and with which justification, could these behav-

iours be considered adequate to index subjective content?  

This issue is perhaps most obvious in the case of blindsight phenomena, in which subjects dis-

criminate stimuli that they claim not seeing (WEISKRANTZ, 1986; STOERIG AND COWEY, 2009). In this case the 

two types of behaviours (discrimination response and visibility reports) do not appear essentially different 

to the experimenter – i.e. in both cases they are recorded through a simple button press.  

In the course of this PhD, I discover that a minimalist framework, based on Bayesian inference, 

could explain the dissociation between different types of behavioural measures (discrimination, visibility 

reports, etc.). While this approach is simplistic and undoubtedly oversimplifies the ins and outs of con-

sciousness, it appeared to account for several empirical findings that have grounded the scientific study of 

consciousness. 
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8.2. ABSTRACT 

Subliminal perception studies have shown that one can objectively discriminate a stimulus without 

subjectively perceiving it. We show how a minimalist framework based on Signal Detection Theory and 

Bayesian inference can account for this dissociation, by describing subjective and objective tasks with 

similar decision-theoretic mechanisms. Each of  these tasks relies on distinct response classes, and 

therefore distinct priors and decision boundaries. As a result, they may reach different conclusions. By 

formalizing, within the same framework, forced-choice discrimination responses, subjective visibility 

reports and confidence ratings, we show that this decision model suffices to account for several classical 

characteristics of  conscious and unconscious perception. Furthermore, the model provides a set of  

original predictions on the non-linear profiles of  discrimination performance obtained at various levels of  

visibility. We successfully test this prediction in a novel experiment: when varying continuously the degree 

of  perceptual ambiguity between two visual symbols presented at perceptual threshold, identification 

performance varies quasi-linearly when the stimulus is unseen and in an ―all-or-none‖ manner when it is 

seen. The present model highlights how conscious and non-conscious decisions may correspond to 

distinct categorizations of  the same stimulus encoded by a high-dimensional neuronal population vector. 
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8.3. INTRODUCTION 

Since Helmholtz (1867/1910)‘s proposal of perception as unconscious inference, several compu-

tational models have been put forward to describe the mechanisms of this process (KERSTEN ET AL., 2004; 

KNILL AND RICHARDS, 2008). The hypothesis that perception corresponds to an inferential decision on sen-

sory data has received support from neurophysiological recordings during perceptual tasks (POUGET ET AL., 

2002; FRISTON, 2010). For instance, intracranial (GOLD AND SHADLEN, 2000) and scalp recordings (DE LANGE 

ET AL., 2011; WYART ET AL., 2012) have revealed a neural response seemingly reflecting the accumulation of 

sensory evidence following the presentation of a stimulus and which may predict how subjects perceive 

the stimulus (SHADLEN ET AL., 2008).  

Nevertheless, superficially at least, conscious perception does not always seem to obey the logic of 

optimal perceptual inference. For instance, one can objectively discriminate a stimulus at above-chance 

level while subjectively claiming not to have seen it (DEHAENE ET AL., 2006B; DEHAENE AND CHANGEUX, 

2011). This paradoxical dissociation, referred to as ―subliminal perception‖, has nourished a vast body of 

philosophical and scientific proposals on the nature of conscious and unconscious perception. For in-

stance, Tononi and Edelman (TONONI AND EDELMAN, 1998) have argued that conscious processes are 

quantitatively more complex, integrated and differentiated, than unconscious processes. Lau (LAU, 2008) 

and Rosenthal (ROSENTHAL, 1997) claim that conscious perception is qualitatively different from uncon-

scious perception as it relies on higher-order metacognitive representations. Recent empirical studies chal-

lenge these accounts, however. First, subliminal stimuli can recruit complex semantic and integrative proc-

esses (GREENWALD ET AL., 1996; DEHAENE ET AL., 1998B; KOUIDER AND DEHAENE, 2007). Second, even sec-

ond-order metacognitive inferences can apparently be performed above chance on unseen stimuli (KANAI 

ET AL., 2010; CHARLES ET AL., 2013).  

Here, building upon earlier proposals (LAU, 2008; SHADLEN ET AL., 2008), we explore a simple theo-

retical idea: objective and subjective tasks rely on the same inference principles, but they differ in the na-

ture and the size of the decision space. Our proposal stems from Signal Detection Theory (SDT) and 

outlines how a minimal extension of the classic unidimensional depiction of SDT to multiple dimensions 

provides geometrical intuitions on several empirical findings in conscious and unconscious perception.  

Specifically, we identified six major categories of empirical findings that should be accounted for: 

- EF1. Stimuli which are subjectively reported as ―unseen‖ can nevertheless be objectively dis-

criminated above chance in a two-alternative forced-choice task (WEISKRANTZ, 1986; MARSHALL 

AND HALLIGAN, 1993; DRIVER ET AL., 2001; DEHAENE ET AL., 2006B; KOUIDER AND DEHAENE, 2007; 

STOERIG AND COWEY, 2009). 

- EF2. Discrimination performance is typically better on seen than on unseen trials, even when 

sensory stimuli are physically identical (LAU AND PASSINGHAM, 2006; DEL CUL ET AL., 2007; 

NEUROSCIENCE ET AL., 2012).  

- EF3. Experimental protocols can be designed in which objective discrimination performance is 

identical, while subjective visibility differs (LAU AND PASSINGHAM, 2006; LAU, 2008; RAHNEV ET AL., 

2011). 

- EF4. Subjective reports vary non-linearly as a function of sensory strength. For instance, brief or 

faint visual stimuli are generally reported as ―completely unseen‖, but once their duration or con-

trast reaches a threshold level, subjects tend to report items as ―clearly seen‖ (SERGENT AND 

DEHAENE, 2004; SERGENT ET AL., 2005; DEL CUL ET AL., 2007; MELLONI ET AL., 2011; NEUROSCIENCE ET 

AL., 2012).  
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- EF5. Prior knowledge increases the subjective visibility of physically identical stimuli (SIMONS AND 

CHABRIS, 1999; CUL ET AL., 2006; MELLONI ET AL., 2011; PITTS ET AL., 2012). 

- EF6. Attention generally increases subjective visibility, but has also been found to decrease it 

(DEHAENE ET AL., 2006B; RAHNEV ET AL., 2011). 

8.3.1. GENERAL ASSUMPTIONS OF THE MODEL 

Our first assumption is that incoming stimuli are encoded as continuous vectors in a vast repre-

sentational space. In the visual domain, for instance, a hierarchy of specialized visual processors decom-

pose any visual scene into a broad variety of features that range from low-level (line orientation, contrast, 

colour etc) to higher-level attributes (face/non-face, etc). Each of these features may be encoded by the 

firing rate of a group of neurons. Mathematically, each stimulus is therefore encoded by a set of coordi-

nates, one for each feature dimension (FIGURE 8.1.1).  

Second, stimulus strength is assumed to be directly reflected in the length (i.e. the norm) of the 

input vector. This assumption corresponds to the observation that the depth of sensory encoding varies 

with the quality of the incoming stimulus: a briefly flashed and masked stimulus only evokes modest activ-

ity in higher visual cortices (SERGENT ET AL., 2005; DEL CUL ET AL., 2007), and thus, its internal vector has a 

small projection, particularly on high-level dimensions. Conversely, an unmasked high-contrasted image 

results in a long internal vector (FIGURE 8.1). 

Our third assumption is that each behavioural task imposes, in a top-down manner, a categorical 

structure of classes to this continuous vector space (e.g. ―click left for faces, and right for non-faces‖). 

Performing the task consists in identifying, on every trial, the class in which the input vector falls. For-

mally, this is a statistical inference: given a sensory input and prior knowledge, subjects attempt to com-

pute the posterior probability of each of the classes in order to select the maximum a posteriori (MAP) 

choice, which is the response most likely to be correct. Each task imposes distinct, possibly overlapping 

response classes, and may therefore lead to different answers.  

Our fourth assumption is that the content of conscious perception, which can be reported verbal-

ly, is the outcome of such an inferential decision process, but with the specific characteristic of having a 

very rich set of classes. While simple binary decisions may be performed non-consciously (e.g. press right 

or press left (DEHAENE ET AL., 1998B)), the inference system that underlies conscious perception must re-

main constantly open to myriads of possible contents, including unexpected ones (e.g. a fire alarm). We 

propose that what the subject experiences as a conscious percept is the class with the highest posterior 

probability, amongst all possible classes. As we shall see, ―negative‖ classes, such as ―I didn‘t see any-

thing‖, must be considered too. 

8.3.2. GEOMETRICAL APPROXIMATION IN TWO DIMENSIONS 

The vast number of input features, classes and tasks makes the present proposal difficult to ap-

prehend in its full generality. However, most of its properties can be approximately captured by projecting 

the large vector space onto a plane defined by the two main axes of interest (FIGURE 8.1.2-3). These axes 

are chosen to be two features or feature bundles that are most relevant to the task under consideration 

(e.g. the mean vectors of neuronal activity evoked by face and by non-face stimuli, if the task is face/non-

face discrimination). Each circle represents the top of the distribution of a particular class of stimuli (i.e. 

likelihood function, given sensory and internal noise). Lines delimit the regions of space where response 

decisions change. Although one should not forget that this is just a considerable simplification of the un-

derlying multidimensional space and stimuli distribution, this 2D representation brings the present model 

closer to the classic two-class problem of Signal Detection Theory. Indeed, although Signal Detection 
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Theory is not limited to a single dimension, it is often depicted as a binary problem with two Gaussian 

distributions plotted along a single axis. We argue that this classic diagram fails to capture the interaction 

between multiple features, classes and tasks, whereas a 2D depiction fulfils these requirements (see 

(GREEN AND SWETS, 1966; KLEIN, 1985; KO AND LAU, 2012) for similar proposals using 2D representations to 

dissociate tasks such as discrimination and detection). 

8.3.3. MATHEMATICAL FORMULATION 

Bayesian theory describes the optimal way of selecting the most likely model of the environment, 

referred to as ―hypothesis‖ (H, here the response class), in the presence of sensory evidence (E), here the 

input vector. Each class is characterized by a likelihood function P(E|H) and a prior probability P(H). 

P(E|H) indicates the probability that the evidence E was generated by the class H, and therefore captures 

how sensory samples from a given class are distributed within the vector space. The prior probability P(H) 

defines the probability of H to occur independently of any evidence. Bayes‘ theorem stipulates that the 

posterior probability of H is a function of its prior probability and of its likelihood: P(H|E) = P(E|H) * 

P(H) / P(E). Finally, decisions result from the selection of the class that has the maximum posterior prob-

ability (MAP). This MAP criterion results in the segregation of representational space into distinct regions 

separated by sharp decision boundaries (importantly, these boundaries play no functional role in the mod-

el, but are just a consequence of the MAP criterion). 

In the following simulations, we use a series of computational simplifications. First, we neglect the 

cost function associated with each decision – sometimes referred to as ―loss‖ or ―utility‖ function. In the 

presence of costs, the optimal decision is the ones which minimizes the expected loss and may differ from 

the MAP. Mathematically, however, priors and costs play a similar role and were thus merged in the 

present paper for simplicity. Second, the present model assumes that priors are fixed in a given context, 

rather than continuously updated after each decision. Assuming modifiable priors would lead to important 

new predictions, but would also increase the number of ad-hoc parameters in the models (e.g. learning 

rate, estimated world volatility, creation or deletion of classes etc.). Third, we assume Gaussian distribu-

tions in order to facilitate the computations. Fourth, importantly, we assume that subjects have an accu-

rate estimate of stimulus distributions – although following Lau (LAU, 2008; KO AND LAU, 2012), we will 

discuss the important consequences that ensue when subjects‘ priors and likelihood functions are inap-

propriately calibrated. Fifth, we assume that, on a given trial, the same input vector enters into different 

tasks, thus neglecting the possibility that the internal evidence evoked by a fixed stimulus may vary with 

the task, due for instance to decay (GREENWALD ET AL., 1996; DUPOUX ET AL., 2008), noise level (DEL CUL ET 

AL., 2007), attention (SERGENT ET AL., 2013) or other top-down changes. Finally, we treat stimulus evidence 

on a given trial as a single discrete point in the n-dimensional space. In the discussion, we briefly examine 

the additional properties that arise if these simplifying assumptions are relaxed. 

8.3.4. THE FUNDAMENTAL THREE-CLASS PROBLEM 

Given these assumptions, binary decision experiments can be simplified to a stereotypical three-

class problem: either nothing is presented (absent trial, denoted A), or one of two stimuli B or C is dis-

played (FIGURE 8.1.2). Absent trials are assumed to correspond to a null vector whose likelihood function 

peaks at the origin of vector space. B and C trials are represented by two base vectors which are chosen as 

the axes of the 2D representation.  

