
NeuroImage xxx (2018) 1–13
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Mapping the asynchrony of cortical maturation in the infant brain: A MRI
multi-parametric clustering approach

J. Lebenberg a,b,*, J.-F. Mangin a,f, B. Thirion c, C. Poupon d, L. Hertz-Pannier e, F. Leroy b,
P. Adibpour b, G. Dehaene-Lambertz b, J. Dubois b

a UNATI, CEA DRF/Institut Joliot, Universit�e Paris-Sud, Universit�e Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
b Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut Joliot, Universit�e Paris-Sud, Universit�e Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
c PARIETAL, CEA DRF/Institut Joliot, INRIA, Universit�e Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
d UNIRS, CEA DRF/Institut Joliot, Universit�e Paris-Sud, Universit�e Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
e UNIACT, CEA DRF/Institut Joliot, INSERM U1129, Universit�e Paris-Sud, Universit�e Paris-Saclay, Universit�e Paris-Descartes, NeuroSpin Center, 91191, Gif/Yvette,
France
f CATI Multicenter Neuroimaging Platform, France
A R T I C L E I N F O

Keywords:
Magnetic resonance imaging MRI
Diffusion tensor imaging DTI
Quantitative T1 and T2 mapping
Cortical maturation
Infancy
Clustering
Human brain project (HBP)
* Corresponding author. CEA/SAC/DRF/ Institut
E-mail address: jessica.lebenberg@gmail.com (J.
URL: http://www.cati-neuroimaging.com (J.-F.

https://doi.org/10.1016/j.neuroimage.2018.07.022
Received 25 September 2017; Received in revised
Available online xxxx
1053-8119/© 2018 Elsevier Inc. All rights reserved

Please cite this article in press as: Lebenberg,
clustering approach, NeuroImage (2018), http
A B S T R A C T

While the main neural networks are in place at term birth, intense changes in cortical microstructure occur during
early infancy with the development of dendritic arborization, synaptogenesis and fiber myelination. These
maturational processes are thought to relate to behavioral acquisitions and the development of cognitive abilities.
Nevertheless, in vivo investigations of such relationships are still lacking in healthy infants. To bridge this gap, we
aimed to study the cortical maturation using non-invasive Magnetic Resonance Imaging, over a largely unex-
plored period (1–5 post-natal months). In a first univariate step, we focused on different quantitative parameters:
longitudinal relaxation time (T1), transverse relaxation time (T2), and axial diffusivity from diffusion tensor
imaging (λ//) These individual maps, acquired with echo-planar imaging to limit the acquisition time, showed
spatial distortions that were first corrected to reliably match the thin cortical ribbon identified on high-resolution
T2-weighted images. Averaged maps were also computed over the infants group to summarize the parameter
characteristics during early infancy. In a second step, we considered a multi-parametric approach that leverages
parameters complementarity, avoids reliance on pre-defined regions of interest, and does not require spatial
constraints. Our clustering strategy allowed us to group cortical voxels over all infants in 5 clusters with distinct
microstructural T1 and λ// properties The cluster maps over individual cortical surfaces and over the group were
in sound agreement with benchmark post mortem studies of sub-cortical white matter myelination, showing a
progressive maturation of 1) primary sensori-motor areas, 2) adjacent unimodal associative cortices, and 3)
higher-order associative regions. This study thus opens a consistent approach to study cortical maturation in vivo.
1. Introduction

Since the seminal post mortem descriptions of Brodmann (1909),
Flechsig (1920) and others, mapping the microstructural properties of
human cortical areas has been a major challenge in vivo. In the recent
years, different Magnetic Resonance Imaging (MRI) modalities and ap-
proaches have been tentatively used to propose proxy maps of the myelin
content, based on the ratio between T1-and T2-weighted signals (noted
T1w/T2w ratio) (Glasser et al., 2014; Glasser and Van Essen, 2011;
Kuehn et al., 2017), T1/T2* ratio (De Martino et al., 2015), quantitative
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phospholipid content, but also iron (Stüber et al., 2014) or the spatial
arrangement of neuronal cell bodies, cell types in layers and columns
(Fukutomi et al., 2018).

This overall pattern observed across cortical regions in the adult brain
is strikingly similar to the primal sketch of sub-cortical white matter
myelination described in post mortem studies of infants' brains (Brody
et al., 1987; Flechsig, 1920; Kinney et al., 1988). These studies showed
that fibers in primary sensory and motor regions myelinate first, followed
closely by fibers in non-primary regions that are heavily myelinated in
the adult brain (including the orbito-frontal region, retrosplenial cortex,
the subiculum, a heavily myelinated region in the intraparietal sulcus
IPS, the middle temporal motion-related area MT, and the cingulate
motor area), and later on by lightly myelinated regions (including pre-
frontal, inferior parietal, middle and inferior temporal, and anterior
cingulate regions). During the first post-natal weeks and months, the
development of cortical microstructure also depends on the intense
growth of dendritic arborization and synaptogenesis (Huttenlocher and
Dabholkar, 1997; Travis et al., 2005), which both show heterogeneity
across cortical regions.

While these post mortem benchmark approaches have provided the
community with detailed descriptions of cortical maturation, in vivoMRI
assessments at the individual level have been rather scarce throughout
development so far. A few years ago, Leroy and colleagues highlighted
the differential maturation of linguistic regions in infants based on an
index comparing T2w signal in the cortex to surrounding cerebro-spinal
fluid (CSF) (Leroy et al., 2011a). Changes with age in T1w intensity
(Travis et al., 2014; Westlye et al., 2010) and T1w/T2w ratio (Grydeland
et al., 2013) have also been mapped over the cortical surface. Recently, a
few studies used quantitative parameters that do not depend on the
scanner's properties or on the pulse sequence, such as T1 (Deoni et al.,
2015; Friedrichs-Maeder et al., 2017), myelin water fraction (Deoni
et al., 2015) or magnetic susceptibility (W. Li et al., 2014b). Although the
global pattern of changes from 1 to 6 years of age reflected the pro-
gressive maturation of cortical regions, some discrepancies were
observed at the level of cortical sulci (Deoni et al., 2015). Parameters
from diffusionMRI (notably diffusion tensor imaging DTI) have also been
described as good markers of the cortical microstructure, especially
during the preterm period when the immature radial organization (with
limited dendritic arborization, predominance of neuronal apical den-
drites, and presence of radial glia fibers) leads to an early diffusion
anisotropy that decreases afterwards until term age (Ball et al., 2013;
McKinstry et al., 2002; Ouyang et al., 2018). During later development,
mean diffusivity seems to reflect cortical maturation in a different way
than T1 (Friedrichs-Maeder et al., 2017) and T1w/T2w ratio (Grydeland
et al., 2013). These changes in DTI anisotropy and mean diffusivity are
notably relying on age-related decreases in axial diffusivity (λ// primary
eigenvalue of the diffusion tensor) (Ouyang et al., 2018). Altogether,
these quantitative parameters provide complementary information on
the cortex microstructure and maturation. Combining them might thus
provide a more accurate description than univariate approaches, as
previously suggested for white matter bundles (Dubois et al., 2014a;
Kulikova et al., 2015; Nossin-Manor et al., 2015; Yeatman et al., 2014).

