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Areas of the primate intraparietal cortex have been identified as an important substrate of

numerical cognition. In human fMRI studies, activity patterns in these and other areas

have allowed researchers to read out the numerosity a subject is viewing, but the relation

of such decodable information with behavioral numerical proficiency remains unknown.

Here, we estimated the precision of behavioral numerosity discrimination (internal

Weber fraction) in twelve adult subjects based on psychophysical testing in a delayed

numerosity comparison task outside the scanner. FMRI data were then recorded during a

similar task, to obtain the accuracy with which the same sample numerosities could be

read out from evoked brain activity patterns, as a measure of the precision of the neuronal

representation. Sample numerosities were decodable in both early visual and intra-parietal

cortex with approximately equal accuracy on average. In parietal cortex, smaller numer-

osities were better discriminated than larger numerosities of the same ratio, paralleling

smaller behavioral Weber fractions for smaller numerosities. Furthermore, in parietal but

not early visual cortex, fMRI decoding performance was correlated with behavioral number

discrimination acuity across subjects (subjects with a more precise behavioral Weber

fraction measured prior to scanning showed greater discriminability of fMRI activity pat-

terns in intraparietal cortex, and more specifically, the right LIP region).

These results suggest a crucial role for intra-parietal cortex in supporting a numerical

representation which is explicitly read out for numerical decisions and behavior.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Humans sharewith other animals the ability to rapidly extract

approximate numerosity from a visual scene, and to compare

numerosities with an accuracy that roughly depends on their

numerical ratio (Cantlon & Brannon, 2006; Feigenson,

Dehaene, & Spelke, 2004). Numerosity perception can be

psychophysically dissociated from other quantitative judg-

ments (Anobile, Cicchini, & Burr, 2016; Cicchini, Anobile, &

Burr, 2016), suggesting it relies on dedicated neural extrac-

tion channels. In accord with this, numerosity responsive

units supporting ratio-dependent discrimination can develop

through unsupervised learning in hierarchical generative

networks (Stoianov & Zorzi, 2012; Zorzi & Testolin, 2017). It is

remarkable that the individual precision of basic non-verbal

number discrimination can be predictive of current and

future higher-level symbolic arithmetic skills (Anobile,

Castaldi, Turi, Tinelli, & Burr, 2016; Gilmore, McCarthy, &

Spelke, 2007; Halberda, Mazzocco, & Feigenson, 2008), even

though the human species' particularly highly developed

mathematical abilities undoubtedly rely on multiple founda-

tional capacities (Butterworth, 2010; De Smedt, Noel, Gilmore,

& Ansari, 2013).

Evidence from several neuroscientific techniques has out-

lined a set of brain areas with particular importance for nu-

merical processing. In macaque monkeys, single neurons

responding differentially to different numbers of perceived

items have been described in sub-regions of intra-parietal and

prefrontal cortex (Nieder & Miller, 2004; Roitman, Brannon, &

Platt, 2007). At a coarse spatial scale, functional MRI has

demonstrated increased activation during a variety of nu-

merical as opposed to non-numerical tasks (see Arsalidou &

Taylor, 2011, for a meta-analysis), and responsiveness to nu-

merical deviance during passive viewing (e.g., Cantlon &

Brannon, 2006; He, Zhou, Zhou, He, & Chen, 2015; Jacob &

Nieder, 2009; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004),

in similarly located regions. In recent years, multivariate

decodingmethods have been introduced tomake fine-grained

(e.g., within the same category) discriminations between

perceptual features on the basis of fMRI activity profiles across

voxels (e.g., Norman, Polyn, Detre, & Haxby, 2006; Tong &

Pratte, 2012). Using this approach it has been possible to

read out the number seen or held in mind by a subject from

fMRI activity in parietal areas functionally equivalent to those

carrying numerical responses in macaques (Eger, Pinel,

Dehaene, & Kleinschmidt, 2015; Eger et al., 2009). Moreover,

beyond pattern-based analyses and the decoding approach,

population-receptive field mapping in combination with

ultra-high field (7 T) imaging has further allowed recently in

humans to detect individual voxels tuned to different

numbers of items, in a way very similar to neurons described

by macaque neurophysiology (Harvey & Dumoulin, 2017;

Harvey, Ferri, & Orban, 2017; Harvey, Klein, Petridou, &

Dumoulin, 2013). These tuned responses were found to from

orderly topographic layouts in different parietal but also oc-

cipital and frontal regions, at least for small non-symbolic

numbers.

While the neuronal substrates underpinning numerosity

perception have been described in some depth, it remains
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insufficiently understood what brain mechanisms give rise to

variations in numerical performance, either across subjects or

different experimental situations. The ability to read out

numerosity information from a given brain area does not

necessarily imply that subjects are relying on this information

when making numerical discriminations. Recent fMRI studies

have shown that numerosity could also be decoded fromareas

beyond those considered the core substrate of numerical

processing, for example early and ventral visual cortex

(Bulth�e, De Smedt,& Op de Beeck, 2014, 2015; Eger et al., 2015),

though not in all cases (Castaldi, Aagten-Murphy, Tosetti,

Burr, & Morrone, 2016). Controlling non-numerical properties

when working with non-symbolic numerical stimuli is a

complex task and often not exhaustively achieved within a

single experimental context (Gebuis & Reynvoet, 2012), mak-

ing positive findings in early visual areas difficult to interpret.

