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Orsay Cedex, France, 2Collège de France, 75231 Paris

Cedex05, France, 3Istituto di Biostrutture e Bioimmagini,

Consiglio Nazionale delle Richerche, 80131 Napoli, Italy,
4Service Hospitalier Frédéric Joliot, Département de
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We used behavioral and functional magnetic resonance imaging
(fMRI) methods to probe the cerebral organization of a simple
logical deduction process. Subjects were engaged in a motor trial-
and-error learning task, in which they had to infer the identity of an
unknown 4-key code. The design of the task allowed subjects to
base their inferences not only on the feedback they received but
also on the internal deductions that it afforded (autoevaluation).
fMRI analysis revealed a large bilateral parietal, prefrontal, cingu-
late, and striatal network that activated suddenly during search
periods and collapsed during ensuing periods of sequence repeti-
tion. Fine-grained analyses of the temporal dynamics of this search
network indicated that it operates according to near-optimal rules
that include 1) computation of the difference between expected
and obtained rewards and 2) anticipatory deductions that predate
the actual reception of positive reward. In summary, the dynamics
of effortful mental deduction can be tracked with fMRI and relate to
a distributed network engaging prefrontal cortex and its intercon-
nected cortical and subcortical regions.
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Introduction

All animal species need to adapt their behavior to the current

environmental situation. Such learning is often based on ex-

ternal rewards. The phasic firing of midbrain dopamine neurons

is thought to code for a ‘‘prediction error’’ signal that corre-

sponds to the discrepancy between expected and actual out-

comes and serves as a reinforcement signal altering subsequent

response probabilities (Schultz and others 1997; Sutton and

Barto 1998). Recent neuroimaging studies have shown that

projection sites of dopamine neurons, such as parts of striatum

(Berns and others 2001; Breiter and others 2001; McClure and

others 2003; O’Doherty and others 2003) and prefrontal cortex

(PFC) (Berns and others 2001; Breiter and others 2001; Knutson

and others 2003; O’Doherty and others 2003; Ramnani and

others 2004), exhibit activation profiles that are consistent with

the rational use of a prediction error signal.

Particularly developed in the human species, however, is an

additional capacity for reasoning that enables subjects to adapt

their strategies even in the absence of external reward signals.

Using autoevaluation, that is, internally driven deduction pro-

cesses, humans can evaluate the outcome of potential actions by

mentally envisaging their likely consequences (Dehaene and

Changeux 1991, 2000). According to the ‘‘global neuronal work-

space’’ hypothesis (Dehaene and others 1998), such effortful,

internally oriented mental activity engages a set of cortical

neurons with long-distance axons, distributed mostly in pre-

frontal, cingulate, and other cortical association areas, and is

capable of fast flexible modifications of their activity depending

on task demands. Indeed, a variety of neuroimaging studies have

examined autoevaluation and internal reasoning processes and

have emphasized the participation of distributed prefrontal and

parietal areas (Deglin and Kinsbourne 1996; Goel and Dolan

2003). These regions are known to be involved in high-level

cognitive functions, such as action monitoring, working mem-

ory, flexibility of strategy, and planning processes, as assessed

with the Wisconsin Card Sorting Test (WCST) and Tower of

London test. In particular, rostral prefrontal, anterior cingulate,

and dorsolateral prefrontal cortices appear to play a key role in

strategy selection and planning processes (Morris and others

1993; Baker and others 1996; Dagher and others 1999; Newman

and others 2003; van den Heuvel and others 2003).

In the present study, we introduce a novel task in order to

study the dynamics of parietofrontal activity during reward-

based and deduction-based learning and working memory. Our

main goal is 2-fold: 1) to investigate the temporal dynamics of

the parietofrontal system and, in particular, whether it responds

quickly to transient variations in task demands; 2) to determine

how these temporal variations are driven both by the reward

prediction error, that is, the difference between expected and

obtained rewards, and by the availability of anticipatory deduc-

tions that predate the actual reception of positive reward

(autoevaluation). Detailed analyses of behavioral data allow us

to understand, step-by-step, the algorithm used by subjects to

solve the task. We can then correlate some of these steps with

functional magnetic resonance imaging (fMRI) data obtained

during the resolution of many successive problems and thus

begin to dissect the broad cerebral network involved in feed-

back processing.

We adapted a trial-and-error learning task, similar in principle

to the Mastermind game (though much simpler) and first used

in a even simpler form in the macaque monkey by Procyk and

others (2000). In this task (which we refer to as the ‘‘Master-

brain’’ task), subjects search for a hidden sequence of 4-key
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presses by trial and error. For instance, during a given search

period, they may have to discover that they have to press the

keys in the order B, C, D, A (Fig. 1). After each key press, they

receive a simple visual feedback (also referred to as ‘‘reward’’

because there is the prospect of a financial bonus; see Materials

and Methods). When they press the correct key, they receive

a positive feedback (yellow circle) and are allowed to search for

the next element of the sequence. If, however, they press

a wrong key, the feedback is negative (red circle), and they have

to resume the whole sequence from the start before testing

another hypothesis.

