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Behavioural and neural characterization of 
optimistic reinforcement learning
Germain Lefebvre1, 2, Maël Lebreton3, 4, Florent Meyniel5, Sacha Bourgeois-Gironde2, 6  
and Stefano Palminteri1, 7*

When forming and updating beliefs about future life outcomes, people tend to consider good news and to disregard bad news. 
This tendency is assumed to support the optimism bias. Whether this learning bias is specific to ‘high-level’ abstract belief 
update or a particular expression of a more general ‘low-level’ reinforcement learning process is unknown. Here we report evi-
dence in favour of the second hypothesis. In a simple instrumental learning task, participants incorporated better-than-expected 
outcomes at a higher rate than worse-than-expected ones. In addition, functional imaging indicated that inter-individual  
difference in the expression of optimistic update corresponds to enhanced prediction error signalling in the reward circuitry. 
Our results constitute a step towards the understanding of the genesis of optimism bias at the neurocomputational level.

Francis Bacon wrote1: “It is the peculiar and perpetual error of 
the human understanding to be more moved and excited by 
affirmatives than negatives; whereas it ought properly to hold 

itself indifferently disposed towards both alike.”
People typically overestimate the likelihood of positive events 

and underestimate the likelihood of negative events. This cognitive 
trait in (healthy) humans is known as the optimism bias and has 
been repeatedly evidenced in many different guises and popula-
tions2–4 such as students projecting their salary after graduation5, 
women estimating their risk of getting breast cancer6 or heavy 
smokers assessing their risk of premature mortality7. One mecha-
nism hypothesized to underlie this phenomenon is an asymmetry 
in belief updating, colloquially referred to as the ‘good news/bad 
news effect’8,9. Preferentially revising one’s beliefs when provided 
with favourable compared with unfavourable information consti-
tutes a learning bias that could, in principle, generate and sustain  
an overestimation of the likelihood of desired events and a con-
comitant underestimation of the likelihood of undesired events  
(optimism bias)10.

This good news/bad news effect has recently been demonstrated 
in the case where outcomes are hypothetical future prospects associ-
ated with a strong a priori desirability or undesirability (estimation 
of post-graduation salary or the probability of getting cancer)5,6.  
In this experimental context, belief formation triggers complex 
interactions between episodic, affective and executive cognitive 
functions8,9,11, and belief updating relies on a learning process involv-
ing abstract probabilistic information8,12–14. However, it remains 
unclear whether this learning asymmetry also applies to immedi-
ate reinforcement events driving instrumental learning directed to 
affectively neutral options (with no a priori desirability or undesir-
ability). If an asymmetric update were also found in a task involving 
neutral items and direct feedback, then the good news/bad news 
effect could be considered as a specific — cognitive — manifestation  
of a general reinforcement learning asymmetry. If the asymmetry 

were not found at the basic reinforcement learning level, this would 
mean that the asymmetry is specific to abstract belief updating, and 
this would require a theory explaining this discrepancy.

To arbitrate between these two alternative hypotheses, we fit-
ted the instrumental behaviour of subjects performing a simple 
two-armed bandit task, involving neutral stimuli and actual and 
immediate monetary outcomes, with two learning models. The 
first model (a standard reinforcement learning (RL) algorithm) 
confounded individual learning rates for positive and negative 
feedback, and the second one differentiated them, potentially 
accounting for learning asymmetries. Over two experiments, we 
found that subjects’ behaviour was better explained by the asym-
metric model, with an overall difference in learning rates consistent 
with preferential learning from positive, compared with negative, 
prediction errors.

Previous studies also suggest that the good news/bad news 
effect is highly variable across subjects12. Behavioural differences 
in optimistic beliefs and optimistic update have been shown to be 
reflected by differences in brain activation in the prefrontal cortex8.  
However, the question remains whether and how such inter- 
individual behavioural differences are related to the inter-individual 
neural differences in the extensively documented reward circuitry15. 
Our imaging results indicate that inter-individual variability in the 
tendency to optimistic learning correlates with prediction-error-
related signals in the reward system, including the striatum and the 
ventro-medial prefrontal cortex (vmPFC).

results
Behavioural task and dependent variables. Healthy subjects 
performed a probabilistic instrumental learning task with mon-
etary feedback, previously used in brain imaging, pharmacologi-
cal and clinical studies16–18 (Fig. 1a). In this task, options (abstract 
cues) were presented in fixed pairs (conditions). In all conditions,  
each cue was associated with a stationary probability of reward. 
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comparison indicated that instrumental values are preferentially 
updated following positive prediction errors, which is consistent 
with an optimistic bias operating when learning from immediate 
feedback (optimistic reinforcement learning).

Computational phenotyping. To categorize subjects, we com-
puted for each individual the between-model BIC difference  
(∆ BIC =  BICRW −  BICRW±) (see Methods). The ∆ BIC quantifies, at 
the individual level, the improvement in goodness of fit on moving 
from the RW to the RW±  model, or in other words, the fit improve-
ment assuming different learning rates for positive and negative 
prediction errors. Subjects with a negative ∆ BIC (N =  25, in the first 
experiment) are subjects whose behaviour is better explained by  
the RW model and who therefore learn in an unbiased manner 
(hereafter referred to as RW subjects) (Fig.  2a). Subjects with a 
positive ∆ BIC (N =  25, in the first experiment) are subjects whose 
behaviour is better explained by asymmetric learning (hereafter 
referred to as RW±  subjects).

In asymmetric conditions, the two reward probabilities differed 
between cues (25/75%). From asymmetric conditions, we extracted 
the rate of ‘correct’ response (selection of the best option) as a mea-
sure of performance (Fig. 1b, left). In symmetric conditions, both 
cues had the same reward probabilities (25/25% or 75/75%), such 
that there was no intrinsic ‘correct response’. In symmetric condi-
tions, we extracted, for each subject and each symmetric pair, a 
‘preferred response’ rate, defined as the choice rate of the option 
most frequently selected by a given subject (by definition, in more 
than 50% of trials). The preferred response rate, especially in the 
25/25% condition, should be taken as a measure of the tendency to 
overestimate the value of one instrumental cue relative to the other, 
in the absence of actual outcome-based evidence (Fig.  1b, right). 
In a first experiment (N =  50) that subjects performed while being 
scanned by functional magnetic resonance imaging (fMRI), the 
task involved reward (+ € 0.50) and reward omission (€ 0), as the best 
and worst outcomes, respectively. In a second purely behavioural 
experiment (N =  35), the task involved reward (+ € 0.50) and pun-
ishment (− € 0.50), as the best and worst outcomes, respectively. All 
the results presented in the main text concern experiment 1, except 
those of the section entitled “Optimistic reinforcement learning 
is robust across different outcome valences”. Detailed behavioural 
and computational analyses for experiment 2 are presented in the 
Supplementary Information.