Nevertheless, a recent EEG study using an experimental

design that allowed testing the effect of variation along mul-

tiple non-numerical quantitative dimensions, observed that

already very early components of the ERP, compatible with

sources in early visual cortex, were modulated more by

change in the numerical rather than other dimensions (Park,

DeWind, Woldorff, & Brannon, 2016). Such effects could be

related to the segmentation of individual items (Dehaene &

Changeux, 1993), or the operation of a combination of

spatial filters which has been proposed as a potential mech-

anism to extract an estimate of numerosity (Dakin, Tibber,

Greenwood, Kingdom, & Morgan, 2011), plausibly located at

earlier levels of the visual hierarchy. Given such potential

contributions of earlier visual regions to numerosity extrac-

tion, the question arises to what extent numerical acuity as

we measure behaviorally is determined by efficiency of the

processes at these earlier, or higher-level processing stages as

parietal cortex.

To shed light on the question of which, among several

areas where numerosity could previously be successfully

decoded, are the most critical to determine the precision of

behavioral discrimination of this feature, here we related

psychophysical measurements and multivariate decoding

analysis of fMRI patterns, focusing on variability between

subjects and across different numerical ranges. Each sub-

ject's precision of behavioral discrimination (internal Weber

fraction) was estimated based on psychophysical testing in

a delayed numerosity comparison task outside the scanner.

FMRI data were then recorded during a similar task, to

obtain the accuracy with which the same sample numer-

osities could be read out from evoked brain activity pat-

terns, as a measure of the precision of the neuronal

representation.

2. Materials and methods

2.1. Subjects and MRI acquisition

Twelve healthy volunteers (6 male and 6 female; mean age 22

years) participated in the study. All but one subject were right-

handed and all had normal or corrected-to-normal visual

acuity. The study was approved by the regional ethical com-

mittee (Hôpital de Bicêtre, France).
umerosity-evoked fMRI activity patterns in human intra-parietal
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Functional images were acquired on a 3 T MR system with

12-channel head coil as T2*-weighted echo-planar image (EPI)

volumeswith 2mm isotropic voxels. Thirty oblique transverse

slices covering essentially the dorsal visual pathway and su-

perior parts of frontal cortex were obtained in ascending

interleaved order (repetition time [TR] ¼ 2.52 sec; echo time

[TE] ¼ 33 msec; field of view [FOV] ¼ 192 mm; flip angle

[FA] ¼ 84�).

2.2. Experimental design and statistical analysis

2.2.1. Stimuli and procedure
During fMRI and in the separate behavioral experiments pre-

ceding it, subject performed a delayed numerosity compari-

son task on displays consisting of different numbers of

randomly positioned light gray dots on a black background,

inside an implicit circular area subtending ~8� of visual angle
at the center of the screen (Fig. 1A). Two separate stimulus

sets equated either the overall area of gray (resulting in

decreasing dot size with increasing number), or the individual

dot size between numerosities (resulting in increasing num-

ber of gray pixels with increasing number).
Fig. 1 e Paradigm: A) In a delayed numerical comparison task,

msec that after an SOA of several seconds was followed by a ma

required a smaller/larger judgment. The critical fMRI data used f

sample numerosities. B) In each half of the experimental runs,

overlapping ranges (either 8, 13 and 21, or 13, 21 and 34 items). B

preceding independent behavioral experiment was fitted with c

internal Weber fraction (w). Panel C) illustrates the functions fit

numerosities. Panel D) displays group results (n ¼ 12, means an

the two ranges.
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Each trial started with a sample stimulus display for 150

msec, and after a first delay, a match stimulus appeared for

150 msec; after a second delay, a new trial was presented.

During the duration of a trial, a red cross was present in the

center of the screen, which turned to green for 2 sec after the

disappearance of the match stimulus. Subjects had to

memorize the approximate number of dots of the sample

stimulus on each given trial and to respond by button press,

after presentation of the match stimulus, depending on

whether they judged thematch number smaller or larger than

the previous sample number.

Four different sample numerosities separated by a ratio of

~1.6 (8, 13, 21, and 34), were used. For reasons not relevant to

the aim of the present report, different ranges of three sample

numerosities were presented in different experimental runs

(Fig. 1 B), the first range comprising numerosities 8, 13, and 21,

and the second range numerosities 13, 21 and 34.

In the independent behavioral experiment, six match

numerosities were used per sample: (sample 8: 5, 6, 7, 9, 11,

and 15 items, sample 13: 8, 9, 11, 15, 18, and 22 items, sample

21: 12, 15, 18, 24, 29, and 36 items, sample 34: 20, 24, 28, 40, 48,

and 58 items). Each sample display was separated from the
subjects were presented with a sample numerosity for 150

tch numerosity presented for the same short duration and

or multivariate decoding were the responses evoked by the

three sample numerosities were used, forming two partly

ehavioral results: The percentage of larger responses in the

umulative Gaussian functions to obtain a measure of the

ted in one subject, with steeper lopes for smaller

d SEM) for w obtained for the three sample numerosities in
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1 We verified that sample and match stimulus predictors had a
high degree of independence in our design: average cosine simi-
larity between all possible pairs of sample and match stimulus
predictors for the same sample numerosity was .048 (for com-
parison .011 for sample and match stimulus predictors of
different sample numerosities, with 0 corresponding to orthogo-
nality and 1 to collinearity).
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match display by a stimulus onset asynchrony (SOA 1) of