In this typical setup, three different tasks can be performed:  

i) Identification consists in determining which hypothesis has the highest posterior proba-

bility (A, B, or C?) – thus crucially including the ―absent‖ category.  
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ii) Forced-choice discrimination consists in restricting the responses to a subset of classes 

(e.g. B or C, excluding the A category).  

iii) Visibility judgment consists in reporting whether the stimulus is seen or unseen. We as-

sume that this instruction is interpreted as a decision whether the stimulus is most likely to be absent or 

present (i.e. A or not A?). 

Formally, these are all first-order tasks, because they all ask a simple question: which class (or set 

of classes) could have led to the observed input vector? For each of them, a second-order ―confidence‖ 

judgment can also be performed by setting additional response categories, corresponding to whether the 

first-order decision has a high or a low probability of being correct. As shown graphically in FIGURE 8.1.2, 

there is a distinct confidence judgment associated with each primary task. At expense with Persaud et al. 

(PERSAUD ET AL., 2007) and Lau et al. (LAU, 2008), we note that second-order tasks need not coincide with 

visibility judgment. Also note that, for both first- and second-order decisions, the decision boundaries can 

be derived directly from the definition of the task, the priors, and the likelihood functions for each class, 

and therefore do not constitute additional assumptions of the model. 

 

 

FIGURE 8.1 A MULTIDIMENSIONAL DECISION-THEORY FRAMEWORK FOR OBJECTIVE DISCRIMINATION AND SUBJECTIVE 

REPORTS. 

1. Stimulus information is represented in a vast vector space, in which each dimension encodes the 
evidence about a particular feature. Each sensory stimulus thus corresponds to an input vector whose 
length and direction changes depending on the quality of the stimulus. 

2. When considering binary decisions (e.g. perceiving stimulus B or stimulus C), the huge 
dimensionality of the representational space can be approximated by a 2D feature space. In this space, 
assuming that the true stimulus distributions are known, the likelihood (top), the prior and the 
posterior probability (bottom) of belonging to a given class (absent trial [A], stimulus B, or stimulus C) 
can be computed for each input vector (here the posterior probability of the Absent class has been 
removed for readability.) 

3. Posteriors can be used to perform different tasks. In each case, the regions of the problem space 
corresponding to a fixed decision are delineated by a boundary. Identification consists in finding the 
maximum a posteriori (MAP) across all classes (A, B, or C; black). Discrimination consists in 
determining the MAP amongst a restricted set of classes (B or C; purple). Visibility judgment 
consists in determining whether the absent class is the most likely amongst all classes (A or not-A; 
green). Each of these first-order decisions can be supplemented by a second-order confidence judgment 
task, which is modeled as the estimation of the likelihood of a correct response in the primary task. 
Samples far away from the decision border are associated with higher posterior probabilities and can 
thus be classified as more “confident” than samples close to the border. This geometrical 
representation makes it clear that each confidence judgment is always attached to a specific task, and 
is thus not necessarily identical to visibility judgment. 
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8.4. EMPIRICAL CONSEQUENCES OF THE DECISION 

FRAMEWORK 

We shall now see how this framework accounts for the six fundamental empirical properties listed 

above. 

8.4.1. ABOVE-CHANCE DISCRIMINATION OF STIMULI REPORTED AS “UNSEEN” 

Empirical finding 1 is that perceptual decisions can be performed at above-chance level even 

when subjects report not seeing any stimulus (MARSHALL AND HALLIGAN, 1993; COWEY AND STOERIG, 1995; 

DRIVER ET AL., 2001; PERSAUD ET AL., 2007; TAMIETTO ET AL., 2007). For example, blindsight patients can per-

form simple discriminations on visual stimuli they report not seeing (STOERIG AND COWEY, 2009). This 

paradoxical ability also exists in healthy subjects whose discrimination performance has been repeatedly 

shown to be dissociated from subjective reports (see review in (KOUIDER AND DEHAENE, 2007; OVERGAARD 

AND SANDBERG, 2012)). 

 

For simplicity, we only consider here the case in which two stimuli (B and C) become undetecta-

ble when they are visually degraded (B‘ and C‘). We assume that the degraded stimuli are generated from 

the same class as B and C, yet with lower evidence (i.e. shorter vector length). As shown in FIGURE 8.2.1, it 

is quite possible for degraded stimuli B‘ and C‘ to fall in the region reported as ―unseen‖ during visibility 

judgment (i.e. the most likely class is Absent), and yet to yield above-chance performance in a forced-

 

FIGURE 8.2 AN ACCOUNT OF UNCONSCIOUS AND CONSCIOUS DISCRIMINATION PERFORMANCE IN TWO TYPES OF 

EXPERIMENTAL DESIGNS. 

Top. In the stimulus degradation design, stimuli are made invisible by reducing the evidence (e.g. 
lowered contrast, masking, inattention, etc). This manipulation makes the stimuli more similar to the 
Absent category (right). As the BC distance can be longer than the AB and AC distances, 
discrimination performance (purple) can remain significant while detection sensitivity (green) is not 
detectably better than chance.  

Bottom. In the fixed-stimulus design, near-threshold stimuli are sorted as a function of whether they 
are reported as seen or unseen. Unseen stimuli can be discriminated at above-chance levels, but 
discrimination performance improves drastically on seen trials.  
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choice task when discrimination is restricted to classes B and C. This finding could be trivial if the visibili-

ty judgment was systematically biased towards the ―unseen‖ response (and indeed such response bias has 

often been proposed as an interpretation of subliminal perception experiments (HOLENDER, 1986)). How-

ever, our simulations assume a Bayes-optimal inference process. Thus, we show that there are conditions 

under which the Absent or ―unseen‖ response is the most probable one, and yet B versus C can still be 

discriminated.  

The geometry of the 2D model reveals why discrimination performance (i.e. d‘ of B/C discrimi-

nation) can be higher than detection sensitivity (i.e. d‘ of A/not-A judgment): the distance separating the 

B and C vectors is larger than the distance separating them from the Absent class. In the two-dimensional 

case, discrimination performance is √2 higher than detection performance (FIGURE 8.2.1). Consequently, 

given adequate statistical power, discrimination may be significantly above chance when detection sensitiv-

ity is not.  

The above account can also be extended to second-order judgments such as confidence rating 

and post-decision wagering on the first-order forced-choice B/C discrimination task. Because such 

second-order judgments rely on similar decisional principles as the first-order tasks (FIGURE 8.1.2), confi-

dence in discrimination can be above-chance on ―unseen‖ trials, and confidence in visibility can be lower 

than confidence in discrimination. This conclusion fits with two recent experiments in which subjects 

performed above-chance in their confidence judgments, even on trials reported as unseen (KANAI ET AL., 

2010; CHARLES ET AL., 2013). 

8.4.2. DISCRIMINATION PERFORMANCE GENERALLY IMPROVES WITH SUBJECTIVE 

VISIBILITY  

Empirical finding 2 is that, although objective discrimination can be above chance with subjec-

tively invisible stimuli, such unconscious performance is generally mediocre. In many studies, objective 

discrimination performance improves dramatically when the stimuli are subjectively reported as ―seen‖ 

compared to ―unseen‖, even when sensory stimulation is identical (SERGENT AND DEHAENE, 2004; DEL CUL 

ET AL., 2007; NEUROSCIENCE ET AL., 2012).  

How does the model account for these findings? In experiments that compare high-contrast visi-

ble stimuli with degraded invisible stimuli, the improvement in discrimination performance with subjective 

visibility is trivial (FIGURE 8.2.1): stimulus degradation diminishes the evidence for B and C, and thus wors-

ens both visibility judgment and B/C discrimination. The two tasks are thus necessarily correlated (LAU 

AND PASSINGHAM, 2006; LAU, 2008). Less trivially, however, the model predicts the same effect for fixed 

stimuli presented at perceptual threshold. Even when the stimuli are physically identical, internal variability 

can explain why ~50% of them are reported as ―unseen‖ (those which are most similar to the absent 

class). As a consequence of this variability, sensory inputs reported as ―unseen‖ are associated with a 

shorter input vector and are therefore closer to the B/C discrimination border than samples reported as 

―seen‖ (FIGURE 8.2.2). The simple hypothesis of a noisy input vector, together with non-orthogonal dis-

crimination and detection tasks, suffices to explain why unseen trials generally exhibit a lower discrimina-

tion performance than seen trials.  

8.4.3. DISCRIMINATION PERFORMANCE CAN BE EQUATED ON “SEEN” AND “UNSEEN” 

TRIALS  

Empirical finding 3 is that it is possible to find experimental conditions in which discrimination 

performance is equated while visibility varies. For instance, blindsight patients do not always show differ-

ent discrimination performance in their blind and healthy visual fields (WEISKRANTZ, 1986; COWEY, 2010; KO 
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AND LAU, 2012). In healthy subjects, using metacontrast masking and inattention, stimuli have been created 

that differ in visibility, but are equated for objective discrimination performance (LAU AND PASSINGHAM, 

2006; RAHNEV ET AL., 2011, 2012A).  

 

In the model, three major circumstances (and mixtures of them) may lead to identical discrimina-

tion performance for seen and unseen stimuli.  

- First, for fixed stimuli B and C, an increase in the prior probability (or cost) of the Absent class 

may lead to an increase in ―unseen‖ responses while leaving B/C discrimination unaffected (FIGURE 8.3.1). 

This account formalizes the hypothesis that blindsight patients have an inappropriate ―criterion‖ for visi-

bility judgment (e.g. (LAU, 2008; COWEY, 2010; KO AND LAU, 2012)). Note however that the concept of crite-

rion can be misleading because it incorrectly suggests a single scalar value. In the present framework, the 

―criterion‖ emerges as a set of decisional boundaries that delimit the categorical regions in the representa-

tional space, and that are specific to the selected task. A change in the task or in the priors may thus im-

pose a different division of space, and hence a shift in decision boundaries. 

- Second, consider experiments in which, within each class, the experimenter presents two visible 

targets B and C, and two invisible targets B‘ and C‘. If both the length and the variance of the input vec-

tors B‘ and C‘ are reduced compared to B and C, their visibility can drop without affecting discrimination 

performance (FIGURE 8.3.2).This case could correspond to a simultaneous manipulation of stimulus 

 

FIGURE 8.3 THREE WAYS IN WHICH STIMULUS VISIBILITY CAN BE MANIPULATED INDEPENDENTLY OF STIMULUS 

DISCRIMINABILITY. 

Top. Changing the prior of the Absent class affects the placement of the criterion for subjective 
visibility reports and can thus lead to a systematic report of invisibility, without affecting objective 
discrimination performance (purple) or detection sensitivity (green).  

Middle. Simultaneously changing the length and the variance of the input vectors jointly affects 
detection sensitivity and subjective visibility reports while preserving objective discrimination 
performance. (The Area Under the Curve (AUC) is an equivalent of d’ for continuous measures.) 

Bottom. Simultaneously changing the length (e.g. contrast) and the angle (e.g. ambiguity) of the input 
vectors can lead to a similar pattern of results. 
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strength (length of input vector) and of attention (variance of the input vector) as proposed by Rahnev 

and collaborators (RAHNEV ET AL., 2011).  

- Third, if both the amplitude and the angle of the input vectors B‘ and C‘ are decreased com-

pared to B and C, then B/C discrimination performance could be manipulated independently of visibility 

(FIGURE 8.3.3). This case could correspond to a simultaneous change in contrast and in stimulus ambiguity, 

for instance using morphing or blending to reduce the difference between B and C stimuli. 

The present account provides no less than three mechanisms by which blindsight, meta-contrast 

and inattention could produce their effects. Each mechanism could be explicitly tested by experimentally 

manipulating the contrast, the variance and/or the blending of sensory stimuli as well as the prior proba-

bility associated with each class.  

8.4.4. SUBJECTIVE REPORTS ARE OFTEN NON-LINEARLY RELATED TO SENSORY 

STRENGTH 

Empirical finding 4 is that a non-linear curve often relates the strength of sensory stimulation and 

visibility ratings (SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007; MELLONI ET AL., 2011). For example, 

when the stimulus onset asynchrony (SOA) separating a briefly flashed digit and its subsequent mask is 

varied linearly, a sharp transition in visibility occurs around an SOA of 50 ms: below this duration, subject 

tend to report the stimulus as completely unseen, whereas above it, stimuli are reported as clearly visible 

(SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007). However, this all-or-none visibility pattern does not 

characterize all types of subjective reports (SERGENT AND DEHAENE, 2004; SANDBERG ET AL., 2011; 

OVERGAARD AND SANDBERG, 2012; WINDEY ET AL., 2013). For example, Sergent and Dehaene (SERGENT AND 

DEHAENE, 2004) showed that the attentional blink leads to a much sharper non-linear pattern than back-

ward masking.  