Computational models. We fitted the behavioural data with two 
reinforcement-learning models19. The ‘reference’ model was repre-
sented by a standard Rescorla–Wagner model20, hereafter referred 
to as the RW model. The RW model learns option values by mini-
mizing reward prediction errors. It uses a single learning rate 
(alpha: α) to learn from positive and negative prediction errors. 
The ‘target’ model was represented by a modified version of the RW 
model, hereafter referred to as the RW±  model. In the RW±  model, 
learning from positive and negative prediction errors is governed by 
different learning rates (alpha plus, α+, and alpha minus, α−, respec-
tively). For α+ >  α−, the RW±  model instantiates optimistic rein-
forcement learning (the good news/bad news effect); for α+ =  α−, 
the RW±  instantiates unbiased reinforcement learning, just as in 
the RW model (the RW model is thus nested in the RW±  model); 
finally, for α+ <  α−, the RW±  instantiates pessimistic reinforcement 
learning. In both models, the choices are taken by feeding the option 
values into a softmax decision rule, whose exploration/exploitation 
trade-off is governed by a ‘temperature’ parameter (β).

Model comparison and analysis of model parameters. We used 
Bayesian model comparison to establish which model better 
accounted for the behavioural data. For each model, we estimated 
the optimal free parameters by maximizing the likelihood of the 
participants’ choices, given the models and sets of parameters. For 
each model and each subject, we calculated the Bayesian informa-
tion criterion (BIC) by penalizing the maximum likelihood with 
the number of free parameters in the model. Random-effects BIC 
analysis indicated that the RW±  model explained the behavioural 
data better than the RW model (BICRW =  99.4  ±   4.4, BICRW± =  93.6  
±    4.7; t(49) =  2.9, P =  0.006, paired t-test), even after accounting 
for its additional degree of freedom. A similar result was obtained 
when calculating the model exceedance probability using the BIC 
as an approximation of the model evidence21 (Table  1). Having 
established that RW±  was the best-fitting model, we compared the 
learning rates fitted for positive (good news: α+) and negative (bad 
news: α−) prediction errors. We found α+ to be significantly higher 
than α− (α+ =  0.36  ±   0.05, α− =  0.22  ±   0.05, t(49) =  3.8, P <  0.001, 
paired t-test). To summarize, model comparison indicated that, 
in our simple instrumental learning task, the best-fitting model is 
the model with different learning rates for learning from positive 
and negative predictions errors (RW± ). Crucially, learning rates 
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Figure 1 | Behavioural task and variables. a, The task’s conditions and 
contingencies. Subjects selected between left and right symbols. Each 
symbol was associated with a stationary probability (P =  0.25 or 0.75) 
of winning € 0.50 and a reciprocal probability (1 – P) of getting nothing 
(first experiment) or losing € 0.50 (second experiment). In two conditions 
(rightmost column), the reward probability was the same for both symbols 
(‘symmetric’ conditions), and in two other conditions (leftmost column), 
the reward probability was different across symbols (‘asymmetric’ 
conditions). Note that the symbols-to-conditions assignment was 
randomized across subjects. b, Dependent variables. In the left panel, the 
histograms show the correct choice rate (that is, choices directed toward 
the most rewarding stimulus in the asymmetric conditions). In the right 
panel, the histograms show the preferred option choice rate (that is, the 
option chosen by subjects in more than 50% of the trials; this measure 
is relevant only in the symmetric conditions, where there is no intrinsic 
correct response). n/a, not applicable. Bars indicate the mean and error 
bars indicate the s.e.m. Data are taken from both experiments (N =  85).
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To test this hypothesis, learning rates fitted with the RW±  model 
were entered into a two-way ANOVA with group (RW and RW± ) 
and learning rate type (α+ and α−) as between- and within-subjects 
factors, respectively. The ANOVA showed a main effect of learning 
rate type (F(1,48) =  16.5, P <  0.001) with α+ higher than α−. We also 

found a main effect of group (F(1,48) =  10.48, P =  0.002) and a signifi-
cant interaction between group and learning rate type (F(1,48) =  7.8, 
P =  0.007). Post-hoc tests revealed that average learning rates for 
positive prediction errors did not differ among the two groups: 
α+

RW =  0.45 ±  0.08 and α+
RW± =  0.27 ±  0.06 (t(48) =  1.7, P =  0.086,  

Table 1 | Model fitting and parameters in the two experiments.

experiment/model LLmax BIC XP MF α α+ α– 1/β

experiment 1 (N = 50)
RW model 45.1 ±  2.2 99.4 ±  4.4 0.17 0.43 0.32 ±  0.05 – – 0.16 ±  0.03

RW±  model 40.0 ±  2.4 93.6 ±  4.7* 0.83 0.57 – 0.36 ±  0.05† 0.22 ±  0.05 0.13 ±  0.03

experiment 2 (N = 35)

