
Humans are able to represent and process approximate 
numerosities in a language-independent, analogue fashion 
(Dehaene, 1997). This capability, referred to as number 
sense, can be demonstrated already very early in life. In 
particular, Xu and Spelke (2000) showed that 6-month-old 
infants could discriminate between large numerosities of 
8 or 16 elements, and McCrink and Wynn (2004) showed 
that 9-month-old infants expected the approximate out-
come of operations such as 10 2 5 or 5 1 5 performed 
on sets of dots.

Humans seem to share this capability with many other 
species, including rats, pigeons, parrots, dolphins, lions, 
and primates (Dehaene, 1997). The variability of the re-
sponses increases linearly with the size of the numerosi-
ties involved, thus conforming to Weber’s law. Similar 
numerical competence has been observed in monkeys 
that could discriminate between visual sets of objects on 
the basis of numerosity alone (Brannon & Terrace, 1998, 
2000). The tight psychophysical parallels between these 
data and those observed in humans (Cantlon & Bran-

non, 2006) suggest a common basis for number sense 
in phylogeny.

Indeed, at the neuroanatomical level, converging evi-
dence from electrophysiological studies in the macaque 
monkey (Nieder, Freedman, & Miller, 2002; Nieder & 
Miller, 2004), human neuroimaging studies (Dehaene, 
Piazza, Pinel, & Cohen, 2003; Piazza, Izard, Pinel, Le 
Bihan, & Dehaene, 2004; Piazza, Pinel, Le Bihan, & 
Dehaene, 2007), and patient studies (Dehaene & Cohen, 
1997) points to the bilateral horizontal segment of the 
intraparietal cortex as being crucial for representing nu-
merical magnitudes. In this area, numerosity is encoded 
by neurons tuned to approximate number: A quantity such 
as 4 is represented by the distributed activity of overlap-
ping neurons that prefer about three, about four, or about 
five objects (Nieder et al., 2002; Nieder & Miller, 2004). 
Importantly, in humans at least, this representation seems 
to be abstract, in the sense that both symbolic (i.e., Ara-
bic numerals) and nonsymbolic (e.g., dot patterns) nu-
merosities access this representation (Piazza et al., 2007). 

 803 © 2009 The Psychonomic Society, Inc.

Dynamic representations underlying symbolic 
and nonsymbolic calculation: Evidence from  

the operational momentum effect

André Knops And ArnAud ViArouge
INSERM, Unité 562, Gif-sur-Yvette, France 

CEA, I2BM, NeuroSpin, Gif-sur-Yvette, France 
and Université Paris-Sud, Orsay, France

And

stAnislAs dehAene
INSERM, Unité 562, Gif-sur-Yvette, France 

CEA, I2BM, NeuroSpin, Gif-sur-Yvette, France 
Université Paris-Sud, Orsay, France 
and Collège de France, Paris, France

When we add or subtract, do the corresponding quantities “move” along a mental number line? Does this 
internal movement lead to spatial biases? A new method was designed to investigate the psychophysics of ap-
proximate arithmetic. Addition and subtraction problems were presented either with sets of dots or with Arabic 
numerals, and subjects selected, from among seven choices, the most plausible result. In two experiments, 
the subjects selected larger numbers for addition than for subtraction problems, as if moving too far along the 
number line. This operational momentum effect was present in both notations and increased with the size of the 
outcome. Furthermore, we observed a new effect of spatial–numerical congruence, related to but distinct from 
the spatial numerical association of response codes effect: During nonsymbolic addition, the subjects preferen-
tially selected numbers at the upper right location, whereas during subtraction, they were biased toward the upper 
left location. These findings suggest that approximate mental arithmetic involves dynamic shifts on a spatially 
organized mental representation of numbers. Supplemental materials for this study may be downloaded from 
app.psychonomic-journals.org/content/supplemental.

Attention, Perception, & Psychophysics
2009, 71 (4), 803-821
doi:10.3758/APP.71.4.803

A. Knops, knops.andre@gmail.com



804    Knops, Viarouge, and dehaene

calculation process, rather than from mental computation 
or motor production processes.

Using a different task (decide whether a proposed nu-
merosity is or is not the correct result of an operation), 
McCrink, Dehaene, and Dehaene-Lambertz (2007), too, 
found evidence that mental calculation with nonsymbolic 
numerosities follows Weber’s law. They showed that for 
additions and subtractions with dot patterns matched for 
physical factors other than numerosity, both the mean 
number chosen by the participants and the variability of 
these chosen numbers increased with the correct outcome. 
Surprisingly, however, the values chosen by the subjects 
were not centered on the correct result but were influenced 
by the arithmetic operation that had to be carried out. With 
mental addition, the subjects’ estimated outcomes tended 
to be larger than the actual outcomes, whereas they tended 
to be smaller than the actual outcomes with subtraction.

McCrink et al. (2007) argued that this bias showed simi-
larity to a perceptual phenomenon called representational 
momentum (Freyd & Finke, 1984). When they watch a 
moving object suddenly disappear, subjects tend to mis-
judge its final position and report a position displaced in 
the direction of the movement (Halpern & Kelly, 1993; 
T. L. Hubbard, 2005; Kerzel, 2003). Analogously, McCrink 
and colleagues described their finding as an operational 
momentum (OM), since the misjudgment was related to 
the arithmetic operation carried out, and suggested that the 
subjects were moving “too far” on the number line.

The assumed parallels between representational mo-
mentum and the OM are in line with the hypotheses made 
by Hubbard and colleagues concerning the possible inter-
play of the posterior parietal lobes and the horizontal as-
pects of the intraparietal cortex during calculation (E. M. 
Hubbard, Piazza, Pinel, & Dehaene, 2005). Speculatively, 
mental calculation was proposed to correspond to a dis-
placement on the spatially organized mental representa-
tion of numerical magnitude. This displacement might 
be mediated by the same parietal mechanisms as those 
involved in guiding saccadic eye movements. Since larger 
numbers are represented to the right side of space on the 
mental representation and smaller numbers to the left, 
this would yield rightward “movements” with addition 
and leftward “movements” with subtraction. Moreover, 
it has been shown that saccade latencies to the left or to 
the right covary parametrically with the numerical size of 
previously presented numbers (Fischer, Warlop, Hill, & 
Fias, 2004). Larger numbers were more rapidly followed 
by saccades to the right, and smaller numbers by saccades 
to the left. This points to a systematic and parametric rela-
tion between numerical magnitude and shifts of spatial 
attention, which, in turn, are thought to be mediated by oc-
ulomotor circuits (Sheliga, Riggio, & Rizzolatti, 1994).

Given the cortical parallels between circuits for eye 
movements and those for mental arithmetic, one might 
wonder what determines the OM effect. Sticking with 
the metaphor of perceiving calculation as motion along 
a mental number line, what determines this movement? 
Does the numerical magnitude of the operands determine 
the size of the OM effect? In the case of actual movement 

This is in accordance with the view that during develop-
ment, number symbols such as number words and Arabic 
numerals are being mapped onto the existing analogue 
magnitude representation (Gallistel & Gelman, 1992). An 
important difference between symbolic and nonsymbolic 
arithmetic, however, is the higher precision that can be 
achieved with number symbols (Pica, Lemer, Izard, & 
Dehaene, 2004). At the neurophysiological level, a theo-
retical model has been proposed that relates this higher 
precision to narrower tuning curves of the neurons coding 
for symbolic magnitudes, so that some neurons, at least, 
would become sharply tuned to precisely four objects, not 
three or five (Verguts & Fias, 2004).

In contrast to the vast knowledge about the representa-
tion and neural correlates of numerical magnitude, little is 
known about the exact mechanisms and neural structures 
that combine these magnitudes during mental calculation. 
Characterizing the psychophysical laws of approximate 
mental arithmetic, with both symbolic and nonsymbolic 
numerals, is the main goal of the present study. Nonsym-
bolic calculation in this context means the mental manipu-
lation (addition and subtraction) of quantities presented as 
dot patterns. Delineating the properties and mechanisms of 
nonsymbolic arithmetic may help us to understand the na-
ture and development of symbolic arithmetic. At present, 
only a few experiments are available on this topic. In a se-
ries of experiments, Barth et al. (2006) showed that human 
adults and 5-year-old children were capable of mastering 
basic arithmetic operations (i.e., addition and subtraction) 
with nonsymbolic stimuli (dot patterns). In particular, 
children showed above-chance performance in an addition 
task, although they performed no better than chance on 
a symbolic version of this task. A detailed mathematical 
theory of the results was developed, suggesting that vari-
ability arose both from the imprecise representation of the 
operands and from the representation of the computed re-
sult. However, the task (decide whether the outcome of an 
operation is larger or smaller than a specified numerosity) 
did not afford any possibility of revealing putative biases 
in the computed addition or subtraction results.

