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Approximate quantities and exact number words: dissociable systems
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Abstract

Numerical abilities are thought to rest on the integration of two distinct systems, a verbal system of number words and a non-symbolic
representation of approximate quantities. This view has lead to the classification of acalculias into two broad categories depending on
whether the deficit affects the verbal or the quantity system. Here, we test the association of deficits predicted by this theory, and particularly
the presence or absence of impairments in non-symbolic quantity processing. We describe two acalculic patients, one with a focal lesion of
the left parietal lobe and Gerstmann’s syndrome and another with semantic dementia with predominantly left temporal hypometabolism.
As predicted by a quantity deficit, the first patient was more impaired in subtraction than in multiplication, showed a severe slowness
in approximation, and exhibited associated impairments in subitizing and numerical comparison tasks, both with Arabic digits and with
arrays of dots. As predicted by a verbal deficit, the second patient was more impaired in multiplication than in subtraction, had intact
approximation abilities, and showed preserved processing of non-symbolic numerosities.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, several studies have confirmed that an
evolutionary precursor of human arithmetic abilities exists
in animals. Behavioral studies have revealed that mon-
keys can performed simple operations such as ordering of
two sets based on their numerosity (Brannon & Terrace,
1998), that this ability is cross-modal (Hauser, Dehaene,
Dehaene-Lambertz, & Patalano, 2002), and that it is found
even in untrained animals (Hauser, Carey, & Hauser, 2000).
Three arguments suggest a genuine homology between such
animal abilities and the human number sense. First, the
neural bases of these abilities have begun to be explored at
the single-cell level, revealing neurons tuned to number in
frontal and parietal areas that are plausible homologs of the
corresponding areas observed by functional neuroimaging
during arithmetic tasks in humans (Dehaene, 2002; Nieder,
Freedman, & Miller, 2002; Nieder & Miller, 2003;
Sawamura, Shima, & Tanji, 2002; Simon, Mangin, Cohen,
Le Bihan, & Dehaene, 2002). Second, human infants exhibit
similar approximate number discrimination and compari-
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son abilities in the first year of life, before the acquisition
of number words (Brannon, 2002; Brannon, Wusthoff,
Gallistel, & Gibbon, 2001; Wynn, Bloom, & Chiang, 2002;
Xu & Spelke, 2000).

Third, adults who have learned number words and Ara-
bic symbols, show approximation and non-symbolic dis-
tance effects parallel to those observed in animals and
infants (Dehaene & Cohen, 1997; Dehaene, Spelke, Pinel,
Stanescu, & Tsivkin, 1999). Of course, language compe-
tence enables humans to go beyond other species in arith-
metic, and to develop symbol systems that support exact cal-
culation and higher mathematics. These observations have
led to the view that human arithmetic rests on the integration
of two distinct systems, a verbal system of number words and
a non-symbolic representation of approximate quantities.

In the present paper, we explore the consequences of this
view for neuropsychology, by exhibiting two new cases with
multiple double dissociations and within-subject associa-
tions of deficits. The verbal versus quantity distinction has
already been used to account for several puzzling features of
acalculia, including the dissociations between multiplication
and subtraction, and between exact and approximate abili-
ties. We now show that this distinction predicts whether a
patient will show impairments in the processing of numbers
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presented non-symbolically as sets of dots, in basic tasks
that are more similar to those used in young children and in
animals.