We consider two classes B and C, within which the stimuli can vary parametrically in strength 

from trial to trial (FIGURE 8.4.1). This parametric variation is assumed to have a linear effect on the amount 

of sensory evidence in favour of the corresponding stimulus (i.e. the length of the input vector). In such 

cases, the model predicts that visibility responses are non-linearly related to stimulus evidence, as the MAP 

criterion imposes a decision boundary that sharply delineates the regions of space respectively responded 

with the ―seen‖ and ―unseen‖ labels. Interestingly, although the fraction of ―seen‖ responses is always a 

sigmoid, its slope may vary from a step-wise ―all-or-none‖ pattern to a shallow and near-linear function. 

The parameter driving this change in sigmoid slope is the variance in representational space. With higher 

variance, visibility becomes more linearly related to sensory evidence (FIGURE 8.4.1 right). This is because 

when variance increases, a greater number of Absent samples fall outside of the region responded classi-

fied as Absent, and, analogously, a greater number of present trials (B or C) fall outside their respective 

regions – ultimately leading to a flat relationship between stimulus evidence and discrimination perform-

ance. This change is also accompanied by an increased proportion of unseen responses. Contrarily, the 

sigmoid becomes sharper and the number of seen responses increases when the variance of the stimulus 

diminishes (FIGURE 8.4.1 left). 

The present model thus shows how both near-linear and non-linear visibility patterns can be pro-

duced by a single type of decision. The model also predicts that unseen trials should tend to be character-

ized by linear patterns, and seen trials with all-or-none patterns – an empirically verified phenomenon 

(SERGENT AND DEHAENE, 2004; DEL CUL ET AL., 2007; DE GARDELLE ET AL., 2011; DE LANGE ET AL., 2011; 

MELLONI ET AL., 2011). Because there is no unequivocal way of determining the internal variance of sensory 

inputs in existing experiments, the present account remains speculative. Nevertheless, stimulus variance 

could be explicitly manipulated in future experiments.  
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8.4.5. PRIOR KNOWLEDGE CAN LOWER THE VISIBILITY THRESHOLD 

 

 

FIGURE 8.4 INPUT VARIANCE AND PRIOR KNOWLEDGE CAN AFFECT THE NON-LINEARITY AND THE THRESHOLD OF 

SUBJECTIVE VISIBILITY REPORTS. 

Top. Parametrically varying stimulus strength directly changes the amplitude of the input vector and 
leads to a non-linear pattern of subjective visibility reports. The slope and the intercept of the resulting 
sigmoid depend on stimulus variance: low variance leads to an all-or-none relationship between the 
evidence and the visibility reports (left), whereas high variance leads to a more linear relationship as 
well as an increase in the visibility threshold (right).  

Middle. Prior knowledge can also affect the visibility threshold. Increasing the prior probability of the 
Absent class increases the visibility threshold for all stimuli, thus lowering subjective visibility reports. 
When only the prior probability of B is increased (capturing “hysteresis” experiments where subjects 
come to expect the next stimulus), then the visibility threshold is lowered for B alone, while the 
visibility threshold for C barely changes.  

Bottom. If the probability of the Absent class is relatively low (or similarly if the evidence is relatively 
high), increasing the variance reduces both visibility ratings and discrimination performance. 
However, when P(Absent) is high (or similarly, if the evidence is low), increasing the variance can 
diminish discrimination performance while increasing visibility ratings. This diagram captures the 
paradoxical finding that increased attention can lead to reduced visibility (RAHNEV ET AL., 2011). 
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Empirical finding 5 is that the threshold of subjective visibility is affected by prior knowledge 

(MOONEY, 1957; RODRIGUEZ ET AL., 1999; SIMONS AND CHABRIS, 1999; TALLON-BAUDRY AND BERTRAND, 1999; 

CUL ET AL., 2006; MELLONI ET AL., 2011). Prior exposure to a given word increases its objective identification 

and subjective visibility when the same word is later presented under stronger masking (CUL ET AL., 2006). 

Similarly, Melloni et al. (MELLONI ET AL., 2011) recently used a hysteresis experiment in which letters were 

embedded in white noise. Across a series of trials, the identity of the letter was fixed while its signal-to-

noise gradually increased, then gradually decreased. Subjects reported seeing the letter better in the de-

scending than in the ascending condition (i.e. once they knew the identity of the letter), even for identical 

physical stimulation. 

In the present model, these effects arise from changes in the priors for classes B and C. At the 

beginning of the ascending condition, stimulus evidence is low, and the B and C classes are equally likely. 

Once the stimulus has been identified, at the beginning of the descending condition, its prior probability 

P(B) is increased, and consequently P(A) and P(C) are decreased. Because the decision boundary for the 

―seen‖ response is partly determined by P(B), the ―seen‖ response is more likely in the descending se-

quence than in the ascending one (FIGURE 8.4.2). 

Although this account captures the influence of prior knowledge on visibility reports (CUL ET AL., 

2006), it oversimplifies the hysteresis experiment (MELLONI ET AL., 2011). Indeed, subjects are also likely to 

learn the structure of the ascending and of the descending sequences, and expect a higher frequency of 

absent trials towards the beginning of the ascending sequence and towards the end of the descending 

sequence. This expectation, if present, would again increase the prior probability of the ―unseen‖ re-

sponse, thus leading to increased reports of invisibility for these stimuli compared to physically identical 

stimuli presented in a random sequence. The model further predicts that B/C discrimination should re-

main identical in ascending and descending sequences. During the descending sequence, subjects should 

exhibit a bias towards B reports, due to the increased prior for B, but no change in d’. These predictions 

offer a way to test the validity of the present model. 

8.4.6. ATTENTION CAN EITHER INCREASE OR DECREASE VISIBILITY 

Empirical finding 6 is that attention and visibility can be paradoxically decorrelated. In many stud-

ies, attention increases detection sensitivity and subjective visibility (e.g. (KIM AND BLAKE, 2005; RAHNEV ET 

AL., 2011; SERGENT ET AL., 2013)). However, inattention can also lead to increased subjective visibility 

(RAHNEV ET AL., 2011). In Rahnev et al.‘s study (RAHNEV ET AL., 2011), subjects performed a basic detection 

task on a target whose location was validly cued on 70% of trials. Crucially, the contrast of the unattended 

target was adjusted to yield the same level of objective performance as the attended target. Remarkably, 

subjects reported that unattended trials were more visible than attended ones. 

If we assume that attention affects the variance of the input vector, the present model predicts 

that attention can lead to opposite visibility effects depending on the proportion of trials reported as seen 

or unseen (FIGURE 8.4.3). If P(Absent) is low, so that most trials are reported as seen, then increasing the 

variance diminishes both discrimination performance and visibility, because it increases the proportion of 

input vectors that fall close to the Absent class. This captures the classical effect that inattention increases 

noise and thus reduces both objective performance and subjective visibility. Importantly, however, if 

P(Absent) is high, so that most trials are reported as unseen, then increasing the stimulus variance still 

diminishes discrimination performance, but may paradoxically increase visibility ratings. This is because 

with higher variance, a greater number of samples fall outside of the region responded as ―unseen‖ and 

thus become subjectively visible (see FIGURE 8.4.3).  
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The model therefore predicts that attention can induce opposite effects on visibility and discrimi-

nation performance even when the mean evidence is unchanged. Contrarily to Rahnev et al. (RAHNEV ET 

AL., 2011), who argue that attention induces a conservative visibility bias by changing the inter-trial variance 

of the stimulus, we predict that visibility ratings are influenced by an interaction between the variance and 

the initial visibility threshold (determined by prior knowledge or stimulus evidence). Once again, this pre-

diction could be tested in an experiment explicitly manipulating stimulus variance, contrast and priors. 

8.5. EXPERIMENTAL TEST OF THE MODEL 

Most the above arguments account for empirical observations only in retrospect. We thus opted 

to confront the present model to a novel experimental setup. The model critically predicts that linear and 

non-linear profiles of behavioural responses arise from the same decision mechanism. In particular, it predicts 

that the discrimination profile of physically identical stimuli will increasingly become non-linear as visibility 

increases (FIGURE 8.2.2 and FIGURE 8.4.1).  

We tested this prediction by linearly varying a parameter λ to create a continuum between two 

perceptual classes B and C. For λ=0, the stimulus is B, for λ=1, the stimulus is C, but we can create an 

arbitrary series of intermediate stimuli S(λ)= λA+ (1- λ)B. Whereas de Gardelle et al. (DE GARDELLE ET AL., 

2011) used a linear morph between two faces, here we varied the contrast of a single line to create a con-

tinuum between two different digits (e.g. ). Geometrically, such a continuum can be represented 

as a line joining the prototypical vectors of each class (FIGURE 8.5). We presented the stimuli at perceptual 

threshold, such that for a fixed stimulus, there was a large number of both ―seen‖ and ―unseen‖ subjective 

reports.  

The model predicts that the steepness of discrimination performance should increase as subjec-

tive visibility increases. Stimuli rated as ―unseen‖ should be categorized better than chance (FIGURE 8.2.1), 

but with a shallow slope because such stimuli are necessarily close to the ―absent‖ class. Conversely, highly 

visible stimuli should yield a steeper sigmoidal function (FIGURE 8.4.1). Thus, we expected significantly 

better identification performance on ―seen‖ compared to ―unseen‖ trials (FIGURE 8.1.2), and an increas-

ingly ―all-or-none‖ response pattern as a function of stimulus ambiguity λ (FIGURE 8.5).  

8.5.1. METHOD 

Nineteen healthy volunteers, with normal or corrected-to-normal vision, participated after giving 

informed consent (29% males, Age: 25 ± 5 years old, 88% right handed). Each trial began with the pres-

entation of an ambiguous digit (target) presented for 83 ms and subsequently masked by pseudo-random 

black surrounding letters displayed for 67 ms. Subjects were asked to identify in less than 2 s which of 

four digits was presented (5, 6, 8 or 9), using their left and right index and middle fingers. Visual feedback 

was given for non-ambiguous trials (morphs at 0% or 100%): misidentifications were followed by a 100 

ms red fixation cross, whereas correct identifications were followed by 100 ms green fixation cross. Sub-

jects subsequently reported subjective visibility using a 10-point vertical rating scale (bottom: not seen, 

top: clearly visible). Subjects used the two middle fingers to change the location of the randomly-placed 

visibility cursor, and pressed the space bar with their thumb to validate the visibility rating. The inter-trial 

interval was fixed at 300 ms. Subjects performed a total of 1000 trials divided into 25 blocks, at the end of 

which their median reaction times and their accuracy were displayed. The experiment lasted approximately 

one hour. 
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Prior to the main experiment, subject performed a staircase procedure similar to the main task 

(100 trials with unambiguous targets, no visibility ratings, and no time limit). The contrast was lowered to 

reach an accuracy of ~70% (KAERNBACH, 1991). Target contrast then remained fixed throughout the main 

experiment. The staircase procedure was repeated up to five times in case of an unstable perceptual 

threshold. Two subjects who failed to converge to a stable threshold were excluded.  

All stimuli were generated on a computer using INKSCAPE, MATLAB 2009b and the Psycho-

physics Toolbox and were displayed on a 17‘‘ computer CRT screen (1600 x 900 refreshed at 60 Hz). The 

screen background colour was 50% gray throughout the whole experiment and a black fixation-cross was 

constantly presented in the middle of the screen. Targets were morphs between two digits (5-6, 5-9, 6-8, 9-

8) each made of 5 to 7 black bars (FIGURE 8.5). In each pair, a single bar varied between gray (background 

colour) to maximal contrast in eight linear steps (parameter λ varying from 0 to 1 in steps of 0.143). Masks 

were composed of four pseudo-random capital letters constructed from the same basic visual features as 

the digits and were located at the top (E, O, U, Z), at the bottom (A, F, P Z), to the left (A, H, O, U) and 

to the right (E, F, P H) of the target digit. Symbols subtended 0.45° x 0.85° and were presented to the left 

or to the right side of the fixation (2.12°). Masks were centred on the previously presented target (1.23° x 

2.27°). Targets, masks and their respective location were randomly selected at each trial. On 15% of trials, 

the target was absent and replaced by a gray background. 

8.5.2. RESULTS 

 

 

FIGURE 8.5 EMPIRICAL TEST OF THE PREDICTED VARIATION IN NON-LINEAR CATEGORIZATION AS A FUNCTION OF VISIBILITY. 