Recently, Gilmore, McCarthy, and Spelke (2007) 
showed that 5-year-old children’s performance in symbolic 
calculation tasks is marked by characteristics similar to 
those of their nonsymbolic arithmetic system, suggesting 
that they relied on their nonsymbolic number knowledge 
to solve approximate symbolic calculation problems.

Cordes, Gallistel, Gelman, and Latham (2007) investi-
gated the contribution of different sources of variation in a 
task in which subjects were told to compute the sum or the 
difference of two nonsymbolic quantities (arhythmic se-
ries of brief flashes) and to produce the result n by pushing 
a button n times. The authors compared the normalized re-
siduals of several regression models that took into account 
different factors, such as the variability of the individual 
operands of a given problem or the variability due to the 
sum or the difference between the operands—that is, the 
outcome of a problem. The major determinant of variabil-
ity in nonverbal arithmetic arose from the representation 
of the individual numerical magnitudes entering into the 
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Finally, a third goal was to probe putative associations 
between arithmetic operations and movements in space. 
E. M. Hubbard et al. (2005) speculated that shared parietal 
mechanisms could be involved in guiding eye movements 
and calculations on the mental number line, so that addi-
tion would be analogous to a rightward motion and sub-
traction to a leftward motion. If such an internal sense of 
spatial motion accompanies mental arithmetic, we might 
expect the subjects’ responses to be spatially biased as a 
function of the type of operation they performed. In our 
experiment, the seven proposed choices were presented in 
a circular array, making it possible to measure any spatial 
preference, both on the left–right and on the top–down 
axes, as a function of problem type. If E. M. Hubbard 
et al.’s prediction holds, we should expect to find more 
rightward responses to addition problems and more left-
ward responses to subtraction problems.

ExpErimEnt 1

method
Subjects. Sixteen volunteers (9 female; mean age 5 23.5 years; 

SD 5 3.6; range, 19–34 years) took part in the experiment after 
having given their written informed consent. All but one were right-
handed, according to the Edinburgh Handedness Inventory (Old-
field, 1971).

Stimuli. We first selected 18 calculation problems, 9 additions 
and 9 subtractions. The operands were identical for addition and 
subtraction (see Table 1). The first operand was 32, 48, or 60. The 
second operand was created in relation to the first operand—that 
is, as a fixed proportion of the first operand, being 31%, 45%, or 
61% for small, medium, and large second operands, respectively. 
Together, the combinations of these three initial values (i.e., small, 
medium, and large first operand) and three amounts of change (i.e., 
small, medium, and large second operand) generated 3 3 3 5 9 
problems. Apart from the correct result, eight deviant results were 
created for each arithmetic problem. These deviants were arranged 
as a geometric series (i.e., were linearly spaced on a logarithmic 
scale) and ranged from double the correct result to half the correct 
result [technically, they were generated as round(c 3 2i/4), where c 
is the correct result and i ranges from 24 to 14]. To avoid a strat-
egy of always selecting the response falling in the middle of the 
proposed range, only seven out of those nine possible results were 
presented. On 50% of the trials, we presented the upper seven (high 
range), and thus the correct result was the third largest numerosity 
(although numerosities were randomly mixed with respect to both 
spatial position on the screen and temporal order of appearance [see 
the Procedure section below]). On the other 50% of the trials, the 
lower seven choices were shown (low range), and the correct result 
was therefore the fifth largest numerosity.

Because the experimental design was organized around a small 
number of arithmetic problems, it was important to prevent the 
subjects from memorizing them in symbolic form. To this aim, the 
problems and their proposed results were randomly “jittered,” dif-
ferently on each trial. First, the operands were jittered by a random 
value from 0 to 62, so that the actual outcome would remain un-
changed (i.e., for a given task 48 1 18, the jittered operands could 
be 47 1 19). Second, all of the seven proposed results were jit-
tered up or down by a random value (fixed for a given trial). This 
random value had a mean value of zero and was drawn from a flat 
distribution on a logarithmic scale, in the range plus or minus half 
the numerical interval between the correct result and the first devi-
ant above or below it. Technically, this was achieved by drawing a 
random number r between 20.5 and 0.5 and defining the proposed 
results as round(c 3 2(r1i)/4), where i again ranges from 24 to 14. 

and perceptual representational momentum, the effect is 
known to be modulated by several factors (for a review, 
see T. L. Hubbard, 2005): The amount of misjudgment 
is stronger for movements to the right (Halpern & Kelly, 
1993), increases with increasing speed of the moving ob-
ject (Freyd & Finke, 1985), and is larger with apparent, 
as compared with smooth, motion when the gaze is fixed 
(Kerzel, 2003). Interestingly, the effect can be increased 
by a secondary task that involves counting onward up to 
30 in steps of one, two, or three (Halpern & Kelly, 1993).

Relative to this background, the present study had sev-
eral goals. First, we systematically investigated the influ-
ence of the numerical magnitude of operands on the OM 
effect. As we described above, the representational mo-
mentum effect is influenced by several factors, such as 
speed of the moving object, the presence of landmarks, or 
representational gravity (T. L. Hubbard, 2005). In contrast, 
it is largely unknown what factors determine the OM ef-
fect. Since it has been found that saccadic eye movements 
are systematically related to the numerical magnitude of 
a previously presented number, the attentional shifts that 
accompany mental arithmetic might systematically co-
vary with the numerical magnitude of the operands. This 
might, in turn, change the amplitude of the OM effect.

To study this influence in more detail, we introduced 
a method of assessing the psychophysical properties of 
symbolic and nonsymbolic calculation that was more ef-
ficient than the method used in McCrink et al. (2007). 
After presenting an arithmetic problem (e.g., 48 dots 1 
21 dots), instead of presenting subjects with a single pro-
posed result (e.g., 69 dots) and asking them to evaluate 
its correctness with a yes/no answer, we increased the 
amount of information gained per trial by presenting sub-
jects with seven closely spaced alternatives on each trial 
(e.g., 35, 41, 49, 58, 69, 82, and 98; note that numerical 
spacing between response alternatives is linear on a log 
scale) and directly recording their preferred outcome. This 
method presents the advantage of yielding, on each trial, 
an estimate of the subjects’ arithmetic estimate, almost as 
if the subjects had given a spoken response, yet without 
requiring the actual production of any number words. Im-
portantly, this response mode could be used identically for 
problems in both symbolic and nonsymbolic notation.

Second, we investigated whether OM is restricted to 
nonsymbolic calculation or can also be observed in sym-
bolic calculation (i.e., using Arabic numbers). Finding 
similar effects for both notations would support the as-
sumption that both nonsymbolic and symbolic magni-
tudes are represented on a common mental scale and that 
approximate calculation with symbolic operands also re-
lies on this mental number line (Dehaene, Spelke, Pinel, 
Stanescu, & Tsivkin, 1999). The present data set allowed 
for a precise quantitative estimation of the size of the OM 
effect and of its variation with operation type, as well as 
with the size of the operands. Through such analyses, we 
hoped to delineate the determinants of the OM effect and 
gain a more thorough understanding of the underlying 
mechanisms, thus clarifying whether they are common to 
symbolic and nonsymbolic calculations.
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were presented for 1,000 msec each (Arabic notation) or 1,500 msec 
each (nonsymbolic notation). Finally, the screen was emptied, and 
seven proposed results appeared, one by one, every 190 msec, at one 
of seven possible locations and remained on the screen until response. 
The notation of the operands always was identical to that of the re-
sponse alternatives in a given trial. The temporal and spatial order 
(and thus the numerical order of the response alternatives) in which 
the seven response alternatives appeared on the screen was random-
ized for each trial, with the constraint that each response alternative 
appeared only once at each position in the course of the experiment. 
After the appearance of the last response alternative, the mouse 
pointer appeared in the center of the screen, and the subjects had to 
indicate which numerosity was numerically closest to the actual result 
by clicking on the respective image. Speed was stressed over accuracy 
in order to maximize the use of approximation strategies and to avoid 
explicit calculation (Arabic numerals) or counting (dot patterns). Dur-
ing the experiment, no feedback was provided to the subjects.