either 3 or 6s, whereas the delay between the match and the

new sample presentation (SOA 2) was fixed at 3s. A behavioral

run contained 72 trials drawn from the same range of sample

numerosities (3 sample numerosities � 2 SOA 1 � 6 match

numerosities � 2 set types controlling for different physical

variables). Each subject performed a first block of 5 runs with

one of the two ranges (e.g., [8e21]), and after a short pause, a

second block of 5 runs with the other remaining range (e.g.,

[13e34]). The order of presentation of these two blocks was

counterbalanced across subjects. To obtain a sufficient

amount of data, two behavioral testing sessions per subject

were performed under the same conditions within an interval

of around two weeks.

In the fMRI experiment, to equate subjective task difficulty,

match numbers were chosen based on the individual psy-

chometric function of each subject computed from the results

of the prior behavioral experiment, using psignifit toolbox

(http://psignifit.sourceforge.net/) (Wichmann & Hill, 2001).

Standard match stimuli were chosen to correspond to those

numerosities that yielded 25/75% of larger responses in the

previous behavioral testing (“standard” trials). In addition, on

a small percentage of trials, match numerosities corre-

sponded to 5/95% of larger responses (“catch” trials). The order

of trials was pseudo-randomized, as well as the SOA 1 (be-

tween sample and match stimulus) and SOA 2 (between

match and following sample stimuli), which could be 3, 4, 5 or

6 sec. A run contained 60 “standard” trials (3 samples � 2

matches � 2 sets � 5 repetitions) and 12 “catch” trials (3

samples� 2matches� 2 sets), from the same range of sample

numerosities. Each subject performed four runs: run 1 and 4

corresponding to one of the two numerosity ranges, and runs

2 and 3 to the other range,with the order of range presentation

counterbalanced across subjects. Before each run, subjects

performed a short six-trial-training in which sample and

(their respective) match numerosities of the following run

were presented. An experiment lasted 45 min.

2.2.2. Data analysis
To obtain measures of the internal Weber fraction of numer-

osity representation, the percentage of larger responses to

match numbers in the psychophysical experiment as a func-

tion of the logarithmic difference between sample and match

numerosities was fitted with a cumulative Gaussian function,

which returned estimates of both the function's standard

deviation and mean. The internal Weber fraction is derived

from the standard deviation of the fitted Gaussian by dividing

it by √2 (Dehaene, 2007).

From the Weber fractions for individual numerosities

within each range, we further computed the sensitivity index

(d’) for discrimination between all possible pairs of sample

numerosities n1 and n2 as in the following way, where w1 is

the internal Weber fraction for n1 and w2 the internal Weber

fraction for n2:

d' ¼ logðn1Þ � logðn2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w12 þw22
p

The fMRI data were preprocessed with SPM8 (http://www.

fil.ion.ucl.ac.uk/spm/software), including realignment to the

first volume as reference, and normalization to the standard
Please cite this article in press as: Lasne, G., et al., Discriminability of n
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template of the Montreal Neurological Institute (MNI) using

SPM's segment algorithm.

The normalized, unsmoothed EPI volumes were entered

into a GLM, where each sample stimulus event was modeled

as a condition, resulting in 72 conditions per session (60

events for “standard” trials and 12 events for “catch” trials).

Match stimulus time points of the same relative magnitude

(within the respective range) and response type (smaller or

larger than the sample stimulus) were grouped and modeled

as further trial types, resulting in 6 additional conditions (3

magnitudes � 2 response types) per session, intended to

capture variance of non-interest related to match stimulus

presentation, comparison and response execution.1 The on-

sets of these 78 conditions were convolved with a standard

hemodynamic response function. The resulting 60 beta esti-

mates (per session) for the “standard” sample stimulus con-

ditions were used in the multi-voxel pattern analysis.

We defined regions of interest (ROIs) by a combination of

global masks in MNI space and further subject-specific selec-

tion of voxels within each masks. For the analyses of early

visual (EV) and parietal cortex (PAR), the global masks were

derived from WFU PickAtlas (http://fmri.wfubmc.edu/-

software/pickatlas) (Maldjian, Laurienti, Kraft, & Burdette,

2003) comprising for EV left and right area 17 and for PAR

left and right superior and inferior parietal lobules. Within

each of these two masks, we selected on a subject-by-subject

basis the 600 most significantly activated voxels in the t-

contrast of all “standard” sample stimulus conditions versus

baseline for decoding analysis. In addition, we targeted more

specific sub-regions of parietal cortex, by reapplying the ROIs

originally introduced by a previous study (Eger et al., 2015) to

operationally define human equivalents of areas LIP and VIP

to the current data set. In these cases the global masks cor-

responded to the group activations of the mentioned previous

study thresholded to 300 voxels per ROI and hemisphere as

originally done by Eger et al. (2015), and within each of these

four masks we selected on a subject-by-subjects basis the 150

most activated voxels in the same contrast (all sample vs

baseline) as for the other ROIs.