The first dissociation that we examine is between differ-
ent arithmetic operations with Arabic numerals. According
to the triple-code model (Dehaene & Cohen, 1995), distinct
arithmetic operations put a differential burden on verbal
and quantity representations. Multiplication problems are
thought to be solved by accessing a table of memorized
facts (Ashcraft, 1992) stored in the form of verbal associ-
ations without reference to quantity. In contrast, subtrac-
tion facts are not learned by rote at school, and may be
resolved through the mental manipulation of quantities.
This view can explain the frequent observation of a dou-
ble dissociation between those two operations (Cohen &
Dehaene, 2000; Dagenbach & McCloskey, 1992; Dehaene
& Cohen, 1997; Delazer & Benke, 1997; Lampl Eshel,
Gilad, & Sarova-Pinhas, 1994; Lee, 2000; McNeil &
Warrington, 1994; Pesenti, Seron, & Van der Linden, 1994;
van Harskamp & Cipolotti, 2001; van Harskamp, Rudge,
& Cipolotti, 2002). It also accounts for the frequent as-
sociation of multiplication impairments with aphasia, and
of subtraction impairments with a dysfunction of parietal
lobe systems thought to be engaged in quantity processing
(Dehaene & Cohen, 1997). Finally, it meshes well with the
differences in brain activation observed during those two
operations in normal subjects (Chochon, Cohen, Van de
Moortele, & Dehaene, 1999; Lee, 2000) for recent discus-
sion, see (Dehaene, Piazza, Pinel, & Cohen, 2003).

A second dissociation is predicted between exact and ap-
proximate calculation. In infants and animals, the prever-
bal quantity representation is approximate and supports only
rough calculations such as approximate addition and sub-
traction. Only literate humans can discriminate precise large
quantities and compute exact operations with large num-
bers. The distinction between exact and approximate cal-
culation, and its link to symbolic versus quantity formats
of number representation, receives support from behavioral
and brain-imaging studies in normal adult (Dehaene, 1998;
Spelke & Tsivkin, 2001). Furthermore, there is some neu-
ropsychological evidence for a single dissociation between
impaired exact calculation and preserved approximation. Pa-
tients with severe acalculia may exhibit a preserved ability to
approximate the result of an operation (Dehaene & Cohen,
1991; Warrington, 1982). Note that our view further pre-
dicts an association of deficits: approximation should be pre-
served in those patients with impaired multiplication and
spared subtraction, and approximation should be impaired
in patients with the reverse deficit. Some support for these
prediction can be found in our earlier study of patients MAR
and BOO (Dehaene & Cohen, 1997), although approxima-
tion abilities were not studied in depth. We re-examine this
issue in greater detail with the present patients BRI and LEC.

A third dissociation concerns the processing of numerical
quantities that are presented non-symbolically, for instance
as sets of objects. When an array of dots is briefly flashed,

subjects can identify its numerosity without counting, and
come up with an exact number name in the case of very small
numbers (“subitizing”) (Dehaene & Cohen, 1994; Mandler
& Shebo, 1982) and with an approximate label subject to
Weber’s law in the case of larger numbers (“estimation”)
(Cordes, Gelman, Gallistel, & Whalen, 2001; Whalen,
Gallistel, & Gelman, 1999). Subjects can even perform
elementary operations such as comparison, addition or sub-
traction, again with variability (Barth, Kanwisher, & Spelke,
2003). The non-verbal quantity representation is thought to
be crucial to such achievement. Verbal abilities, in contrast,
play a role in the slower process of exact serial counting,
which is largely specific to humans. Again, the verbal versus
quantity distinction predicts that counting should dissoci-
ate from subitizing and estimation and that symbolic and
non-symbolic deficits should be associated non-randomly.
Aphasic patients with multiplication impairments linked to
their reduced abilities to process verbal numerals should ex-
hibit counting impairments, but their subitizing, estimation,
and comparison should be preserved. Conversely, parietal
lobe patients who show subtraction and approximation im-
pairments when tested in symbolic formats such as Arabic
notation should also show subitizing, estimation, compari-
son, and computation deficits with non-symbolic stimuli.

A few aspects of these predicted clusters of deficits have
been tested in previous patients (e.g.Cappelleti, Butter-
worth, & Kopelman, 2001; Dehaene & Cohen, 1997; Delazer
& Benke, 1997; Grafman, Kampen, Rosenberg, Salazar, &
Boller, 1989; Pesenti et al., 1994; Polk, Reed, Keenan,
Hogarth, & Anderson, 2001), though not with a system-
atic set of tasks. Here we attempt to systematize those
observations by examining the same tasks in two new acal-
culic patients with opposite patterns of deficits, as well as
in a large group of control subjects. Patient BRI showed
aphasia and aspects of semantic dementia associated with
predominantly left fronto-temporal atrophy. Patient LEC
experienced difficulties in calculation and visuo-spatial pro-
cessing with Gerstmann syndrome associated with a left
parietal ischemic lesion. In both cases, we successively
study the dissociations between multiplication and subtrac-
tion operations, between exact and approximate calculation,
and between symbolic and non-symbolic tasks as well as
the associations across pairs of tasks.