The whole experiment lasted approximately 85 min. The para-
digm was created using Python 2.4 software (python.org) run on a 
portable personal computer (Siemens/Fujitsu; 1.6 GHz).

results
Because the subjects occasionally reported selecting the 

wrong operation (subtraction instead of addition), we first 
trimmed the data to exclude all responses outside a three 
standard deviations range around a subjects’ overall mean 
of the difference between the logarithm of the subjects’ 
choice and the logarithm of the correct value (see below). 
This procedure excluded 1.8% of all the responses.

nonrandom distribution of responses. To start with, 
we checked whether the subjects chose among the proposed 
choices at random. On each trial, seven response alterna-
tives were presented. The experimental design included two 
trial types, which were distinguished by whether the result 
closest to the correct outcome was the third or the fifth al-
ternative in numerical order (naturally, these choices were 

For example, for the problem 32 1 9 5 41, with the closest deviants 
being 34 and 49, the closest proposed result could be jittered any-
where from 38 5 round(41 3 220.5/4) to 45 5 round(41 3 210.5/4). 
We ensured that the correct outcome would never appear as a re-
sponse alternative. All the proposed results fell between 6 and 217.

All the problems were presented both in Arabic notation and as 
dot patterns (Figure 1 shows an example of a nonsymbolic trial). The 
notation of response alternatives in a given trial was always identical 
with the notation of the operands. Both notations were displayed in 
black within a colored circle that was presented on a black back-
ground. Each circle had a diameter of 120 pixels (3.55 cm) at a view-
ing distance of approximately 65 cm (no chinrest was used). Seven 
different colors were used for the results, whereas the operands’ 
colors were identical (this color manipulation played no role in the 
present experiment but was designed as a control for a future neu-
roimaging experiment). The operands were presented successively 
in the center of the screen. The results were presented at seven loca-
tions arranged around the screen center in an ellipsoid fashion. The 
seven proposed outcomes were counterbalanced in a Latin square, so 
that the number closest to the correct result appeared once and only 
once at each location, for each notation and operation.

To prevent the use of nonnumerical cues, the sets of dots repre-
senting the nonsymbolic numerosities were designed and generated, 
using MATLAB, in such a way that dot size changed but total dot 
area in a given set was always fixed across stimuli. Thus, total oc-
cupied area could not serve as a cue for distinguishing between the 
different numerosities. As a result of this manipulation, average item 
size covaried inversely with numerosity during the presentation of 
the operands (i.e., sets with smaller numerosities had larger dots). To 
avoid memorization effects due to repetition of a particular stimulus, 
on each trial, the stimulus images were randomly chosen from a set 
of 10 precomputed images with the given numerosity.

procedure. A total of 504 trials were presented in 14 blocks. After 
each block, the subjects were given a chance to rest. Trial structure is 
shown in Figure 1. Each trial started with the presentation of a fixa-
tion cross for 250 msec, which was followed by a blank screen for 
150 msec and an uppercase letter (“A” for addition or “S” for sub-
traction; 1,400 msec) indicating the subsequent operation to be per-
formed. After the instruction letter had disappeared, the two operands 

table 1 
All Basic Arithmetic problems presented in Experiment 1  

and their Correct and Deviant results

Operands Results and Mean Deviants (Not Jittered)

O1  O2  1/2  1/1.7  1/1.4  1/1.2  1/1  1.2/1  1.4/1  1.7/1  2/1

Addition

32  9 21 24 29 34 41  49  58  69  82
32 14 23 27 33 39 46  55  65  77  92
32 19 26 30 36 43 51  61  72  86 102
48 15 32 37 45 53 63  75  89 106 126
48 21 35 41 49 58 69  82  98 116 138
48 29 39 46 54 65 77  92 109 129 154
60 19 40 47 56 66 79  94 112 133 158
60 29 45 53 63 75 89 106 126 150 178
60 38 49 58 69 82 98 117 139 165 196

Subtraction

32  9 12 14 16 19 23  27  33  39  46
32 14  9 11 13 15 18  21  25  30  36
32 19  7  8  9 11 13  15  18  22  26
48 15 17 20 23 28 33  39  47  55  66
48 21 14 16 19 23 27  32  38  45  54
48 29 10 11 13 16 19  23  27  32  38
60 19 21 24 29 34 41  49  58  69  82
60 29 16 18 22 26 31  37  44  52  62
60 38 11 13 16 18 22  26  31  37  44

Note—The actual problems presented to the subjects were jittered by a small random 
amount (see the Method section), such that the correct outcome was never presented.



MoMentuM in approxiMate CalCulation    807

ps , .001). Most important, however, for each operation 
and in each notation, a significant rank 3 range interac-
tion was observed (all ps , .001).

Linear increase of response and response variabil-
ity with the correct result. We next examined how the 
subjects responded to our different arithmetic problems. 
The left column of Figure 3 shows the subjects’ mean re-
sponses (chosen values) as a function of the size of the 
correct result, separately for the two notations (Figures 3A 
and 3B) and the two operations. If the subjects were able 
to solve the arithmetic problems, the chosen value should 
increase as a function of the correct outcome for both non-
symbolic and symbolic notation. With increasing numeri-
cal magnitude, theory predicts an increasing variability of 
the chosen values (see the appendix in Barth et al., 2006). 
Finally, according to Weber’s law, the increase in the cho-
sen values should be paralleled by a proportional increase 
in response variability, as expressed in terms of their re-
spective standard deviation, resulting in a constant coef-
ficient of variation (CV, the ratio of the standard deviation 
and mean of the subjects’ responses) across arithmetic 
problems of different numerical magnitude.

As can be seen in Figure 3, the subjects’ responses 
(depicted as circles in Figure 3) increased as a function 
of the correct outcome for both addition (black circles) 
and subtraction (gray circles) and in both notations. This 
impression was confirmed by one-way repeated mea-

presented to the subjects in random order). If the subjects 
were able to solve the arithmetic problems, their response 
choices should show a nonflat distribution, presumably 
centered close to the correct value (neglecting for the mo-
ment the OM effect) and, therefore, shifting across those 
two trial types. In contrast, if they responded randomly, we 
would not expect any differences in the frequency of choos-
ing a particular response alternative. In Figure 2, we plot 
response frequency for each notation and each operation, 
separately for trials in which the correct answer was third 
or fifth. Responses were clearly distributed nonrandomly. 
For symbolic notation, the peak of the distribution was 
always centered on the response alternative closest to the 
correct outcome. This also held for nonsymbolic addition, 
although the distributions were broader, implying a larger 
variability for nonsymbolic than for symbolic notation. For 
nonsymbolic subtraction, the subjects always preferred the 
smallest possible outcome, suggesting an underestimation 
bias that will be analyzed further below.

These conclusions were supported by an ANOVA over 
the different response categories, with percentage of 
choice as the dependent variable and rank of the subject’s 
choice (one to seven) and trial type (third or fifth value 
correct) as factors. Only for nonsymbolic addition was 
there no effect of rank [F(6,90) 5 2.02, p 5 .141]. For 
all the other operations in either notation, a main effect 
of rank significantly influenced the subjects’ choices (all 

1,400 msec

1,500 msec

1,500 msec

Time

A

A

Figure 1. Screenshots taken from a trial with nonsymbolic addition to illustrate the task 
and the trial sequence. After an initial appearance of the letter “A” or “S,” indicating addi-
tion and subtraction, respectively, the first and second operands successively appeared in the 
center of the screen. the response alternatives were presented on screen in random order, 
separated from each other by a delay of approximately 190 msec to direct the subjects’ atten-
tion to each of the response alternatives. For trials in symbolic notation, the general layout of 
the trials was identical. instead of presenting a set of black dots, black Arabic numbers were 
presented in the center of the colored circles.
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with increasing numerical size of the result. This was true 
for both addition (black) and subtraction (gray) with the 
nonsymbolic notation [Figure 3A; F(8,120) 5 42.57, p , 
.001, ε 5 .88, and F(8,120) 5 23.02, p , .001, ε 5 .78, 
respectively] and with the symbolic notation [Figure 3B; 
F(8,120) 5 27.01, p , .001, ε 5 .68, and F(8,120) 5 
15.61, p , .001, ε 5 .88, respectively].