RW model 44.2 ±  2.9 97.6 ±  5.9 0.10 0.39 0.24 ±  0.05 – – 0.53 ±  0.16

RW±  model 38.1 ±  3.0 89.8 ±  6.0* 0.90 0.61 – 0.45 ±  0.06† 0.18 ±  0.05 0.30 ±  0.10
The table summarizes, for each model, its fitting performances and its average parameters: LLmax, maximal log likelihood; BIC, Bayesian information criterion (computed from LLmax); XP, exceedance 
probability; MF, model frequency; α, learning rate for both positive and negative prediction errors (RW model); α+, learning rate for positive prediction errors; α–, average learning rate for negative 
prediction errors (RW±  model); 1/β, average inverse of model temperature. Data are expressed as mean ±  s.e.m. *P <  0.01 comparing the two models. †P <  0.001 comparing the two learning rates.
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Figure 2 | Behavioural and computational identification of optimistic reinforcement learning. a, Model comparison. The graphic displays the scatter  
plot of the BIC calculated for the RW model as a function of the BIC calculated for the RW±  model. Smaller BIC values indicate better fits. Subjects  
are clustered in two populations according to the BIC difference (∆ BIC =  BICRW −  BICRW±) between the two models. RW±  subjects (displayed in red)  
are characterized by a positive ∆ BIC, indicating that the RW±  model better explains their behaviour. RW subjects (grey) are characterized by a  
negative ∆ BIC, indicating that the RW model better explains their behaviour. b, Model parameters. The graphic displays the scatter plot of the learning 
rate following positive prediction errors (α+) as a function of the learning rate following negative prediction errors (α−), obtained from the RW±  model. 
‘Unbiased’ learners are characterized by similar learning rates for both types of prediction errors. ‘Optimistic’ learners are characterized by a bigger  
learning rate for positive than for negative prediction errors. ‘Pessimistic’ learners are characterized by the opposite pattern. c, The histograms show  
the RW±  model free parameters (the learning rates +  and –, and the inverse temperature 1/β) as a function of the subjects’ populations. d, Actual and 
simulated choice rates. Histograms represent the observed and dots represent the model simulations of choices for both populations and both models, 
respectively for correct option (extracted from asymmetric condition), and for preferred option (extracted from the symmetrical condition 25/25%;  
see Fig. 1a). Model simulations are obtained using the individual best-fitting free parameters. Bars indicate the mean, and error bars indicate the s.e.m.  
** P <  0.01, ***P <  0.001, two-sample, two-sided t-test. ns, not significant. Data are taken from the first experiment (N =  50).
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two-sample t-test). In contrast, average learning rates for nega-
tive prediction errors were significantly different between groups, 
α−

RW =  0.41 ±  0.08 and α−
RW± =  0.04 ±  0.02 (t(48) =  4.6, P <  0.001, 

two-sample t-test). In addition, an asymmetry in learning rates 
was detected within the RW±  group, where α+ was higher than  
α− (t(24) =  5.1, P <  0.001, paired t-test) but not within the RW group 
(t(24) =  0.9, P =  0.399, paired t-test). Thus, RW±  subjects specifi-
cally drove the learning rate asymmetry found in the whole popula-
tion. In contrast, the RW subjects displayed ‘unbiased’ (as opposed 
to ‘optimistic’) instrumental learning (Fig. 2b and c).

Interestingly, the exploration rate (captured by the 1/β ‘temperature’ 
parameter) was also found to be significantly different between the 
two groups of subjects, 1/βRW =  0.20   ±   0.05 and 1/βRW± =  0.06 ±  0.01 
(t(48) =  2.9, P =  0.006, two-sample t-test). Importantly, the maxi-
mum likelihood of the reference model (RW) did not differ between 
the two groups of subjects, indicating similar baseline quality of fit 
(94.94 ±  5.00 and 103.91 ±  3.72 for RW and RW±  subjects respectively, 
t(48) =  − 1.0, P =  0.314, two-sample t-test). Accordingly, the difference 
in the exploration rate parameter cannot be explained by differences 
in the quality of fit (noisiness of the data). This suggests that optimis-
tic reinforcement learning, observed in RW±  subjects, is also associ-
ated with exploitative, as opposite to explorative, behaviour (Fig. 2c). 
Importantly, model simulation-based assessment of parameter recov-
ery indicated that the two effects (learning rate asymmetry and lower 
exploration/exploitation trade-off) can be independently and cor-
rectly retrieved, ruling out the possibility that this twofold result is an 
artifact of the parameter optimization procedure (see Supplementary 
Information and Supplementary Fig. 7). To summarize, RW± subjects 
are characterized by two computational features: over-weighting posi-
tive prediction errors and over-exploiting previously rewarded options.

Behavioural signature distinguishing optimistic from unbiased 
subjects. To analyse the behavioural consequences of optimistic, 
as opposed to unbiased, learning and to confirm our model-based 
results with model-free behavioural observations, we compared the 
task’s dependent variables for our two groups of subjects (Fig. 2d, 
Table 2). The correct response rate did not differ between groups 
(t(48) =  − 0.7323, P =  0.467, two-sample t-tests). However, the pre-
ferred response rate in the 25/25% condition was significantly higher 
for the RW±  group than for the RW group (t(48) =  − 3.4, P =  0.001, 
two-sample t-test). Note that the same analysis performed on the 
75/75% condition provided similar results (t(48) =  − 2.66, P =  0.01, 
two-sample t-test).

To validate the ability of the RW±  model to capture this difference, 
we performed simulations using both models and submitted them to 
the same statistical analysis as actual choices (Fig. 2d). The preferred 
response rates simulated using the RW± model were significantly 
higher in the RW±  group compared with the RW group (25/25% 
t(48) =  − 5.4496, P <  0.001; 75/75% t(48) =  − 2.2670, P =  0.028;  

two-sample t-tests), which is in accordance with observed human 
behaviour. The preferred response rates simulated using the RW 
model were similar in the two groups (25/25% t(48) =  0.566, P =  0.566; 
75/75% t(48) =  0.7448, P =  0.4600; two-sample t-test), which is in 
contrast with observed human behaviour. This effect was particu-
larly interesting in a poorly rewarding environment (25/25%), where 
optimistic subjects tended to overestimate the value of one of the two 
options (Supplementary Fig. 1). Finally, the preferred response rate 
in the symmetric conditions significantly correlated with both the 
computational features distinguishing RW and RW±  subjects (nor-
malized learning rates asymmetry (α+ −  α−)/(α+ +  α−): R =  − 0.475, 
P <  0.001; choice randomness 1/β: R =  − 0.630, P <  0.001). The pre-
ferred response rate thus provides a model-free signature of optimistic 
reinforcement learning that is congruent with our model simulation 
analysis: the preferred response rate was higher in the RW±  group 
than the RW group, and only simulations realized with the RW±  
model were able to replicate this pattern of responses.