2. Clinical description of BRI

Patient BRI was a 45-year-old right-handed former sec-
retary. In July 2000, she presented some behavioral changes
(tears, apathy, and loss of weight. . . ), and a diagnosis of
depression was proposed. Some months later, memory prob-
lems and mild word-finding difficulties appeared. A neuro-
logical and cognitive assessment was performed in March
2001 (seeTable 1).

The patient was impaired in both language production and
comprehension. Conversational speech was fluent but not
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Table 1
Results of neuropsychological background tests

Function and test BRI’s scores LEC’s scores

General intelligence
PM 47 31 16∗
MMSE 22/30∗ 19/30∗

Language
Picture-naming

DENO 100 27/50∗
DO 80 70/80∗

BORB item-matching 32/32
BORB association 26/30
Palm Tree Test (pictures) 12/20∗
Palm Tree Test (words) 15/20∗
Verbal fluency
(semantic/phonemic)

3∗/2∗ 13/9∗

Memory
Hebb 7/2∗ 5/2∗
Corsi 5/6 5/4
Logical memory
Immediate recognition Impossible∗ 13/24∗
Delayed recognition

BEM 144
Impossible∗ 2/24∗

Immediate recognition 22/24
Delayed recognition 22/24

Executive functions
Rey picture Type IV (35/36) Type IV (9/36)∗
Wisconsin 2 criteria∗
TMT A 51 s 275 s∗
TMT B 131 s 400 s∗ (incomplete)
(B-A) 80 s∗ 125 s∗

Note: PM: progressive matrices; MMSE: Mini Mental State Examination;
DENO 100 and DO 80: Oral Denomination Tests; BEM 144: Batterie
d’Efficience Mńesique; TMT: Trail Making Test.

∗ Indicates a significant impairment (performance falling two standard
deviations below the level of controls).

informative. BRI repeated words, pseudo-words and short
sentences perfectly. Long sentences were repeated with some
word substitutions. On a picture-naming test (DO 80), BRI
showed word-finding difficulties. Semantic and phonemic
verbal fluency were severely reduced. When the examiner
asked her to tell a short story on the basis of a picture se-
quence, BRI was not able to construct a coherent story and
her word-finding difficulties and lack of elaboration leading
to an extremely poor narration. Oral comprehension was also
mildly impaired. BRI was correct in a word-picture match-
ing task but she made errors on sentence comprehension
tests tapping syntactic structures and prepositions. Seman-
tic processing was tested with two subtests of the BORB
(Riddoch & Humphreys, 1993). On the item-matching test
(e.g. matching two different pictures of houses), BRI was
perfect, but she was impaired on the association-matching
test (e.g. matching a hammer with a nail). The Pyramids and
Palm Tree Test was impaired with both pictures and written
words. BRI read words, pseudo-words and sentences per-
fectly. She made frequent spelling errors, and occasionally
mixed uppercase and lowercase letters.

Besides language, BRI suffered from a severe impairment
of verbal memory. She was no longer able to retrieve recent
memories and failed to repeat three familiar words after less
than 10 min. Formal testing of verbal long-term memory
was impossible. In contrast, her visual memory was nearly
normal. The patient seemed to identify pictures of celebri-
ties, although her severe word-finding difficulties made the
recognition difficult to ascertain. Moreover, she presented
right–left disorientation, particularly when tested on a draw-
ing or on the examiner’s body. Naming or pointing to body
parts and fingers were impaired, possibly due to general
word processing difficulties. She was also impaired in the
Wisconsin Card Sorting Test.

A brain MRI performed at the time of the present study
(March 2001) showed frontal and temporal atrophy, predom-
inantly affecting the left hemisphere. An important atrophy
of the left hippocampus was also noted. A cerebral SPECT
showed a diffuse left-hemispheric hypoperfusion with tem-
poral and frontal predominance (Fig. 1).