As can be seen in the lower left parts of Figure 3A 
and 3B, the CV was essentially constant across the whole 
range of outcomes for addition and subtraction with both 
notations. This was tested statistically with the same four 
repeated measures ANOVAs, with problem size as the 

sures ANOVAs, separately for each operation and each 
notation, with problem size as the only factor. A highly 
significant linear trend was observed1: for nonsymbolic 
addition [F(8,120) 5 180.52, p , .001, ε 5 .46; ε de-
notes the Huynh–Feldt term (Huynh & Feldt, 1976) of 
correction for nonsphericity] and subtraction [F(8,120) 5 
212.27, p , .001, ε 5 .73], as well as for symbolic addi-
tion [F(8,120) 5 2,460, p , .001, ε 5 .98] and subtraction 
[F(8,120) 5 558.51, p , .001, ε 5 .85].

A similar repeated measures ANOVA over the standard 
deviations (squares) of the mean chosen values showed 
that the subjects’ choices became more and more variable 
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Figure 2. Distribution of the subjects’ choices across the seven proposed results, averaged over all arithmetic problems, separately 
for addition (left column) and subtraction (right column) in nonsymbolic (A) and symbolic (B) notation. the subjects’ responses were 
not distributed randomly but, rather, depending on the range of response alternatives presented (high or low range), were centered 
around the value that was closest to the correct outcome (fifth for low range and third for high range). Additional influences of op-
eration (smaller choices for subtraction than for addition) and of notation (underestimation bias for nonsymbolic, as compared with 
symbolic, notation) are also visible.
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scale (log of the subjects’ responses as a function of the 
log of the correct results; Dehaene et al., 2003). Therefore, 
we calculated the difference between the correct outcome 
and the mean chosen value, once both of them had been 
transformed to a logarithmic scale, and calculated a re-
peated measures ANOVA on the standard deviations of 
these differences, with factors of notation (nonsymbolic 
and symbolic) and size of the correct result, separately for 
both operations (addition and subtraction).

Once transformed to a logarithmic scale, the size of the 
outcome did not systematically influence response vari-

only factor. For nonsymbolic notation, indeed, the CV did 
not change as a function of the correct outcome, either 
for addition (F , 1) or for subtraction [F(8,120) 5 1.65, 
p 5 .121, ε 5 .97]. For symbolic notation, this was true 
only for subtraction [F(8,120) 5 1.27, p 5 .277, ε 5 .77], 
whereas a significant main effect of problem size was ob-
tained for addition [F(8,120) 5 2.90, p 5 .007, ε 5 .91].

Constant response variability on a logarithmic 
scale. If Weber–Fechner’s law holds for both symbolic and 
nonsymbolic calculation, the data should show constant 
response variability once plotted on a double-logarithmic 
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logarithm of the correct outcome and the logarithm of the 
chosen value. Such analyses also present the advantage of 
meeting the prerequisites of the ANOVA, which stipulates 
that all data have a fixed variability.

Operational momentum. Although the subjects’ re-
sponses increased roughly linearly with the correct result, 
as is shown in Figure 3, the slope of increase tended to be 
shallower for subtraction than for addition (especially for 
nonsymbolic operations). Figure 4 shows the distribution 
of the subjects’ responses for a few selected nonsymbolic 
addition and subtraction problems, including the case in 
which the two operations had an identical outcome (41). 
It can be seen that the subjects’ responses tended to be 
higher for addition than for subtraction. The fact that, for 
equal objective outcomes, the subjects tended to antici-
pate a smaller outcome for a subtraction than for an addi-
tion problem (McCrink et al., 2007) might be taken as a 
manifestation of the OM effect.

To quantify this OM effect, we computed a simple 
estimate of response bias: the mean difference between 
the log of the subject’s responses and the log correct re-
sult (see Figure 5). This value was first submitted to a 
simple ANOVA with notation and operation as factors. A 
main effect of notation [F(1,15) 5 51.39, p , .001] indi-
cated an overall tendency toward underestimation for the 
nonsymbolic notation, as compared with rather precise 
performance for the symbolic notation. Most important, 
a main effect of operation [F(1,15) 5 21.58, p , .001] 
provided evidence for an OM effect—that is, a signifi-
cant bias toward smaller responses for subtraction than 
for addition. The significant interaction [F(1,15) 5 24.92, 
p , .001] was due to a larger difference between opera-
tions for nonsymbolic notation, as opposed to symbolic 

ability. For both operations, the main effect of problem 
size failed to reach significance [F(8,120) 5 0.88, p 5 
.52, ε 5 .78, and F(8,120) 5 1.61, p 5 .14, ε 5 .87, for 
addition and subtraction, respectively]. This analysis thus 
confirmed that Weber’s law held and that performance was 
determined mostly by the ratio of true outcome and cho-
sen value (or equivalently, by the difference of their logs). 
However, there were systematic differences between the 
notations for both operations [F(1,15) 5 94.80, p , .001, 
and F(1,15) 5 325.82, p , .001, respectively]: Variability 
was higher for dot patterns than for Arabic numerals.

Since problem size did not influence the results, we car-
ried out a 2 3 2 repeated measures ANOVA with the factors 
of notation and operation to evaluate possible interactions 
between these factors. The two main effects indicated that 
response variability was higher for the nonsymbolic nota-
tion than for the symbolic notation [F(1,15) 5 284.73, 
p , .001] and when the subjects were engaged in subtrac-
tion, as compared with addition [F(1,15) 5 12.56, p 5 
.003]. A significant interaction of both factors [F(1,15) 5 
33.93, p , .001] indicated that variability of the responses 
was higher for subtraction than for addition only for sym-
bolic notation [t(15) 5 7.28, p , .001], whereas for non-
symbolic notation, no significant difference was observed 
[t(15) 5 1.27, p 5 .23]. This might point to different un-
derlying processes when Arabic numerals are dealt with 
(exact calculation for addition vs. more approximate pro-
cesses for subtraction), whereas no differences were ob-
served for calculation with dot patterns.

Taken together, these results suggest, as predicted by 
Weber’s law, that the logarithms of the numbers involved 
provide a more compact description of the data. There-
fore, all the following analyses were carried out in a loga-
rithmic scale, using as input the difference between the 
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note the clear difference between addition and subtraction prob-
lems with the same outcome, which is a manifestation of opera-
tional momentum.
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Figure 5. mean response bias, defined as the difference between 
the chosen value and the correct outcome, both expressed on a log 
scale. A negative bias indicates underestimation, and a positive 
bias indicates overestimation.
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Figure 6 depicts the mean percentage with which each 
of the seven positions on screen was chosen, averaged 
over subjects, separately for the two types of notations for 
each type of operations. It is obvious that the data are not 
equally distributed over the seven positions for each of 
the four notation 3 operation combinations. Particularly 
in nonsymbolic notation, there is a clear spatial bias, with 
addition yielding more rightward responses and subtrac-
tion more leftward responses. We tested this by computing 
two 2 3 2 repeated measures ANOVAs with factors of 
operation and position for the two top right and top left 
positions only (separately for nonsymbolic and symbolic 
stimuli). For nonsymbolic stimuli, the critical interaction 
between operation and position was significant [F(1,15) 5 
6.30, p 5 .024, ε 5 1], indicating a differential pattern of 
spatial responding as a function of operation. For sym-
bolic stimuli, no such interaction was present [F(1,15) 5 
1.88, p 5 .19], although a trend in the same direction can 
be seen in Figure 6.

As an additional statistical test of this effect, a simple 
2 3 2 contingency table served as input for computing 
a χ2 test over the two positions (top left or top right) for 
each operation (addition or subtraction). For nonsymbolic 
notation, a significant χ2 test [χ2(1) 5 5.60, p 5 .018] 
confirmed that the spatial distribution of responses var-
ied with the type of arithmetic operation. For symbolic 
notation, no significant effect was found [χ2(1) 5 0.29, 
p 5 .59].

Discussion
We replicated the OM effect observed by McCrink et al. 