Neural signature distinguishing optimistic from unbiased subjects.  
To investigate the neural correlates of the computational differ-
ences between RW±  and RW subjects, we analysed the brain activ-
ity both at the decision and outcome moments, using fMRI and a 
model-based fMRI approach22. We devised a general linear model 
in which we modelled the choice and the outcome onset as sepa-
rate events, each modulated by different parametric modulators. In 
a given trial, the choice onset was modulated by the Q-value of the 
chosen option (Qchosen(t)), and the outcome onset was modulated 
by the reward prediction error (δ(t)). Concerning the choice onset, 
we found a neural network including the dorsomedial prefron-
tal cortex (dmPFC) and anterior insulae that negatively encoded 
Qchosen(t) (PFWE <  0.05 with a minimum of 60 continuous voxels, 
where FWE is family-wise error) (Fig. 3a and b; Table 3). We then 
tested for between-group differences within these two regions and 
found no significant difference (dmPFC: t(48) =  0.0985, P =  0.9220; 
insulae t(48) =  − 0.0190, P =  0.9849; two-sample t-tests) (Fig.  3c). 
Concerning the outcome onset, we found a neural network includ-
ing the striatum and vmPFC positively encoding δ(t) (PFWE <  0.05 
with a minimum of 60 continuous voxels) (Fig. 3d and e; Table 3). 
We then tested for between-group differences within these two 
regions and found significant differences (striatum: t(48) =  − 3.2769, 
P =  0.0020; vmPFC t(48) =  − 2.2590, P =  0.0285; two-sample t-tests) 
(Fig.  3f). It therefore seems that the behavioural difference that  
we observed between RW and RW±  subjects finds its counterpart  
in a differential outcome-related signal in the ventral striatum. 
Within the regions displaying a between-group difference, we 
looked for correlation with the two computational features dis-
tinguishing optimistic from unbiased subjects. Interestingly, we 
found a positive and significant correlation between the striatal and 
vmPFC δ(t)-related activity and the normalized difference between 

Table 2 | Behavioural and simulated data.

experiment/model Correct  
response

Correct response 
(rW model)

Correct response 
(rW± model)

Preferred 
response

Preferred response 
(rW model)

Preferred response 
(rW± model)

Condition(s) asymmetric Symmetric (25/25%)

experiment 1 (N = 50)
rW group 74.25 ±  3.65 75.20 ±  2.55 75.35 ±  2.42 61.5 ±  1.94 58.14 ±  0.67 59.47 ±  0.81

rW± group 77.83 ±  3.25 75.58 ±  1.94 77.75 ±  1.44 72.75 ±  2.63* 58.84 ±  0.55 69.36 ±  0.99

experiment 2 (N = 35)
rW group 73.28 ±  4.63 73.65 ±  3.58 73.72 ±  3.49 61.89 ±  2.12 57.34 ±  1.14 59.82 ±  1.35

rW± group 75.23 ±  4.73 75.29 ±  2.63 77.70 ±  1.86 73.73 ±  3.34* 58.33 ±  0.98 70.74 ±  2.08
The table summarizes for each experiment and each group of subjects, behavioural and simulated dependent variables: both real and simulated correct response rates in asymmetric conditions, and both 
real and simulated preferred response rates in 25/25% condition. Data are expressed as mean ±  s.e.m (in percentage). *P <  0.01, two-sample t-test.
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learning rates (striatum: R =  0.4324, P =  0.0017; vmPFC: R =  0.3238, 
P =  0.0218), but no significant difference between the same activ-
ity and 1/β (striatum: R =  − 0.130, P =  0.366; vmPFC: R =  − 0.272, 
P =  0.3665), which suggests a specific link between this neural sig-
nature and the optimistic update.

Optimistic reinforcement learning is robust across different 
outcome valences. In the first experiment, getting nothing (€ 0) 
was the worst possible outcome. It could be argued that optimis-
tic reinforcement learning (that is, greater learning rate for positive 
than negative prediction errors: α+ >  α−) is dependent on the low 
negative motivational salience attributed to a neutral outcome and 
would not resist if negative prediction errors were accompanied by 
actual monetary losses. To confirm the independence of our results 

from outcome valence, in the second experiment the worst possible 
outcome was represented by a monetary loss (− € 0.50), instead of 
reward omission (€ 0) as in the first experiment.

First, the second experiment replicated the model comparison 
result of the first experiment. Group-level BIC analysis indicated 
that the RW±  model again explains the behavioural data better 
than the RW model (BICRW =  97.6 ±  5.9, BICRW± =  89.8 ±  6.0), even 
after accounting for its additional degree of freedom (t(34) =  2.6414, 
P =  0.0124, paired t-test (Table 1 and Supplementary Fig. 4a).

To confirm that the asymmetry of learning rates is not a pecu-
liarity of our first experiment, in which the worst possible outcome 
(‘bad news’) was represented by a reward omission, we performed a 
two-way ANOVA, with experiment (1 and 2) as the between-subject  
factor and learning rate type (α+ and α−) as the within-subject 
factor. The analysis showed no significant effect of experiment 
(F(1,83) =  0.077, P =  0.782) and no significant interaction between 
valence and experiment (F(1,83) =  3.01, P =  0.0864), indicating that 
the two experiments were comparable, and, if anything, the effect 
size was bigger in the presence of punishments. Indeed, we found 
a significant main effect of valence (F(1,83) =  29.03, P  <   0.001) 
on learning rates. Accordingly, post-hoc tests revealed that α− 
was also significantly smaller than α+ in the second experiment 
(t(34) =  3.8639, P <  0.001 paired t-test) (Fig. 4f). These results con-
firm that optimistic reinforcement learning is not particular to situ-
ations involving only rewards but is still maintained in situations 
involving both rewards and punishments.

Discussion
We found that, in a simple instrumental learning task involving 
neutral visual stimuli associated to actual monetary rewards, par-
ticipants preferentially updated option values following better-
than-expected outcomes, compared with worse-than-expected 
outcomes. This learning asymmetry was replicated in two experi-
ments and proved to be robust across different conditions. Our 
results support the hypothesis that the good news/bad news effect 
stands as a core psychological process generating and maintaining 
unrealistic optimism9. In addition, our study shows that this is not 
specific to probabilistic belief updating, and that the good news/bad 
news effect can parsimoniously be considered as an amplification 
of a primary instrumental learning asymmetry. In other terms, fol-
lowing recently proposed nomenclature10, we found that asymmet-
ric update applies to ‘prediction errors’ and not only to ‘estimation 
errors’, as reported in previous studies10. Recently, a debate emerged 
over whether the good news/bad news effect is an artifact due to the 
absence of positive life events and uncontrolled baseline event prob-
abilities in the belief updating task23,24. Our results add to this debate 
by showing that the learning asymmetry persists in the presence of 
actual positive outcomes and controlled outcome probabilities.