2.1. Initial evaluation of number processing

During the initial testing, BRI was asked to read aloud
a set of 33 Arabic numerals ranging from one to five dig-
its. She responded without hesitation and did not make a
single error. She was asked to write to dictation a list of
33 Arabic numerals matched to those used in the reading
task. Again, she responded flawlessly, except for two spon-
taneous self-corrections. Finally, BRI was asked to write 17
spelled-out verbal numerals to dictation. She made only one
phonologically plausible spelling error (700→ “setcent” in-
stead of “septcents”).

On simple arithmetic tasks, the patient solved 17/20
problems correctly, making errors only on multiplication
problems. She was unable to solve written multi-digit mul-
tiplication problems, apparently due to difficulties with the
retrieval of elementary facts and with access to general
calculation procedures.

In brief, patient BRI showed preserved number transcod-
ing abilities, contrasting with an apparently severe arith-
metic impairment. There is a suggestion that this arithmetic
deficit affected multiplication more severely than the other
operations.

3. Clinical description of LEC

The second patient, LEC, was a 76-year-old right-handed
retired midwife. In April 2001, LEC was presented an
acute confusional state with word-finding difficulties, Gerst-
mann’s syndrome including acalculia, apraxia, and right
lower quadrantanopia. Brain MRI showed a hemorrhage in
the left intraparietal region (Fig. 1). A subsequent MRI, per-
formed in December 2001, revealed a small recent asymp-
tomatic right occipital hemorrhage. A general neuropsycho-
logical assessment was performed in March 2002 (Table 1).
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Fig. 1. Brain impairments in patients BRI and LEC. Top: sagital and axial cuts from patient BRI’s SPECT, showing a marked left-hemispheric
hypometabolism with temporal and frontal predominance. Bottom: axial MRI cut in patient LEC (FLAIR acquisition) showing the sequelae of a
hemorrhage affecting the left intraparietal cortex. There are also more diffuse white matter hyperintensities.

LEC was impaired on tests of general efficiency. Her
spontaneous speech was normal. Her picture-naming and
verbal fluency revealed slight difficulties, though the scores
remained in the normal range for her age. LEC was impaired
on tests of verbal short-term memory, but she was in the
normal range on visual tests. Her verbal long-term memory
tests were impaired as well. Visual long-term memory was
not tested because of a very poor copy of the Rey-Osterrieth
Complex Figure. Additional tests of visual gnosis and praxis
revealed visual difficulties. On the bell cancellation test,
she made 14 omissions uniformly distributed on the whole
sheet. There were no signs of neglect on line bisection tests.
On the Navon letters task, LEC failed to recognize the large
stimuli made up of smaller symbols. In a task of complex
drawing (the flowers of Halligan), LEC reproduced details
of the picture, but without respecting its global structure.
Finally, the verbal description of a complex picture (Cookie
Theft Picture) was limited to a correct report of isolated
and unconnected elements of the scene. LEC’s performance
on these tasks suggests a variety of simultagnosia. Finally,
neuropsychological testing also revealed moderate apraxia
and agraphia, finger agnosia and right/left disorientation,
amounting to a complete Gerstmann’s syndrome.

4. Experimental investigation

The tests that were presented to the two patients are part
of a battery set up in the INSERM 562 unit and supported

by the European “Neuromath” network. Each patient was
first compared to five normal women approximately matched
in education level and in age (range 40–55 for BRI and
55–66 for LEC). The patients were then compared to a wider
control group of 31 normal subjects, which included the
matched controls. These two types of comparisons yielding
similar results, we will present only analyses involving the
larger group of 31 controls.

4.1. Elementary arithmetic problems

We first tested the patients’ ability to solve simple arith-
metic problems such as 3×6, 9−2 or 5+1. Our prediction
was that patient BRI, who was aphasic, would be particu-
larly impaired in rote verbal arithmetical fact retrieval and
would therefore be more impaired in multiplication than in
subtraction. Conversely patient LEC, who suffered from a
parietal lesion and Gerstmann’s syndrome, was predicted to
suffer from an impairment of the parietal quantity represen-
tation that would particularly affect subtraction, while spar-
ing multiplication.