To test whether linear and non-linear subjective reports could be accounted by a single type of decision, 
we parametrically varied the evidence (λ) favouring four different stimuli (5, 6, 8, 9) by creating 
morphs between pairs of these digits. For each morph, on each trial, subjects performed a forced-choice 
identification task and provided a subjective visibility report. The present framework predicts that the 
steepness of the sigmoid characterizing discrimination performance as a function of λ should increase 
with subjective visibility. The results (n=17) confirm that i) stimuli could be identified above chance 
even at the lowest visibility ratings ii) discrimination performance correlated with visibility ratings, 
and iii) increasingly steeper sigmoids indicated that identification performance was more categorical 
for clearly visible stimuli than for unseen stimuli. 
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Unambiguous targets were accurately identified on 67.7% of trials (SD = 14.1%, t(16) = 5.00, p < 

.001) confirming that the staircase procedure was efficient (targeted accuracy: 70%). Subjects used the 

visibility scale appropriately, as indicated by their more frequent use of the 0% visibility response on tar-

get-absent trials than on target-present trials (36.7% vs. 16.9% of trials, t(16) = 4.867, p = < .001). Subjects 

used the entire visibility scale on target-present trials, from 0% visibility (16.9% of trials) up to 100% visi-

bility (18.7% of trials). 

We sorted trials as a function of reported visibility (10 levels), and within each level, examined 

how identification responses varied as a function of bar contrast (parameter λ). We only focused on the 

two adequate responses to a given morph (e.g. responses 5 or 9 for the 5-9 morph), and computed the 

fraction of these responses that corresponded to reporting the presence of a bar. We used R software to 

fit a binomial distribution as a function of bar intensity, separately for each subject and each visibility level. 

As seen in FIGURE 8.5, subjects‘ choices varied significantly as a function of bar contrast at all visibility 

ratings (all p < .001). Thus, subjects discriminated digits at above-chance level even on trials when they 

reported no subjective perception. Furthermore, as predicted, the slope of the sigmoid function increased 

significantly with visibility ratings (r² (15) = .79, p = .004). Thus, discrimination performance improved 

with subjective visibility ratings. Trials rated as invisible had such a shallow slope that the response pro-

portion were nearly linearly related to the intensity of the bar, while trials rated as highly visible resulted in 

a nearly stepwise, ―all-or-none‖ response function. 

8.5.3. DISCUSSION OF THE EXPERIMENT 

Although subjects were presented with identical stimuli, subjective reports varied considerably 

from trial to trial, from total invisibility to maximal visibility. Furthermore, three predictions were verified: 

(1) identification scores were always higher than chance level; (2) they increased with visibility; (3) when 

varying the degree of ambiguity λ, objective identification became increasingly non-linear as subjective 

visibility increased. These results confirm that, for physically identical stimuli, visibility is associated with a 

greater degree of ―all-or-none‖ perception, a finding that the framework can explain without any addi-

tional assumption (i.e. no need to postulate a qualitative difference between conscious and unconscious 

processing). 

Our results extend a previous study by de Gardelle et al. (DE GARDELLE ET AL., 2011), which exam-

ined the amount of masked repetition priming elicited by a morphed face when the prime was unmasked 

(SOA = 300 ms) or heavily masked stimuli (SOA = 43 ms). As in the present experiment, they observed 

linearly increasing priming for invisible morphs, and categorical priming for visible morphs. Although the 

authors proposed that this dissociation reflected two distinct processes (unconscious analogue versus 

conscious discrete), the present model suggests that this interpretation is unnecessary: even within a single 

decision process, response patterns may vary in their degree of non-linearity depending on the mean and 

variance of the stimulus evidence. 

The model further predicts that, when conscious perception occurs, subjects perceive the stimuli 

strictly categorically (digit 5 or 9, but no intermediate percept). According to Harnad‘s definition (HARNAD, 

2003), categorical perception is defined by ―within-category compression and between-category separa-

tion‖. Such a definition, implying an increased discriminability of items presented close the decision 

threshold, can only be tested using an experimental method in which two stimuli are compared. In an-

other paper (KING ET AL., IN PREPARATION), we present additional evidence that the conscious experience of 

our morphs follows Harnad‘s definition of categorical perception (HARNAD, 2003). First, discriminability is 

indeed enhanced for pairs of digits presented near the perceptual boundary. Second, when presented with 

two identical ambiguous morphs, subjects frequently judge that the stimuli differ, as predicted if each has 

a ~50% chance of falling in either of two discrete perceptual categories. Third, when the present identifi-
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cation task is replicated using a continuous response scale, subjects respond bimodally and barely use the 

intermediate levels to report perceiving a mixture of two digits. Thus, at least for this type of stimuli, and 

as postulated in our theoretical premises, what we consciously perceive seems to result from a categorical 

decision among a limited number of classes (see also (MORENO-BOTE ET AL., 2011; GERSHMAN ET AL., 2012)). 

8.6. GENERAL DISCUSSION 

We have shown how a simple geometrical framework for subjective report and objective dis-

crimination tasks, based on Signal Detection and Bayesian Theories, can account for six fundamental find-

ings in behavioural studies of conscious and unconscious perception. The present model subsumes a se-

ries of frameworks describing both conscious and unconscious perception as statistical inferences 

(KERSTEN AND YUILLE, 2003; KERSTEN ET AL., 2004; KNILL AND POUGET, 2004; DOYA, 2007; KNILL AND 

RICHARDS, 2008; LAU, 2008; SHADLEN ET AL., 2008). The core of our hypothesis is that, during perception, the 

brain is faced with a massive classification problem. Each task, including conscious identification and 

subjective report, imposes, in a top-down manner, a set of classes along which the stimuli can be classi-

fied. Contrarily to most laboratory tasks, open-ended subjective reports are typically based on numerous 

features and classes. A picture naming task, for instance, typically involves tens of thousands of classes. 

Like others before us (GREEN AND SWETS, 1966; KLEIN, 1985; KO AND LAU, 2012), we thus insist on the ne-

cessity to conceptualize decisions within a multidimensional framework. This conceptualization leads to 

several important methodological and theoretical consequences. 

Firstly, the present model goes against the idea that subjective reports of ―not seeing‖ are neces-

sarily unreliable because they can be affected by conservative response biases (ERIKSEN, 1960; GREEN AND 

SWETS, 1966; MERIKLE, 1982; HOLENDER, 1986), and that objective measures such as detection sensitivity (d’ ) 

should be favoured (see review in (KOUIDER AND DEHAENE, 2007)). On the contrary, we show that subjec-

tive reports cannot be reduced to objective measures (ERIKSEN, 1960; MERIKLE, 1982; HOLENDER, 1986) nor 

to second-order measures such as confidence rating and post-decision wagering (LAU AND PASSINGHAM, 

2006; PERSAUD ET AL., 2007; LAU, 2008; RAHNEV ET AL., 2011). In particular, the present model predicts that 

visibility and confidence should be partially correlated (FIGURE 8.2) but experimentally dissociable. This 

prediction is well supported by recent empirical findings showing that second-order judgments can be 

performed above chance on unseen stimuli (KANAI ET AL., 2010; SANDBERG ET AL., 2011; OVERGAARD AND 

SANDBERG, 2012; CHARLES ET AL., 2013). In the present model, subjective visibility reports reflect a legitimate 

decision process whose details can and should be accounted for. As recently demonstrated (CUL ET AL., 

2006; SCHWIEDRZIK ET AL., 2009; MELLONI ET AL., 2011), a shift in visibility criterion reflects the underlying 

prior probabilities and cost functions of the subjects‘ internal model of the world, and, consequently, 

should not be disregarded as an experimental confound. What we call a ―subjective‖ report may simply be 

the brain‘s best attempt at solving a difficult perceptual decision problem with myriad of potential classes, 

each with different costs and prior probabilities that depend on the subject‘s prior experience.  

Secondly, the model shows, in a principled manner, how experimental conditions can be designed 

to equate discrimination performance between seen and unseen trials (FIGURE 8.3). In a series of behav-

ioural experiments, Lau and collaborators have equated objective discrimination performance between 

seen and unseen responses, in an attempt to isolate conscious processing independently of other pre- or 

post-perceptual increases in information processing (LAU AND PASSINGHAM, 2006; LAU, 2008; RAHNEV ET AL., 

2011). The present geometrical analysis suggests that Lau‘s experiments have adopted only a subset of the 

possible solutions: masking the stimuli at different levels (LAU AND PASSINGHAM, 2006) or changing the 
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amount of attention they receive (RAHNEV ET AL., 2011) may both change the signal-to-noise ratio of the 

incoming evidence. However, under such conditions, discrimination performance is equated at the ex-

pense of introducing physical differences between the visible and invisible stimuli. It is therefore unclear 

whether contrasting the two reflects an effect of visibility or of the stimulus‘ physical properties. Conse-

quently, it may be preferable to use physically identical stimuli and alter subjective visibility by changing 

the priors (FIGURE 8.3, top) – a solution indeed adopted in several recent studies (CUL ET AL., 2006; 

SCHWIEDRZIK ET AL., 2009; MELLONI ET AL., 2011). 

Finally, the empirical finding of a non-linear sigmoidal relationship between subjective visibility 

reports and the physical properties of a stimulus (VORBERG ET AL., 2003; DEHAENE ET AL., 2006B; DECO ET 

AL., 2007; KOUIDER AND DEHAENE, 2007; QUIROGA ET AL., 2008; DE GARDELLE ET AL., 2011; DE LANGE ET AL., 

2011) has led to the notion that conscious perception is an all-or-none phenomenon (SERGENT AND 

DEHAENE, 2004; DEL CUL ET AL., 2007; MELLONI ET AL., 2011). The present model readily reproduces this 

non-linear pattern (FIGURE 8.4.1), but it also predicts exceptions in cases of high stimulus variance or low 

signal-to-noise ratio. These predictions remain untested, but may offer potential explanations to studies 

revealing a linear relationship between stimulus evidence and subjective reports (SERGENT AND DEHAENE, 

2004; SANDBERG ET AL., 2011; OVERGAARD AND SANDBERG, 2012; WINDEY ET AL., 2013). In the future, directly 

manipulating the mean and the variance of stimulus evidence could clarify the role of each of these factors 

in linear and non-linear response patterns to sensory manipulations. 

According to the present model, the reason why unconscious responses tend to be linearly related 

to stimulus evidence is simple: when perceptual evidence is low enough to be categorized as ―unseen‖, the 

evidence necessarily lies close to the origin of the multidimensional space and therefore leads to shallow 

(though above-chance) forced-choice curves. We tested this idea in an original experiment, and the results 

confirmed that fixed stimuli presented at threshold lead to quasi-linear discrimination when reported as 

unseen, but to a sharp sigmoid discrimination curve when reported as seen. Contrarily to previous pro-

posals (DEL CUL ET AL., 2007; DE GARDELLE ET AL., 2011; CHARLES ET AL., 2013) the present model accounts 

for these findings without having to postulate that distinct processes operate below and above the thresh-

old for conscious perception.  

8.6.1. LIMITS OF THE MODEL AND POSSIBLE EXTENSIONS 

For simplicity we postulated that the very same representational vector is used for different tasks. 

The idea is that the same input vector is ―resampled‖ several times with different response classes (e.g. a 

discrimination task followed by a visibility task on the same trial). This resampling assumption is sup-

ported by a recent experiment (VUL ET AL., 2009A) in which, within a rapid stream of letters, subjects were 

asked to identify the one that was circled by a visual cue. On each trial, subjects provided as many as four 

mutually exclusive guesses about the target letter. The results showed that all guesses were sampled from 

an identical distribution centred on the position and/or the time of the cue. This experiment suggests that 

the posterior probability of each letter was computed once and for all, and that successive guesses corre-

sponded to the maximum a-posteriori (MAP) after excluding the previous answers, exactly as expected 

from the present model.  

Nevertheless, in other contexts, the hypothesis that the input vector remains unchanged and iden-

tically available for a series of successive judgments may turn out to be simplistic. Temporal decay may 

affect the quality of decisions made after a delay (SPERLING, 1960), particularly for unconscious stimuli 

(GREENWALD ET AL., 1996; DUPOUX ET AL., 2008). A recent study suggests that an attentional cue presented 

after a sensory stimulus can retroactively improve its visibility (SERGENT ET AL., 2013). The task set imposed 

by a first task may also change the quality of the evidence available for a second task (JAZAYERI AND 

MOVSHON, 2007). Similarly, the order in which two questions are presented may influence the subject‘s 
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answers (GILOVICH ET AL., 2002). Busemeyer et al. (BUSEMEYER ET AL., 2011) have proposed to account for 

the latter phenomenon with a computational principle inspired from quantum mechanics, according to 

which each successive judgment alters the input vector by projecting it onto a subspace defined by the 

task. As projections are not commutative, the order of successive questions can change the successive 

decisions. It remains to be seen whether such non-commutativity is a fundamental principle that should 

be added to the present model. 