The asymmetric model (RW± ) included two different learn-
ing rates following positive and negative prediction errors, and 
we found the ‘positive’ learning rate to be higher than the ‘nega-
tive’ one25,26. When comparing RW±  (‘optimists’) and RW (‘unbi-
ased’) subjects, we found that the former had a significantly reduced 
negative learning rate. Thus, the good news/bad news effect seems 
to come not from overemphasizing positive prediction errors, 
but from underestimating negative ones. This is congruent with 
recent studies, in which optimism was related to reduced coding 
of undesirable information in the frontal cortex (right inferior 
frontal gyrus)8, depression was linked to enhanced learning from 
bad news13, and dopamine27, as well as younger age12, was related 
to diminished belief updating after the reception of negative infor-
mation. However, since the RW±  (‘optimists’) and RW (‘unbiased’) 
subjects also differed in the exploration rate, interpretations based 
on the absolute value of the learning rate, should be made with care.

The fact that the learning asymmetry was replicated when the 
negative prediction errors (‘bad news) were associated with both 
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Figure 3 | Functional signatures of the optimistic reinforcement learning. 
a,b, Choice-related neural activity. Statistical parametric maps of blood 
oxygen level-dependent (BOLD) signal negatively correlating with the 
Qchosen(t) at the choice onset. Areas coloured in grey-to-black gradient on 
the axial glass brain and red-to-white gradient on the coronal slice show 
a significant effect (P <  0.001 corrected). c, Inter-individual differences. 
Histogram shows Qchosen(t)-related signal change in dmPFC at the time 
of choice onset for both populations. Bars indicate the mean, and error 
bars indicate the s.e.m. *P <  0.05, unpaired t-tests. Data are taken from 
the first experiment (N =  50). d,e, Outcome-related neural activity. 
Statistical parametric maps of BOLD signal positively correlating with 
δ(t) at the outcome onset. Areas coloured in grey-to-black gradient on 
the axial glass brain and red-to-white gradient on the coronal slice show 
a significant effect (P <  0.001 corrected). f, Inter-individual differences. 
Histogram shows δ(t)-related signal change in the striatum at the time of 
reward onset for both populations. Bars indicate the mean, and error bars 
indicate the s.e.m. **P <  0.01 unpaired t-tests. Data are taken from the first 
experiment (N =  50). [x, y, z] coordinates are given in the MNI (Montreal 
Neurological Institute) space.
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reward omissions (experiment 1) and monetary punishments 
(experiment 2) indicates that our results cannot be interpreted as 
a consequence of different processing of outcome values28. In other 
words, the learning asymmetry is not driven by the valence of the 
outcome but by the valence of the prediction error.

In principle, RW±  subjects could have displayed both an opti-
mistic and a pessimistic update, meaning that the ∆ BIC is not — a 
priori — a measure of optimism. However, in the light of our results, 
this metric was a posteriori associated with the good news/bad news 
effect at the individual level. Categorizing subjects based on the  
∆ BIC, instead of the learning rate difference, has the advantage that 
the learning rate difference can take positive and negative values 
in RW subjects, but this difference merely captures noise, because 
it is not justified by model comparison. Our subject categorization 
was further supported by unsupervised Gaussian-mixtures analy-
sis, which indicated that (1) two clusters explained the data better 
than one cluster and that (2) the two clusters corresponded to posi-
tive and negative ∆ BIC respectively. The combination of individual 
model comparison with clustering techniques may represent a use-
ful practice for computational phenotyping and for investigating 
cognitive differences between individuals29.

A higher learning rate for positive compared with negative pre-
diction errors was not the only computational metric distinguish-
ing optimistic from unbiased subjects. In fact, we also found that 
optimistic subjects had a greater tendency to exploit a previously 
rewarded option, as opposed to unbiased subjects who were more 
prone to explore both options. Importantly, the higher stochasticity 
of unbiased subjects was associated neither with lower performance 
in the asymmetrical conditions, nor with a lower baseline quality 
of fit, as measured by the maximum likelihood. This overexploita-
tion tendency was particularly striking in the symmetrical 25/25%  
condition, in which both options are poorly rewarding compared 
with the average task reward rate.

Whereas some previous studies suggest that optimists are more 
likely to explore and take risks (that is, they are entrepreneurs)30, 
we found an association between optimistic learning and higher 
propensity to exploit. Indeed, the tendency to ignore negative 
feedback about chosen options was linked to considering a previ-
ously rewarded option better than it is, and hence to stick to this 
preference. A possible link between optimism and such ‘conserva-
tism’ is not new; it can be dated back to Voltaire’s work Candide ou  
l’Optimisme, where the belief of ‘living in the best of all possible 
worlds’ was consistently associated with a strong rejection and con-
demnation of progress and explorative behaviour. In the words of 
the eighteenth-century philosopher31:

“Optimism,” said Cacambo, “What is that?” “Alas!” replied 
Candide, “It is the obstinacy of maintaining that everything 
is best when it is worst.”

Such optimism bias has been recently recognized as an impor-
tant psychological factor that helps to maintain inaction over  
pressing social problems, such as climate change32.

Recent studies have investigated the neural implementation of 
the good news/bad news effect when analysed in the context of 
probabilistic belief updating. At the functional level, decreased belief 
updating after worse-than-expected information has been associ-
ated with a reduced neural activity in the right inferior prefrontal 
gyrus8. Subsequent studies from the same group also showed that 
boosting dopaminergic function increases the good news/bad news 
effect and that this bias is correlated with striatal white matter con-
nectivity, suggesting a possible role for the brain reward system14,33. 
In agreement with this, a more recent study showed differences 
in the reward system, including the striatum and the vmPFC34. 
Consistent with these results, we found that reward prediction 
error encoded in the brain reward network, including the striatum 
(mostly its ventral parts) and the vmPFC, was higher in optimistic 
than in unbiased subjects. Replicating previous findings, we also 
found a neural network, encompassing the dmPFC and the ante-
rior insula, that negatively represented the chosen option value35,36. 
When comparing the two groups, we found no difference between 
optimists and pessimists in these decision-related areas37,38. Our 
results suggest that at the neural level, outcome-related activity dis-
criminates between optimistic and unbiased subjects. Remarkably, 
by identifying functional differences between the two groups, our 
imaging data corroborate our model comparison-based classifica-
tion of subject (neurocomputational phenotyping).