For pattern classification, conditions were labeled according

to sample numerosity, collapsing across the two different

stimulus sets. Pattern recognition analysis was performed

within each subject on mean-corrected trial-wise parameter

estimate vectors (40 vectors/condition) using linear Support

Vector Machines (SVM) with regularization parameter C ¼ 1 in

scikit-learn (http://scikit-learn.org/stable/) (Pedregosa et al.,

2011). The classification was performed for all possible pairs

of numerosities within each range (theoretical chance

level ¼ 50%). For each comparison, for trial n ¼ 1:40, the n-th

trial of each condition was left out for test when training the

classifier, and the percentage of correct identification on left-

out datawas computed across the entire cross-validation cycle.
umerosity-evoked fMRI activity patterns in human intra-parietal
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Confusion matrices were constructed from the output of

classifiers from all pairwise comparisons. In addition, in

analogy to the analysis of the behavioral data, the sensitivity

index (d’) was computed for pairwise comparisons between

numerosities as:

d' ¼ zðhit rateÞ � zðfalse alarm rateÞ
Across subject statistics on behavioralWeber fractions and

fMRI classification performance used paired two-tailed t-tests,

and the across subject relation between these measures was

probed by Pearson correlations.
3. Results

3.1. Behavioral results

We fitted the percentage of larger responses to match

numbers with cumulative Gaussian functions to obtain the

internal Weber fraction (w) of the numerosity representation

(see section 2 for details). Fits were calculated per magnitude,

range, sample match delay, and testing session, and subse-

quently averaged for each magnitude within each range.2

Fig. 1C illustrates the fitted curves for one subject, and

Fig. 1D the estimated w across subjects for the different con-

ditions. Weber fractions were not completely equal across

numerosities in this study, but gradually increased from

number 8 to 13 to 21 after which they remained constant.

Pairwise statistical comparisons between conditions across

the 12 subjects confirmed thatWeber fractions for numerosity

8 were significantly different from the ones for all the other

conditions (compared to 13 range 1: t(11) ¼ 3.57, p ¼ .00439, 21

range 1: t(11) ¼ 5.71, p ¼ .00014, 13 range 2: t(11) ¼ 3.41,

p ¼ .00587, 21 range 2: t(11) ¼ 7.72, p ¼ .00001, 34: t(11) ¼ 3.40,

p ¼ .00592, all paired two-tailed t-tests), while no other com-

parisons reached significance.

For correlation with the fMRI decoding results, an average

Weber fraction across numerosities and rangeswas computed

for each subject. Across the group these values had a mean of

.15 (with the minimum being .13, and the maximum .19).

3.2. FMRI decoding results in early visual and parietal
cortex

Multivariate classifiers based on support vector machines

were used to discriminate between all pairs of sample

numerosities within a given range, within regions of interest
2 We also tested in how far Weber fractions differed as a
function of the stimulus set (dot size vs total surface area equated
between numerosities). In an analysis performing separate fits
per stimulus set, magnitude and range, an ANOVA revealed a
main effect of stimulus set (F(1,11) ¼ 17.2, p ¼ .0016, with average
w being .155 for the constant dot size set, and .172 for the con-
stant total surface area set) which, however, did not significantly
interact with the other factors. Investigating in detail the influ-
ence of stimulus properties on numerical discrimination is
beyond the scope of the present study, and for reasons of sensi-
tivity/increasing the number of trials, we subsequently collapsed
across the two stimulus sets in both the behavioral and fMRI
analyses.
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in early visual and parietal cortex. The detailed pattern of

classification performance is displayed in Fig. 2A in form of

the confusion matrices obtained from the pairwise classifi-

cation for both regions. Percentages of classification are

plotted for the true conditions against the predicted condi-

tions, values on the diagonal reflect correct identifications,

and off-diagonal valuesmis-classifications. Overall accuracies

and patterns of performance are rather similar for the two

regions of interest, with a slight apparent difference in the

accuracy across the two numerical ranges between regions:

early visual cortex activation patterns allowed to identify

sample numerosities with approximately equal accuracy

within both ranges, while in parietal cortex classification was

on average better in range 1 which included smaller sample

numerosities than in range 2 (as indicated by lower diagonal

and higher off-diagonal values). This pattern resembles the

one observed in the behavioral results (smaller Weber frac-

tions for smaller numerosities).

Across all pairwise comparisons, decoding performance

was on average 57.1% correct in early visual cortex and 56.7%

correct in parietal cortex (in both cases significantly different

from the theoretical chance level of 50%, paired two-tailed

t(11) ¼ 8.72, p ¼ .000003 in early visual cortex, and

t(11) ¼ 4.71, p ¼ .000641 in parietal cortex).

3.3. Across subject correlation between behavioral
precision and fMRI decoding performance

To test for the behavioral relevance of these occipital and

parietal number representations, we capitalized on the inter-

individual differences in the precision of the numerical rep-

resentation as determined by psychophysics, and correlated

the psychophysical Weber fractions across subjects with the

average decoding accuracies. The idea underlying this

approach is that if a neural representation underpins (or de-

termines) behavior then decoding accuracy should predict

psychophysical performance. Fig. 2B shows the extent to

which fMRI classification performance is predicted by Weber

fractions from the independent behavioral experiment in both

regions of interest. In spite of the very similar level of pre-

diction accuracy on average (middle panel), a significant

Pearson's correlation of behavioral Weber fractions with fMRI

decoding accuracies across subjectswas only found in parietal

(r ¼ �.59, p ¼ .0451) but not early visual cortex (r ¼ �.07,

p ¼ .8305). A negative correlation in this case indicates that

subjects with a higher behavioral acuity (as evidenced by

smaller w) have a more precise neuronal representation (as

evidenced by higher decoding performance for individual

numbers from multi-voxel activation patterns).