When subjects have found and executed the entire sequence

correctly, they receive a green feedback signal. They thenhave to

repeat the sequence a variable number of times, while still

getting feedback on the screen. This period of routine execution

ends abruptly upon receipt of negative feedback, which signals

that the old sequence is no longer valid and that subjects have to

search for a new one. Thus, the task alternates between periods

of search and periods of routine execution. In that respect, it is

reminiscent of theWCST, inwhich subjects also have to discover

a criterion for sorting cards and then apply it for a few trials

before switching to a new criterion. However, relative to the

WCST, the present task presents the specific interest of allowing

both reward-based and deduction-based learning. When search-

ing for the correct sequence, subjects can occasionally fall upon

it by chance (chance discovery). Conversely, when subjects have

tested all but one of the possibilities for a given step, they can

deduce that the last remaining possibility is necessarily correct

(logical discovery). Note that on such trials, they receive negative

feedback and have to resume the execution of the entire

sequence from the beginning. Nevertheless, after the third

step, logic allows them to be certain that they have now found

the correct sequence. By contrasting the brain events associated

with chance versus logical discovery, we can dissociate the

moment when subjects know the correct sequence from the

moment when they actually perform it.

To facilitate fMRI analysis, a precise model of the cognitive

operations involved was developed (see Fig. 2). This is one

member of a large class of algorithms that are able to discover

the unknown sequence in an optimal time. Assuming that

human subjects adopt such an optimal search strategy, the

following predictions were made:

1. Sharp distinction between routine and search periods.

Because deduction and working memory updating pro-

cesses occur only when the subject is in a ‘‘search mode,’’

there should be a sudden collapse of brain activity, partic-

ularly in prefrontal, cingulate, and parietal cortices, as soon

as subjects switch from search to routine, and a restoration

of this activation as soon as subjects have to search for a new

sequence.

2. Time locking to mental discovery. This collapse of the

search mode should be time locked to the time when

subjects first mentally discover the solution, which differs

from the time when they first correctly execute it.

3. Dependency on the reward prediction error. Consistent

with the model of Schultz and others (1997), we expect

fully predictable rewards to have little or no impact on brain

activation. Rather, the reward prediction error and the

Figure 1. Temporal organization of the behavioral task. The figure illustrates a simple
example of the unfolding of a search period, where the target sequence was B C D A.
Subject had to find this hidden sequence of 4-key presses by trial and error. The
subject first tried response A and was told that it was wrong via a negative feedback
on the screen (red circle). Then he tried B, which was correct (yellow circle). At this
point, the first element of the sequence (B) was known. As the second element, the
subject tried A and was told that it was false. He had to restart the whole sequence
from start (B), tried out C, then D, and then A which all turned out to be correct. At this
point the problem was fully solved (green circle). RTs were measured from the onset of
the feedback circle to the following button press (purple arrow).

Figure 2. Functional model of the search process. We designed a simple hypothetical
search algorithm that might be followed by our subjects. The algorithm assumes that
subjects can maintain a memory of the hypotheses that remain to be tested (set T) as
well as of the elements of the sequence that they have already validated (set K). It also
supposes that subjects evaluate the discrepancy between the feedback that they
received and what they expected (reward prediction error, top diamond). Subjects use
this information to either validate or reject their ongoing hypothesis (h). Finally, the
algorithm also assumes that subjects can deduce the solution once they realize that only
a single hypothesis remains to be tested (central diamond). Card(T) = cardinal of set T.

Page 2 of 11 Dynamics of Prefrontal and Cingulate Activity d Landmann and others



information carried by feedback should be good predictors

of switches in parietofrontal brain activation.

Materials and Methods

Subjects
Sixteen healthy male right-handed volunteers participated in the study

(mean age ± standard deviation [SD]: 23 ± 2.2). Informed consent was

obtained from all subjects. Ethics approval was given by the regional

ethical committee (Comité Consultatif de Protection des Personnes

dans la Recherche Biomédicale, Hôpital Bicêtre, Paris, France).

Experimental Paradigm
Subjects were trained before the scan and were informed that their

performance during the experiment would be evaluated based on the

total number of positive feedback received, with the best volunteer

among all participants receiving a financial bonus (€75). According to

their subjective reports, the challenge was highly motivating.

The participants’ hand (right hand for 8 subjects, left hand for the

other 8) rested on a 4-button device (for all fingers except the thumb).

Each trial lasted 1500 ms, during which subjects pressed one key and

received feedback, consisting in colored circles presented during

500 ms (red if the tested button was wrong, yellow if it was correct,

and green after the entire correct sequence execution). These stimuli

were presented even when subjects did not respond (in which case it

was considered as a wrong response). When the feedback disappeared,

it was replaced by a fixation cross.

During the scan, the paradigm was divided into three 10-min blocks

(totaling 1029 ± 12 trials per subject). Subjects began each block by

a routine period (i.e., repeating a known sequence), and then search and

routine periods alternated at a semirandom rate. During the search,

subjects attempted to discover a hidden 4-key sequence by trial and

error, namely, to discover in which order they should press these 4 keys

(see Fig. 1). Once they had found the sequence, they repeated it 3--6

times (routine phase), still getting feedback. The switch from routine to

a new search period was indicated by an unexpected negative feedback.

A resting period was inserted in about half of the routine periods to

define an fMRI baseline. It was announced by the word ‘‘REPOS’’ (rest) and

ended with the word ‘‘ATTENTION,’’ both presented on screen during 1000

ms. During this period subjects had to keep on looking at the screen (a

fixation cross), and afterward they returned to the routine mode,

executing the same known sequence as before the resting period.

Presentation of stimuli and behavioral data collection were done using

Expe (Pallier and others 1997).

Scanning Procedures
A 3 T Bruker scanner was used to acquire both T1-weighted anatomical

images (voxel size 1.2 mm) and gradient-echo T2*-weighted echo-planar

images with blood oxygenation level--dependent (BOLD) contrast.

Twenty-six volumes of 4.5-mm-thick axial slices were acquired sequen-

tially every 2.4 s, the first 5 volumes being discarded to allow for T1
equilibration effects.

Data Analysis
Data were analyzed using statistical parametric mapping software

(SPM99; Wellcome Department of Cognitive Neurology, London, UK).