In our fMRI task, the outcome values (€ 0.50 or € 0) and the 
prediction error signs (positive and negative) were coincident. 
This feature of the design undermines our capability to properly 
assess whether the observed neural difference is driven by a dif-
ference in outcome or prediction error encoding. Future research, 
involving paradigms in which outcome values and prediction 
error signs are orthogonalized, is needed to address this question. 
An important question is unanswered by our study and remains 
to be addressed. Although our results clearly show an asymmetry 
in the learning process, we cannot decide whether the learning 
process itself involves the representational space of values or that 
of probabilities. This question is related to the broader debate over 
whether the reinforcement or the Bayesian learning framework 
better captures learning and decision-making: two views that have 
been hard to disentangle, because of largely overlapping predic-
tions, both at the behavioural and neural levels39–41. At this stage, 
our results cannot establish whether this optimistic bias is a valu-
ation or a confirmation bias. In other terms, do subjects preferen-
tially learn from positive prediction error because of its valence or 
because a positive prediction error ‘confirms’ the choice subjects 
just made? Future studies, decoupling valence from choice, are 
required to disentangle these two hypotheses.

Table 3 | activation table.

Variable Chosen option value  
(negative correlation)

region (aaL) Coordinates  
[x y z]

t value Cluster  
size

Insula (left) − 30 22 − 8 7.15 131

Insula (right) 34 24 − 6 6.76 147

Superior parietal gyrus − 20 − 66 54 6.56 112

Angular gyrus 40 − 48 44 6.52 288

Superior frontal gyrus/medial − 6 22 42 5.99 116

Variable Prediction error  
(positive correlation)

region (aaL) Coordinates 
[x y z]

t value Cluster  
size

Putamen − 16 8 − 12 11.02 1137

Calcarine fissure 2 − 84 − 4 10.7 1346

Median cingulate 0 − 36 36 10.17 1533

Caudate 10 6 − 10 10.15 984

Anterior cingulate − 6 46 − 4 9.56 911

Angular gyrus − 50 − 44 56 7.68 103

Superior frontal gyrus/dorsolateral − 18 38 52 6.7 167

Angular gyrus − 40 − 74 38 6.63 219

Inferior frontal gyrus/triangular part − 44 32 10 6.54 165

Cerebellum 22 − 76 − 18 6.41 62
FWE <  0.05, whole brain corrected and 60 minimum voxels. AAL, automatic anatomical labelling.
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It is worth noting that whereas some previous studies reported 
similar findings42,43, another study reported the opposite pattern44. 
The difference between that study and ours might rely on the fact 
that the former involved Pavlovian conditioning44. It may there-
fore be argued that optimistic reinforcement learning is specific to 
instrumental (as opposite to Pavlovian) conditioning.

A legitimate question is why such learning bias has survived the 
course of evolution. An obvious answer is that being (unrealisti-
cally) optimistic is or has been, at least in certain conditions, adap-
tive, meaning that it confers an advantage. Consistent with this idea, 
in everyday life, dispositional optimism45 has been linked to better 
global emotional well-being, interpersonal relationships or physical 
health. Optimists are less likely, for instance, to develop coronary 
heart disease46, and they have a broader social network47 and are 
less subject to distress when facing adversity45. Over-confidence in 
one’s own abilities has been shown to be associated with higher per-
formance in competitive games48. Such advantages of dispositional 
optimism could explain, at least in part, the pervasiveness of an opti-
mistic bias in humans. Concerning the specific context of optimis-
tic reinforcement learning, a recent paper49 showed that in certain 
conditions (low rewarding environments), an agent learning asym-
metrically in an optimistic manner (that is, with a higher learning 
rate for positive than for negative feedback) objectively outperforms 
another ‘unbiased’ agent in a simple probabilistic learning task. Thus, 
before any social, well-being or health consideration, it is norma-
tively advantageous (in certain contingencies) to take more account 
of positive feedback than negative feedback. A possible explanation 
for an asymmetric learning system is, therefore, that the conditions 
identified in ref. 49 closely resemble the statistics of the natural envi-
ronment that shaped the evolution of our learning system.

Finally, when reasoning about the adaptive value of optimism, a 
crucial point to consider is the inter-individual variability of unreal-
istic optimism8,12–14. As social animals, humans face both private and 
collective decision-making problems50. An intriguing possibility is 
that multiple ‘sub-optimal’ reinforcement learning strategies are 
maintained in the natural population to ensure an ‘optimal’ learn-
ing repertoire, flexible enough to solve, at the group level, the value 
learning and exploration–exploitation trade-off51. This hypothesis 
needs to be formally addressed using evolutionary simulations.

To conclude, our findings shed light on the nature of the good 
news/bad news effect and therefore on the mechanistic origins of 
unrealistic optimism. We suggest that optimistic learning is not spe-
cific to ‘high-level’ belief updating but a particular consequence of 
a more general ‘low-level’ instrumental learning asymmetry, which 
is associated to enhanced prediction error encoding in the brain 
reward system.

Methods
Subjects. The first dataset (N =  50) served as a cohort of healthy control subjects in a 
previous clinical neuroimaging study16. The second dataset involved the recruitment 
of new subjects (N =  35). The local ethics committees approved both experiments. 
All subjects gave written informed consent before inclusion in the study, and the 
study was carried out in accordance with the declaration of Helsinki (1964, revised 
2013). In both studies, the inclusion criteria were being older than 18 years and 
having no history of neurologic or psychiatric disorders. In experiments 1 and 2, 
ratios of men to women were 27/23 and 20/15, respectively, and the age means 
were 27.1 ±  1.3 and 23.5  ±  0.7, respectively (expressed as mean ±  s.e.m). In the 
first experiment, subjects believed that they would be playing for real money; the 
final pay-off was rounded up to a fixed amount of € 80 for every participant. In the 
second experiment, subjects were paid the exact amount of money earned in the 
learning task, plus a fixed amount (average pay-off € 15.70 ±  7.60).