Another limit of the present model lies in its assumption, shared with SDT that decisions are 

based on a single input vector. A natural extension of the model would represent a sensory input as a 

series of samples, i.e. a trajectory in multidimensional space. Indeed, SDT has been superseded by sequen-

tial sampling models (RATCLIFF AND ROUDER, 1998; GOLD AND SHADLEN, 2001; LEITE AND RATCLIFF, 2010), 

according to which each decision is based on an accumulation of noisy samples arising from the stimulus. 

Whichever accumulator first reaches a fixed threshold is selected as the winner of the perceptual decision. 

Models of this kind are supported by a large set of empirical findings, (RATCLIFF ET AL., 1999; KNILL AND 

RICHARDS, 2008; SHADLEN ET AL., 2008; DEHAENE, 2009; LIU AND PLESKAC, 2011) and account, not only for 

response proportions, but also for response times and their distributions (RATCLIFF ET AL., 1999; RATCLIFF 

AND MCKOON, 2008; LEITE AND RATCLIFF, 2010). Extending the present model in this direction, as at-

tempted by Del Cul et al. (DEL CUL ET AL., 2007), would lead to precise predictions about subjects‘ reaction 

times in objective and subjective tasks. 

In the tradition of ―ideal observer‖ analyses, we also assumed that the decision system is fully in-

formed of the stimulus distributions and uses optimal priors and likelihood functions to compute the 

posterior probability of each response class. This is undoubtedly an idealization. A dynamic model in 

which the likelihood functions, priors and costs would be learned by updating them after each trial, and 

may therefore be ill-estimated, may go a long way towards explaining a variety of human deviations from 

optimality. For instance, using a model similar to the present one, Ko and Lau (KO AND LAU, 2012) pro-

posed an account of blindsight as an inadequate revision of priors following the radical decrease in visual 

input strength caused by a lesion to area V1 (similar to FIGURE 8.3, top). Confidence judgments and visibil-

ity ratings would be particularly affected by inadequate priors and likelihoods, because the present model 

assumes that these tasks require a quantitative estimation of the posterior probabilities (FIGURE 8.1). In 

agreement with this idea, Rahnev, Lau and collaborators (RAHNEV ET AL., 2011, 2012A) performed a series of 

experiments in which human observers deviated radically from optimality in their confidence judgments. 

Their findings could be explained by assuming that subjects used a single estimate of input variance for 

distinct experimental conditions (e.g. for attended versus unattended trials). This interpretation is compati-

ble with the present model, and with the general idea that there are sharp limits to the number of decision 

criteria that subjects may deploy on a given trial (GOREA AND SAGI, 2000, 2010).  

8.6.2. NEURAL MECHANISMS 

The present model was framed at an abstract mathematical level of description. While this ap-

proach provides useful geometrical intuitions and a simple testable framework, an important future en-

deavour will be to flesh it out at the neural level. The vast representational space may correspond to the 

function of posterior unimodal and multimodal sensory areas, where many neurons render explicit dimen-

sions of the stimuli that are only encoded implicitly and in a distributed form in the sensory periphery. 

Their role may be to augment the dimensionality of sensory inputs and therefore facilitate decision making 

by turning decisions into linearly separable problems (DICARLO ET AL., 2012). The categorical decision sys-

tem, in turn, could be subserved by areas of the dorsolateral and inferior prefrontal cortices as well as 

anterior temporal and superior parietal cortices. These areas have been proposed to form a ―global work-

space‖ where conscious information is maintained and broadcasted to additional processes (DEHAENE AND 

CHANGEUX, 2011). They receive the necessary convergence of multimodal inputs and are known to con-
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tribute to both decision making and to all-or-non conscious perception (FREEDMAN ET AL., 2002; WOOD 

AND GRAFMAN, 2003; DEHAENE AND CHANGEUX, 2011). Explicit simulations of such recurrent networks with 

winner-take-all dynamics show how they tend to quickly converge to a discrete stable attractor (DEHAENE 

ET AL., 2003) which approximates the maximum-likelihood estimate (DENEVE ET AL., 1999; WANG, 2008). The 

dynamics of such networks may therefore account for the categorization which the present model consid-

ers as inherent to conscious perception. 
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9.1. SUMMARY 

9.1.1. AIM OF THE THESIS 

Over the last five decades, subjectivity has become progressively objectified. The computational 

mechanisms and neural bases responsible for conscious perception have now started to be empirically and 

systematically dissected in the laboratory and in clinics. Two main experimental methods have been devel-

oped for that purpose, each referring to transitive (e.g. conscious of something) and non-transitive (i.e. she 

is conscious) meanings of consciousness:  

- A first set of experimental methods have been used to compare subjects‘ behaviour and brain ac-

tivity in response to conscious and unconscious stimuli in healthy subjects (e.g. backward masking, 

attentional blink etc.) as well as in patients (e.g. blindsight, neglect etc.) 

- A second set of experiments have been used to compare subjects‘ brains and behaviours under 

normal wakefulness and under physiological (e.g. wake versus sleep), pharmacological (e.g. anaesthe-

sia) and pathological loss of consciousness (e.g. epilepsy). 

The present thesis focused on vegetative and minimally conscious state patients, who offer an ex-

ceptional situation in which arousal and consciousness can apparently be dissociated. Arguably, this disso-

ciation provides an even more subtle contrast that the physiological and pharmacological losses of con-

sciousness, and thus explores the neural theories of consciousness in a novel situation. In particular, two 

questions motivated the present research: 

- Can the vegetative and minimally conscious state patients improve our scientific understanding of 

conscious and unconscious processes?  

- And, in return, can science improve the diagnoses, and therefore the clinical care, of these pa-

tients? 

9.1.2. MAIN RESULTS 

The precise results obtained in each study have already been summarized in each chapter. How-

ever, the discussion section can be taken as an occasion to regroup them along two transversal axes: 

 In a first series of studies, I have investigated the extent to which the putative neural signatures of 

consciousness, as predicted by several neuronal theories of consciousness, efficiently discrimi-

nated the brain activity of vegetative and minimally conscious state patients. In this regard, I have 

presented in CHAPTER 3. and CHAPTER 7. (also see FIGURE 1.24 from COMMENT 1) a series of ex-

perimental findings supporting the idea that conscious processes are best indexed by late (as op-

posed to early) evoked related potentials (DEHAENE ET AL., 1998A, 2006B; DEHAENE AND NACCACHE, 

2001; SUPÈR ET AL., 2001; LAMME, 2006B, 2010; DEHAENE AND CHANGEUX, 2011; SERGENT AND 

NACCACHE, 2012). Indeed, a change of tone within a series of five sounds elicited similar early 

brain activity in vegetative and minimally conscious state patients. In contrast, the rare and unex-
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pected occurrence of five sound sequences elicited a late change of brain activity only in the group 

of patients who demonstrated residual signs of conscious behaviour.  Moreover, I have presented 

in CHAPTER 6.  evidence suggesting that the amount of information shared across different brain 

regions was largely impaired in vegetative state patients as compared to conscious and minimally 

conscious state patients.  Finally, and as detailed in CHAPTER 6. and CHAPTER 7. , this change was 

accompanied by an overall increase of low frequency rhythms and of the complexity of the elec-

trophysiological activity, as explicitly predicted by several theories of consciousness (TONONI AND 

EDELMAN, 1998; TONONI ET AL., 1998; TONONI, 2004, 2008; SETH ET AL., 2006, 2008, 2011; SETH, 2007).  

 These clinically-oriented studies have been accompanied by a series of original methods, empirical 

evidence and theoretical concepts aimed at refining the current models of conscious processing. 

In CHAPTER 3. , I have shown how multivariate pattern analyses could be used to maximize the ex-

traction of information from the brain activity evoked by unexpected auditory stimuli. This tech-

nical achievement led to the formalization of a novel analysis that characterizes the dynamical 

structure of neural responses to sensory stimulations. Indeed, in CHAPTER 4.  and CHAPTER 5. , I 

have shown that temporal generalization method can reveal qualitatively different neural dynam-

ics and thus offer a powerful research tool. Multivariate approaches can also be useful for theories 

of consciousness. In CHAPTER 8. , I have sketched a simple multidimensional model, based on sig-

nal detection theory and Bayesian inferences that captures several important findings from previ-

ous studies on consciousness. Together, these methodological and theoretical proposals open 

novel avenues to the study of conscious and unconscious processes. 

However, this work is still in progress, and several bridges should still be established to com-

pletely link these studies. In particular, the framework proposed in CHAPTER 8. remains simplistic and, 

perhaps most importantly, disconnected from the brain. Future developments and research will thus be 

necessary to pursue and precise this approach and ultimately test whether unresponsive patients present a 

specific impairment of their perceptual decision making system. 

9.2. IMPLICATIONS FOR THE THEORIES OF CONSCIOUSNESS 

The empirical results obtained over the course of the present thesis can be used to refine current 

neural theories of consciousness. The relationships between conscious perception, information sharing 

and information maintenance will be discussed. 

9.2.1. IS CONSCIOUSNESS IDENTICAL TO INFORMATION SHARING? 

As detailed in the literature review, a number of theories establish a strong link between con-

sciousness and information sharing (TONONI, 2004; DEHAENE ET AL., 2006B; LAMME, 2010; DEHAENE AND 

CHANGEUX, 2011) and some even go as far as to equate the two (TONONI, 2004, 2008). This concept, already 

proposed by Dennett in his ―fame in the brain‖ metaphor (DENNETT, 1992), postulates that a particular 

neural event would lead to conscious perception if, and only if, it significantly impacted on the rest of the 

brain activity. Similarly, Baars has argued that information is consciously accessible if, and only if, it is 

―globally broadcasted‖ (BAARS, 1989). More recently, Tononi has formalized the quantification of informa-

tion sharing in a mathematical equation (TONONI, 2004, 2008) and claims that the extent to which informa-

tion is ―integrated‖ across the multiple elements of a system directly reflects its level of consciousness. 

Similar methods are based on different information theory principles such as complexity and causal den-

sity  (SETH, 2007). 
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In the present set of studies, I have shown that the amount of mutual information shared across 

brain regions appeared to be proportional to the state of consciousness of poorly and non-communicating 

patients. Furthermore, entropy measures of the EEG signal, applied to both the time and frequency do-

mains, revealed that the complexity of patients‘ brain activity correlated with their state of consciousness. 

Together, these results fit with the above theoretical proposals: the state of consciousness appears to be 

indexed by the amount of information shared within the brain. 

However, the present evidence remains superficial. First, the above empirical findings are solely 

based on EEG signals. Our ability to measure information sharing across neuronal assemblies, and in 

particular, our ability to quantify the directed flow of information across them is therefore extremely lim-

ited. As discussed below, the brain areas that contribute to this finding and the precise dynamics of their 

underlying neuronal activity remain unknown.  

Beyond these empirical limitations lies a potentially more profound epistemological issue. Indeed, 

equating consciousness to information sharing implies that consciousness is a homogeneous and continu-

ous property. However, the working definitions proposed at the beginning of the present thesis are based 

on specific and generally qualitative behaviours. For example, the state of consciousness is determined ac-

cording to subjects‘ qualitative response to sensory stimulations. Measuring the state of consciousness is 

thus a way to summarize the preservation of a number of distinct behavioural abilities, and not the amount 

of a homogeneous quality. It is thus currently unclear how the state of consciousness could be measured 

with a continuous measurement. However, this may not be a helpless situation. Indeed, in masking proto-

cols, Sergent and collaborators have for instance demonstrated that subjects could use continuous visibil-

ity reports (SERGENT AND DEHAENE, 2004; SERGENT ET AL., 2005). Interestingly, in attentional blink experi-

ments, subjects demonstrated bimodal responses: they tended to either report the stimulus as completely 

seen, or, conversely, as completely unseen. It would thus be particularly interesting to propose an analo-

gous continuous metric of subjects‘ state of consciousness, and test it to legitimate or, conversely, invali-

date the premise of a categorical distinction between conscious and unconscious states. 

9.2.2. IS CONSCIOUSNESS IDENTICAL TO INFORMATION MAINTENANCE? 

Information maintenance is also at the core of several of the models of consciousness. This is 

particularly the case for the global neuronal workspace theory in which the neurons of the ―global work-

space‖ send top down signals in the selected areas, in order to sustain the relevant neuronal activity 

(DEHAENE ET AL., 1998A, 2006B; DEHAENE AND CHANGEUX, 2011).  

The results found in the present thesis fit with this idea by revealing several links between con-

scious perception and information maintenance: 

- While a change of sounds elicited both early and late event-related potentials in minimally con-

scious and conscious patients, only the early EEG components were preserved in vegetative state 

patients. As discussed in CHAPTER 3. and CHAPTER 7. , this result thus suggests that vegetative state 

patients are specifically impaired in their ability to produce sustained brain responses. 