In this study, we aimed to evaluate the cortical maturation based on
these complementary quantitative MRI parameters. We focused on early
infancy (first 6 post-natal months), which is a largely unexplored period
given the difficulty of imaging healthy babies and processing MRI images
with low grey/white matter contrast. Because of inter-individual differ-
ences in brain size and folding (Dubois et al., 2018), we avoided common
approaches based on regions of interest, and the study was conducted
without spatial constraints over the cortical surface. In a first analysis
step, we described individual maps of longitudinal relaxation time (T1),
transverse relaxation time (T2), and DTI axial diffusivity (λ//). This latter
parameter was preferred to DTI anisotropy (Ball et al., 2013; McKinstry
et al., 2002) or mean diffusivity (Grydeland et al., 2013; Frie-
drichs-Maeder et al., 2017) because it provided the best contrast between
cortex and white matter in the developing brain (Dubois et al., 2014a),
2

and it could be specifically measured within the cortical ribbon which
shows lower values than the underlying white matter regardless of the
maturational stage. We expected a maturation-related decrease of T1, T2
and λ// in each region of the cortex, while we assumed that these pa-
rameters could provide complementary information on its microstruc-
tural properties. To limit the acquisition time in infants, these parametric
maps were acquired with echo-planar imaging (EPI) (Poupon et al.,
2010), which required to implement a dedicated strategy to correct
spatial distortions and reliably match the maps with the thin cortical
ribbon for each infant. Averaged maps over the infant group were also
computed based on a registration method that took into account the
cortical morphology (Lebenberg et al. in revision). In a second step we
considered a multi-parametric approach: like a previous study that
segmented tissues of the adult brain based on multiple MRI parameters
(de Pasquale et al., 2013), we set up a clustering strategy to group cortical
voxels, over all infants, according to their relative microstructural
properties based on MRI parameters. We then tested whether one or
several parameters among T1, T2 and λ// would be relevant. The best
solution of cortical clusters showed distinct patterns of maturation and a
spatial distribution in notable agreement with benchmark post mortem
studies of sub-cortical white matter myelination.

2. Material and methods

2.1. MRI data

2.1.1. Image acquisition
The study was conducted in 17 healthy term-born infants (10 boys, 7

girls), aged between 3 and 21 weeks (maturational age, corrected for
gestational age at birth, with a reference gestational period of 41 weeks)
(Supplementary Figure 1a). The protocol was approved by the Institu-
tional Ethical Committee, and all parents gave written informed consent.
Infants were spontaneously asleep along the imaging protocol, thus
making the MRI acquisitions possible. Particular precautions were taken
to minimize noise exposure by using customized headphones and
covering the magnet tunnel with a special noise protection foam.

Acquisitions were performed on a 3T-MRI Trio system (Siemens
HealthCare, Erlangen, Germany) using a 32-channel head coil. Sequences
dedicated to infants were used to maintain reduced acquisition times. For
parametric mappings (T1 and T2 relaxometry, DTI), spin-echo EPI se-
quences were acquired in less than 11min, with a 1.8 mm isotropic
spatial resolution, and using the y-axis as the phase-encoding direction as
detailed in (Kulikova et al., 2015). For T1 and T2 mappings, 8 inversion
times (TI: 250→ 2500ms) and 8 echo times (TE: 50→ 260ms) were used
respectively. For DTI, 30 diffusion gradient orientations were used at
b¼ 700 s. mm�2 (Dubois et al., 2016b). Regarding anatomy,
T2-weighted images (T2w) were acquired with a fast-spin echo sequence
providing a high spatial resolution of 1� 1� 1.1mm3 (Kabdebon et al.,
2014) (Fig. 1a).

2.1.2. Processing of anatomical images
As detailed below, anatomical images were used to delineate the

cortical ribbons which are the purpose of this study (Paragraph 2.2.1),
and to perform an inter-subject registration required by the group anal-
ysis (Paragraph 2.2.1). Images were semi-automatically processed using
BrainVISA software (http://brainvisa.info/web/index.html), (Cointepas
et al., 2001), with a Morphologist-like pipeline adapted to infant T2-w
MRI (Fischer et al., 2012; Leroy et al., 2011b). Briefly, this pipeline al-
lows for the segmentation of grey and white matters (GM and WM
respectively) through histogram analyses and morphological operations
applied to bias-corrected T2-w images. Interactive manual corrections
were performed for each infant, sequentially by two operators (JL and
JD), in regions displaying low contrast between cortex and WM because
of ongoing myelination (mainly in primary sensorimotor regions, like
around the central sulcus and the calcarine scissure). 3D reconstructions
of inner and outer cortical surfaces were generated from these

http://brainvisa.info/web/index.html


Fig. 1. Correction of geometric distortions in parametric maps. T2w-MRI of a 6
week-old infant is presented with (a) and without the skull (b). The yellow ar-
rows point to the direct contact between cerebral tissues and skull (no CSF). The
linearly registered T1 map (c: with superimposition of a homogeneous grid)
shows important geometrical distortions (red circles), that are mostly corrected
in the non-linearly registered T1 map (d: note the large deformations of the grid
in frontal and occipital regions, showing the local corrections of distortions).
Mean Chamfer distances and standard-deviations were computed on 4 infants
(e), between landmarks delineated on T2w-MRI and T1 (resp. T2 and λ//) maps
before (red cross) and after (green circle) the non-linear registration. Distances
reached less than a millimeter after the registration step.
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segmentations (Dubois et al., 2016a), and we computed hemispheric
brain volume, cortical surface and sulcation index (Dubois et al., 2018).
To perform inter-subject registration (Paragraph 2.2.1), cortical sulci
were further extracted (Mangin et al., 2004) and semi-automatically
labeled using a machine learning approach (Perrot et al., 2011).