4.1.1. Method
Patients were presented visually with multiplication,

subtraction, addition and division problems. The prob-
lems were displayed on a computer screen and the sub-
jects were instructed to produce the result orally. Stimuli
remained visible until the subject responded. Latencies
were measured using a voice-activated switch, and all
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testing sessions were recorded for subsequent scoring of
errors.

We used simple multiplication, subtraction and addition
problems with two single-digit operands. For each opera-
tion, the set of 54 problems corresponded to the 55 possible
pairs of two digits 0–9, minus the 0–0 pair. For addition and
subtraction problems, the larger operand was presented on
the left. For multiplication problems, the smaller operand
was presented on the left, respecting the more familiar or-
der. Additional tests, including subtraction problems closely
matched to multiplication problems and complex multi-digit
addition problems, will be described below.

We also presented 18 division problems consisting of a
number between 4 and 20 divided by a single digit, with a
result ranging from 2 to 10 (largest problem: 20:4; smallest
problem: 4:2).

Note that multiplication, subtraction and addition tasks
problems included a small subset that could be solved
by rule-governed strategies (0× n = 0; 1 × n = n;
n + 0 = n; n − 0 = n). Such problems are presumably pro-
cessed through the application of logical rules, the coding of
which is not known (the operands and the rule itself could
be encoded verbally, quantitatively, or through yet another
system of symbols specific to algebra). In the following,
we report the subjects’ global performance averaged across
all problems, but the same statistical analyses were also
applied to non-rule problems only, with identical results.

Three types of statistical tests were used:χ2-tests were
used to compare error rates across two different tasks within
a given patient, and ANOVAs to compare response times. In
both cases, the source of variance was the individual trials,
which were assumed to be independent of one another. To
then compare the patient’s values with those of controls, we
used az-score approach. We first calculated the value to be
tested, for instance the difference between RT in multipli-
cation and in subtraction, separately for the patient and for
each of the controls. We then computed az-score by tak-
ing the difference between the mean of the controls and the
value of the patient, and dividing it by the standard devia-

Fig. 2. Error rates in symbolic arithmetic. Percentage of errors for each arithmetical operation (for normal subjects, bars indicate one standard deviation).

tion of the controls. Finally, the two-tailed probability of this
z-score was used to decide if the patient was an outlier rela-
tive to the population of control subjects. Note that the use
of a z-score instead of at-score is justified by the relatively
large population of control subjects (n = 31). When data
were missing in a few control subjects, the correspondingn
is indicated.

4.1.2. Controls
Controls were very efficient in the resolution of simple

operations (seeFig. 2). They made less than 5% errors for
each operation (mean error rate for multiplication: 4.3%;
for subtraction: 2.2%; for addition: 1.9% and for division:
2.8%). There was nevertheless a significant difference be-
tween the four operations (χ2(3) = 20.79; P < 0.0001).
Multiplication was significantly more difficult than addition
(χ2 = 15.87; P < 0.0001) and subtraction (χ2 = 11.61;
P < 0.001) and somewhat more difficult than division (χ2 =
5.45; P = 0.02). The differences between the latter opera-
tions were not significant.

Mean correct reaction times averaged about 1 s and in-
creased in the order addition< subtraction< multiplication
< division (Fig. 3). All comparisons between operations
were significant (allP < 0.0001) except for the difference
between multiplication and division (F(1, 27) = 1.6; NS).

4.1.3. Patient BRI
BRI and LEC’s performance on simple arithmetic tasks

are summarized inFig. 2 for correct responses and inFig. 3
for latencies. In the text below, their performances are com-
pared with the normal group.

4.1.3.1. Multiplication. BRI made 42/54 (77.8%) errors
(z = 16.4; P < 0.0001; n = 29) (Fig. 2). A majority
of her erroneous responses (60%) consisted of the correct
answer to the corresponding addition problem (e.g. 4×5 →
‘nine’). Note that this kind of error affected all problems
of the type 0× n (e.g. 0× 4 → ‘ four’) and n × 1 (e.g.
4× 1 → ‘five’). Small problems were relatively spared, as
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Fig. 3. Median correct response times in symbolic arithmetic tasks.

all 12 correct responses corresponded to problems with at
least one operand smaller than 5.