The analyses described so far found a relation between

decoding performance and behavioral precision in the parietal

ROI, which however, was only marginally significant.

Furthermore, this correlation appears to depend to a large

extent on two subjects with the highestWeber fractions of the

group and low (close to chance) decoding performance in the

parietal ROI. The two subjects' Weber fractions, however, are

still well within the normal range for adult subjects (Piazza

et al., 2010), such that they may appear to diverge here only

because the rest of the group is rather homogeneous and

precise in Weber fraction.
umerosity-evoked fMRI activity patterns in human intra-parietal
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Fig. 2 e FMRI decoding results and across-subject correlation with behavioral Weber fractions in early visual and parietal

ROIs: Panel A) displays the ROIs and average confusion matrices obtained from all pairwise classifications between

numerosities in each numerical range, for regions of interest in early visual and parietal cortex. Individual subjects' ROIs

were defined as the 600 voxels most activated across all sample numerosities vs baseline, within anatomical masks

(derived from WFU Pickatlas, see section 2 for details). For the ROI summary displays, rendered onto Caret's PALS Atlas, the

color code reflects the number of subjects (out of 12) in whom one given voxel location was included in their specific ROI

(smaller values in the parietal cortex reflect a larger variability of the most activated voxels across subjects within the large

anatomical mask). In the confusion matrices, the values on the diagonal correspond to the percentage of correct

identifications for each numerosity on average across all pairwise comparisons, and the off-diagonal values correspond to

the percentages of incorrect identification (confusion with one of the other numerosities). The theoretical chance level for

correct identification is 50%. Panel B) displays the average classification performance (means and SEM across the 12

subjects) for pairwise discrimination between numerosities for each ROI (middle panel) together with correlations between

individual subjects' fMRI classification performance and behavioral Weber fractions (left panel for early visual cortex, right

panel for parietal cortex). In spite of a very similar average decoding performance in the two ROIs, a negative correlation

between behavioral w and fMRI decoding performance was found only in the parietal ROI, indicating that subjects with a

more precise behavioral discrimination measured prior to scanning had more precisely discriminable evoked activation

patterns in that region.
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It remains possible that the statistically not very strong

results for the parietal ROI are related to the fact that this ROI

is rather extended and unspecific in its definition, and not

necessarily targeting themost relevant sub-regions/voxels. To

further explore the potential contribution ofmore precise sub-

regions of parietal cortex to the observed correlation between

behavioral performance and fMRI decoding accuracy, we

probed the same relationwithin four ROIs that were defined in
Please cite this article in press as: Lasne, G., et al., Discriminability of n
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a previous study using specific functional localizer scans to

target the parietal sub-regions which have been implicated in

number representations by neurophysiology, representing the

putative human equivalents of lateral (LIP) and ventral (VIP)

intra-parietal areas of the macaque in the left and right

hemispheres (see Fig. 3A for overview of ROI locations). All

these regions showed a tendency toward the expected nega-

tive correlation, as the one observed in the large and
umerosity-evoked fMRI activity patterns in human intra-parietal
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Fig. 3 e FMRI decoding results and across-subject correlation with behavioral Weber fractions in the left and right functional

equivalents of areas LIP and VIP: Individual subjects' ROIs were defined as the 150 voxels most activated across all sample

numerosities versus baseline, within each of four group-level masks as derived from a previous study (Eger et al., 2015).

Panel A) illustrated the ROI locations rendered onto Caret's PALS Atlas, with color codes corresponding, as in Fig. 2, to the

number of subjects (out of 12) in whom one given voxel location was included in their specific ROI. Panel B) displays the

average classification performance (means and SEM across the 12 subjects) for pairwise discrimination between

numerosities (theoretical chance level ¼ 50%) for left and right LIP (middle panel) together with correlations between

individual subjects' fMRI classification performance and behavioral Weber fractions (left panel for left hemisphere, right

panel for right hemisphere). Panel C) displays the corresponding results for left and right VIP. The negative correlation

between behavioral Weber fractions and fMRI decoding performance was only significant in the right LIP ROI when testing

all regions in isolation.
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unspecific parietal ROI. However, this correlation had the

highest value in the right LIP region and it reached significance

only in this region when testing each ROI in isolation (right

LIP: r ¼ �.74, p ¼ .0059, left LIP: r ¼ �.49, p ¼ .1067, right VIP:

r¼�.38, p¼ .2266, left VIP: r¼�.12, p¼ .7053).3 The correlation

in the right LIP region remains significant even when applying
3 The correlation between number decoding and behavioral
Weber fractions in the right LIP ROI still remains significant when
the two subjects with the largest Weber fractions are taken out
(rho ¼ �.78, p ¼ .0078).
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Bonferroni correction for multiple comparisons in this case (4

subregions tested: aaltered ¼ .05/4 ¼ .0125, pcorrected ¼ .0236 for

right LIP region).