2.1.3. Processing of EPI images
Regarding the EPI images, motion-related artifacts were corrected

both within each volume and across volumes, as detailed in (Dubois
et al., 2014b). T1, T2 and DTI parameters (focusing on fractional
anisotropy FA and axial diffusivity λ//) were estimated in each voxel of
semi-automated extracted brains using the Connectomist and Relaxo-
metrist toolboxes (Duclap et al., 2012; Kulikova et al., 2015). CSF was
automatically removed from these parametric maps using a histogram
analysis (threshold fixed at Q3þ1.5*IQR, with Q3, the 3rd quartile of the
range of parameter values, and IQR, the interquartile range, i.e. the dif-
ference between the 3rd and the 1st quartiles) (Fig. 2).
3

When comparing anatomical images and parametric maps (Paragraph
2.2.1), an important difficulty was related to the distortions in the latter
maps, induced by magnetic field inhomogeneities all along the phase-
encoding direction and by large differences in magnetic susceptibility
close to the interfaces between air, skull and brain such as the occipital
and frontal parts (Greve and Fischl, 2009). Precise correction of these
distortions was required to reliably study the cortical ribbon (Paragraph
2.2.1). Because of limited acquisition time in unsedated infants, we could
not apply the common approach used to correct the geometrical de-
formations observed on EPI images, based on field map calibration
(Jezzard, 2012) (such field maps were not acquired because of time
constraints). Here, we directly registered distorted T1, T2 and λ// maps
onto undistorted anatomical images for each infant, since they showed
better tissue contrasts than the raw EPI images. Parametric maps were
independently aligned, one after the other, on undistorted anatomical
T2w images as proposed in (Bhushan et al., 2012; Huang et al., 2008;
Lebenberg et al., 2015). The transformation estimated on λ// map was
also applied to FA map, obtained from the same DTI acquisition.

All maps and images were first masked to extract the brain, by
excluding subarachnoid CSF. A global rigid transformation based on
mutual information (MI) was estimated between each parametric map
and T2w images. An elastic deformation, based on cubic B-splines and
using MI as a similarity criterion, was then estimated to locally improve
the correction (Rueckert et al., 1999). This algorithm uses coarse-to-fine
uniform 3D grids of control points to estimate the registration locally.
Adult brain studies based on a similar approach often restricted the
deformation of EPI images along the phase-encoding direction, where
geometrical distortions appear due to inhomogeneities related to frontal
sinuses and the accumulating dephasing along EPI read echotrains
(Bhushan et al., 2012). Here, a supplementary difficulty came from the
fact that distortions appeared in several directions because the baby's
head was not perfectly aligned with the MR scanner axes. Moreover, the
infant brain is often not perfectly centered within the skull: the distance
between brain and skull varies across regions, e.g. it is very thin in oc-
cipital regions (Fig. 1a and (Kabdebon et al., 2014)). The elastic defor-
mation was consequently estimated in all directions. A quantitative
evaluation of the distortion correction was performed in 4 infants with
regularly-spaced ages (3, 6, 13 and 19 weeks) using manual landmarks
delineated on parametric maps before and after the non-linear registra-
tion, at the level of frontal and occipital lobes and on the lateral ventri-
cles. Geometric Chamfer distances were computed between these
landmarks and similar marks pinned on anatomical T2w images.

2.2. Univariate analysis of parametric maps

As detailed in the next two sections, properties were first evaluated
for each subject based on T1, T2 and λ// parameters, focusing on an es-
timate of the cortical ribbon that was extracted from both T2w images
and parametric maps (Paragraph 2.2.1). In a second step, analyses were
performed over the infant group (Paragraph 2.2.2).

2.2.1. Analysis of individual images
The cortical ribbon is very thin in the developing brain (Li et al.,

2015; Lyall et al., 2015; Meng et al., 2017). Here it was identified in each
infant using a 2-step procedure. The cortex segmentation resulting from
T2w images was first dilated (morphological radius of 1.1 mm) to
compensate for residual mismatch between parametric maps and T2w
images. The FA map was secondly used to select only cortical voxels,
corresponding to values below a threshold experimentally fixed for each
infant (between 0.18 and 0.25with amedian value equal to 0.20) (Fig. 2a
and b).

For visualization purposes, we aimed to display T1, T2 and λ// values
in each point of the inner cortical surface for each infant. We identified
and projected reliable measures in the following way, by screening values
of the cortical ribbon within a cylinder perpendicular and on either side
of the apparent boundary between cortex and white matter (total



Fig. 2. Anatomical images and parametric maps. Data
are shown for 4 infants with regularly-spaced ages (3,
6, 13 and 19 weeks). Cortical ribbons are represented
on anatomical images (a) and FA maps (b) (red con-
tours). For T1 (c), T2 (d) and λ// (e) maps, values were
also projected on the inner cortical surface (left
hemisphere shown). Note that the maturational asyn-
chrony across cortical regions was hardly visible for
the youngest infant on T1 map, and for the oldest in-
fant on T2 and λ// maps.
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height¼ 4 voxels). Since λ// values are lower in the cortex than in the
underlying WM at any stage of maturation (Dubois et al., 2014a)
(Fig. 2e), we considered the minimal λ// value over the cylinder. This
strategy was more complex for T1 and T2 since the cortex shows lower T1
and T2 values than the underlying WM in immature regions, while the
reverse is true in mature regions (Dubois et al., 2014a) (Fig. 2c and d)
(this pattern of changes in the developing brain leads to the contrast
inversion observed in T1w and T2w images during the first post-natal
year). To project T1 and T2 values on the cortical surface in the same
way for all infants and for all cortical regions regardless of their matu-
ration, we thus computed mean values over the cylinder intersecting the
cortical ribbon. Although a small proportion of WM values might have
been included in addition to cortical values, we expected that these
maturational markers change locally in a synchronous and coherent way
(Croteau-Chonka et al., 2016; Friedrichs-Maeder et al., 2017).

2.2.2. Analysis at the group level
We further aimed to compute averaged representations of matura-

tional patterns over the infants group, which required inter-subject
registration. To accurately align individual cortical ribbons, we used a
2-step registration strategy whose efficiency has been demonstrated on
4

different databases, including infants data (Lebenberg et al. in revision).
The first step was based on DISCO (for DIffeomorphic Sulcal-based
Cortical) (Auzias et al., 2011), a toolbox that will soon be available in
the BrainVISA software (http://brainvisa.info/web/index.html), (Coin-
tepas et al., 2001). It consisted of 1) creating an empirical template by
linearly registering sulcal imprints from each subject, 2) registering each
individual sulcal imprint onto the resulting template using smooth
invertible deformations, and 3) updating the sulcal template (steps 2 and
3 are iterated until convergence). The second step used the DARTEL al-
gorithm (Ashburner, 2007) (tool available in the SPM software) which
improved the alignment of cortical segmentations across individuals.