Behavioural task and analyses. Subjects performed a probabilistic instrumental 
learning task described previously17 (Fig. 1a). Briefly, the task involved choosing 
between two cues that were associated with stationary reward probability (25% or 
75%). There were four pairs of cues, randomly constituted and assigned to the four 
possible combinations of probabilities (25/25%, 25/75%, 75/25% and 75/75%). Each 
pair of cues was presented 24 times, and each trial lasted on average 7 s. Subjects 
were encouraged to accumulate as much money as possible and were informed 
that some cues would result in a win more often than others (the instructions have 
been published in the appendix of the original study17). Subjects were given no 
explicit information on reward probabilities, which they had to learn through trial 
and error. The positive outcome reward was winning money (+ € 0.50); the negative 
outcome was getting nothing (€ 0) in the first experiment and losing money  
(− € 0.50) in the second experiment. Subjects made their choice by pressing left or 
right (L or R) response buttons with a left- or right-hand finger. Two given cues 
were always presented together, thus forming a fixed pair (choice context).

Regarding pay-off, learning mattered only for pairs with unequal probabilities 
(75/25% and 25/75%). As dependent variable, we extracted the correct response 
rate in asymmetric conditions (the left response rate for the 75/25% pair and 
the right response rate for the 25/75% pair) (Fig. 1b). In symmetrical reward 
probability conditions, we calculated the ‘preferred response rate’. The preferred 
response was defined as the most chosen option: that is, chosen by the subject in 
more than 50% of the trials. This quantity is therefore, by definition, greater than 
50%. The analyses focused on the preferred choice rate in the low-reward condition 
(25/25%), for which standard models predict a greater frequency of negative 
prediction errors. Behavioural variables were compared within-subjects using a 
paired two-tailed t-test and between-subjects using a two-sample, two-tailed t-test. 
Interactions were assessed using ANOVA.

Computational models. We fitted the data with reinforcement learning models. 
The model space included a standard Rescorla–Wagner model (or Q-learning)19,20 
(hereafter referred to as RW) and a modified version of the latter accounting 
differentially for learning from positive and negative prediction errors (hereafter 
referred to as RW± )26,43. For each pair of cues, the model estimates the expected 
values of left and right options, QL and QR, on the basis of individual sequences of 
choices and outcomes. These Q-values essentially represent the expected reward 
obtained by taking a particular option in a given context. In the first experiment, 
which involved only reward and reward omission, Q-values were set at € 0.25 
before learning, corresponding to the a priori expectation of 50% chance of 
winning € 0.50 plus a 50% chance of getting nothing. In the second experiment, 
which involved reward and punishment, Q-values were set at € 0 before learning, 
corresponding to the a priori expectation of 50% chance of winning € 0.50 plus 
50% chance of losing € 0.50. These priors on the initial Q-values are based on 
the fact that subjects were explicitly told in the instruction that no symbol was 
deterministically associated to either of the two possible outcomes, and that 
subjects were exposed to the average task outcome during the training session. 
Further control analyses, using post-training (‘empirical’) initial Q-values, 
were performed and are presented in the Supplementary Information and 
Supplementary Figure 6. After every trial t, the value of the chosen option  
(for example L) was updated according to the following rule:

αδ+ = +Q t Q t t( 1) ( ) ( ) (1)L L

In equation (1), δ(t) was the prediction error, calculated as:

δ = −t R t Q t( ) ( ) ( ) (2)L
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Figure 4 | robustness of optimistic reinforcement learning. Histograms 
show the learning rates following positive prediction errors (α+) and 
negative prediction errors (α−), in experiment 1 (N =  50) and experiment 
2 (N =  35). Experiment 1’s worst outcome was getting nothing (€ 0). 
Experiment 2’s worst outcome was losing money (− € 0.50). Bars indicate 
the mean, and error bars indicate the s.e.m. ***P <  0.001, paired t-tests.
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and R(t) was the reward obtained as an outcome of choosing L at trial t. In other 
words, the prediction error δ(t) is the difference between the expected reward 
QL(t) and the actual reward R(t). The reward magnitude R was + 0.5 for winning 
€ 0.50, 0 for getting nothing, and − 0.5 for losing € 0.50. The learning rate, α, is a 
scaling parameter that adjusts the amplitude of value changes from one trial to the 
next. Following this rule, option values are increased if the outcome is better than 
expected and decreased in the opposite case, and the amplitude of the update is 
similar following positive and negative prediction errors.

The modified version of the Q-learning algorithm (RW± ) differs from the 
original one (RW) by its updating rule for Q values, as follows:

α δ δ
α δ δ

+ = + >
<

+

−Q t Q t t t
t t

( 1) ( ) ( ) if ( ) 0
( ) if ( ) 0

(3)L L

The learning rate α+ adjusts the amplitude of value changes from one trial to 
the next when prediction error is positive (when the actual reward R(t) is better 
than the expected reward QL(t)), and the second learning rate α− does the same 
when prediction error is negative. Thus, the RW±  model allows the amplitude 
of the update to be different following positive (‘good news’) and negative (‘bad 
news’) prediction errors and permits us to account for individual differences in the 
way that subjects learn from positive and negative experience. If both learning rates 
are equivalent, α + =  α−, the RW±  model equals the RW model. If α + >  α−, subjects 
learn more from positive than negative events. We refer to this case as optimistic 
reinforcement learning. If α+ <  α−, subjects learn more from negative than positive 
events. We refer to this case as pessimistic reinforcement learning (Fig. 2b).

Finally, given the Q-values, the associated probability (or likelihood) of 
selecting each option was estimated by implementing the softmax rule for  
choosing L, which is as follows:

= +β β βP t e e e( ) / ( ) (4)Q t Q t Q t
L

( ( ) ) ( ( ) ) ( ( ) )L L L

This is a standard stochastic decision rule that calculates the probability 
of selecting one of a set of options according to their associated values. The 
temperature, β, is another scaling parameter that adjusts the stochasticity of 
decision-making and by doing so controls the exploration–exploitation trade-off.