- The Local Global protocol establishes two types of auditory regularities, one of which is based on 

the learning of a regular sequence of sounds across trials. Consequently, subjects are required to 

sustain the specific sequence (i.e. the ―rule‖) in working memory from trial to trial. On average, 

vegetative state patients did not present any specific brain responses to the violation of this rule. 

This result therefore suggests that these patients were not able to form and/or maintain the audi-

tory sequence in working memory.  

- Time generalization analyses applied to MEG recordings of healthy subjects demonstrated that 

the violation of such global rule (arguably associated with consciousness) induced a sustained 
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brain activity, whereas the local rule (considered to be partially independent of consciousness) in-

duced a series of transient activations. Unfortunately, the signal to noise ratio in patients‘ EEG 

was too low apply a time generalization across time analysis. As a consequence, it remains difficult 

to determine whether the sustained brain activity observed in healthy subjects is similar in pa-

tients.  

- The above results are all linked to the P3 component. It may be further noted that the contingent 

negative variation (CNV), known to mark subjects‘ attention towards an incoming stimulus 

(WALTER ET AL., 1964; FAUGERAS ET AL., 2012), was largely diminished, if not completely absent, in 

vegetative state patients. This result, which confirms a recent finding (FAUGERAS ET AL., 2012), may 

reflect patients‘ inability to sustain their attention to the auditory stimuli, and thus provides fur-

ther evidence for the link between sustained neural activity and conscious perception.  

Finally, it is interesting to note that the temporal generalization method detailed in CHAPTER 4. and 

CHAPTER 5.  would potentially provide a powerful tool to precisely investigate the link between sustained 

neural activity and conscious processing. In particular, the models of Lamme (SUPÈR ET AL., 2001; LAMME, 

2006B, 2010) and of Dehaene et al. (DEHAENE ET AL., 1998A, 2006B; DEHAENE AND CHANGEUX, 2011)postulate 

the existence of two very distinct types of neural responses. The so-called fast feedforward sweep is be-

lieved to transiently recruit a series of different brain regions in response to both visible and invisible 

stimuli, and should thus lead to a ―diagonal pattern‖ of generalization across time (see CHAPTER 4. and 

CHAPTER 5. ). By contrast, the feedback mechanisms, believed to integrate and maintain neural informa-

tion, should generate sustained brain activity patterns, and thus led to a ―square pattern‖ of generalization 

across time.  

In an ongoing collaboration with Lucie Charles, I have tested these two predictions. I applied the 

temporal generalization method to MEG recordings of subjects who participated in a classic backward 

masking experiment (DEL CUL ET AL., 2007; CHARLES ET AL., 2013, N.D.). The time separating the stimulus and 

its subsequent mask was varied between 16 ms and 83 ms (present trials). For each subject, the temporal 

generalization analysis compared the activation elicted by each stimulus to the mask only condition. The 

results, summarized in FIGURE 9.1 reveal that: 

- the stimuli masked after 16 ms, and thus generally reported as unseen, evoked a diagonal generali-

zation matrix. 

- the stimuli masked after 83 ms, and thus generally reported as seen, evoked both a strong diago-

nal and a square pattern of generalization across time.  

In other words, both visible and invisible conditions were accompanied by a series of distinct 

brain activations, as predicted by the feedforward sweep. By contrast, only the visible trials were accom-

panied by a sustained neural activity, rising from 250 ms to 800 ms after the presentation of the stimulus. 

If confirmed, this result would particularly well fit with Lamme‘s and Dehaene and colleagues‘ theories of 

conscious processing and thus reinforce the idea that conscious perception is strongly associated with 

sustained neural activity.  
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9.2.3. WHICH AREA(S) CRITICALLY SUPPORT(S) CONSCIOUS PERCEPTION? 

As detailed in the literature review, the various theories of consciousness propose different neural 

mechanisms to explain conscious and unconscious processes. Several authors have for instance argued 

that neural information is bound into a single conscious perception by a synchronizing mechanisms either 

distributed over the cortex (e.g. (CRICK AND KOCH, 1990A; SINGER AND GRAY, 1995B; FRIES, 2005; TALLON-

BAUDRY, 2009)) or coordinated by the thalamus (e.g. (RIBARY ET AL., 1991; LLINÁS ET AL., 1998)). By contrast, 

others have proposed that information sharing is implemented via horizontal and top-down cortico-

  

FIGURE 9.1 TEMPORAL GENERALIZATION METHOD APPLIED TO BACKWARD MASKING PROTOCOL (KING, CHARLES, 
DEHAENE, IN PREP) 

(A) Subjects had to determine whether a masked digit was higher or lower than 5 and 
subsequently indicated the visibility of the stimulus on a 10 point scale (DEL CUL ET AL., 2007; 
CHARLES ET AL., 2013, N.D.). The visibility of the stimulus was experimentally manipulated by 
varying the stimulus onset asynchrony (SOA) between the digit and the mask. 

(B) Applying the temporal generalization analysis decode the presence of the stimulus from 
subjects’ MEG recordings revealed quantitative and qualitative changes with the increase of 
SOA duration. Brief SOAs tended to elicit a weak diagonal generalization matrix suggestive of 
a sequential activation of different brain regions. By contrast, longer SOAs tended to elicit a 
combination of a strong diagonal generalization pattern, a reactivation of the early ERFs 
around 300 ms and a sustained brain response between, 400 and 800 ms after stimulus onset. 

(C) Only stimuli reported as seen evoked a sustained brain response between 400 and 800 ms. 
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cortical connections (SPORNS ET AL., 1989; LAMME AND ROELFSEMA, 2000; DEHAENE ET AL., 2003; ZYLBERBERG 

ET AL., 2010).  

In the present set of studies, and with the exception of the intracranial recordings (CHAPTER 3. ), 

the precise anatomical location of the brain activity we recorded is difficult to establish. Furthermore, 

since EEG and MEG are most likely unable to capture thalamic activity (HÄMÄLÄINEN ET AL., 1993), the 

present findings cannot support, nor completely rule out, the involvement of the thalamus in conscious 

processing. The present results therefore remain limited in their ability to provide a precise anatomical 

understanding of conscious and unconscious processes.  

Nevertheless, two relatively unexpected results are worth underlining in this regard: 

- A minimal difference in the state of consciousness (vegetative versus minimally conscious) is not 

accompanied by a focal topographical change, nor by a unique change in brain activity. Rather, 

the results demonstrate a myriad of changes observable all over the scalp, and in many different 

dimensions (CHAPTER 3. , CHAPTER 6. and CHAPTER 7. ). 

- The topography of the EEG markers that correlated with patients‘ states of consciousness did 

not suggest a particular role of anterior brain regions. Indeed, and with the exception of the con-

tingent negative variation (CNV) and the delta power (< 4 Hz), most markers did not present a 

frontal topography but rather revealed a centro-posterior topography. This particularly the case of 

wSMI, the P3b and spectral markers. 

Therefore, this set of results does not particularly favour a preponderant role of the prefrontal 

cortex in conscious perception. Rather, it insists on i) the distributed nature of the neural mechanisms 

involved in conscious processing and ii) the importance of posterior regions, and most likely, of its under-

lying regions. Indeed, as detailed in the LITERATURE REVIEW, the precuneus is particularly affected in vege-

tative state patients (LAUREYS ET AL., 2004) and is one of the main hubs of the default mode network 

(BUCKNER ET AL., 2008; NORTHOFF, 2012). Together, these empirical findings should thus suggest that this 

area plays a critical role in the maintenance of a conscious state. Furthermore, the dissociation between 

frontal and parietal activity and their respective link to conscious perception remains insufficiently de-

scribed by the current neuronal models of consciousness. In particular, it is unclear whether these two 

regions play a similar role in the selection, maintenance and broadcasting of information in and across the 

cortex, or, conversely, whether they are specialize in one of these functions. A major goal for future re-

search will thus consists in clarifying the specific functions of the frontal and parietal cortices in both 

stimulated and ―resting-state‖ conditions. 

9.3. GENERAL LIMITS 

Each of the present studies is subject to a number of limits and potential criticisms that have been 

covered in the discussion part of each chapter. However, two limitations that apply to the general ap-

proach undertaken in the present thesis are worth highlighted here. 

9.3.1. DISENTANGLING CAUSATION AND CORRELATION 

One of the aims of the present thesis was to identify the neural signatures of consciousness in 

non- or poorly communicating patients.  As detailed in the literature review, the quest for the ―neural 

signatures of consciousness‖ implies two general goals: finding a marker that necessarily marks the pres-
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ence of conscious processes (marker => consciousness), and finding a marker that is systematically pre-

sent when the subject is conscious (consciousness => marker). 

This equivalence (consciousness <=> marker) designates a goal rather than an empirical finding. 

Indeed, as in all neuroimaging studies, the approach undertaken in the current thesis is purely correlational 

and cannot establish causal relationships links between electrophysiological markers and subjects‘ behav-

iour: 

- Consciousness => marker: The premise in this case is that conscious perception will systemati-

cally recruit particular neurons, networks or types of brain activity. This is, for example, what is 

postulated by the global neuronal workspace theory, which predicts that conscious perception 

necessarily induces a late P3b, the neural marker of the ignition of the global workspace. How-

ever, some markers may be sensitive to the preservation of conscious processes while not neces-

sarily being specific to it. For instance, the large slow waves observed in vegetative and minimally 

conscious state patients (CHAPTER 7. ), as well as in other types of loss of consciousness (see LITE-

RATURE Review), are generally interpreted as the correlate of a general disruption of neural proc-

essing. Inversely, consciousness would therefore imply low amplitude slow waves. Yet, it is quite 

probable that the absence of large amplitude slow waves is not sufficient to be conscious. Slow 

waves would thus be sensitive, but not specific, to consciousness.  

- Marker => consciousness: The premise in this case is that the presence of the marker necessar-

ily implies that the person is conscious. For example, if the subject says that he/she has perceived 

a stimulus (behavioural marker), it is traditionally assumed that he/she is conscious. Yet, the ab-

sence of subjective report does not necessarily reflect lack of conscious perception. The same 

logic could thus apply to brain activity: some neurophysiological markers may index a cognitive 

function that depends on conscious perception, such as episodic memory formation. In a hypo-

thetical case like this, detecting a brain signature of episodic memory formation would imply that 

the person is conscious. Yet, the absence of this marker would not necessarily imply an uncon-

scious state. The marker is thus specific, but not sensitive, to consciousness. To the extreme, this 

case is particularly well illustrated by Owen‘s imagining tennis experiment (OWEN ET AL., 2005). In-

deed, in this scenario, detecting a sustained tennis-related activity is extremely suggestive of a con-

scious state, even though it is clear that the absence of such activity would never suggest and un-

conscious state (NACCACHE, 2006). 

To compensate for these issues, I have reported the extent to which each marker is sensitive and 

specific to vegetative state patients. These analyses, generally summarized with the area under the curve 

(AUC) however remain correlational. The results presented throughout the present thesis should thus be 

taken and interpreted as a body of evidence that globally fir and favour specific theories of consciousness.  

9.3.2. THE ABSENCE OF EVIDENCE AND EVIDENCE OF ABSENCE 

A second challenge faced in the study of non-communicating patients, relates to the clinical defi-

nition of consciousness. Although one of the aims of the present research is to complement the purely 

behavioural diagnoses of patients‘ state of consciousness, consciousness is defined in the clinics with a set 

of behavioural abilities. It for example consists in testing whether the patient fixate a stimulus, track its 

movements etc. In other words, the present neuroimaging results are still heavily dependent on patients‘ 

behaviour. In such conditions, is it possible to outperform clinical diagnoses with neuroimaging tech-

niques? 

First, it should be noted that the present research is based on a relatively large cohort of patients. 

If it is assumed that the majority of the diagnoses are correct, in the sense that they accurately reflect pa-



CHAPTER 9. GENERAL perspectives 

212 
 

tients‘ ability to consciously perceive their environment, then the brain activity that indexes consciousness 

states could still be accurately distinguished. In fact, the number of ―misdiagnoses‖ would only lower the 

signal-to-noise ratio of the correlation between brain and behaviour. 

Second, the markers of consciousness identified throughout the present thesis may be tested on 

their ability to accurately predict the evolution of patients‘ consciousness states. For example, imagine that 

the presence of a P3b is found in some vegetative state patients. A rapid conclusion may be that this 

marker is not a good signature of consciousness. Now, if these patients demonstrate behavioural signs of 

consciousness shortly after, one may prudently conclude that these vegetative patients were in fact initially 

misdiagnosed (in the sense that their introspection abilities were preserved), and that the electrophysio-

logical marker then outperformed the clinical diagnosis. This scenario is not purely hypothetical. Indeed, 

Faugeras and collaborators (FAUGERAS ET AL., 2012) identified two vegetative state patients who presented a 

P3b during the Local Global protocol. Interestingly, these two patients presented signs of shortly after. 