4.1.3.2. Subtraction. BRI made only 9/54 (16.7%) errors
(z = 4.3; P < 0.001; n = 29). Large problems were the
most impaired, as 7/9 errors corresponded to a problem with
at least one operand larger than 5. Rule-based problems were
relatively spared, as BRI correctly solved 14/16 such prob-
lems. The two errors on rule problems suggested an incor-
rect rule application (9− 0 → ‘zero’, and 4− 4 → ‘ four’).

The apparent dissociation between multiplication and sub-
traction might result from the fact that the results of multipli-
cation problems are larger than the results of the subtraction
problems with the same operands. In order to control for
this possible artifact, we presented BRI with 54 subtraction
problems matched one-to-one with multiplication problems
in terms of result. The first operand was always a decade, and
the second operand a single digit (e.g. 80−8), each problem
thus involving only two significant digits like the multipli-
cation problems. Patient BRI made 4/54 errors (7.5%), thus
still performing considerably better than in multiplication
(77.8% errors).

4.1.3.3. Addition. BRI made 5/54 (9.3%) errors (z = 2;
P < 0.05;n = 29). The five errors differed from the correct
response by one unit. We presented BRI with a further set of
18 complex addition problems. She solved flawlessly nine
problems consisting of a two-digit number plus a single digit
(e.g. 61+2). With problems involving 2 two-digit operands,
she made 2/9 errors (22.2%) consisting of an omission of
the carry.

4.1.3.4. Division. BRI responded correctly to only one
item out of 18 (94.4% error rate) (z = 5.5; P < 0.0001;
n = 28). On 16 items, the response of BRI was larger than
the largest operand, suggesting that BRI was unaware of the
meaning of the division operation.

4.1.3.5. Dissociations between operations. As indicated
in Fig. 2, BRI’s error rates differed across operations
(χ2(3) = 76.9; P < 0.0001). Subtraction and addition were
relatively spared, while multiplication and division were
severely impaired. The error rate was significantly higher
for multiplication and division than for the two other op-
erations (multiplication versus subtraction:χ2(1) = 40.5;
P < 0.0001; multiplication versus addition:χ2(1) = 51.6;
P < 0.0001; division versus addition:χ2(1) = 46.2;
P < 0.0001; division versus subtraction:χ2(1) = 35.4;
P < 0.0001). There was no significant difference between
addition and subtraction and between multiplication and
division.

Reaction times for division were not included in the
analysis of BRI’s mean correct response latencies, be-
cause of BRI’s very poor performance. The analysis of
latencies on the other tasks revealed a pattern parallel
to that of the analysis of errors with significant differ-
ences between operations (F(2, 92) = 3.44; P = 0.02).
Multiplication (4896 ms) was slower than both subtrac-
tion (3735 ms;F(1, 51) = 5.8; P < 0.05) and addition
(3275 ms;F(1, 52) = 9.08; P < 0.005), which did not dif-
fer (F(1, 81) < 1). Analyses excluding rule-based problems
yielded the same pattern of dissociation for both errors
and RT.

4.1.4. Patient LEC

4.1.4.1. Multiplication. LEC made 3/54 (5.6%) errors
(z = 0.25; NS;n = 29). Two of the three errors concerned
a large problem (4× 7 = 42 and 6× 9 = 36) and the third
a rule-based problem (0× 7 = 7).

4.1.4.2. Subtraction. LEC made 10/54 (18.5%) errors
(z = 4.9; P < 0.0001; n = 29). Errors were distributed
across all type of subtractions (for examples: 7− 1 = 8;
9 − 1 = 9 or 6− 5 = 0).
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4.1.4.3. Addition. LEC made no errors.

4.1.4.4. Division. LEC made 8/24 (33.3%) errors (z =
1.68; NS; n = 28): two non-responses, two out-of-range
answers (e.g. 14 : 7= 21), and four intra-table answers
(12 : 4= 6).