In summary, correlation analyses revealed that subjects

with better behavioral discrimination ability between indi-

vidual numerosities also showed better decodability of

numerosity-evoked activity patterns. Critically, this relation

was found in parietal cortex, andmore specifically in the right

LIP region, but not in occipital cortex, even though there was

enough information in the latter area to decode numerosity

with an equivalent level of performance.
umerosity-evoked fMRI activity patterns in human intra-parietal
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3.4. Behavioral precision and fMRI decoding
performance across the numerical range

The results described previously allowed us to establish a

relation between individual differences in behavioral numer-

ical acuity and fMRI decoding performance, on average across

all the numerosities tested. Behavioral results had also indi-

cated some differences in behavioral precision across the

numerical range (in particular smaller Weber fractions for 8

dots than for larger numerosities, see Fig. 1D). In parietal

cortex but not in occipital cortex these behavioral results were

paralleled by a tendency for better decoding in the range

including numerosity 8 (Fig. 2A). To establish a more direct

quantitative correspondence between these two tendencies,

we computed the sensitivity index (d’) for all pairwise dis-

criminations between numerosities from estimated behav-

ioral Weber fractions on the one hand, and the output of the

fMRI pattern classifier, on the other hand (see section 2 for

details). Fig. 4 displays the resulting d’matrices, for behavioral

discrination (A) and for decoding in early visual and parietal

cortex ROIs (B), averaged across subjects. In spite of the fact
dprime psychophysics

dprime fMRI decoding

Early visual parie

A

B

Fig. 4 e FMRI decoding results and behavioral precision across

all pairwise comparisons between numerosities (within each

fractions and from fMRI decoding performance. Panel A) show

behavioral discrimination, and panel B) the ones for fMRI patt

tendency for higher d-prime values (indicating better discrimi

larger numerosities can be seen in the behavioral results and

regressions, run on a subject-by-subject basis and tested for si

numerical size on top of ratio, for the pairwise discriminabilit

cortex but not early visual cortex (D).
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that the overall discriminability of fMRI was much lower than

the behavioral one, a general pattern of higher d’ for com-

parisons involving the lowest numerosity can be found in the

behavioral matrix, and is more clearly reflected in the fMRI

decoding matrix from the parietal than the early visual cortex

ROI. Multiple regressions on the d’ values for the different

numerical comparisons, run on a subject-by-subject basis

(with predictors being the z-transformed ratio and mean size

of the two numerosities in each pair, plus a constant)

confirmed that for the behavioral data the beta weights for

ratio and size were significantly different from 0 across the 12

subjects (paired two-tailed t-tests: ratio: t(11) ¼ 23.81, p¼ 8.2e-

11, size: t(11)¼ 3.16, p¼ 9.1e-03, Fig. 3C). The samewas true for

decoding in the parietal cortex ROI (paired two-tailed t-tests:

ratio: t(11) ¼ 4.47, p ¼ .0009, size: t(11) ¼ 2.85, p < .0157), while

for the early visual cortex ROI only the ratio predictor reached

significance (t(11) ¼ 5.21, p ¼ .0003), but the effect of size

remained non-significant (t(11) ¼ .45, p ¼ .6620) (Fig. 4D).

Thus, decoding performance in parietal cortex closely

parallels the observed differences in behavioral discrimina-

tion performance across the numerical range, in particular
tal
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showing a significant effect of the size of two compared

numbers on top of their ratio, an effect absent in early visual

cortex activity.
4. Discussion

The present study acquired both psychophysical and func-

tional neuroimaging data to test which of several regions

previously shown to contain information about individual

numerosities is read out when making explicit numerical

judgments. We found that in spite of a very similar level of

overall decoding performance in early visual and intraparietal

cortex, the subjects' behavioral Weber fractions measured

prior to scanning were negatively correlated with pattern

decoding performance in parietal (and more precisely in the

right human equivalent of monkey LIP) but not occipital cor-

tex. This result indicates that the precision with which sub-

jects discriminate numbers reflects the precision with which

they represent numbers in specific parietal regions and hence

demonstrates that these regions are crucial for overt numer-

ical decisions.

Overall, the fMRI decoding performance reported here

(around 57% correct in parietal cortex) may seem low

compared to some previous studies (Bulth�e et al., 2014; Eger

et al., 2009; Knops, Piazza, Sengupta, Eger, & Melcher, 2014).

However, when considerably higher decoding performance

was obtained previously this was generally for smaller

numerosities (up to a maximum of 8 items). When the nu-

merical values and ratios between numerosities were com-

parable to the ones used here, discrimination performance

was considerably lower, and compatible with the one ob-

tained in the current study (Eger et al., 2015). This also fits well

with the fact that studies which directly mapped the cortical

layout of numerosity selectivity at the level of individual

voxels have so far had sufficient sensitivity only to detect

preferential responses for relatively small numerosities in

parietal cortex (Harvey & Dumoulin, 2017; Harvey et al., 2013).

Given that early visual and parietal cortex allowed us in the

present study to decode numerosity to the same degree, one

might wonder what might be the nature of the information

encoded inearlyvisual cortex.Wedonotwant to claimfromthe

current results that early visual cortex does represent numer-

osity explicitely (implying individual neurons responsive or

tuned to it at that level) and independently from other features.