(2007) with a multiple choice paradigm. Subjects tended 
to misjudge the outcome of a mental calculation. The mis-
judgment was a function of the notation and the operation 
carried out. In accordance with earlier reports (e.g., Izard 
& Dehaene, 2008), the subjects generally tended to under-
estimate results presented in nonsymbolic form. However, 
this underestimation bias was modulated by the arithme-
tic operation: In accordance with the OM, the difference 
between the preferred and the correct results (response 
bias) was more positive for addition than for subtraction. 
This OM effect was very strong for nonsymbolic nota-
tion, but it was also significant for symbolic notation. The 
fact that the OM effect is smaller for symbolic stimuli is 
not surprising, since it merely reflects the subjects’ higher 
precision with symbolic than with nonsymbolic stimuli. 
However, the mere presence of such an effect for calcu-
lation with Arabic numerals is an important novel find-
ing, since it suggests that a similar analogue magnitude 
representation is used during symbolic and nonsymbolic 
approximate arithmetic.

Finally, a new finding was that arithmetic operation 
biased the spatial distribution of responses: The subjects 
preferentially selected values presented at the upper left 
position of the computer screen with nonsymbolic subtrac-
tion and values presented at the upper right position with 
nonsymbolic addition. For symbolic notation, a similar but 
smaller and nonsignificant trend was found. Again, this 
is presumably because there was not much room for such 
a bias, given that the subjects so frequently selected the 

notation [t(15) 5 24.99, p , .001]. Crucially, however, 
subtraction yielded significantly smaller values than did 
addition with both notations [t(15) 5 24.84, p , .001, 
for nonsymbolic notation, and t(15) 5 2.73, p , .001, 
for symbolic notation]. McCrink et al. (2007) explored 
the OM effect only with nonsymbolic numerosities; the 
present results provide the first evidence that this effect 
holds also during approximate symbolic calculation with 
Arabic numerals.

There was, however, another important difference be-
tween notations (see Figure 5). For symbolic operations, 
the OM took the form of a full crossover effect, with posi-
tive deviations relative to the correct result for addition 
(overestimation) and negative deviations for subtraction 
(underestimation). For nonsymbolic operations, however, 
the OM effect was superimposed onto a general tendency 
to underestimate the correct result. This finding may re-
late to a general tendency to underestimate the number 
of dots in visual displays, as has been reported by others 
(Izard & Dehaene, 2008; Krueger, 1984).

Note that we propose to apply a definition of the mo-
mentum effect that differs from the more stringent one 
used in the visual domain. In the domain of representa-
tional momentum, to speak of a significant momentum ef-
fect requires the data to have the form of a full crossover 
effect—that is, values that significantly deviate from zero 
for both directions, positively and negatively, as a function 
of movement direction. In the numerical domain, how-
ever, we propose to speak of a momentum effect as soon 
as there is a difference in the mean responses to matched 
addition and subtraction problems, even if the responses 
for both operations differ from zero with the same sign, as 
is the case for nonsymbolic notation in the present study. 
This stance is useful because numerical data are often af-
fected by an additional general tendency to underestimate 
the results (Izard & Dehaene, 2008). The key new finding 
is that this underestimation tendency is modulated by the 
arithmetic operation, yielding considerable underestima-
tion for subtraction and near-correct values for addition. 
This interaction in itself can be interpreted as evidence for 
an OM effect. This point becomes most evident for those 
problems with identical results: As is shown in Figure 4, 
even for these objectively equal problems, addition resulted 
in larger subjective responses than did subtraction (this ef-
fect was explored further in Experiment 2).

influence of the arithmetic operation on the spa-
tial distribution of responses. Since each proposed re-
sult appeared equally frequently at each of the seven spatial 
positions on the screen, by chance alone, we would expect 
responses to be equally distributed over these different po-
sitions. However, if one assumes that calculation resembles 
a spatial displacement on the mental number line via shifts 
of spatial attention (E. M. Hubbard et al., 2005), one might 
expect this internal movement to influence the position of 
the subjects’ responses. Our paradigm therefore offered a 
unique opportunity to directly test one of the assumptions 
made by Hubbard and colleagues (E. M. Hubbard et al., 
2005): If addition induces a shift of spatial attention to the 
right and subtraction to the left, this might bias the sub-
jects’ clicking on the right or left side of the screen.
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outcomes were identical. All other experimental details 
remained unchanged.

ExpErimEnt 2

method
Subjects. Eighteen volunteers (15 female; mean age 5 22.5 

years, SD 5 2.4 years; range, 19–26 years) took part in the experi-
ment after having given their written informed consent. All but one 
were right-handed according to the Edinburgh Handedness Inven-
tory (Oldfield, 1971).

Stimuli. The basic stimulus set consisted of nine addition and 
nine subtraction problems. For addition (subtraction), the operands 
ranged from 14 to 56 (32 to 128) for the first operand and from 5 to 
42 (7 to 59) for the second operand. As in Experiment 1, the second 
operand was a fixed proportion of the first operand: 28% (23%), 
49% (34%), or 76% (44%). The correct results covered approxi-
mately the same numerical range as in Experiment 1 (21–98). Table 2 
provides an overview of the problems used in Experiment 2.

All other details of creating the stimulus set were identical to 
those in Experiment 1.

procedure. The procedure was identical to that in Experiment 1.

results
The trimming procedure was identical to that in Experi-

ment 1. Of all responses, 0.4% were excluded from further 
analyses.

value closest to the correct result. Overall, the results are 
consistent with the notion of a cross-talk between spatial 
and arithmetic operations, as predicted by E. M. Hubbard 
et al. (2005). We propose to refer to this novel effect as the 
space–operation association of responses (SOAR) effect.

Although this finding may point to interactions be-
tween calculation and space, as predicted by E. M. Hub-
bard et al. (2005), the present experiment alone does not 
allow one to conclude whether this bias is truly due to the 
operation being carried out. An alternative possibility is 
that it arose from the numerical magnitude of the response 
choices presented on screen, because, in Experiment 1, 
the operands were identical for addition and subtraction 
and, as a consequence, the outcomes were systematically 
larger for addition than for subtraction. It is therefore pos-
sible that the subjects were spatially biased by the larger 
numerosities present on screen (a simple variant of the 
spatial numerical association of response codes [SNARC] 
effect [Dehaene, Bossini, & Giraux, 1993]), rather than by 
the preceding arithmetic operations.

In order to clarify this point, we conducted a second 
experiment very similar to the first one, but with constant 
outcomes. Instead of using identical operands for addi-
tion and subtraction, we manipulated the operands of the 
addition and subtraction problems so that their correct 
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rately for each notation and each operation. Gray dotted lines represent theo-
retical expectations under the assumption of perfect performance (100/7 < 
14%). the subjects were biased toward an upper right location for addition 
problems and toward the upper left location for subtraction problems, at least 
for nonsymbolic operations.



MoMentuM in approxiMate CalCulation    813

come increased. This resulted in a main effect of operation 
[F(1,17) 5 77.75, p , .001] and an operation 3 result 
size interaction [F(8,136) 5 58.45, p , .001, ε 5 .27] for 
nonsymbolic stimuli. For symbolic stimuli, no such main 
effect was found (F , 1), but the interaction [F(8,136) 5 
3.53, p 5 .007, ε 5 .60] indicated that the impact of the 
operation was not identical for all the problems.

An equivalent repeated measures ANOVA over the stan-
dard deviations of the chosen values (depicted as squares 
in Figure 8) showed that the subjects’ choices became 
increasingly variable as the numerical size of the results 
increased. This was true for both addition (black) and sub-
traction (gray) with the nonsymbolic notation [Figure 8A; 
F(8,136) 5 3.91, p 5 .004, ε 5 .60, and F(8,136) 5 29.85, 
p , .001, ε 5 .61, respectively] and with the symbolic no-
tation [Figure 8B; F(8,136) 5 22.27, p , .001, ε 5 .72, 
and F(8,136) 5 14.64, p , .001, ε 5 .42, respectively].

As is depicted in the lower parts of Figures 8A and 8B, 
the CV seemed to be constant or decreasing across the 
whole range of outcomes for addition and subtraction 
with both notations. Indeed, CV did not change as a func-
tion of the correct outcome for nonsymbolic subtraction 
[F(8,136) 5 1.66, p 5 .117, ε 5 .97] or symbolic addi-
tion [F(8,136) 5 1.83, p 5 .091, ε 5 .83]. However, it 
significantly increased with increasing problem size for 
nonsymbolic addition [F(8,136) 5 2.91, p 5 .015, ε 5 
.68] and significantly decreased for symbolic subtraction 
[F(8,136) 5 3.01, p 5 .009, ε 5 .76], although both ef-
fects were quantitatively small.