4.1.4.5. Dissociations between operations. LEC’s error
rates differed across operations (χ2(3) = 23.1;P < 0.0001).
Addition and multiplication were relatively spared while
subtraction and division were impaired. Error rates were
significantly higher for subtraction and division than for
the two other operations (multiplication versus subtraction:
χ2(1) = 4.3; P < 0.05; division versus addition:χ2(1) =
20.1; P < 0.001; addition versus subtraction:χ2(1) = 11;
P < 0.0001; multiplication versus division:χ2(1) = 10.58;
P < 0.005). There was no significant difference between
multiplication and addition (χ2(1) = 3.1; NS) or between
division and subtraction (χ2(1) = 2.1; NS).

LEC’s mean correct response latencies differed signifi-
cantly across operations (F(3, 149) = 17.35; P < 0.0001).
The mean latency was faster for multiplication (2473 ms)
than for either subtraction (4178 ms;F(1, 88) = 27.3; P <

0.0001) or addition (3041 ms;F(1, 97) = 6.2; P < 0.05)
or division (4187 ms;F(1, 54) = 9.86; P < 0.005). Sub-
traction problems were answered more slowly than addition
problems (F(1, 90) = 12.7; P < 0.001). The mean latency
for division did not differ from the latency for subtraction
(F(1, 48) < 1; NS) but was marginally slower than for
addition (F(1, 56) = 4.6; P < 0.05). Analyses excluding
rule-based problems yielded the same pattern of dissociation
for both errors and RT (e.g. 7.2% errors in multiplication
versus 22.2% errors in subtraction,χ2(1) = 4.9; P < 0.05).

4.1.5. Discussion
Patients BRI and LEC exhibited a double dissociation be-

tween arithmetic operations. Patient BRI, who was aphasic,
was more impaired on multiplication than on subtraction
tasks. Conversely, patient LEC, who showed Gerstmann’s
syndrome, was more impaired on subtraction than on mul-
tiplication tasks. Note that LEC was globally less impaired
than BRI. However, the evidence for a dissociation is not
based on a direct comparison on error rates between patients
for each operation, but on the demonstration of an opposite
pattern of dissociation between the operations across the
two patients. These observations replicate our earlier find-
ings of a similar double dissociation in patients MAR and
BOO (Dehaene & Cohen, 1997). In the literature, several
single cases with a more severe impairment of subtraction
than multiplication have been described (Dehaene & Cohen,
1997; Delazer & Benke, 1997; van Harskamp & Cipolotti,
2001; van Harskamp et al., 2002). Like patient LEC, all of
them suffered from left parietal lesion or atrophy, and all
but one were reported to present Gerstmann’s syndrome.
Conversely, several single cases of more severe impairment
on multiplication than on subtraction have been reported

(Cohen & Dehaene, 2000; Dagenbach & McCloskey, 1992;
Dehaene & Cohen, 1997; Lampl et al., 1994; Lee, 2000;
McNeil & Warrington, 1994; Pesenti et al., 1994; van
Harskamp & Cipolotti, 2001). Most of them, like patient
BRI, suffered from additional language impairments.

Addition performance was relatively preserved in both
of our patients. This is compatible with the hypothesis that
addition problems can be solved in multiple ways by nor-
mal subjects. Many subjects have learned addition tables at
school, and can therefore retrieve addition facts from rote
verbal memory. The preservation of verbal memory in pa-
tient LEC might thus explain her good addition performance
(indeed, LEC reported having considerable training in arith-
metic since childhood). If memory retrieval fails, however,
normal subjects can resort to various strategies that are anal-
ogous to those used for subtraction. Patient BRI, who had
much less training that LEC in arithmetic, could have used
such strategies to achieve an equal performance in addition
and in subtraction. Indeed, both were strikingly better pre-
served than multiplication, though performance was slow
relative to control subjects.