To drive the DISCO registration, we chose thirteen cortical sulci,
easily recognizable in infant brains and covering the overall surface: the
central sulcus, the posterior lateral fissure, sulci in the frontal lobe (su-
perior and inferior frontal sulci, inferior and intermediate precentral
sulci, olfactory sulcus), in the parietal lobe (intraparietal sulcus), in the
temporal lobe (superior temporal sulcus, collateral fissure), and on the
medial surface (calloso-marginal anterior and posterior fissures, parieto-
occipital fissure) (Fig. 3a and b). The cortical segmentations provided by
the Baby-Morphologist pipeline (see Paragraph 2.1.2) were considered as
inputs for the DARTEL algorithm. All transformations were estimated

http://brainvisa.info/web/index.html


Fig. 3. Inter-subject registration. The DISCO algorithm used 13 sulci to drive the registration (a, b), and it provided a correct alignment of sulci (c, d). Improved by the
DARTEL algorithm, the cortical superimposition was robust, as observed on anatomical images and illustrated for 4 infants with regularly-spaced ages (3, 6, 13 and 19
weeks) (e) (red cross).
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using MATLAB (R2014a, The Mathworks, Inc.) and SPM12 software with
default parameters.

Based on this 2-step registration, we computed average parametric
maps over the infants group. We first computed individual quantitative
parameters (T1, T2 and λ//) within the cortical ribbon: in order not to
combine residual registration errors relative to distortions (intra-subject
level) and spatial alignment (inter-subject level), we considered values
that were projected on the cortical surface with the cylinder-based
approach (mean values for T1 and T2, minimal values for λ//), and we
projected these values back to the cortical ribbon based on the closest
surface values to each voxel. Second, the DISCOþ DARTEL deformations
were applied to those parametric segmentations. Third, average maps
were computed over the group by only selecting voxels with non-null
values in at least 50% of infants. For visualization purposes, these
maps are shown on the inner cortical surface of a 6-week old infant.
2.3. Clustering analysis of multi-parametric maps

In parallel to the univariate analysis, we performed a clustering
analysis over the infants group based on T1, T2 and λ// parameters to
take advantage of their complementarity regarding microstructural
properties. This multi-parametric analysis was conducted on parametric
maps corrected for geometric distortions and over all voxels of all cortical
ribbons (cf. Paragraph 2.2.1), regardless of the infants' age and the brain
region localization (the inter-subject registration was not required in this
analysis). A Gaussian Mixture Models (GMM) algorithm was used in our
experiments; in the absence of priors, it solely maximizes the likelihood,
and does not bias the cluster means and sizes.
5

2.3.1. Clustering algorithm settings
We used the GMM clustering algorithm available in the scikit-learn

Python library (http://scikit-learn.org/stable/index.html, v.0.18). T1,
T2 and λ// maps were first scaled in intensity to normalize the default
weight of each quantitative parameter in the clustering process. A com-
bination of these parameters was then used: each voxel x to be clustered
was represented by a vector with one to three dimensions V(x)¼(α.T1(x),
β.T2(x), γ.λ//(x)) where α, β and γ were adjustable weightings. Since k-
means algorithm is known to provide reasonably good initialization for
GMMs, we determined the best k-means initialization among 10 tests for
a fixed number of clusters k, by minimizing the inertia of the cluster
representation. As GMM algorithmminimizes the negative log-likelihood
of the data under the mixture model, we computed it after 10 iterations of
an Expectation-Maximization algorithm (Dempster et al., 1977). To es-
timate the features of each cluster (in terms of T1, T2, λ// depending on
the input combination) while saving computation time, the GMM clus-
tering was trained based on 10% of all input data, randomly selected
over all infants to provide a representative sampling. The resulting
cluster features were further applied to all voxels in order to provide
maps of clusters in all infants. We tested the influence of the following
settings:

� the covariance matrix model to separate clusters from each other: 4
models were available (diagonal, full, spherical and tied).

� the input parameters based on T1, T2 and λ//: we tested different
combinations, including one to three parameters.

� the number of clusters: we arbitrarily assumed that 3 to 10 clusters
would be relevant to describe the maturation asynchrony that is

http://scikit-learn.org/stable/index.html
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expected across infants and across cortical regions given the devel-
opmental period (considering a higher number may trigger an over-
parcellation with several non-significant clusters).

As each T1, T2 and λ// parameters constituted a smooth continuum
across voxels, across cortical regions and across infants with different
ages, the commonly used BIC criterion (Schwarz, 1978) was not rele-
vant to determine the optimal model and the number of clusters. So we
computed the Silhouette coefficient (Rousseeuw, 1987) defined as the
normalized difference between the minimal inter-cluster dissimilarity
(minimal dissimilarity distance across all vectors V(x) from different
clusters) and the mean intra-cluster dissimilarity (average dissimilarity
distance across all V(x) from the same cluster). This score ranges be-
tween �1 and 1: the higher this score is, the better the assignment of
voxels to clusters; a negative score implies a misclassification. The
volume of each cluster relatively to others as well as the percentage of
negative Silhouette coefficients were also estimated. We computed
these different scores to sequentially select: 1) the model for the
covariance matrix (considering the whole combination of parameters
(T1, T2, λ//) and 3 to 10 clusters), 2) the combination of input param-
eters (considering the best model and 3 to 10 clusters), and 3) the
number of clusters (considering the best model and the best combina-
tion of parameters).

2.3.2. Clusters description in relation to cortical maturation
Once the clustering was run over all cortical voxels of all infants with

the optimal settings, we interpreted the cluster results in terms of
microstructural properties and then cortical maturation. Clusters were
labeled a posteriori based on the averaging of quantitative parameters
used for clustering over each cluster and for each infant. The intra-cluster
homogeneity over the group was assessed using the quartile coefficient of
dispersion (ratio between the difference of the third and the first quar-
tiles, and their sum). In order to make the link between microstructural
and maturational properties, we further evaluated the relative evolution
of clusters over the developmental period, expecting that the youngest
(resp. the oldest) infants should mostly display clusters representing the
most immature (resp. mature) regions.

To show the cluster distribution and the cortical parcellation in each
infant, we used a representation on the inflated inner cortical surface by
considering the majority label measured locally over the cortical ribbon
(as previously, based on a cylinder perpendicular to the surface). This
enabled us to qualitatively describe the maturational asynchrony across
brain regions and along ages. Similarly, to average parametric maps, we
computed an average map of the cluster distribution over the infant
group, based on the DISCO þ DARTEL registration and by taking into
account cortical voxels with non-null values for 50% of infants (see
Paragraph 2.2.2).

3. Results

3.1. Univariate analysis of cortical microstructure and maturation

3.1.1. Validation of intra-subject and inter-subject registrations
For each infant, geometric distortions in parametric maps were

mainly visible in the frontal and occipital regions, especially for the T1
map (Fig. 1). The proposed non-linear approach of registration correctly
amended these distortions, as assessed by visual inspections and quan-
titative evaluations (Fig. 1). After registration, differences between T1,
T2, λ// maps and T2w images were less than the spatial resolution of T2w
images (1 mm), and the best improvements were observed at the level of
peripheral landmarks, confirming previous visual observations. In each
infant, we could further identify a suitable cortical ribbon based on T2w
images and FA maps (see red contours in Fig. 1a and b).