We used in this study two stimulus sets that either equated dot

sizeor thetotalnumberofpixelsacrossnumerosities.While this

is one commonly used strategy for stimulus creation in studies

on numerosity perception, it does not control for differences in

the total amount and distribution of contrast energy across

numerosities, which can affect early visual responses. This

factor may likely account for the early visual cortex results in

this and other studies, given that the one previous fMRI decod-

ing study which reported successful decoding of numerosity in

parietal but not early visual cortex (Castaldi et al., 2016) had

equated the contrast energy of the stimuli.

The LIP region defined here by neurophysiologically moti-

vated localizers and showing a strongly significant relation

with behavioral acuity is one of the parietal subregions that

have been shown in themacaquemonkey to contain neuronal
Please cite this article in press as: Lasne, G., et al., Discriminability of n
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responses discriminating between numerosities (Roitman

et al., 2007), with VIP being another one where the majority

of neurophysiological recordings were made (Nieder, 2016).

Previously we have found that the human equivalents of both

regions allowed for decoding of numerosity information for

fMRI activity patterns (Eger et al., 2015). The fact that here we

did not observe a significant relation of behavioral discrimi-

nation with VIP activation patterns does not necessarily mean

that no such relation exists. Given the overall reduced

decoding performance when the parietal ROI was replaced by

several smaller subregions, null results can hardly be

considered informative. Nevertheless, in the right LIP a sig-

nificant relationwas found in spite of the reduction in number

of voxels, indicating that this region contains the most

behaviorally relevant information at least at the spatial scale

accessed by ourmeasurements. It is interesting to note a close

correspondence between the average MNI coordinates of our

right LIP ROI (22.9e61.0 54.2) and the coordinates (23e60 60)

where a systematic spatial layout of numerosity responses

was observed initially (Harvey et al., 2013) using ultra-high-

field fMRI (though without testing the relation of these re-

sponses with behavioral numerical acuity).

The present report is the first one showing that the preci-

sion of intra-parietal (and more specifically right LIP) activity

patterns evoked by individual numerosities reflects inter-

individual differences in behavioral numerical acuity in

adult human subjects. Interestingly, using fMRI adaptation

methods, an across-subject correlation between behavioral

Weber fractions andWeber fractions estimated from the fMRI

adaptation effect was found very recently in 3e6 year old

children (Kersey & Cantlon, 2017) in the right, but not the left

intraparietal sulcus. FMRI adaptation and multi-variate

decoding of evoked activity patterns are two different ap-

proaches often used to tackle similar questions (related to

characteristics of neuronal representations), however, the

underlying signals exploited by the two methods are of a very

different nature. The fMRI adaptation approach is based on

deviance signals which are observed at the level of regional

activity when a change in the stimulus is introduced (Grill-

Spector, Henson, & Martin, 2006), possibly in line with an

intrinsic tendency of the brain to predict its input (e.g.,

Grotheer & Kov�acs, 2016; Kleinschmidt, Büchel, Hutton,

Friston, & Frackowiak, 2002). Multivariate decoding, on the

other hand, exploits differences in direct evoked activation

patterns, and therefore the layout of responsive neuronal

populations, independently from temporal context/stimula-

tion history. Given that such different measures cannot

necessarily be guaranteed to provide the same insights, and

that they can in fact sometimes lead to different results in the

same paradigm and data set (Drucker & Aguirre, 2009), it is

evenmore remarkable that in the case of the relation between

perceptual and neuronal sensitivity to numerosity studied

here, both measures converge across age groups onto simi-

larly located parietal regions. Beyond this work using fMRI, it

is of interest that an across subject correlation has also been

observed between the amplitude of ERP components (in

particular the N2pc) and numerosity discrimination within

the subitizing range, however without allowing to localize the

underlying brain regions generating this effect (Ester, Drew,

Klee, Vogel, & Awh, 2012).
umerosity-evoked fMRI activity patterns in human intra-parietal
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While as far as we are aware of, inter-individual differ-

ences in numerical acuity have not been investigated at the

level of single neuron responses, macaque neurophysiology

has nevertheless provided evidence for the behavioral rele-

vance of the intraparietal and prefrontal number selectivities:

specifically, on trials where the monkeys made errors in a

delayed numerosity match-to-sample task, the numerical

selectivity for the preceding sample stimulus was lost or

reduced (Nieder&Miller, 2004). A related approach using error

trials to reveal the relevance of regional activation patterns for

performance has also been used in fMRI studies related to

other cognitive domains than number: for example, in an

experiment on object recognition, on trials when subjects

failed to correctly identify the object that was briefly pre-

sented and masked, discriminative information was dis-

rupted in lateral occipital object responsive areas, but not in

early visual cortex (Williams et al., 2008). Such effects are not

necessarily restricted to higher-level cortical areas: decoding

of stimulus orientation from early visual cortex was shown to

be enhanced on trials where subjects correctly discriminated

a small change in orientation as compared to incorrect trials

(Scolari & Serences, 2010), and the uncertainty about orien-

tation decoded from early visual cortex on individual trials

was found to reflect the variability of perceptual decisions

(van Bergen, Ma, Pratte, & Jehee, 2015).