The image time series were realigned to correct for interscan

movement and normalized to the standard anatomical space of the

Montreal Neurological Institute. The data were then smoothed with

a Gaussian kernel of 5 mm full-width half-maximum. Following pre-

processing of data, statistical analysis was conducted for each subject

using the general linear model, which included regressors drawn from

behavioral results.

To evaluate our hypotheses about the microstructure of the task, we

designed a hierarchy of statistical fMRI models similar to the use of

stepwise regression in cognitive psychology, first capturing the block

structure of the task (search vs. routine), then attempting to capture

more variance due to local trial-to-trial variations in the type of cognitive

activity involved (see Discussion).

The first model included 6 regressors: search trials, routine trials,

errors during search and errors during routine as effects of interest, and

word presentation before and after resting periods as effects of no

interest. Error trials correspond to nonoptimal behavior, such as testing

an already tested button during a search period or making an execution

error during routine. Each regressor was convolved with a canonical

hemodynamic response function and, concerning word presentation,

with its temporal derivative. Voxelwise t-statistics were carried out on

linear contrasts of the regressors in order to produce individual

statistical maps. Finally, a random-effect analysis was applied across

the 16 subjects in order to determine group activation for the conditions

of interest (voxelwise threshold P < 0.001, cluster extent threshold P <

0.05 corrected). This analysis also included a between-subject factor of

right-hand versus left-hand groups, but no effect or interaction involving

the effector hand was observed outside of the contralateral motor

regions, and all results were therefore pooled across both groups.

In a secondmodel, 2 additional regressors modeled separately the first

correct execution of the searched sequence as a function of whether

the sequence was discovered by logic or by chance (see text). Finally,

the last model included, in addition to the regressors of the first model,

regressors quantifying, trial by trial, the objective reward value of the

feedback signal (1 for yellow or green circles, –1 for red circles), the

reward prediction error (objective reward minus mean expected value

of the reward), and the quantity of information carried by feedback

(–log2(P), with P the probability of occurrence of the obtained objective

reward given the subject’s current knowledge).

Model Algorithm
The algorithm used to model task performance assumes that subjects

can maintain a memory of the hypotheses that remain to be tested

(set T) as well as of the elements of the sequence that they already

have validated (set K). It also supposes that subjects evaluate the

discrepancy between the feedback that they receive and what they

expected (reward prediction error; see Schultz and others 1997).

Subjects use this information to either validate or reject their ongo-

ing hypothesis. Finally, the algorithm also assumes that subjects can

deduce the solution once they realize that only a single hypothesis

remains to be tested.

In detail, the sequence of events that unfold upon reception of reward

information is the following (see Fig. 2):

1. The visual feedback stimulus (yellow, red, or green) is evaluated

and transformed into an internal reward signal (referred to as the

‘‘objective reward’’). This signal is then compared with an expected

reward, and the reward prediction error is generated by subtraction.

2. If the reward prediction error is positive (and therefore the reward

is better than expected), then the hypothesis for the current step is

valid and can be registered in set K and eliminated from set T. If,

conversely, the reward prediction error is negative (and therefore

the reward is worse than expected), then the hypothesis for the

current step is invalid and can be eliminated from set T. Finally, if the

reward is just as expected, this means that the subject is merely

executing a known part of the sequence and hence must simply

advance one step on the next trial.

3. Whenever set T has been modified, logical deduction can occur: if

set T contains only one remaining item, it is necessarily the correct

one and can be added to set K.

4. If set K is complete, meaning that all 4 steps have been discovered,

the subject switches to routine mode. Otherwise, a third stage of

response preparation occurs in which subject selects an action for

the next step, drawing it either from the set K of known steps (if

having to resume execution of the entire sequence) or from the set

T of remaining hypotheses (if having to generate a new hypothesis).

The complete algorithm was implemented as a Matlab program, and

we verified that this program identified the solution to all problems in an

optimal time.

Results

Behavioral Data

We analyzed the behavioral data from 16 right-handed, healthy

subjects who performed a total of 513 search periods during
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fMRI scanning—half of them with the right hand, the other half

with the left hand. Figure 3 shows the distribution of the du-

ration (i.e., the number of trials until the first execution of the

entire sequence) of those search periods. The mean number of

trials before reaching the correct solution was 8.94 trials (SD

across subjects = 0.48), which was only slightly higher than the

mean of 8.5 trials predicted if subjects used an optimal search

algorithm. Despite a small departure between model and data,

the observed distributionwas tightly fitted by the ideal error-free

model (v214 = 2.22, not significant; see Fig. 3), suggesting that

subjects solve the search task in a near-optimal way.

We therefore used the above-described algorithm to infer,

from the actual data, the subject’s progression through the

search task. For each trial, the model was used to label the cog-

nitive processes used by the subject. Consistently with the

above distribution analysis, only 4% of trials did not fit with the

predictions of the algorithm (plausibly corresponding to errors

in the execution of this algorithm). We conducted a 2-factor

repeated-measures analysis of variance (ANOVA) on error rates

with task (search, routine) and hand (right, left) as factors. Only

marginal effects were found. Subjects were essentially equally

accurate in search periods and in routine periods (4.7% vs. 3.4%

of errors, F1,14 = 3.91, P = 0.07) and with either hand (5.1% with

the right hand, 2.9% with the left hand, F1,14 = 4.24, P = 0.06).

These errors were eliminated from further analyses.

On each trial, response times (RTs) were recorded, reflecting

the time elapsing between reception of visual feedback about

the previous response and emission of the next response. We

therefore expected these RTs to reflect cognitive processes

involved in feedback evaluation, deduction, updating of internal

representations, and response selection.