At the group level, the proposed approach based on DISCOþ DARTEL
enabled us to register anatomical images over all infants, in terms of
cortical sulci (Fig. 3c and d) and cortical ribbons (Fig. 3e).
6

3.1.2. Analysis of quantitative parameters over the cortical ribbon
For each quantitative parameter, we first observed differences across

cortical regions at the individual level (Fig. 2c–e). Basically, T1, T2 and
λ// values were higher in the youngest than in the oldest infants, which
confirmed that they depend on the maturation degree. Values were also
higher in the frontal, lateral occipital and temporal lobes than in primary
cortices (around the central sulcus, calcarine scissure and Heschl gyrus).
Nevertheless, the intra-subject contrast, illustrating the microstructural
differences across cortical regions at the individual level, was hardly
visible even when the scales were tuned for each infant (e.g. in Fig. 2: for
the youngest infant on T1 map and for the oldest on T2 and λ// maps).

These spatial differences were better highlighted at the group level,
based on averaged parametric maps over all infants (Fig. 4). Although we
did not take into account that parameters also vary across regions at the
mature stage in the adult brain, these individual and group results sug-
gested an asynchrony of maturation across cortical regions, with
advanced maturation of primary cortices compared with associative
cortices. Nevertheless, we could not disentangle which parameter better
described the maturation process, since each of T1, T2 and λ// maps
provided slightly different information. The global distribution of mature
vs immature cortical regions was equivalent in the three maps, but some
substantial mismatches were observed locally (see arrows in Fig. 4). For
instance, the inferior temporal region showed high T1 and T2 values but
intermediate λ// values. Similarly, the precentral region showed high T2
values but intermediate T1 and λ// values. This observation was rather
consistent with a recent high-resolution mapping of the adult brain,
highlighting that the temporal region has specific properties, with low
myelin content but low values of mean diffusivity (Fukutomi et al.,
2018). As a whole, our results might suggest that T1 mainly reflects the
myelin content whereas axial diffusivity rather provides microstructural
information on neuronal cytoarchitecture.

Also, note that the distribution of parametric values differed in some
aspects (right column in Fig. 4). For instance, while the T2 and λ// dis-
tributions were quite symmetrical (with absolute values of skewness
measure very close to zero), the T1 distribution was clearly left-skewed
(with a higher proportion of long than short T1 values, skew-
ness¼�0.42). On the other hand, the λ// distribution looked like to a
normal distribution, whereas the T1 and T2 distributions were rather
platykurtic (meaning that extreme values were less frequent). Altogether,
these observations suggested that these quantitative parameters provide
different information on cortical microstructure although the overall
trend across regions is rather similar.

3.2. Clustering analysis of cortical maturation

3.2.1. GMM settings
We performed clustering analyses with the GMM algorithm consid-

ering all voxels of the cortical ribbons for the 17 infants altogether, and
we tested different settings. Considering the {T1-T2-λ//} combination as
input data, Silhouette coefficients suggested that the “spherical” model
outperformed other models regardless of the number of clusters (it
showed higher mean value and lower standard deviation across different
experiments; Fig. 5a). Fixing this model as covariance matrix, we further
evaluated the effect of the parameter combination. Silhouette co-
efficients were the highest for single parameters {λ//}, {T1}, {T2}, fol-
lowed successively by combinations of 2 parameters {T1- λ//} and {T1-
T2}, then {T2- λ//}, and finally the combination of 3 parameters {T1-T2-
λ//} (Fig. 5b). Nevertheless, when we computed the normalized volumes
to evaluate the cluster balance (Fig. 5c), we observed that analyses of
single parameters, as well as the combinations {T2- λ//} and {T1-T2},
provided clusters with higher volume variability than the combinations
{T1- λ//} and {T1-T2-λ//}, meaning that one cluster was over represented
compared to others for some infants. As a whole, the input combination
{T1- λ//} showed good Silhouette coefficient and low variability in the
cluster normalized volumes. To further analyze the potential of this
combination, we tested different weightings attributed to T1 and λ//. The



Fig. 4. Average maps of quantitative parameters over the infants group. For T1 (a), T2 (b) and λ// (c) parameters, average 2D maps were computed within the cortical
ribbon and over the 17 infants after the DISCO þ DARTEL registration. They were further projected in 3D on the left cortical surface of a 6w-old infant. The dis-
tribution of parametric values over these maps is plotted on the right column, highlighting that each modality shows a different distribution. Grey arrows point out
some substantial mismatches across parametric maps (temporal and precentral regions respectively).

Fig. 5. Selection of GMM settings. Silhouette coefficients were computed for a)
different covariance matrices (considering the {T1-T2-λ//} combination as
input, and 3 to 10 clusters) and b) different input combinations (considering the
“spherical” model as covariance matrix, and 3 to 10 clusters). Dotted lines
represent mean values of each series. c) Standard deviations (SD) of the clusters
normalized volumes (Vn) were also computed for the latter settings.
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weighted combination {T1- ¼ λ//} appeared as the best compromise
based on a similar reasoning with Silhouette coefficients and variability
in the cluster volumes (Supplementary Fig. 2).

Once the model setting and the combination were fixed, we evaluated
the impact of the number of clusters (Supplementary Fig. 3). Based on
Silhouette coefficients, we first observed that the setting with 4 clusters
was not reliable as it led to obvious voxel mislabeling (one cluster
showed a high proportion of negative Silhouette coefficients). Besides, no
relevant information was added when considering 6 or more clusters (in
those cases, at least one cluster was under represented in terms of vol-
ume, with less than 2% of the total volume). For the two remaining
numbers of clusters, we compared the cluster balance (i.e. the variability
in the cluster normalized volumes) according to the infants' age (Sup-
plementary Fig. 3b), and we finally selected the analysis with 5 rather
than 3 clusters, as it provided clusters with more homogeneous volumes
across all infants.

3.2.2. Differences in microstructure and asynchrony of maturation across
cortical regions

Once the clusters were identified based on the previous optimal set-
tings (spherical model, combination {T1- ¼ λ//}, 5 clusters), we labeled
them in terms of microstructural properties, with the assumption that
both T1 and λ// parameters should decrease with the tissue myelination
and the cytoarchitectural complexity. When T1 and λ// values were
averaged over each cluster for each infant (Fig. 6a–b), the inter-cluster
separation was clear (particularly for T1), and the intra-cluster homo-
geneity was good, leading to an easy ordering of the clusters in terms of
microstructural stages (1–5). To interpret these stages in terms of
maturation, we further measured age-related changes in the normalized
volumes of clusters (Fig. 6c). We showed that, over the 5 clusters, the first
two had immature patterns (age-related decreases), the last two had
mature patterns (age-related increases), and the middle one had an in-
termediate pattern (inverse U-shape). This suggested that this clustering
based on microstructural properties could be interpreted in terms of
maturation over the infants group.