Still, it may be argued that the possibility that all patients, including the ones in a vegetative state, 

are conscious (in the sense that they have introspection abilities). This hypothesis cannot be completely 

rejected: an absence of conscious behaviour does not necessarily imply an absence of consciousness. 

Note, however, that the very same argument could be applied to any other situations, including coma, and 

even brain death. The only, modest, alternative to this epistemic issue is thus to trust the convergent body 

of evidence, drawn from different experiments, and constantly refining the theoretical frameworks that 

provide precise predictions about the neural machinery responsible for our ability to introspect. 

Overall, these two general limits stress the notion that, at present, neuroimaging methods will 

most likely not replace clinical examinations. Rather, they constitute complementary tools to the tradi-

tional diagnosis realized in the clinics.   

9.4. GENERAL PERSPECTIVES 

The research presented in the current thesis calls for a number of follow-up clinical and funda-

mental studies. I will here briefly outline three general avenues that I find particularly interesting. 

9.4.1. TESTING THE MARKERS OF CONSCIOUSNESS IN OTHER TYPES OF LOSS OF 

CONSCIOUSNESS 

First, the repertoire of EEG markers identified throughout the thesis should be directly tested and 

compared to other types of patients. As detailed in the literature review, several studies have already dem-

onstrated that some rare patients diagnosed in a vegetative state could surprisingly present covert com-

mand-following abilities (OWEN ET AL., 2006; CRUSE ET AL., 2011). These seemingly intentional behaviours 

could be evidenced by quantifying the specific activity elicited in motor areas in response to different types 

of instructions (FIGURE 1.2). A critical test for our methodological proposal would thus consist in assessing 

whether these misdiagnosed patients systematically present patterns of EEG activity suggestive of a con-

scious state. Specifically, we predict that these misdiagnosed patients would present lowered low-

frequency oscillations, preserved alpha rhythms, a relatively high level of complexity, high functional con-

nectivity values and preserved late event-related potentials in response to the global deviant stimuli. Fur-

thermore, comparing these misdiagnosed patients to the ―classic‖ vegetative state patients would offer an 

even more minimal contrast than the one adopted in the present thesis (i.e. vegetative versus minimally 
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conscious). Contrasting two behaviourally indistinguishable groups of patients would provide a challeng-

ing yet critical test for the neural theories of consciousness. 

Second, the EEG markers tested in the present set of studies should be systematically investigated 

with different recordings apparatus and in sleeping, anesthetized and epileptic subjects. Indeed, as dis-

cussed throughout the chapters, one of the limitations of the present research is directly related to the 

EEG method. Indeed, volume conduction, movement artefacts as well as source reconstruction difficul-

ties all limit our ability to precisely local the neuronal generator of scalp activity. Intracranial recordings of 

awake and sleeping subjects could thus be used to confirm that consciousness is indeed directly associated 

with an increasing of information sharing across distant brain regions. In an on-going research with Pierre 

Bourdillon, we precisely tested this prediction. Using intracranial recordings of awake and sleeping pa-

tients suffering from intractable epilepsy, we show that wSMI is maximal in wakefulness, and progressively 

diminishes in paradoxical and deep sleep respectively (FIGURE 9.2). Moreover, similar distance analyses to 

the one employed in CHAPTER 6. suggest that REM and deep sleep are only different in the amount of 

information shared across distant but not adjacent brain areas. These promising results thus i) replicate our 

findings in a physiological rather than pathological loss-of-consciousness, but they also ii) unambiguously 

overcome the issues related to scalp-recordings.  

 

Furthermore, as these intracranial recordings were acquired from epileptic subjects for clinical 

purposes, the very same protocol and analyses could be implemented when patients lose consciousness 

because of a seizure. Following recent studies (GUYE ET AL., 2006; ARTHUIS ET AL., 2009; BARTOLOMEI AND 

NACCACHE, 2011; LAMBERT ET AL., 2012), one could indeed test whether wSMI also indexes seizure-induced 

loss of consciousness by comparing simple and complex partial seizures. Once again, we predict that 

wSMI should dramatically drop during the seizure, and particularly when it is accompanied by a loss of 

consciousness. Overall, the methods introduced in the present thesis could thus be tested in a variety of 

clinical situations and with different recording devices to confirm and clarify our findings. 

9.4.2. SINGLE TRIAL ANALYSES 

A second line of research relates to the decoding of electro and magnetoencephalographic re-

sponses to sensory stimulations. In the present thesis, I have shown how multivariate pattern analyses 

could be particularly useful when faced to large inter-individual variability, low signal-to-noise ratio, or to 

the necessity to make single trial predictions. Applying decoding techniques on poorly or unresponsive 

 

FIGURE 9.2 WSMI ANALYSIS OF INTRACRANIAL RECORDINGS DURING VARIOUS SLEEP STAGES. 

(BOURDILLON ET AL., IN PREP.) 
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subjects offer the possibility of characterizing the state of consciousness at the single trial level. Such op-

portunity would present several advantages.  

First around 1 in 500 anesthetized patients recovers consciousness during surgical interventions 

(SEBEL ET AL., 2004; AVIDAN ET AL., 2011); a proportion which clearly exhibits the need for efficient real-time 

monitoring of consciousness level. Although such methods already exist, they are generally empirically 

rather than theoretically driven. For instance, the BIS index is one of the most common EEG measures 

used to monitor the level of consciousness of anesthetized patients. The way this measure is derived re-

mains unknown because it uses a proprietary algorithm, empirically constructed from a large database of 

EEG recordings (n~ 1000). A complementary, theory-driven method, such as the one deployed in this 

thesis, is therefore needed. 

Second, the existing monitoring tools solely focus on consciousness states, and are thus generally 

based on EEG recordings acquired independently of sensory stimulation. Yet, and as detailed in the litera-

ture review, many if not most theories of consciousness are derived from experimental methods used to 

minimally distinguish conscious and unconscious contents (i.e. via backward masking, attentional blinks etc.). 

As a consequence, being able to decode stimulus processing at the single trial level could provide a way to 

monitor the content rather than the state of consciousness in sleeping and anesthetized patients. 

Third, decoding single-trial information can be particularly useful to the study of the transition pe-

riods between normal wakefulness and loss of consciousness. Unlike vegetative and minimally conscious 

state patients, the precise time at which sleeping and anesthetized subjects lose consciousness is relatively 

precise, and can thus be well identified (e.g. by asking subjects to press a button every time they hear a 

sound). With single-trial analyses, one could thus identify whether the disappearance of the late P3b is 

sudden and all-or-none, or, on the contrary, whether this EEG component gradually decreases over time. 

Similarly, this approach could help determine whether the EEG markers of consciousness all reflect dif-

ferent facets of a single coherent neural mechanism, or, conversely, whether these markers could be disso-

ciated along the progressive loss of consciousness.  

Finally, single trial analyses are particularly important for patients suffering from disorders of con-

sciousness. As detailed in the introduction, patients‘ arousal fluctuates. Moreover, recent evidence suggests 

that their wake-sleep cycles may be partially impaired (LANDSNESS ET AL., 2011; COLOGAN ET AL., 2013; CRUSE 

ET AL., 2013B). Beyond providing a discrete and unique diagnosis, it would therefore be crucial to identify 

the precise moments at which these patients are most likely to consciously perceive their surrounding 

environment. Not only could these time periods constitute critical windows of communication, but it 

would extend the present ―correlational‖ approach to a more causal investigation. In particular, one could 

design a ―closed-loop‖ experiment in which patients‘ brain activity is monitored in real time. Pleasant 

stimuli could then be presented when patients‘ EEG activity suggests a conscious state (e.g. when wSMI is 

high, delta power is low etc.) in order to help and motivate them to remain conscious. Crucially, such a 

study might transform current diagnostic tools into a therapeutic approach. 

9.4.3. TOWARD A DESCRIPTION OF CONSCIOUS PERCEPTION AS A PERCEPTUAL 

INFERENCE  

The methodological tools developed throughout thesis have been accompanied by theoretical 

considerations. In particular, in CHAPTER 8. , I have argued that conscious perception could be formally 

described as a perceptual inference. This proposal is not unique in the community (e.g. (KNILL AND 

POUGET, 2004; GOLD AND SHADLEN, 2007; LAU, 2008)), but the existence of unconscious inferences raises a 

number of questions. If both conscious and unconscious perceptions are inferences, why do they feel so 

different? What makes some inferences conscious? I have shown how extending the classic unidimen-
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sional depiction of Signal Detection Theory to a two dimensional problem can provide a formal yet intui-

tive explanation of conscious and unconscious inferences. This framework allows the experimental tasks 

used in consciousness research to be described as multi-feature (sensory information is coming from multiple 

channels) and multi-class (more than two hypotheses can be considered at once) problems. This view can account for 

a number of paradoxical findings observed over the past decades in consciousness research (e.g. blindsight, 

significant discrimination under subjective reports of invisibility etc.). The main strength of this proposal 

probably lies in its simplicity. If valid, the generic principles of signal detection theory (SDT) and Bayesian 

theory could be adopted and applied to the specific case of conscious and unconscious perception. In 

particular, the elementary components of this inference (i.e. the number of hypotheses considered, the 

mean and variance of their respective likelihood functions, priors and costs etc.) could be directly manipu-

lated by the experimenter.  

I have already empirically tested one of the behavioural predictions of this model – the link be-

tween visibility reports and the non-linear relationship between stimulus intensity and discrimination per-

formance (CHAPTER 8. ). An obvious avenue of research would thus consist in translating this behavioural 

experiment to a neuroimaging study. Such approach could provide two general advantages: 

- First, most experiments contrast visibility conditions independently of the actual content that was 

reported as ―seen‖. For example, in del Cul‘s experiment (DEL CUL ET AL., 2007), subjects were 

asked to discriminate a variably masked digit and report its visibility. The EEG signals were then 

compared across SOA and visibility, independently of the actual nature of the target (i.e. whether 

the digit was higher or lower than 5). It is thus unclear whether the brain response that correlates 

with visibility reports actually reflects content-specific information or whether it reflects a non-

specific response related to attention, arousal, recruitment of mnemonic processes etc. This limita-

tion could be significantly improved thanks to multivariate pattern analyses. By decoding the 

brain responses to subliminal and supraliminal stimuli, we could determine whether these repre-

sentations share a similar format, are re-activated and/or sustained across time. 

- Second, consciousness studies have generally focused on a single component of the SDT / Bayes-

ian computation and did not systematically compare the impact of each of these factor on brain 

activity (although see (MELLONI ET AL., 2011)). Varying priors, stimulus evidence, task relevance etc. 

could recruit different brain regions, different cortical layers, and generate different dynamics of 

neural responses. An obvious avenue of research would thus consists in testing these different 

manipulations within the very same study, and thus isolate the neural mechanisms responsible for 

conscious inferences. 

This area of research remains largely unexplored. Interestingly, the decoding techniques devel-

oped in CHAPTER 3. and CHAPTER 4.  provide could help clarifying a number of questions: does task rele-

vance only vary the intensity and the sharpness of the neural activity (e.g. (REYNOLDS ET AL., 1999; WYART ET 

AL., 2011; ZHANG ET AL., 2011)) or can it also delay or speed up the bottom-up and top-down signals (e.g. 

(WELFORD, 1952; MARTI ET AL., 2012))? Do prior expectations bias the decoded representations at all, or only 

at some specific stages of the hierarchical processing (e.g. (SUMMERFIELD AND KOECHLIN, 2008; KOK ET AL., 

2012))? Are expectation-related signals triggered before or after the presentation of the stimulus? The per-

ceptual decision framework combined with the decoding methods developed in the present thesis open up 

the possibility of clarifying and refining the way our brain actively interpret its surrounding environment. 

Ultimately, tightly connecting the perceptual inference and loss-of-consciousness literatures could substan-

tially help diagnose unresponsive patients‘ state of consciousness.  



 

 
 

We have gone a long way since the philosophical considerations on the dualistic or monistic na-

ture of our mental life. Throughout the thesis, I have tried to show how the often loosely-defined concept 

of consciousness could, in fact, be formally and systematically tackled in the laboratory.  In particular, the 

dissociation between cognitive processes and subjective experience has helped us to isolate the neural 

mechanisms that allow one to consciously perceive – to actively and accurately interpret – his or her surround-

ing environment. 