RTs were analyzed with a 2-factor repeated-measures ANOVA

with task (search, routine) and hand (right, left) as factors. As

expected, RTs showed a main effect of task: subjects were faster

in routine periods than in search periods (333 vs. 490 ms)

(F1,14 = 183, P < 0.001). The main effect of hand on RTs was not

significant (430 ms with the right hand vs. 393 ms with the left

one) (F1,14 < 1). Finally, the interaction was slightly significant

(F1,14 = 5.66, P < 0.05), corresponding to paradoxically faster

RTs during routine blocks with the left hand, perhaps due to

great attention and/or training in the left-hand group.

We then analyzed in more detail the transition from search to

routine. As noted above, the first correct sequence execution

can be achieved in 2 qualitatively different manners: chance

versus logical discovery. We expected RTs to reflect this

distinction. On logical discovery trials, there might be an initial

delay due to deduction and the ensuing representation of the

correct sequence in working memory, but subjects should then

quickly enter routine mode. On chance discovery trials, how-

ever, RTs should exhibit the slowness typical of search trials.

As shown in top panel of Figure 4, the results conformed to

this prediction. A 2-factor repeated-measures ANOVA was

conducted on RTs with type of sequence (chance discovery

Figure 3. Distribution of search period durations. The graph represents the
percentage of problems that subjects solved using a given number of trials. We
confronted this empirical distribution (bars) with the predictions of an ‘‘ideal subject’’
performing according to our hypothetical algorithm (solid line). The model predicted
accurately the distribution of search durations (v214 = 2.22, not significant)—note that
introducing an error rate of as little as 3% into the model allowed an even better fit of
the empirical distribution (not shown). This indicated that subjects behaved close to
optimally and, in particular, took advantage of the possibility of making logical
deductions.

Figure 4. Evolution of RTs as subjects discover and execute the hidden sequence.
Top panel: RTs averaged across the 4 steps of the correct sequence as a function of
successive correct executions. Statistics refer to t-tests for pairwise comparisons
between 2 conditions (statistics: *P < 0.05; ***P < 0.001; ns: not significant). Error
bars = 1 standard error across subjects. During the first correct execution (left 2
points), subjects were faster in executing the sequence discovered by logic than the
sequence discovered by chance. After this first correct execution, RT showed
a progressive reduction toward a plateau (routinization) as well as a late increase
probably reflecting an anticipation of the switch to a new search. Bottom panel:
detailed evolution of mean RTs during the first correct execution as a function of
execution step and whether the hidden sequence was discovered by chance or by
logic. Subjects were slow in executing the sequence discovered by chance,
presumably reflecting their ongoing search for the sequence. When the sequence
was discovered by logic, subjects were initially slow, presumably reflecting the
deduction process and the need to reload the whole sequence from start but afterward
they executed it very fast.
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vs. logical discovery) and steps (1--4) as factors. As predicted,

subjects were faster overall in logical discovery than in chance

discovery (415 vs. 481 ms, F1,14 = 23.1, P < 0.001). Furthermore,

a type by step interaction (F1,14 = 88.4, P < 0.001) showed that

subjects kept responding slowly until the end of chance

discovery sequences, while they were slow in the first step of

logical discovery sequence but fast in the following steps (see

Fig. 4, bottom panel). This acceleration is consistent with an

early switch from search to routine after logical discovery

occurred.

Top panel of Figure 4 also shows RTs during the repeated

execution of the discovered sequence. Following the first

correct sequence, subjects became progressively faster across

repetitions, and RTs converged toward a ‘‘plateau.’’ Finally, RTs

increased slightly during the last 2 repetitions of the routine

period, presumably reflecting the subject’s anticipation of the

switch to a new sequence’s search.

Overall, these behavioral observations support our theoretical

analysis of the task and, in particular, the postulate that it

involves cognitive processes of search and deduction. We next

turned to the neural bases of these processes.

fMRI Differences between Search and Routine

We first modeled the data using separate regressors for the

routine and search blocks (excluding error trials; see Materials

and Methods). A random-effect analysis was conducted using

a 2-way ANOVA with trial type (routine or search) as a within-

subject factor and hand as a between-subject factor.

The main effect of routine relative to rest elicited a bilateral

activation in frontoparietal regions (principally in the right

hemisphere), including the precentral gyri and the supplemen-

tary motor area (SMA), in occipital cortex (bilateral inferior

occipital gyri), and in cerebellum (Fig. 5). We also observed an

activation of the left striatum (mainly the putamen, extending

into the caudate).

Contrasted with resting periods, search periods yielded an

extensive activation not only in the same regions but also in

bilateral frontal cortices, particularly the lateral orbitofrontal

Figure 5. Neural correlates of search and routine stages. Statistical t-maps for search minus rest, routine minus rest, search minus routine, and routine minus search are displayed
on the average anatomical image from all subjects, shown in sagittal (left) and transverse (right) sections. Voxelwise threshold was set to P < 0.001 and cluster extent threshold to
P < 0.05 corrected.
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and dorsolateral PFCs, and the anterior cingulate cortex (ACC),

extending into the SMA. The striatum was bilaterally activated

(caudate nucleus and putamen), as was the thalamus. Finally, the

bilateral cerebellum and midbrain, probably including the

medial portion of the substantia nigra and the ventral tegmental

area, were activated in this condition.

The direct contrast between search and routine periods

revealed virtually the same pattern of bilateral parietofrontal and

subcortical regions (Table 1). Thus, most regions activated in

the routine task showed enhanced activation during search.