Operational momentum. We again computed the 
difference between the log chosen and log correct out-
come to obtain an index of the bias by which the subjects’ 
choices deviated from the correct outcome (see Experi-

nonrandom distribution of responses. Again, we 
first examined whether the subjects responded randomly 
to the choice screen only or genuinely took into account 
the arithmetic problems. In Figure 7, we plotted response 
frequency for each notation and each operation, separately 
for trials on which the correct answer was closest to the 
third or the fifth response alternative (see Table 2). An 
ANOVA over the different response categories, with per-
centage of choice as the dependent variable and rank of 
the subject’s choice (one to seven) and trial type (third or 
fifth value correct) as factors, supported the notion that 
the subjects’ choices were influenced by the arithmetic 
problem. For each operation in both notations, significant 
effects of rank and significant rank 3 range interactions 
were observed (all ps , .001).

Linear increase of response and response variabil-
ity with the correct result. The subjects’ mean responses 
(depicted as dots in Figure 8) again increased as a function 
of the correct outcome for both addition (black) and sub-
traction (gray) in both notations (Figure 8A; nonsymbolic 
notation; Figure 8B; symbolic notation). Four one-way re-
peated measures ANOVAs with result size as the only fac-
tor for nonsymbolic addition [F(8,136) 5 70.14, p , .001, 
ε 5 .39] and subtraction [F(8,136) 5 664.60, p , .001, 
ε 5 .74], as well as for symbolic addition [F(8,136) 5 
4,135.88, p , .001, ε 5 .66] and subtraction [F(8,136) 5 
1,755.14, p , .001, ε 5 .50] confirmed this impression.

Crucially, as can be seen in Figures 8 and 9, for non-
symbolic operations, although the correct results were 
now identical under addition and subtraction, the sub-
jects’ mean responses differed, a first clear indication of 
OM. The numbers selected were bigger under addition 
than under subtraction, and all the more so that the out-

table 2 
All Basic Arithmetic problems presented in Experiment 2  

and their Correct and Deviant results

Operands Results and Mean Deviants (Not Jittered)

O1  O2  1/2  1/1.7  1/1.4  1/1.2  1/1  1.2/1  1.4/1  1.7/1  2/1

Addition

 14  5 10 11 13 16 19  23  27  32  38
 14  7 11 12 15 18 21  25  30  35  42
 14 11 13 15 18 21 25  30  35  42  50
 28  7 18 21 25 29 35  42  49  59  70
 28 13 21 24 29 34 41  49  58  69  82
 28 21 25 29 35 41 49  58  69  82  98
 56 13 35 41 49 58 69  82  98 116 138
 56 28 42 50 59 71 84 100 119 141 168
 56 42 49 58 69 82 98 117 139 165 196

Subtraction

 32 13 10 11 13 16 19  23  27  32  38
 32 11 11 12 15 18 21  25  30  35  42
 32  7 13 15 18 21 25  30  35  42  50
 64 29 18 21 25 29 35  42  49  59  70
 64 23 21 24 29 34 41  49  58  69  82
 64 15 25 29 35 41 49  58  69  82  98
128 59 35 41 49 58 69  82  98 116 138
128 44 42 50 59 71 84 100 119 141 168
128 30 49 58 69 82 98 117 139 165 196

Note—The actual problems presented to the subjects were jittered by a small random 
amount (see the Method section), such that the correct outcome was never presented.
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bolic than for symbolic problems, although it was signifi-
cant in both cases [nonsymbolic, t(17) 5 7.11, p , .001; 
symbolic, one-tailed t(17) 5 1.76, p 5 .048].

influence of the arithmetic operation on the spa-
tial distribution of responses. Again, we tested whether 
subjects preferentially selected values presented at certain 
screen positions as a function of the arithmetic operation. 
Figure 11 shows that the overall pattern of performance 
was quite comparable to that in Experiment 1.

We statistically tested this impression by computing 
two 2 3 2 repeated measures ANOVAs with factors of 
operation and position for the upper left and upper right 
positions only (separately for nonsymbolic and symbolic 
stimuli). The interaction between location and operation, 

ment 1). This measure of the OM effect is depicted in Fig-
ure 10 separately for each operation in both notations. To 
test the overall presence of an OM effect, we computed 
a 2 3 2 repeated measures ANOVA over the difference 
of the logarithm of the correct outcome and the log of 
the chosen value. The results resembled those from Ex-
periment 1. Smaller values (indicating an underestima-
tion) were obtained with nonsymbolic than with symbolic 
stimuli [F(1,17) 5 61.46, p , .001]. Most important, the 
OM effect was reflected in smaller values for subtraction 
problems than for addition problems [F(1,17) 5 52.36, 
p , .001]. A significant interaction [F(1,17) 5 45.87, 
p , .001] indicated that the difference in response bias 
between addition and subtraction was larger for nonsym-
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two operations ( p 5 .003), whereas no such differential 
impact of operation on the spatial position chosen was 
present for symbolic notation ( p 5 .53).

Note that in Experiment 2, contrary to Experiment 1, 
the choices presented on the screen had the same mag-
nitudes for addition and subtraction. Thus, the results of 
Experiment 2 indicate that the spatial bias for results in 
certain locations on the screen was driven not only by the 
magnitude of the numerosities presented at choice time, 
but also, crucially, by the arithmetic operation that was 
carried out prior to the choice itself.

although in the same direction as in Experiment 1, was 
not significant [nonsymbolic notation, F(1,17) 5 2.26, 
p 5 .15; symbolic notation, F(1,17) , 1]. This might be 
interpreted in terms of high intersubject variability pre-
venting the effect from reaching significance in a test with 
subjects as the random factor. As in Experiment 1, we 
therefore also tested the deviation of the observed clicking 
preferences from the expected uniform distribution with 
a χ2 test across trials. A 2 3 2 contingency table analysis 
showed that for nonsymbolic notation, the subjects did not 
choose each position on the screen equally often for the 
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The OM effect refers to the fact that the subjects’ re-
sponses were systematically biased by the arithmetic op-
eration carried out. Responses were biased toward larger 
numbers for addition than for subtraction. Although this 
response bias was more pronounced for nonsymbolic 
problems, the present study proves for the first time that 
OM affects symbolic arithmetic. This aspect of our results 
strengthens the hypothesis that approximate arithmetic, 
even when the input numbers are presented as Arabic nu-
merals, relies on magnitude representations and arithme-
tic procedures that are partially similar to those used for 
nonsymbolic calculation (Dehaene et al., 1999).

The second, new effect reflects a spatial bias of the sub-
jects for preferring some locations on the screen over oth-
ers, depending on the arithmetic operation that they just 
performed. With addition, the subjects preferentially se-
lected numerosities displayed in the upper right location, 
whereas for subtraction, they preferred the upper left loca-
tion. Experiment 2 showed that this effect occurs, although 
with high variability across subjects, even when addition 
and subtraction problems that yield the same numerical 
outcome are compared. Note that, in this case, the initial 
operands are larger for subtraction than for addition, and 
yet the observed effect associates subtraction with the left 
side of space. Thus, this new association between arithme-
tic operations and the left–right axis can be differentiated 
from the classical SNARC effect (Dehaene et al., 1993), 
whereby increasing number size causes an increasingly 
larger rightward spatial bias. Since arithmetic operations 
are associated with a distinct spatial bias, we coined the 
term SOAR (as an acronym for space–operation associa-
tion of responses) for this new effect.

Discussion
The second experiment was designed mainly to decide 

whether the SOAR effect (i.e., the spatial bias in response 
frequency as a function of the arithmetic operation) ob-
served in Experiment 1 was due to the increasing magni-
tude of the outcomes or to the arithmetic operations that 
were deployed. Since we had used matched operands in 
Experiment 1, the outcomes were larger for addition than 
for subtraction, thus confounding these factors. In Experi-
ment 2, we designed the operands so that the outcomes 
were identical (and therefore, the operands were smaller 
for addition than for subtraction). If the SOAR effect is 
due to the arithmetic operation, we should still observe it 
in this second experiment. Indeed, we replicated the spa-
tial bias for the upper right and upper left positions of the 
screen as a function of the arithmetic operation. Again, this 
tendency was more pronounced for nonsymbolic notation 
than for symbolic arithmetic. Thus, we conclude that the 
SOAR effect is most probably due to the arithmetic opera-
tion, rather than to the numerical size of the outcome.