The spatial distribution of the 5 clusters clearly illustrated maturation
differences across cortical regions in each infant, and also age-related
progression across infants (Fig. 7 and Supplementary Fig. 4 for the 2D
maps). Basically, primary sensorimotor regions were the most mature
regions in all infants, around the calcarine fissure in primary visual cortex
V1 [1], Heschl gyrus in primary auditory cortex A1 [2], around the
central sulcus in primary somatosensory cortex S1 [3] and primary motor



Fig. 6. Characterization of the 5 clusters properties for the combination {T1- ¼
λ//}. The average of T1 (a) and λ// (b) parameters over each individual cluster (1
point by infant) enabled us to order the clusters in terms of microstructural
stages (decreasing values). Quartile coefficients of dispersion (Qc) suggested a
good intra-cluster homogeneity. c) Normalized volumes (%) were computed for
each cluster as a function of the infants' age (in weeks, dotted lines represent a 3-
order polynomial fit for each cluster), linking microstructural and matura-
tional stages.
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cortex M1 [4]. Surrounding regions such as the internal occipital region
[5] or the planum temporale [6] also seemed to mature early on. In some
infants, a temporo-occipital region that might correspond to the motion-
related MT area appeared as relatively mature [7]. In some of the oldest
infants, the superior parietal lobule [8] reached a high maturation level,
at least higher than the close supramarginal and angular regions [9]. In
almost all infants, associative regions such as the superior temporal gyrus
[10] or the inferior frontal region [11] were immature in comparison
with previous regions, the least mature being the middle pre-frontal [12],
and the superior frontal [13] regions. On the ventral part of the brain, the
fusiform region [14] seemed to have an intermediate maturation, in-
between the advanced maturation of occipital and parahippocampic re-
gions and the delayed maturation of the inferior temporal lobe and pole.
On themedial surface, themiddle part of the cingulate gyrus [15] seemed
to mature before its anterior part [16].

Although all these observations concerned most of the infants and
were relatively coherent spatially over the developmental period, we
observed some inter-individual variability that was not related to age.
Indeed, spatial patterns of the cluster distribution varied across infants of
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similar ages. Note for instance in Fig. 7 that 2 infants (highlighted in red)
might have an advanced maturation, whereas 2 infants (highlighted in
blue) might have a delayed maturation. This suggested that each infant
brain might follow its own maturation trajectory. Although the small
group size prevented us to statistically assess the influence of different
subject factors, inter-individual variability in cortical maturation did not
seem to be related to sex and gestational age at birth, but might partially
relate to other morphometric parameters of brain growth and cortical
folding (see Supplementary Figure 1).

Finally, the average map of the cluster spatial distribution, computed
over the infants group after the DISCO þ DARTEL registration, summa-
rized these patterns of maturation (Fig. 8). These representations are
rather similar to the illustrations provided by Pr Flechsig about a century
ago (Flechsig, 1920), displaying the maturation ordering of cortical re-
gions based on post mortem myelin staining of sub-cortical white matter.

4. Discussion

In this study, we mapped the cortical microstructure with in vivoMRI
in infants between 1 and 5 months of age. This topic has not been much
addressed so far compared with the largely studied maturation of the
white matter (see (Dubois et al., 2014a) for a review), due to constraints
inherent to the cortex immaturity and morphology (small thickness but
complex folding patterns). We analyzed multiple parameters over the
whole cortex, which enabled us to identify clusters with different
microstructural properties, and to characterize the temporal profiles and
spatial patterns of maturation across cortical regions both at the
intra-individual and group levels.

4.1. Mapping the cortical maturation in infants with MRI: methodological
considerations on univariate and multi-parametric approaches

So far, only a few studies have evaluated the cortical microstructure
in the newborn and infant brain. Here, we used quantitative parameters
that could be reliably compared across brain regions and across subjects
without requiring spatial bias correction or signal normalization as it
might be the case for T1w (Travis et al., 2014; Westlye et al., 2010) and
T2w (Leroy et al., 2011a) intensity, or T1w/T2w ratio (Grydeland et al.,
2013). Contrarily to derived parameters (e.g. myelin water fraction
(Deoni et al., 2015), magnetic susceptibility (W. Li et al., 2014b)), we
focused on direct parameters that could be quantified in a short acqui-
sition time: T1 (Deoni et al., 2015; Friedrichs-Maeder et al., 2017) and T2
relaxation times, and DTI axial diffusivity λ//. This latter parameter was
preferred to DTI anisotropy (Ball et al., 2013; McKinstry et al., 2002) or
mean diffusivity (Grydeland et al., 2013; Friedrichs-Maeder et al., 2017)
because it provided the best contrast between grey and white matter, and
it could be specifically measured within the cortical ribbon, which dis-
plays minimal λ// values regardless of the maturational stage. The
plausible microstructural significance of those parameters is discussed
below in Section 4.2. Besides, whereas all previous studies were based on
single parameters, we performed multi-parametric analyses in addition
to univariate ones.

To keep the acquisition time reasonable for spontaneously asleep
infants, we used dedicated EPI sequences to acquire parametric maps
(Poupon et al., 2010). A posteriori corrections of geometric distortions
were thus required to measure those parameters within the cortical rib-
bon in a reliable way with anatomical T2w images as reference. T1 maps
showed the highest distortions probably because the related sequence
did not use parallel imaging. Our post-processing approach based on
linear and non-linear registrations was successful to correct local dis-
tortions in all parametric maps, leading to residual distances below the
spatial resolution of anatomical images. Although these results were
satisfactory, alternative approaches based on readout-segmented EPI
(Porter and Heidemann, 2009) or field maps (Jezzard, 2012) might be
considered in the future to deal with such distortions.

To reliably analyze the cortical microstructure, the next issue was to



Fig. 7. 3D individual distributions of the 5 matura-
tional clusters for all infants. The majority labels were
measured over a cylinder perpendicular to individual
cortical surfaces (inflated surfaces are here shown for
visualization purposes). Left (a, c) and right (b, d)
maps are shown with lateral (a, b) and medial (c, d)
views. Note that the clusters numbering is the same
across infants. Some anatomical regions are outlined:
1) primary visual cortex V1 around the calcarine
fissure, 2) primary auditory cortex A1 in the Heschl
gyrus, 3) primary somatosensory cortex S1 around the
central sulcus, 4) primary motor cortex M1, 5) internal
occipital region, 6) planum temporal region, 7)
motion-related of the middle temporal area, 8) supe-
rior parietal gyrus, 9) supramarginal and angular re-
gions, 10) superior temporal gyrus, 11) inferior frontal
gyrus, 12) middle pre-frontal gyrus, 13) superior pre-
frontal gyrus, 14) fusiform gyrus, 15) middle part of
the cingulate gyrus, 16) anterior part of the cingulate
gyrus. Doted red (resp. blue) boxes highlight infants
that might have an advanced (resp. delayed) matura-
tion compared to infants of similar age.
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identify the cortical ribbon precisely on each parametric map and for
each infant. This was particularly challenging given the small cortical
thickness (expected to be less than 2mm in some regions) (Geng et al.,
2017; Li et al., 2015; Lyall et al., 2015; Meng et al., 2017) and the spatial
resolution of T1, T2 and λ// maps (1.8mm isotropic). Since we aimed not
to miss cortical voxels due to residual local errors of registration, we used
a semi-automatic procedure based on anatomical images and FA maps.
While it was rather robust to exclude CSF voxels, the resulting cortical
ribbon might have included some voxels of sub-cortical white matter.
Nevertheless, we checked visually that the proportion of those voxels was
small compared with the proportion of cortical voxels. Furthermore,
9