Few regions showed up in the converse contrast (routine >

search): right posterior insula, bilateral anterior medial PFC

(including anterior part of ACC), posterior cingulate cortex, and

left middle temporal gyrus. Most of these regions fit within

a previously described ‘‘resting state’’ network (Raichle and

others 2001) that deactivates during cognitive tasks. Indeed,

they were not activated in routine relative to rest and showed

even greater deactivation during search than during routine.

In summary, a large network consisting mostly of prefrontal,

cingulate, parietal, and striatal regions was specifically engaged

during search, whereas some focal regions of this network also

participated in routine periods. Figure 6 shows the temporal

evolution of the BOLD signal in 3 representative regions of the

search network (ACC, right lateral PFC, and right caudate

nucleus). In each of them, we observed that activation rose

suddenly as soon as subjects began searching for a new se-

quence and collapsed a few seconds later once they had found

it. Indeed, the duration of activation was directly related to the

duration of the search period, as revealed by a significant time

by search duration interaction (F2,45 > 10, P < 0.001 in ACC).

Brain Activity during Logical and Chance Discovery

Figure 7 shows the evolution of the BOLD signal in these 3 brain

regions at the end of the search period when subjects could

either execute the first correct sequence by chance or discover

it by logical deduction. Search periods are matched for length:

the figure displays separately short search periods (7 or 8 trials

to find and execute the entire sequence) and longer search

periods (9 or 10 trials). We observed the same pattern in the 3

regions. Regardless of search length, the activation curve

corresponding to logical discovery collapsed about 3 s earlier

than the one corresponding to chance discovery. In other

Table 1
Significant peaks observed in whole-brain analyses of the search minus routine contrast

Area Coordinates

x y z Z-score

R precuneus 4 �64 52 6.36
L precuneus �4 �64 52 5.83
R inferior/superior parietal lobule (interparietal sulcus) 40 �48 52 5.58
L inferior/superior parietal lobule (interparietal sulcus) �36 �48 52 4.83
R anterior cingulate cortex 12 32 28 4.79
L superior frontal gyrus/precentral sulcus �20 0 68 5.69
R superior frontal gyrus/precentral sulcus 24 0 60 5.52
R insula (anterior part) 36 24 0 5.60
L insula (anterior part) �28 24 4 5.51
R lateral PFC (middle frontal gyrus) 44 8 36 5.53
L lateral PFC (middle frontal gyrus) �48 4 36 4.65
R DL PFC (middle frontal gyrus) 44 28 28 5.38
L DL PFC (middle frontal gyrus �44 28 32 5.27
R VL PFC (middle/inferior frontal gyrus) 36 52 0 5.05
R putamen 16 8 4 5.49
L putamen �16 12 4 5.19
R thalamus 8 �24 4 5.42
L thalamus �8 �16 8 4.44
Midbrain 0 �24 �16 3.85
L cerebellum �28 �60 �24 4.43
R cerebellum 32 �64 �24 4.21
L fusiform gyrus �36 �72 �12 3.83
L inferior temporal gyrus �44 �60 �8 3.60
R inferior temporal gyrus 56 �64 �8 4.00

Note: This table of coordinates summarizes the main peaks of activation belonging to the large

network represented on Figure 5 (voxelwise threshold P\ 0.001, cluster extent threshold

P\ 0.05 corrected). R, right; L, left; PFC, prefrontal cortex; DL, dorsolateral.

Figure 6. Cingulate, prefrontal, and caudate fMRI activation indexes the duration of
the search process. The graphs show activation curves (% BOLD signal) averaged
across all subjects, time-locked to the onset of the search periods, as a function of
time. Bars indicate one standard error of the mean across subjects. Search periods
were grouped into 3 categories based on their duration—dotted line: search periods
lasting 4, 5, or 6 trials (mean = 7.5 s); dashed line: search periods lasting 7, 8, or 9
trials (mean = 12 s); solid line: search periods lasting 10, 11, 12, or 13 trials (mean =
17.25 s). In all cases, activation collapsed suddenly as soon as subjects enter the
routine phase. Note that for each subject, data were obtained from the local maxima
closest to the highest peaks observed in the random-effect analysis of search versus
routine. The mean and standard deviation of the coordinates were: ACC: x = 3 mm,
SD = 2, y = 19, SD = 7, z = 48, SD = 5; lateral prefrontal cortex: x = 43, SD = 5, y = 29,
SD = 5, z = 32, SD = 7; caudate: x = 12, SD = 3, y = 9, SD = 4, z = 10, SD = 4.
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words, the activation collapsed earlier when the correct

sequence could be deduced and thus known before it was

executed than when it was discovered at the same time as it was

executed.

This difference between logical and chance discovery was

confirmed by a dedicated SPM model that concentrated on the

first correct execution of the searched sequence (see Materials

and Methods). During this period, greater activation was

observed on chance trials in anterior cingulate/mesial frontal

cortex, right lateral PFC, precentral gyrus, and inferior frontal

cortices (see Fig. 7, green map, and Table 2). All these regions

were parts of the search network described above. At a lower

threshold, essentially all of the anterior part of the search

network was observed, including the left prefrontal and bilateral

caudate regions (Fig. 7, yellow--red map). This observation

confirms that anterior brain regions remain active, and the

subject remains in search mode, until the correct sequence is

discovered whether by chance or by logic. In other words, the

sudden drop of activity in these regions indexes internal

knowledge of the correct sequence, independently of whether

or not it has already been executed.

Feedback Processing during Search Periods

To further clarify the respective contributions of the observed

brain regions to different components of our task, we distin-

guished 3 types of content carried by the visual feedback signal.