With regard to the OM effect, we also replicated the 
results from the first experiment. We observed a bias in 
the chosen outcomes as a function of both the notation and 
the operation. Most important, for equal objective out-
comes, the subjects were biased toward smaller numbers 
for subtraction problems than for addition problems. As 
in Experiment 1, these effects were driven largely by the 
nonsymbolic notation. We still observed a significant OM 
effect with symbolic notation, albeit a very small one.

GEnErAL DiSCuSSiOn

We have reported the results from two experiments in 
which symbolic and nonsymbolic addition and subtrac-
tion were investigated in order to quantify the mechanisms 
underlying basic mental arithmetic. Two cognitive effects 
were investigated in more detail.
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Figure 9. Sample distributions of the subjects’ responses to 
three nonsymbolic addition and subtraction problems in Experi-
ment 2. in each case, a small leftward displacement of subtrac-
tion, relative to addition problems, reflects the operational mo-
mentum effect.
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Figure 10. mean response bias, defined as the difference be-
tween the chosen value and the correct outcome, both expressed 
on a log scale. A negative bias indicates underestimation, and a 
positive bias indicates overestimation.
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were engaged (see Pinhas & Fischer, 2008, for similar re-
sults). The effect is no doubt very small and on the edge of 
detectability, but this should not be surprising, given that 
responses are so much more precise when the operation is 
presented in symbolic form and thus leave little room for 
errors and biases to emerge. The very fact that we observe 
an effect despite the use of verbally mediated, exact calcu-
lation lets us assume the presence of common nonverbal 
and, presumably, attentional mechanisms. It remains to 
be seen whether exact arithmetic, including more com-
plex operations such as multiplication and division, would 
also yield such spatial biases. Under the view that exact 
arithmetic relies on a distinct system, based on a verbal or 
symbolic coding of the numbers involved (Dehaene et al., 
1999), one might predict that no SOAR effect should be 
found. However, if the SOAR effect is determined solely 
by a representation of the magnitude of the final result on 
an internal number line, it might still be presented during 
complex exact arithmetic.

Over and above the biases perceptible in the OM and 
SOAR effects, the results of the present experiments indi-
cate that, in the mean, the subjects were rather accurate in 
performing basic mental arithmetic, using nonsymbolic 
numerosities. On average, the subjects tended to underes-
timate the results of nonsymbolic problems, with addition 
being rather precise and subtraction largely underesti-

The SOAR effect may be interpreted in a framework 
where calculation is likened to a sort of movement or a shift 
of attention along the mental number line (Dehaene, 1992; 
E. M. Hubbard et al., 2005; Restle, 1970). This interpreta-
tion parallels the account of perceptual representational 
momentum in terms of dynamic mental representations 
(Freyd & Pantzer, 1995). Just as Freyd and Pantzer as-
sumed that the mental representation of a moving object is 
permanently updated, the mental representation of a given 
numerosity in the course of being transformed by a mental 
calculation would be not fixed but dynamic, with a dis-
placement in the distribution of activation on the mental 
number line representing the change from one value to 
another. The direction of change (addition/subtraction) 
would then determine the OM effect and, by congruity 
with space, the SOAR effect. Both the OM and SOAR 
effects add to previous evidence for number–space inter-
actions arising from the SNARC effect and the numerical 
bisection task. They suggest that numerosity is internally 
mapped onto a spatially organized and dynamically up-
dated mental representation and that this representation 
is not activated just in an epiphenomenal manner but is 
actively used and updated during mental arithmetic—at 
least when approximations are required.

Even with symbolic notation, we observed a differential 
bias due to the arithmetic operation in which the subjects 
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Figure 11. the space–operation association of responses effect for Experi-
ment 2. Again, the subjects were clearly biased toward an upper right response 
to addition problems and an upper left response to subtraction problems for 
nonsymbolic operations. An unexpected bias toward upper left positions was 
observed for symbolic addition problems.
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a mere heuristic, although they do not preclude its overall 
involvement.

Another objection might be that the subjects counted the 
dots to produce their responses. We analyzed the reaction 
times and did not observe any strong evidence that would 
imply a counting strategy. If the subjects had adopted a 
counting strategy, the reaction time should be linearly and 
strongly related to the chosen number in a given problem. 
However, the correlation between the numerical size of the 
chosen value (which, in turn, is linearly related to the dif-
ferent response alternatives) was r 5 .08 in Experiment 1 
( p 5 .001) and r 5 .03 in Experiment 2 (n.s.). Two other 
observations make it rather unlikely that the subjects used 
a counting strategy. If we assume that the subjects can 
count individual items at a rate of about 250 msec per item 
(a time at the lower boundary of fixation times in simple 
visual search paradigms; cf. Hooge & Erkelens, 1998; Ja-
cobs, 1986), the presentation time of 1,500 msec for the 
operands did not allow for counting more than six items in 
a given set of dots. This is way below the numerical range 
of the operands used here. A similar argument holds for 
the reaction times in response to the presentation of the 
response alternatives, which was theoretically unlimited 
in time. The median response times were 2,712 msec for 
addition and 3,011 msec for subtraction problems in Ex-
periment 1, and 2,859 and 2,672 msec for addition and 
subtraction, respectively, in Experiment 2. Again, this is 
not long enough to count the number of elements for the 
numerosities used here, especially given that the subjects 
had to choose between seven response alternatives.

In combination with the fact that neither the subjects 
nor the experimenter reported the use of a counting strat-
egy, we conclude that counting did not contribute to the 
pattern of results in the present study.

Beyond these alternative strategies, the subjects might 
have produced their responses on the basis of the indi-
vidual item sizes, which covaried with numerical mag-
nitude. If the subjects’ performance was predominantly 
influenced by the individual item size, we would expect 
major differences between Experiment 1, in which the 
item size of the addition and subtraction problems differed 
due to different numerical magnitudes of the outcomes, 
and Experiment 2, in which the response alternatives were 
identical for both operations. The pattern of results in both 
experiments, however, was largely identical (see Figures 5 
and 10), including a significant underestimation for both 
addition and subtraction problems, which was more pro-
nounced for subtraction. This is not congruent with the 
idea that the results were due to the subjects’ paying atten-
tion to individual item size.

Finally, one might wonder whether the subjects re-
sponded solely on the basis of the range of the presented 
response alternatives or on the basis of the size of one 
of the operands, without combining them in a mental 
calculation process. We carefully analyzed our data with 
respect to these and other alternative strategies. None of 
them could explain the present pattern of results (see the 
online supplemental materials).

In sum, the most plausible strategy seems to involve 
arithmetic processing, for both symbolic and nonsymbolic 

mated. It has been shown in previous studies that subjects 
generally underestimate the number of dots present in a 
given set of objects in transcoding tasks (e.g., from sets 
of dots to Arabic numerals; see Izard & Dehaene, 2008). 
Note, however, that the involvement of a general tendency 
to underestimate the number of items in a given set remains 
putative for the moment, since in theory no transcoding 
from one notation (e.g., nonsymbolic) to another (e.g., 
symbolic) is necessarily involved in the present paradigm. 
Nevertheless, subjects might engage in some sort of in-
ternal labeling of quantities that is then apt to undergo 
the same type of bias. The range of numbers used in the 
present study might as well have contributed to an overall 
bias to underestimate outcomes of nonsymbolic problems 
(yet, still resulting in larger values for addition than for 
subtraction). Here, we used larger numerosities than did 
McCrink et al. (2007), for example. Little is known so far 
about nonsymbolic calculation performance in the numer-
osity range we used in the present experiments.

We found that Weber’s law clearly holds for both sym-
bolic and nonsymbolic arithmetic, in agreement with 
previous results (Barth, Kanwisher, & Spelke, 2003; Mc-
Crink et al., 2007). The roughly constant coefficient of 
variation over different magnitudes suggests that a single 
underlying representation may be accessed whenever ap-
proximate arithmetic operations are carried out, whether 
in symbolic or nonsymbolic format. These results fit 
with those of other studies showing that basic numeri-
cal abilities are not restricted to humans but seem to be 
shared with other species (Beran, 2007). An important 
difference, however, is that humans possess symbolic 
codes for numbers, which, as was observed here, give 
them access to a much higher precision in calculation. In 
neural terms, it has been suggested that this effect could 
be explained by a sharpening of the tuning of number-
coding neurons in the course of symbol acquisition (Ver-
guts & Fias, 2004).

Alternative Strategies: Did the Subjects Engage 
in mental Calculation?