adjacent tissues of cortex and white matter are expected to show related
maturational patterns. Indeed, Flechsig's maps on sub-cortical white
matter myelination are often interpreted in terms of cortical maturation.
A recent study based on the myelin water fraction also showed strong
correlations between cortical and white matter values (in 63 of 66
identified regions (Croteau-Chonka et al., 2016)). Another study reported
that the grey matter regions and the underlying WM connections have
inter-related advancement of maturation (Friedrichs-Maeder et al.,
2017). This suggests that inevitable small contamination by WM values
in our study would not significantly change our results and interpretation
of cortical maturation.



Fig. 8. Average clustering map over the infants group. Average 2D map was computed within the cortical ribbon and over the 17 infants after the DISCO þ DARTEL
registration. For visualization purposes, it was projected in 3D on the left cortical surface of a 6w-old infant.
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To visualize single parameters on 3D cortical surfaces, we measured
local values over a small cylinder screening the inner surface and inter-
secting the cortical ribbon, as proposed in a previous study (Leroy et al.,
J. Neuroscience, 2011). We did not consider the middle surface of the
cortex as often done in adults and children studies because of the small
cortical thickness in infants with variability across regions (Geng et al.,
2017; Li et al., 2015; Lyall et al., 2015; Meng et al., 2017), the limited
spatial resolution of parametric maps (1.8mm) and anatomical T2w
images (1mm), and the residual spatial mismatches between the cortical
segmentation and quantitative measures. Over the local cylinder, we
computed either minimal values for λ//, or mean values for T1 and T2.
The λ// approach might be more specific of cortical maturation than
those based on T1 and T2, which might be slightly influenced by a small
proportion of sub-cortical white matter voxels. Nevertheless, we ex-
pected the possible bias to be small, to the extent that both tissues are
supposed to mature in a synchronous and coherent way.

For all parameters, the whole-brain progression of cortical maturation
across infants was observed as a global decrease with age. However,
the differential microstructure across cortical regions (discussed below
in Section 4.3) was much more visible over the infant group than at
the individual level. In addition, we observed differences in the distri-
bution of T1, T2 and λ// values over the whole cortex and over the group,
suggesting that each parameter differently reflects the cortical micro-
structure. Besides, the clustering approach benefitted from the comple-
mentarity of MRI parameters. While it was performed on volumes, the 3D
visualization of the results on cortical surfaces was based on the identi-
fication of cluster majority labels. Although we did not take into account
the parameters variability across regions at the mature stage in the adult
brain (Fukutomi et al., 2018; Glasser et al., 2014; Sereno et al., 2013), we
interpreted our findings in infants in terms of maturation as we observed
age-related variations in each parameter and in each cluster volume. As a
whole, this study enabled us to highlight the local maturation of cortical
voxels, and to show the differential progression across cortical regions at
both the individual and group levels. These successive observations
supported the potential of a multi-parametric approach against univari-
ate approaches.

Its technical implementation consisted of a clustering analysis with a
GMM algorithm using a k-means initialization and an Expectation-
Maximization iterative process. While other clustering algorithms (e.g.
k-means) might be tested in future studies, we chose the GMM algorithm
because it is the main generative clustering model, making the testing
of clustering quality and generalizability easier. Here, the covariance
matrix model, the input data combination, and the number of clusters
were selected sequentially using the Silhouette coefficient as a discrim-
inant index, and the variability in the cluster volumes as a marker of
under- or over-representation. Experiments showed that the clustering
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performances were optimized with the {T1- ¼ λ//} combination. This
supported the multi-parametric approach against univariate ones, repli-
cating our previous findings on white matter maturation (Kulikova et al.,
2015). Nevertheless, if only a single MRI parameter can be acquired, T1
mapping might be preferred rather than DTI and T2, to assess the cortical
maturation.

With regard to the clustering analysis, selecting the optimal number
of clusters might be problematic as it might influence the correct inter-
pretation of results. Here we observed that the variability in cortical T1
and λ// parameters over this infant group was accurately characterized
based on 5 clusters which showed three distinct patterns of microstruc-
ture and maturation: either immature (age-related decreases for 2 clus-
ters), mature (age-related increases for 2 clusters), or intermediate
(inverse U-shape for 1 cluster). These three patterns might still be
detected with the 3-cluster setting, whereas their reliable distribution
into 4 clusters might be problematic, perhaps resulting in the misclassi-
fication issue that we observed with this middle number. As a whole, we
cannot exclude that different numbers of clusters might be relevant when
considering other or broader developmental periods than early infancy.

4.2. Microstructural and morphological correlates of cortical maturation

Once methodological aspects were fixed, we identified 5 clusters of
cortical voxels over the whole infant group, independently of both the
infants' age and the voxel localization, and we labeled them in terms of
maturational stage. The clustering implementation implied that these
clusters were characterized by distinct T1 and λ//. After averaging these
parameters over each cluster and for each infant, we considered that the
cluster maturational stage increased when T1 and λ// values decreased,
given the expected maturation-related changes in these parameters. We
further observed that the clusters normalized volumes varied over this
developmental period, coherently with the labelling of maturational
stages (i.e. the proportion of immature clusters decreased with the in-
fants' age, and vice versa for mature regions).