First, we called ‘‘objective reward’’ the positive or negative value

assigned to the feedback signal. Second, we computed, for each

trial, the reward prediction error obtained by subtracting from

the objective reward the average value that subjects could

expect. Note that the 2 parameters were largely uncorrelated in

our experiment. For instance, there were trials in which the

objective reward was positive but entirely expected by the

subjects (for instance, when received following an already

tested or deduced hypothesis). Finally, we also computed the

absolute information carried by the feedback signal regardless

of its positive or negative rewarding value. Note that negative

feedback can be highly informative (when the prior probability

of its occurrence was small), although it is not rewarding.

These 3 variables were therefore entered as regressors in

a new SPM analysis of the search period. As predicted, the

Figure 7. Neural correlates of the shortening of effortful search afforded by logical
deduction. When subjects could deduce the correct sequence by logic, activation
collapsed earlier in a broad anterior network including anterior cingulate, prefrontal,
and striatal regions. Slices represent the t-maps for chance discovery minus logical
discovery at 2 statistical thresholds: green map, voxelwise P < 0.001 and cluster
extent P < 0.05 corrected; yellow--red map, voxelwise P < 0.05 and cluster extent
P < 0.05 corrected. Curves show the temporal evolution of activation (% BOLD signal)
in anterior cingulate cortex, right lateral PFC, and right caudate nucleus averaged
across all subjects. Two different search durations are shown: top graph, 7/8 trials
(mean = 11.25 s); bottom graph, 9/10 trials (mean = 14.25 s). In both cases, logical
deduction led to shorter activation.

Table 2
Significant peaks observed in whole-brain analyses of the chance discovery minus logical

discovery contrast

Area Coordinates

x y z Z-score

Mesial PFC (R frontal superior gyrus) 4 20 56 4.73
R cingulate gyrus 8 36 24 3.31
L cingulate gyrus �8 28 28 3.29
R lateral PFC (middle frontal gyrus) 44 20 28 4.72
L DL PFC(middle frontal gyrus) �44 28 28 3.71
L frontal superior gyrus �20 �4 56 4.00
R frontal superior gyrus 24 �4 52 3.99
R insula (inferior frontal gyrus) 36 24 4 4.30
L insula (inferior frontal gyrus) �36 20 �8 2.94
R caudate 12 8 16 2.97
L caudate �8 8 8 2.92
R putamen 16 8 4 2.63
Midbrain �4 �12 �4 2.78
L thalamus �4 �8 12 2.85

Note: voxelwise P\ 0.001, cluster extent P\ 0.05 corrected, unless areas in italic font:

voxelwise P\ 0.05, cluster extent P\ 0.05 corrected. R, right; L, left; PFC, prefrontal cortex;

DL, dorsolateral.
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objective reward did not correlate with any brain region activity

even at a very low threshold (voxelwise P < 0.05). By contrast,

a strong positive correlation between reward prediction error

and brain activation was found in parts of the search network,

including bilateral dorsolateral PFCs, frontal eye field (FEF),

SMA, inferior PFC/insula (mainly in the left hemisphere),

bilateral putamen and a part of right caudate body, left thalamus,

bilateral parietal regions, and bilateral cerebellum (Fig. 8 and

Table 3). No negative correlation was found. Finally, information

carried by feedback correlated with brain activation in a sepa-

rate set of brain areas at voxelwise P < 0.005, mainly in the right

hemisphere: right inferior PFC/insula, rostral ACC, right dorso-

lateral PFC and essentially the head of right caudate (Fig. 8 and

Table 3).

Discussion

Our behavioral results demonstrate that, without explicit

training of a resolution strategy, human subjects perform the

Masterbrain task almost optimally. Analysis of their performance

gives evidence that they rely on internal deduction processes

and show a fast transition from an effortful search mode to

a routinized mode of execution. Assuming that they follow

a quasi-optimal algorithm, we can infer, from the observed

sequence of actions, the exact stage where subjects are in their

mental algorithm (including the hypotheses that they currently

maintain in working memory, those they have already rejected,

etc). Cross-correlation with fMRI then allows us to verify the

accuracy of this model of the subject’s mental state and to

identify some of its neural correlates.

The Masterbrain task calls for the activation of a widespread

brain network, extending from frontoparietal cortices to striatal

and midbrain regions. These brain regions have been repeatedly

associated with higher-order executive functions (Fuster 1989)

including problem solving (Owen and others 1996) and reward

coding (Hollerman and Schultz 1998). PFC, and in particular its

dorsolateral part, is viewed by many theorists as a rule-coding

device that is capable of very fast switching between different

states, corresponding to different cognitive strategies, as a func-

tion of the reward or the information received by the organism.

This view receives support from modeling (Dehaene and

Changeux 1991; Cohen and others 1992; Dehaene and others

1998; Rougier and others 2005), electrophysiological (Nakahara

and others 2002; Wallis and Miller 2003), and neuroimaging

studies (Botvinick and others 2001; for a review, see Miller and

Cohen 2001). Our results regarding the dynamics of activation

support this hypothesis and also suggest that switches in PFC

activation are accompanied by large-scale changes in other

interconnected distant cortical and subcortical regions forming

a distributed network.

At the beginning of a new search period, the entire network

immediately switches on and stays active for a duration directly

related to that of the search period (Fig. 6). Conversely, acti-

vation drops suddenly as soon as the subject knows the entire

sequence (Fig. 7), even when this knowledge was acquired

thanks to a deduction process, before actually receiving a

positive reward and achieving the task. This profile of activation

is congruent with results using a similar paradigm in the

macaque monkey (Procyk and others 2000). Procyk and others

recorded task-related neurons in the anterior cingulate cortex

during alternation between search and routine periods of the

task. Some neurons showed elevated firing rates during search;

crucially, their firing ended abruptly as soon as the animal had

accumulated enough information to infer the solution of the

problem. In particular, this collapse of firing occurred even on

trials described here as involving logical discovery, where the

animal could deduce the correct sequence before having

actually tested it. These findings indicate that a self-evaluation

process (Dehaene and Changeux 1991, 2000), capable of draw-

ing conclusions about future rewards through purely internal

reflection processes, is available to the macaque monkey.