In the present thesis, I primarily focused on determining whether these neural systems could help 

differentiating the state of consciousness of awake but non-communicating patients. Following the con-

vergent predictions of several leading computational and neuronal models of conscious processing 

(TONONI AND EDELMAN, 1998; DEHAENE AND NACCACHE, 2001; DEHAENE ET AL., 2003; LAMME, 2003, 2006B, 

2010; TONONI, 2004, 2008; DEL CUL ET AL., 2006; DEHAENE AND CHANGEUX, 2011), I have shown that vegeta-

tive state patients can be distinguished from minimally conscious and conscious patients through a series 

of different brain activity measures. These various electrophysiological markers suggest that conscious 

perception relies on a distributed neural network that supports the selection, the maintenance and the 

sharing of information across cortical modules.  

While the ins and outs of consciousness remain to be fully explained, I hope that the modest con-

tribution of the present thesis to our scientific understanding of subjective experience will prove useful to 

the diagnosis, the monitoring and the care of non-communicating patients. 
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ABSTRACT 

Boly et al (2011) investigated cortical connectivity patterns in patients suffering from a disorder of 

consciousness (DOC), using electro-encephalography in an auditory oddball paradigm. We point to sev-

eral inconsistencies in their data, including a failure to replicate the classical mismatch negativity. Data 

quality, source reconstruction and statistics would need to be improved in order to support their conclu-

sions. 

ARTICLE 

Using electro-encephalography (EEG) combined with an auditory odd-ball paradigm, Boly and 

collaborators [1] investigated the cortical connectivity pattern amongst 21 patients suffering from disor-

ders of consciousness. Activities from the bilateral primary auditory cortices (A1), the bilateral superior 

temporal gyri (STG) and the right inferior frontal gyrus (IFG) were estimated, and connection strengths 

inferred with Dynamic Causal Modelling (DCM). It was concluded that vegetative (VS) patients differ 

from normal subjects and minimally conscious (MCS) patients in a single aspect: reduced top-down feed-

back from IFG to STG. 
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While such a top-down anomaly would be compatible with several converging theories of con-

scious processing [2-4], the data presented so far do not provide unambiguous support for the conclu-

sions. 

First, only a small and heterogeneous sample of patients is studied (13 MCS and only 8 VS with 

different etiologies and recorded from 12 days to 27 years post onset). Their EEG recordings seem noisy, 

judging from the fact that the classical mismatch negativity (MMN), which is frequently detectable in indi-

vidual subjects with MCS, VS and even coma [5-8], does not appear to be present (see figures 2 and S1 in 

the original paper). Instead, their event related potentials (ERPs) are abnormal both in terms of topogra-

phy and time course, with significant effects appearing too early for the MMN. For instance, across only 8 

VS patients, an effect of sound deviancy is reported as shortly as 48 ms after the tone change (their figure 

2), with a surprisingly high significance level of p<10-3 given that, at this time, their figure S1 does not 

even indicate consistent signs for all patients (indeed, the group statistics appears dominated by a single 

individual, patient VS1). The small ERP component found around 50 ms has been previously observed in 

healthy subjects performing identical paradigms (e.g. [9]), but is believed to reflect stimulus-specific adapta-

tion rather than genuine mismatch detection.  Individually, the vast majority of their patients failed to 

present a significant MMN at any latency (their figure S1). Although bed-side recordings may be noisy and 

lesions may distort the ERPs, we and our colleagues routinely record the MMN with satisfactory latencies 

and standard topographies in similar patients (see Fig. 1). Detection of this ERP component should be an 

indispensable quality check prior to source reconstruction and a fortiori to DCM. 

 

 

Secondly, from these scalp data, the authors attempted to reconstruct the activation of five dis-

tinct but close cortical regions, using MMN source localizations previously reported in healthy subjects. 

Yet accurate resolution of forward and inverse problems, even with the help of the strong priors imposed 

by the DCM method, should be particularly difficult with noisy bed-side EEG recordings and variably 

damaged skulls and brains. In fact, the source reconstructions presented in their figure 3 for a single VS 

 

FIGURE 0.1 MMN TOPOGRAPHY IN DOC PATIENTS AND HEALTHY CONTROLS.  

Comparison of a) Boly et al [1]’s t-test maps for the MMN (comparison of deviant–standard trials) with 
b) similar maps obtained from 120 recordings collected in the last three years in Lionel Naccache’s 
laboratory, Hôpital de la Salpêtrière, Paris (Intermediate results published in [5, 7], full data set 
described in [16]). Note that we kept the uneven temporal spaces from Boly et al [1]’s figure 2. The 
higher resolution data and larger numbers of patients lead to a quiescent period (up to ~100 ms) 
followed by a classical fronto-central MMN (~100-200 ms) and P3a (~200-300 ms), with similar 
topography in all groups. 
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patient show several implausible features: (a) activity two to five times greater than in the control subject 

in most regions (note the different scales); (b) an almost entirely left-lateralized A1 response, which is 

unexplained and inconsistent with the claim of preserved feedforward activity; (c) greater frontal activity 

for the standard tones than for the deviant tones, which is inconsistent with all previous fMRI and ERP 

results on the MMN [6, 10]. It would be reassuring if the accuracy of DCM source reconstruction was first 

validated in every individual, for instance by demonstrating a consistent localization of early auditory 

ERPs to bilateral superior temporal regions.  

Finally, the statistical tests that are reported do not exclude an additional impairment of feedfor-

ward processes in VS patients. The conclusions are based solely on the non-significance of a corrected-

level two-sample t-test on individual feedforward connections. Yet such an insensitive test does not prove 

an absence of impairment. The authors should report the critical interaction needed to test whether the 

feedback connection from IFG is significantly more impaired than other feedforward connections.  

Prima facie, the massive lesions typical of VS patients, which frequently involve distributed white 

matter anomalies [11], are likely to affect both feedforward and feedback connections from PFC. A con-

trario, the existence of a feedforward impairment in bringing auditory information to associative and pre-

frontal cortices is strengthened by the frequent absence of P3a and especially P3b ERP components in VS 

patients [5-8]. Indeed, previous work by the same team demonstrated that auditory stimuli failed to evoke 

activation beyond auditory cortices in VS patients, suggesting either a feedforward disconnection or direct 

lesions of higher cortices [12, 13]. In normal subjects, intracranial recordings suggest that both feedfor-

ward and feedback causal relations of posterior regions to prefrontal cortex are involved in conscious 

access [14]. We believe that bidirectional disconnections and, in many cases, direct PFC, thalamic and 

brain stem lesions are likely to provide a more complex but more realistic picture of the vegetative state 

[11, 15]. 
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ABSTRACT 

Casali et al. recently showed that the complexity of the electrophysiological brain response to a 

transcranial magnetic stimulation pulse distinguishes conscious from unconscious humans, in a variety of 

conditions. Beyond its theoretical implications, this novel method paves the way to a quantitative assess-

ment of the states of consciousness. 

ARTICLE 

Every minute, millions of people lose (and recover) consciousness, because of the natural sleep-

wake cycle, but also because of abnormal conditions such as coma, vegetative state, complex epileptic 

seizures or general anaesthesia. Yet, the precise neuronal mechanisms responsible for consciousness are 

poorly understood, and detecting whether a person is conscious therefore remains a major challenge.  

In an exciting recent paper, Casali et al. [1] introduced a quantitative assay of the state of con-

sciousness. Their work capitalizes on the electroencephalography (EEG) response evoked by a cortical 

transcranial magnetic stimulation (TMS) pulse. Previous research by the same group [2] demonstrated 

that, in conscious subjects, TMS pulses systematically elicit a complex spatiotemporal pattern of activa-

tion, whereas when the subjects are anesthetized, asleep, or in a vegetative state, TMS induces only a short 

and undifferentiated response. In their new publication [1], the authors quantify the complexity of this 

EEG response. They first reconstruct its cortical sources, then use algorithmic information theory tools to 

estimate the complexity of its spatiotemporal dynamics. They term the outcome Perturbational Complex-

ity Index (PCI), a number ranging between 0 (no complexity) and 1 (maximal complexity). 

Casali et al. applied this method to a large panel of subjects (n=32), obtaining recordings during 

wakefulness, light deep and REM sleep, and anaesthesia with midazolam, xenon or propofol. While all 

awake subjects presented a PCI above 0.44, all unconscious sleeping and anesthetized patients systemati-

cally showed values below 0.31. Thus, remarkably, the proposed index was distributed bimodally and 



 

257 
 

separated every conscious and unconscious individual. Furthermore, the authors tested this method in 

twelve patients with disorders of consciousness (DOC) and eight conscious brain-injured subjects. Vegeta-

tive state patients (n=6) had PCIs similar to the anaesthesia and sleeping groups, yet patients in a mini-

mally conscious state (n=6) or emerging from it (n=6) had significantly higher PCIs (although they re-

mained smaller than those of awake subjects). Finally, conscious but paralyzed patients (―locked-in syn-

drome‖, n=2), whose behavior may be confounded with a vegetative state, presented PCIs similar to 

healthy awake controls. These findings represent a major advance in the search for an empirical quantita-

tive metric for consciousness, with important theoretical and clinical implications. 

Theoretical implications 

Casali et al. argue that PCI was designed to detect integration and differentiation, two central proper-

ties of the information integration theory of consciousness (IIT) [3]. According to the authors, integration 

can, in practice, be assessed by the global spread of cortical activation evoked by focal TMS, while differ-

entiation relates to the fact that distinct regions are successively activated, without temporal redundancy. It 

should be noted, however, that EEG does not have the spatial resolution needed to evaluate the micro-

differentiation of cell assemblies postulated in IIT, and that PCI is not directly related to Tononi‘s Phi 

measure  (a formal quantification of the integrated information in a given network) proposed by IIT as a 

marker of consciousness. Although the technique was inspired by IIT ideas, the results so far merely show 

that TMS elicits a complex series of ripples across different brain areas only in conscious subjects. As 

such, they remain compatible with other models that associate consciousness with a preserved functional 

thalamocortical system able to ―broadcast‖ a local activation to many distant cortical sites or to entertain 

long-lasting reverberating states [4,5].   

A remarkable finding is that PCI is quantitatively identical regardless of the initial site of TMS ap-

plication [1]. This finding fits with IIT‘s hypothesis that only information integration matters for the 

measurement of consciousness, while the specific anatomical areas involved can be disregarded. Nonethe-

less, this aspect of the research limits the interpretation of the precise neural mechanisms at work during 

conscious states. It would be important to know whether prefrontal, cingular or precuneus cortices as well 

as thalamocortical loops are systematically involved, as predicted by previous studies [4].  

One important methodological aspect is the length of the time window used for PCI computa-

tion. Here the analysis was done on a 300-ms window following TMS. Although this choice may have 

been optimal, it seems arbitrary, as IIT theory does not specify the time scale at which information inte-

gration should take place. Conscious processing might be significantly slower in patients with diffuse 

white-matter lesions, demyelinating diseases, or during development. Indeed, a recent study showed that 

human infants present the same electrophysiological signatures of visual conscious perception as adults, 

but at much slower time scale [6]. It will important to verify whether PCI is robust to such temporal 

changes. 

Clinical implications 

Although Casali et al.‘s patient sample remains small; their approach holds great promise for the 

diagnosis of vegetative state patients and the monitoring of anaesthesia. TMS stimulation has the clear 

advantage of directly perturbing the cortex with a strong stimulus, thus generating large EEG signals 

without requiring the integrity of a particular sensory pathway. Furthermore, unlike other paradigms pre-

viously tested to detect consciousness (see [7] for a review), this passive method does not depend on at-

tention, task instructions or language comprehension. Nevertheless, because TMS-compatible EEG is not 

available in most clinics, it would be valuable to investigate if the TMS pulse is necessary, or if it could be 

replaced by another sensory stimulus. Supp et. al. [8] showed that the sequence of EEG responses to me-

dian nerve stimulation decreases dramatically under propofol anaesthesia. Similarly, the late long-lasting 
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event-related potentials evoked by an auditory oddball provides a tentative marker of consciousness in 

DOC patients [9]. Perhaps one might even get rid of the stimulus altogether and simply evaluate the pres-

ence of distributed and durable activation patterns in ongoing EEG. In recent work, King et al. show that 

a new EEG marker of the sharing of information across long cortical distances provides a sensitive index 

of consciousness in a large cohort of DOC patients (n=167) [10]. 

Finally, hundreds of TMS pulses are needed to compute a single value of PCI. This limitation may 

become relevant for minimally conscious patients in whom consciousness fluctuates over time, or for the 

real-time monitoring of anaesthesia. Could future research provide higher temporal resolution, faster ac-

quisition and computation times, and ultimately a single-trial index of consciousness? Casali et al.‘s re-

search demonstrates that the dream of such a quantitative ―consciousness-o-meter‖ may not be out of 

reach. 
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