Model comparison. We optimized model parameters by minimizing the negative 
log-likelihood of the data given different parameters settings using Matlab’s 
fmincon function, as previously described52. Additional parameter recovery 
analyses based on model simulations show that our parameter optimization 
procedure correctly retrieves the values of parameters (Supplementary Information 
and Supplementary Fig. 7). Negative log-likelihoods (LLmax) were used to 
compute at the individual level (random effects) the Bayesian information criterion 
for each model as follows:

= +nBIC log( )df 2LLmax (5)trials

Where df represent the degrees of freedom (that is, the number of free 
parameters) of the model. We then computed the inter-individual average  
BIC in order to compare the quality of fit of the two models, while accounting  
for their difference in complexity. The intra-individual difference in BIC  
(∆ BIC =  BICRW −  BICRW±) was also computed in order to categorize subjects into 
two groups (Fig. 2a): RW±  subjects (those whose ∆ BIC is positive) are better 
explained by the RW±  model; RW subjects (whose ∆ BIC is negative) are better 
explained by the RW model. We note that lower BIC indicated better fit. We also 
calculated the model exceedance probability and the model expected frequency 
based on the BIC as an approximation of the model evidence (Table 1). Individual 
BIC values were fed into the mbb-vb-toolbox, a procedure that estimates the 
expected frequencies and the exceedance probability for each model within  
a set of models, given the data gathered from all participants. Exceedance 
probability (denoted XP) is the probability that a given model fits the data  
better than all other models in the set.

The model parameters (α+, α− and 1/β) were also compared between the two 
groups of subjects. Learning rates were compared using a mixed ANOVA with 
group (RW versus RW± ) as a between-subject factor and learning rate type  
(+  or − ) as a within-subject factor. The temperature was compared using a  
two-sample, two-tailed t-test. The normalized learning rates asymmetry  
(α + −  α −) / (α + +  α −) was also computed as a measure of the good news/bad  
news effect and used to assess correlation with behavioural and neural data.

Subject classification. Subjects were classified based on the ∆ BIC, which is the 
intra-individual difference in BIC between the RW and RW±  model. While 
controlling for model parsimony, positive value indicates that the RW±  better fits 
the data; negative value indicates the RW model better fit. The cut-off of ∆ BIC =  0 
is a priori meaningful because it indicates the limit beyond which there is enough 
(Bayesian) evidence to consider that a given subject’s behaviour corresponds  
to a more complex model involving two learning rates. We also validated  
the ∆ BIC =  0 cut-off a posteriori with unsupervised clustering. We fitted  
Gaussian mixed distributions to individual ∆ BICs (N =  85, corresponding to  
the two experiments) using Matlab function gmdistribution.m. The analysis  

indicated that two clusters explain the variance significantly better than one cluster 
(k =  1, BIC =  716.4; k =  2, BIC =  635.6). The two clusters largely corresponded to 
subjects with negative (N =  40, min =  − 6.4; mean =  − 3.6, max =  − 0.9) and positive 
∆ BIC (N =  45, min =  − 0.5, mean =  15.7, max =  60.6). The two clusters differed 
in both the normalized difference in learning rates (0.14 versus 0.73; t(83) =  7.2, 
P <  0.001) and exploration rate (0.32 versus 0.09; t(83) =  7.2, P =  0.006).

Model simulations. We also analysed the models’ generative performance by 
means of model simulations. For each participant, we devised a virtual subject, 
represented by a set of individual best-fitting parameters. Each virtual subject 
dataset was obtained averaging 100 simulations, to avoid any local effect of 
the individual history of choice and outcome. The model simulations included 
all task conditions. The evaluation of generative performances involved the 
assessment of the ‘winning model’s’ ability to reproduce the key behavioural effect 
of the data, relative to the ‘losing model’. Unlike Bayesian model comparison, 
model simulation comparison is bounded to a particular behavioural effect of 
interest (in our case the preferred response rate). The model simulation analysis, 
which is focused on the evidence against the losing model, is complementary  
to the Bayesian model comparison analysis, which is focused on the evidence  
in favour of the winning model (model falsification)53,54.

Imaging data acquisition and analysis. Subjects of the first experiment  
(N =  50) performed the task during MRI scanning. T1-weighted structural  
images and T2*-weighted echo planar images (EPIs) were acquired during  
the first experiment and analysed with the Statistical Parametric Mapping 
software (SPM8; Wellcome Department of Imaging Neuroscience, London,  
UK). Acquisition and preprocessing parameters have been extensively  
described previously16,17. We refer to these publications for details about image 
acquisition and preprocessing.

Functional magnetic resonance imaging analysis. The fMRI analysis was 
based on a single general linear model. Each trial was modelled as having two 
time points, stimuli and outcome onsets. Each time point was regressed with a 
parameter modulator. Stimuli onset was modulated by the chosen option value, 
Qchosen(t); outcome onset was modulated by the reward prediction error, δ(t).  
Given that different subjects did not implement the same model, the choice  
of the model used to generate the parametric regressors is not obvious. As the 
RW±  and the RW models are nested and the RW±  model was the group-level 
best-fitting model, we opted for using its parameters to generate the regressors. 
Note, however, that confirmatory analyses using, for each group, its best-fitting 
model’s parameters lead to similar results. The parametric modulators were 
z-scored to ensure between-subject scaling of regression coefficients55. Linear 
contrasts of regression coefficients were computed at the subject level and 
compared against zero (one-sample t-test). Statistical parametric maps were 
threshold at P <  0.05 with a voxel-level family-wise error correction and a 
minimum of 60 contiguous voxels. Whole brain analysis included both groups  
of subjects and led to the identification of functionally characterized neural 
networks used to define unbiased regions of interest (ROIs). The dmPFC and  
the insular ROIs were defined as the intersection of the voxels significantly 
correlating with Qchosen(t) and automatic anatomical labelling (AAL) masks of the 
medial frontal cortex (including the superior frontal gyrus, the supplementary 
motor area and the anterior medial cingulate) and the bilateral insula, respectively. 
The vmPFC and the striatal ROIs were defined as the intersection of the voxels 
significantly correlating with δ(t) and AAL masks of the ventral prefrontal cortex 
(including the anterior cingulate, the gyrus rectus and the superior frontal gyrus, 
orbital part and medial orbital part) and the bilateral caudate and putamen, 
respectively. Within ROIs, the regression coefficients were compared  
between-group using a two-sample, two-tailed t-test.

Data availability. The behavioural data are available here: https://dx.doi.
org/10.6084/m9.figshare.4265408.v1. The fMRI results are available  
here: http://neurovault.org/collections/2195/.
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