Although fMRI is notoriously poor in temporal resolution, it

could easily track fast global changes in deduction-related acti-

vation occurring across trials separated by only 1.5 s. In fact,

electrophysiological studies indicate that the state of activity of

prefrontal neural populations can switch extremely rapidly

(10--100 ms), either as an adaptive response to external stimuli

(Rainer and others 1998; Wallis and Miller 2003) or as a re-

flection of endogenous sequential processes (Seidemann and

others 1996; Procyk and others 2000). How are such distributed

dynamical changes generated? One possibility is that there exist

source regions that broadcast signals requesting a change in the

Figure 8. Neural correlates of feedback processing during the search period. Statistical t-maps for signal correlations with feedback parameters, masked by the search minus
routine network. The figure shows regions whose activation correlates with prediction error (red--yellow scale: voxelwise threshold P < 0.001 and cluster extent threshold P < 0.05
corrected) and with the information content of the feedback signal (green scale: voxelwise P < 0.005 and cluster extent P < 0.05 uncorreted (higher than 20 voxels). No correlation
was found with objective reward even at a low threshold (voxelwise P < 0.05 and cluster extent P < 0.05 corrected).
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current plan. One possible candidate is an ascending neuro-

modulator signal arising from the nucleus basalis or locus

coeruleus, which are thought to convey ‘‘uncertainty’’ signals

(Yu and Dayan 2005). Norepinephrine, in particular, has been

recently proposed to encode ‘‘unexpected uncertainty’’ associ-

ated with large uncued changes in the environment, as found in

the present task. Another candidate region is the frontopolar

cortex, which has been associated with planning (Baker and

others 1996; Owen and others 1996) and with the temporary

switching between tasks contingent on unpredictable events

(Koechlin and others 2000). Finally, a third candidate is the

anterior cingulate, whose involvement in error detection is well

known and is thought to be capable of causing major sub-

sequent changes in prefrontal executive control processes

(Botvinick and others 2001). All 3 of these regions were

activated in the present study and could play a key role in fast

adaptation of a behavioral plan when a major change is

required. To resolve their respective roles, gaining access to

their temporal order of activation is essential and could be

obtained using an adaptation of the present task for electroen-

cephalography or magnetoencephalography recording.

Based on the temporal difference model (Schultz and others

1997; Sutton and Barto 1998), we expected brain activation

changes to correlate with the reward prediction error, that is,

the subtraction of the actual and predicted rewards, rather than

with the objective value of the reward. The analysis of feedback

parameters confirmed this prediction. First, no activation was

found to correlate with the objective value of the reward.

Second, the reward prediction error correlated with activation

in an extended corticosubcortical network including bilateral

putamen and part of the right caudate as well as the bilateral

prefrontal, parietal, and cerebellar regions. Third, reward in-

formation, rather than reward prediction error, correlated with

activation in the head of the right caudate, the right lateral PFC/

insula, the right dorsolateral PFC, and the rostral ACC.

Although the detailed functions of these 2 circuits are beyond

reach of the present experiment, our results do point to an

interesting dissociation within the striatum, with the bilateral

putamen and a part of the right caudate body indexing the sign of

the reward prediction error and the head of the right caudate

indexing the available information that can be extracted from it.

These observations are consistent with previous neuroimaging

results relating striatal activity to executive functions that

implement behavioral changes following feedback, for instance,

when shifting between objects (Rogers and others 2000; Cools

and others 2004) or between contingency rules (Haruno and

others 2004; Shohamy and others 2004). In particular, recent

studies seeking to define the computation site of the reward

prediction error have shown the involvement of striatal struc-

tures such as the putamen (McClure and others 2003; O’Doherty

and others 2003) and the nucleus accumbens (Berns and others

2001; Breiter and others 2001). Differences among paradigms,

such as the requirement of a motor response and the type of

reward (primary vs. secondary), may account for these discrep-

ancies in activation topography. Furthermore, the distinction

between rewarding and purely informational aspects of feedback

can be considered as an exemplification of the difference

between the ventral striatum, which would be dedicated in

particular to emotional and reward processing (Burgdorf and

Panksepp 2005), and the dorsal striatum, which is considered as

being involved, in particular, in rule learning and memory for

motor behaviors (Alexander and others 1986; White 1997). In

this respect, our results are also consistent with the notion of

a ventral ‘‘critic’’ guiding a dorsal ‘‘actor’’ system (Schultz and

others 1997; Sutton and Barto 1998; O’Doherty and others 2004).

In this model, the ventral striatum (critic) computes and updates

predictions of future reward, whereas the dorsal striatum (actor),

through its involvement in motor and cognitive control, behaves

as an actor that uses the error prediction signal to optimize the

selection of actions (via the modification of stimulus--response or

stimulus--response--reward associations) (O’Doherty and others

2004). In fMRI, the BOLD signal in bilateral ventral putamen and

right nucleus accumbens was shown to correlate with the

prediction error during both instrumental and Pavlovian condi-

tioning, whereas activity in the left anterior caudate correlated

with prediction error only in instrumental conditioning

(O’Doherty and others 2004). Our observations provide another

dissociation consistent with this actor--critic architecture.