The interpretation of the present findings relies on the 
idea that the present results really do give evidence for an 
arithmetical process of approximate calculation. Thus, we 
have to rule out the use of simpler response strategies.

An alternative interpretation of our results appeals to 
the anchoring and adjustment mechanisms put forward by 
Tversky and Kahneman (1974). The first operand might 
serve as an anchor (i.e., a numerical magnitude that sub-
jects focus on), whereas the second operand would be used 
to “adjust” (i.e., to change the initial focus along the mental 
magnitude representation). We think that this anchor-and-
adjust mechanism is not necessarily incompatible with our 
notion of approximate arithmetic but that the precise nature 
of our data requires a much more precise specification of 
this mechanism. As can be seen in Figures 3 and  8, the 
subjects’ responses track very closely the correct exact 
arithmetic solution of each problem. Thus, the recombina-
tion of information gathered from each operand follows 
closely the laws of arithmetic (although with small spatial 
biases). The required subprocesses seem to go well beyond 
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representation of these numbers relies on analogue mental 
numerical magnitudes. When saying analogue, we mean 
that the internal representation of numerical magnitude is 
noisy and organized along a continuum in a similar way 
as are other (physical) quantities. As has been discussed in 
many studies since Moyer and Landauer’s (1967) seminal 
finding, the brain represents discrete numbers by using 
continuous internal quantities (Dehaene et al., 1999; Gal-
listel & Gelman, 1992; Shepard, Kilpatrick, & Cunning-
ham, 1975).

Whether the analogy between physical and operational 
momentum is equally applicable to all aspects and theoret-
ical dimensions of both effects remains to be seen. For in-
stance, in the domain of physical motion, representational 
momentum typically applies only if the perceived devia-
tions in location occur in the direction of the movement. 
In our understanding, however, this is one of the points 
where the analogy between representational momentum 
and OM might have its limits. For the domain of numeri-
cal cognition, the most interesting analysis is probably not 
to look directly at whether the selected result exceeds the 
correct value or not, but rather to contrast directly addi-
tion and subtraction problems that are carefully matched 
either by operands (Experiment 1) or by outcome (Experi-
ment 2). These analyses are useful in order to control for 
any overall bias that might affect the subjects’ responses, 
particularly since it is well known that numerosity is fre-
quently underestimated (e.g., Izard & Dehaene, 2008). 
These comparisons clearly indicate that under matched 
conditions, additions are overestimated, as compared with 
subtractions—even though addition estimates do not nec-
essarily exceed the correct result.

It is also uncertain whether the underlying mechanisms 
are identical for both effects (i.e., representational momen-
tum and OM). Following E. M. Hubbard et al. (2005) and 
Dehaene and colleagues (2003), we tentatively propose 
that OM may have its neural origin in parietal attentional 
mechanisms that operate on the internal mental number 
representation. These may share certain features with 
mechanisms involved in the phenomenon of representa-
tional momentum, such as a process of constant updating, 
but they may also differ with respect to other features and 
might even be dissociable by distinct brain lesions.

In fact, we observed two effects of “spatial” displace-
ment in the present study. The OM effect suggests a dis-
placement on the mental number line when a particular 
result is chosen. The SOAR effect describes a prefer-
ence for certain positions on a screen as a function of 
the arithmetic process the subject is engaged in. In the 
domain of representational momentum, too, it has been 
shown that the final perceived spatial displacement re-
flects the influence of several sources of bias. In par-
ticular, E. M. Hubbard and colleagues demonstrated that 
the representational momentum effect decreases when 
objects appear to slide along a surface, thus indicating 
that humans incorporate and represent friction when 
estimating the trajectory of an object (T. L. Hubbard, 
1995). In a similar vein, representational gravity and the 
presence of a landmark in the visual scene combine with 
other factors, such as velocity, to determine the final 

quantities. The exact mechanism by which internal quanti-
ties are manipulated to support simple calculation remains 
unknown, however.

In the present study, we replicated the OM effect with 
numbers presented in nonsymbolic and symbolic nota-
tion. This allowed us to further analyze one putative de-
terminant of the effect—that is, whether the OM effect 
is influenced by the numerical size of the operands (see 
the supplemental materials). For nonsymbolic notation, 
the results can be quickly summarized by stating that, for 
both addition and subtraction, whichever factor increased 
the numerical value of the outcome also increased the pro-
portional size of the OM effect.

For numbers presented in symbolic notation (Arabic nu-
merals), the subjects were much more precise in their judg-
ments, suggesting either that they could not inhibit exact 
calculation or that they have an inherently more precise, 
but still analogue, representation of the quantity associated 
with Arabic numerals (Dehaene et al., 1999; Verguts & 
Fias, 2004). Both possibilities are likely to be correct. The 
second possibility is vindicated by the finding of Weber’s 
law, but also of a smaller OM effect. The small size of the 
SOAR and OM effects in symbolic notation was probably 
due to the subjects’ higher precision, which frequently led 
to the optimal choice and thus left little room for observ-
ing spatial or numerical errors and biases. Yet the fact that 
the observed effects were, overall, larger for nonsymbolic 
than for symbolic notation also suggests the involvement 
of partially different subprocesses in the course of solving 
these two kinds of problems. It seems very likely that the 
subjects engaged in some exact calculations when fac-
ing a symbolic arithmetic problem, plausibly involving 
memory recall of verbal representations and of rote arith-
metic facts from long-term memory. With nonsymbolic 
stimuli, no such knowledge was available. Because of this 
major difference, it is all the more noteworthy that we did 
observe small yet significant indications of an OM effect 
even with exact and, presumably, verbally mediated cal-
culation. In future work, a suggestion might be to use a 
narrower range of proposed outcomes for symbolic than 
for nonsymbolic stimuli, thus compensating for the sub-
jects’ higher precision. This method may have a greater 
chance of detecting the small biases that may characterize 
symbolic arithmetic.

Commonalities and Differences Between 
Operational and representational momentum

The OM effect was named by analogy with the repre-
sentational momentum effect in the visual domain. This 
was meant to indicate that in both domains—numerical 
and visual—mechanisms may exist that operate on and 
involve the updating of a dynamic mental representation 
(be it of moving objects or of numerical magnitudes). 
Freyd (1993) postulated that the representational momen-
tum effect arises from a nonstatic but dynamic underlying 
representation that is continuous and analogue in nature. 
Note, however, that in the present experiments, the input 
stimuli were discrete in nature (natural numbers, either 
in the form of dots in a set or as Arabic numerals). Nev-
ertheless, many experiments suggest that the underlying 
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spatial displacement of the subjects’ judgments (T. L. 
Hubbard & Ruppel, 2000). Bridging the gap between 
cognitive domains, one might thus infer that OM, too, 
is a combination of several sources or forces—notably, 
the mere displacement along the mental number line and 
the SOAR effect. In the context of the present experi-
ments, it is not possible, however, to disentangle these 
factors. By choosing a particular response alternative 
on a screen, the subjects simultaneously chose both a 
numerosity and a screen location. It remains to be seen 
in future experiments how these two biases interact to 
determine the final performance. To generalize this idea, 
it might be interesting in future experiments to investi-
gate what sources of variability contributed to the OM 
effect. This question aims at differentiating whether the 
observed OM effect has its origin in the mental repre-
sentation of the displayed numerosity, the mental calcu-
lation process, or the response selection stage (Cordes 
et al., 2007). In the study of Cordes and colleagues the 
major determinant of variability in nonverbal arithmetic 
was found to have its origin in the individual mental nu-
merical magnitude representations entering the calcula-
tion process, rather than from mental transition or motor 
production processes. This is interesting in the context 
of the present experiments, since here we observed an 
additional source of variability that contributes to the 
outcome of a mental arithmetic operation—that is, the 
OM effect. At the same time, it might help to understand 
the results of the present experiments: In contrast to the 
procedure of Cordes and colleagues, in the present study, 
the subjects did not have to repeatedly push a button to 
indicate a certain numerosity but just could click on one 
of the quantities displayed on the screen. Since this pro-
cedure is less apt to be influenced by covarying factors 
such as the duration of the buttonpresses (the larger the 
numerosities, the longer it takes for subjects to respond), 
we may assume that the amount of variability introduced 
by the response stage is reduced. Therefore, the present 
methodological approach may be useful in future experi-
ments to further delineate the laws that characterize non-
verbal calculation.
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