MRI parameters are known to relate to several microstructural
properties of the adult cortex, such as the neural, glial and fiber density,
the intra-cortical myelination, the layers proportions, the columnar
properties, and others. In the infant cortex, they also provide distinct and
complementary information on both the maturation and microstructure.
T1 mainly provides information on the myelin content, as suggested in
adults (Lutti et al., 2014; Sereno et al., 2013). Axial diffusivity λ// might
rather provide microstructural information on neuronal cytoarchitecture
and reflect the intense development of both dendritic arborization and
synaptogenesis during infancy (Huttenlocher and Dabholkar, 1997), in
the continuity of observations during the preterm period (Ball et al.,
2013; McKinstry et al., 2002). These regional properties might be
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consistent throughout development, as our specific measures in the
inferior temporal region (high T1 and T2 values but intermediate λ//
values) agreed with a recent mapping of the adult brain (Fukutomi et al.,
2018). Nevertheless, similarly to previous studies of white matter bun-
dles (Dubois et al., 2014a; Kulikova et al., 2015), further work is required
in order to relate our results with the adult regions variability, and to test
the hypothesis that regions with the highest myelination (Glasser et al.,
2014) or the most complex microstructure (Fukutomi et al., 2018) at the
mature stage are the first to mature and to display such properties
throughout development (Flechsig, 1920). In our study, T2 appeared less
informative than T1 and λ// to characterize cortical differences over in-
fants, either because T2 relies on the same mechanisms as T1 and λ//, or
because the other determinants of T2 signal (e.g. iron content) do not
change intensively over this age range. Although all parameters probably
fluctuate radially within the cortical ribbon, it was not possible to
distinguish cortical layers given the spatial resolution of parametric
maps. In the future, imaging approaches at ultra-high field (e.g. 7T)
might provide the mapping of finer-grained features in the developing
brain.

In parallel to microstructural changes, the cortex also demonstrates
intense growth and morphological development throughout infancy. The
cortical volume increases mainly because of surface expansion (Gilmore
et al., 2007, 2011; Hill et al., 2010; Knickmeyer et al., 2008; Li et al.,
2013; Makropoulos et al., 2016), in relation with the increasing folding
complexity (Dubois et al., 2018; Kim et al., 2016; G. Li et al., 2014a).
Cortical thickness also consistently increases during the first post-natal
year (Geng et al., 2017; Li et al., 2015; Lyall et al., 2015; Meng et al.,
2017), with different patterns of growth than the cortical folding (Nie
et al., 2014). We might thus wonder to what extent these morphological
changes affect our microstructural observations. A previous study in
children between 1 and 6 years old showed that the cortical maturation
(measured with the myelin water fraction) is negatively correlated to
cortical thickness in 16 of 66 identified regions (Croteau-Chonka et al.,
2016). Given the spatial resolution of parametric maps (1.8mm
isotropic), we cannot exclude that partial volume effects between cortex
and white matter exist within the identified cortical ribbon. Some vari-
ations might further exist across regions, with a higher WM contamina-
tion in thinner than thicker cortices. Unfortunately, we could not
address this issue practically since a reliable estimation of cortical
thickness is highly challenging in infants given its low values (Geng et al.,
2017; G. Li et al., 2014a; Lyall et al., 2015; Meng et al., 2017) and
because of the tissue contrast inversion on anatomical MRI (Walhovd
et al., 2017). Besides, based on visual observations, our univariate and
multi-parametric results did not seem to be related to the cortical surface
curvature or to the folding patterns. This convinced us about the reli-
ability of our approach while we were surprised by previous T1 obser-
vations highlighting a mismatch in maturation between the main sulci
and surrounding regions (Deoni et al., 2015). In brief, while the identi-
fied cortical clusters relied on complementary microstructural matura-
tion mechanisms (intra-cortical myelination, neuronal differentiation,
dendritic arborization and synaptic growth…), they seemed to be weakly
affected by the macroscopic changes related to cortical morphology
throughout infancy.

4.3. Mapping the spatial progression of cortical maturation throughout
infancy with multi-parametric MRI

Our original clustering approach allowed us to observe differences
across cortical regions both at the individual and group levels, with
maturation proceeding first in primary sensori-motor areas, then in
adjacent unimodal associative cortices, and finally in higher-order
associative regions. This pattern of progression strongly agreed with
benchmark post mortem studies (Brody et al., 1987; Flechsig, 1920; Kin-
ney et al., 1988) which showed high variability in fiber myelination
within and across fiber systems, with a few discrepancies in some regions
(e.g. in the frontal and temporal lobes). In fact, the time-related sequence
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of myelination mechanisms (i.e. the onset, the rate, the interval of pro-
gression) differs across functional regions during the first two post-natal
years (Brody et al., 1987; Kinney et al., 1988), and including all these
relevant factors is required to highlight complex myelination patterns.
Considering complementary MRI parameters measured at different ages
might be a first step in this direction. The maturational clusters that we
observed were also consistent with patterns of cortical synaptogenesis
(Huttenlocher and Dabholkar, 1997) and with regional variations of the
basilar dendritic complexity of lamina V pyramidal neurons showing that
the developmental time course from birth to adulthood is more pro-
tracted for supramodal (BA10) than for primary or unimodal cortical
areas (BA4, BA3-1-2, BA18) (Travis et al., 2005). In addition to major
regional differences, we could also show local discontinuities for specific
regions such as the MT area for some infants.

Apart from these regional differences observed both in each infant
and over the group, we highlighted substantial inter-individual vari-
ability in the maturational patterns. Although the cortical maturation
mainly depends on age, some infants showed delayed or advanced brain
maturation in comparison with other babies of similar ages. We sus-
pected that these differences might be partially related to global inter-
individual variability in brain growth and development, independently
of sex or gestational age at birth. In particular, complex patterns of
maturation across functional regions (Brody et al., 1987; Kinney et al.,
1988) interacting with the variable behavioral acquisitions might
contribute to these differences across infants. Nevertheless we cannot
exclude that an incorrect estimation of the conception day (and so of the
gestational length) might be responsible for part of these discrepancies.

While our results suggested the potential of studying the cortical
maturation in vivo, we could not validate them quantitatively since
benchmarks on the whole brain maturation are still lacking in infants
over this developmental period. This first study should thus be confirmed
by future studies on other cohorts, notably with longitudinal imaging of
infants over the first post-natal year. One interesting aspect to be tested
would be whether the progression of cortical maturation is related to the
growth in cortical surface throughout infancy (Hill et al., 2010). In fact,
we might expect that the cortex at birth is less mature in high-expansion
regions than in low-expansion regions since the cortical growth is related
to dendritic arborization and myelination that spread the cortical
columns.

5. Conclusion

In this study, we characterized the differential microstructure and
the asynchronous maturation of cortical regions in vivo, using multi-
parametric MRI (T1, T2 and λ//) in infants over the first post-natal
months. The main contributions relied on 1) the whole-brain analysis
opposed to a priori spatially localized regions, and 2) the clustering of
complementary parameters that are impacted by different maturational
mechanisms such as intra-cortical myelination and dendritic arboriza-
tion. In future studies, this approach might be extended to other
developmental periods, and it might complement previous approaches
uniquely based on cortical thickness. It also seems appropriate to eval-
uate the in vivo relationship between cortical maturation and the
development of functional systems and behavioral capacities
throughout infancy, as recent studies in children postulated micro-
structural bases of cognitive performances such as face recognition
(Gomez et al., 2017).
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