Moreover, our results suggest that the dissociation between

the processing of rewarding and informational values of

feedback extends to cortical regions. Reward prediction error

correlated with a large bilateral frontoparietal network in-

cluding dorsolateral PFCs, FEF, SMA, lateral PFC/insula, and

parietal regions. These regions may be involved in operations

such as working memory stabilization and reorientation of

attention toward the next element to be tested, which are

engaged whenever a positive reward validates the subject’s

current hypothesis. On the other hand, brain activation corre-

lated with reward information was found in anterior parts of the

search network, especially in rostral ACC and right PFC. These

regions have been associated with performance monitoring

through response inhibition (Carter and others 1998; Braver

and others 2001); the ACC is also associated with error

Table 3
Significant peaks observed in the correlation analyses of brain activity with feedback parameters

Area Coordinates Z-score

x y z

Prediction error
R parietal superior lobule/precuneus 12 �60 52 4.54
L parietal superior lobule/precuneus �8 �56 64 5.33
R inferior parietal lobule 44 �40 56 5.09
L inferior parietal lobule �40 �40 52 5.14
R DL PFC (middle frontal gyrus) 36 44 28 5.05
L DL PFC (middle frontal gyrus) �44 28 28 4.00
R superior frontal gyrus 28 0 64 4.99
L superior frontal gyrus �20 0 68 4.42
R insula 40 12 8 4.66
L insula �44 12 4 3.97
R caudate 20 4 20 4.35
R putamen 24 4 8 3.47
L putamen �20 �4 8 3.97
L thalamus �12 �12 12 3.45
L precentral gyrus �52 4 28 4.28
L cerebellum �24 �68 �20 3.92
R cerebellum 32 �64 �24 3.86

Information in feedback
R insula (inferior frontal gyrus) 40 28 8 3.80
R anterior cingulate cortex 8 32 8 3.67
R anterior cingulate cortex 4 32 24 2.89
L anterior cingulate cortex �-8 24 32 2.97
R DL PFC (middle frontal gyrus) 44 4 40 3.57
R caudate 8 8 12 3.44

Note: Prediction error: voxelwise threshold P\ 0.001, cluster extent threshold P\ 0.05

corrected. Information in feedback: voxelwise P\ 0.005, cluster extent P\ 0.05 corrected,

unless areas in italic font: cluster extent P\ 0.05 uncorrected (higher than 20 voxels). No brain

region was found to correlate with the objective reward value even at a low threshold (voxelwise

P\ 0.05, cluster extent P\ 0.05 corrected). R, right; L, left; DLPFC, dorsolateral prefrontal

cortex.
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detection and response conflict (Carter and others 1998). The

present results, showing activation increases whenever the

feedback (positive or negative) differed from expectations,

tentatively suggest a broader role in alerting, as postulated in

models of executive attention (Bush and others 2000).

As noted above, our experimental design aimed at character-

izing the temporal dynamics of a global frontoparietal network

involved in an effortful deduction task and investigating how

these variations are driven by reward processing. Although it

would be desirable to further decompose the brain mechanisms

of the various cognitive components of the model presented in

Figure 2, they are currently too intercorrelated in time to be

distinguished by the present fMRI study. Further research

should therefore attempt to temporally decorrelate the differ-

ent cognitive operations, for example, by using variable in-

terstimulus intervals (see, e.g., Dale 1999). In this manner, the

cognitive functions associated with each active region, as well

as their interactions, might be delineated. An alternative

approach would be to study separately the different cognitive

components of interest with a hierarchy of simpler tasks

involving a subset of the current cognitive processes. Examples

are given by studies of working memory (e.g., Haxby and others

2000) and error processing (e.g., Braver and others 2001).

However, we note that it is often necessary to use a cognitively

complicated task in order to reliably activate the most anterior

regions of PFC (see studies by Koechlin and others 2000, 2003).

Thus, certain cognitive control processes might remain beyond

reach when using simpler tasks.

We close with a methodological note. To identify task-related

areas, we used a hierarchy of increasingly refined linear models

for the same fMRI data. One potential problem with this

approach is that some of the regressors may be intercorrelated.

To address this criticism, we verified that a single global model,

where all the variables were gathered, yielded essentially

identical results (C. Landmann, unpublished data). Nevertheless,

our hierarchical approach, similar to stepwise regression in

behavioral experiments, may be more insightful in resolving the

mechanisms of activation. For instance, part of the frontocingu-

late network that collapsed following logical discovery periods

compared with chance discovery periods, also correlated with

the reward information and reward prediction error. We

speculate that the latter may provide an explicit mechanism

for the former. Following logical discovery, the positive reward

no longer provides information because it is fully anticipated

and thus the reward prediction error is null (the subject

anticipates being rewarded). What appears, in the first model,

as an unexplained difference between logical and chance

discovery is later seen, in the second model, as a putative con-

sequence of the reward prediction mechanism.

Conclusion

We designed a dynamic, cognitive search task where the

different cognitive processes involved could be inferred based

on behavioral data. This task allows exploration of fundamen-

tal processes of reward-based behavioral adjustment and

internal deduction processes. Taken together, our results

suggest that effortful mental search engages a distributed set

of prefrontal, cingulate, parietal, and striatal brain regions

whose dynamics closely track the sequence of reasoning

processes. These regions collectively allow the subject to

adapt in a flexible way to the rapidly changing contingencies

between stimulus and reward. None of these activations can

be explained properly based solely on the minimal stimuli and

responses involved (colored circles and motor key presses).

Rather, understanding them requires assuming highly struc-

tured internal processes of anticipatory reward prediction and

deduction whose detailed architecture remains to be fully

resolved.
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