The paradigm we used was less suited to investigate the

effects of behavioral relevance at the level of individual

trials: subjects were performing a delayed numerosity

comparison with two response alternatives (larger or

smaller) for which chance performance is 50% and

furthermore errors could either arise at the level of encod-

ing of the first or second stimulus, thus minimizing the

chances to identify true errors with the amount of trials

available in an fMRI experiment as this one. We therefore

focused on differences in behavioral precision across sub-

jects and their relation with fMRI decoding. Only one other

study to our knowledge has so far reported that decoding

performance for a fine-grained perceptual comparison pre-

dicted inter-individual differences in behavioral discrimi-

nation capacity: in a phoneme discrimination task,

decoding of the phonemes/ra and/la differed between En-

glish and Japanese speakers, but in addition was also

indicative of individual differences in behavioral acuity

within groups (Raizada, Tsao, Liu, & Kuhl, 2010). Interest-

ingly, and different from our results, behavioral acuity in

that study was related to representations at the earliest

stage of cortical processing (Heschl's gyrus).

The across-subject relation with behavioral performance

in our case was found for numerosity, but since only numer-

osity was tested, we cannot claim that the relation is specific

for that feature in the regions in question, rather than

potentially more generally observed for relevant contents in a

comparison task. However, establishing the specificity of the

relation between behavior and fMRI decoding for numerosity

per se appears a non-trivial enterprise, since successful

decoding of numerosity already requires a considerable

amount of data/scanning time, and any additional feature to

be contrasted with numerosity regarding its correlation with

behavioral performance would need to be discriminable

within the same regions in the first place.
Please cite this article in press as: Lasne, G., et al., Discriminability of n
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A related issue is whether the correlation observed

necessarily needs to reflect the subjects' intrinsic numerical

acuity, rather than variations across subjects in the level of

engagement in, or attention to, the task. Attention is well-

known to modulate activity in parietal cortex, and pattern

recognition methods have revealed that distributed response

patterns in intraparietal areas not only can reflect task set

(which feature dimension is attended), but also preferentially

discriminate between feature values within an attended/task-

relevant dimension (e.g., Ester, Sutterer, Serences, & Awh,

2016; Liu, Hospadaruk, Zhu, & Gardner, 2011). Nevertheless,

such attentional enhancement of feature information has

been found to be at least as present at the earliest stages of the

visual hierarchy (e.g., Jehee, Brady, & Tong, 2011; Ling, Pratte,

& Tong, 2015; Serences & Boynton, 2007). This contrasts with

our study,wherewe find that only parietal and not early visual

cortex patterns reflect behavioral acuity for numerosity across

subjects, although our design does not allow us to explicitly

rule out effects related to attention in this finding.

In addition to the across subject relation between behav-

ioral acuity and pattern decoding performance for numerosity

discrimination, our study also observed differences in nu-

merical acuity across the numerical range tested. Specifically,

once again in parietal, but not early visual cortex, smaller

numerosities were better discriminated than larger numer-

osities of the same ratio, paralleling better behavioral preci-

sion for the smaller numerosites. Similar findings showing

that small numerosities are more discriminable than pre-

dicted by Weber's law have been obtained in a few other

behavioral studies (Burr, Turi, & Anobile, 2010; Merten &

Nieder, 2009). Interestingly, Burr et al. (2010) have shown

that the higher behavioral precision for smaller numerosities

disappeared when attentional resources were engaged else-

where, leading to the suggestion that several potential

mechanisms contribute to numerosity discrimination across

the numerical range, one of which (for relatively small

numerosities) requires attentional resources. In our study, the

better discriminability of smaller numerosities was not

restricted to numbers as small as the ones used in that study

and it still remains to be understood in detail which task or

stimulus factors determine up to which limit performance for

smaller numerosities can deviate from Weber's law.

The findings reported here were obtained during delayed

number comparison and thus a working memory task.

Further studies will be needed to clarify whether the present

correlations between behavioral numerical acuity and the

precision of the neuronal representation reflects the precision

of the numerical percept per se, or of itsmaintenance in short-

term memory. On the other hand, a previous study has lent

support to the idea that the mechanisms for extracting

numerosity and non-numerical feature tracking/short term

memory of properties of visual sets might be closely inter-

twined (Knops et al., 2014): Area LIP in particular is thought to

implement a saliency map, and a computational model of a

saliency map architecture did account for fMRI data acquired

with two different tasks in that region by different levels of

mutual inhibition betweenmodel nodes. It seems tempting to

speculate how such a shared component could potentially

provide a unifying explanation for diverse impairments found

in disorders of numerical processing (dyscalculia) that are
umerosity-evoked fMRI activity patterns in human intra-parietal
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conventionally categorized as either domain-specific (im-

pairments in non-symbolic number processing) or domain-

general (impairments in visual working memory) (Piazza

et al., 2010; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013).

To summarize and conclude, the present study is the first

one to demonstrate that the precision of numerosity evoked

activity patterns in intraparietal cortex, and more specifically

the equivalent of area LIP, correlates with behavioral

enumeration abilities and thus likely constitutes a crucial

level of the cortical hierarchy at which activity is read out for

perceptual decisions during numerosity tasks. Future studies

may clarify whether this link between behavioral precision

and evoked response patterns in intra-parietal cortex is spe-

cifically found for numerosity or also for other quantitative or

even non-quantitative perceptual contents, what is the role of

attention to or task relevance of the feature in question, and

what, if any, is the relation between the brain behavior cor-

relation described here and higher-level aspects of numerical

performance.
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