Finally, we included a few simple division problems in
our battery for exploratory purposes. Patient BRI was com-
pletely unable to perform division, while patient LEC was
only marginally worse than the control population. Psycho-
logical research with normal subjects provides evidence that
multiplication and division are intimately linked (Campbell,
1997, 1999; LeFevre & Morris, 1999). Thus, it should not
be surprising that patient BRI, who experienced a devastat-
ing impairment of memory for multiplication facts, was so
impaired in division. However, we tentatively suggest, as a
hypothesis for future research, that division problems may
also tax the quantity manipulation system. To find the answer
to a simple division such as 12/3, one must search the mul-
tiplication table. The search is generally not random, but is
guided by an initial estimate (subjects typically try out 3×3
but not 3× 9), and is then narrowed down by step-by-step
increases or decreases based on a comparison of the current
tentative result with the desired one. Impairments to approx-
imation and comparison processes therefore could explain
patient LEC’s poor performance with division problems.

4.2. Exact versus approximate calculation

Having observed a double dissociation between subtrac-
tion and multiplication, we now turn to the predicted associ-
ated deficits. The triple-code model postulates that the verbal
representation plays a crucial role in exact calculation, while
the quantity representation plays a crucial role in our ability
to approximate simple calculations, for instance in deciding
that 12+ 13 cannot possibly be as large as 95. Patient BRI
should therefore be more impaired in exact than in approxi-
mate addition, while the converse should be true for patient
LEC. Alternatively, if dissociations between operations are
due to random impairments to distinct memory stores (e.g.
Dagenbach & McCloskey, 1992), then there should be no
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specific association between multiplication and subtraction
on the one hand, and exact and approximate addition on the
other hand.

4.2.1. Method
We used our previously described exact and approximate

calculation tasks (Dehaene, 1998; Stanescu-Cosson et al.,
2000), with unlimited presentation time. Subjects were pre-
sented with single-digit addition problems displayed hori-
zontally on a computer screen with two proposed responses
simultaneously displayed side by side below the problem
until subjects answered. On each trial, they were asked to
choose between the two responses, indicating their choice by
pressing the key on the same side as the selected response.
For the exact calculation block, instructions stressed that one
of the proposed results was correct and that the other was
false, and the task was to identify the correct result. For the
approximation block, instructions explicitly stated that nei-
ther proposed responses was exactly correct, and that the
subject should choose the response closer to the correct sum.

The complete list of problem can be found in Stanescu-
Cosson et al. publication (Stanescu-Cosson et al., 2000). For
small problems, operands ranged from 1 to 5, and for large
problems they ranged from 5 to 9. Problems involving ties
(e.g. 2+2, 6+6) were avoided because they show a smaller
problem size effect (Ashcraft, 1992). For the exact task, the
two alternatives proposed to the subjects were the correct re-
sult and a result that was off by at most two units. In 90% of
exact problems, the wrong result was of the same parity as
the correct result, thus preventing the use of a short-cut based
on parity checking (Krueger & Hallford, 1984). For the ap-
proximation task, the two alternatives were a number off by
one unit, and a number off by a larger amount (4.7 units on
average). Note that the alternatives were always two single
digits (range 2–9) for the small problems and two teen num-
bers (range 10–19) for the large problems. The spatial loca-
tion of the larger operand of the addition, as well as the spa-
tial location of the correct response, were randomly varied.

Fig. 4. Error rates in exact and approximation calculation tasks.

4.2.2. Controls
Error rates and mean RTs are presented inFigs. 4

and 5. Normal subjects presented a non-significant task ef-
fect on error rates (3.9% for exact calculation and 3.2% for
approximation,F(1, 30) < 1), indicating that the two tasks
were matched for difficulty. The size effect was signifi-
cant (F(1, 30) = 4.76; P < 0.05), with subjects showing
more difficulty with large numbers than with small num-
bers. The interaction of task with size was also significant
(F(1, 30) = 8.08; P < 0.01), the size effect being larger
in the exact than in the approximation task. On response
time, the two main effects (task and size effect) and inter-
action were all significant (allP < 0.01). Again, the size
effect was larger in the exact than in the approximate con-
dition. Those results replicate earlier ones (Dehaene, 1998;
Stanescu-Cosson et al., 2000).

4.2.3. Patient BRI
Overall, BRI performed worse than normal controls (z =

2.30;P < 0.05). However, errors were essentially restricted
to exact calculation with large items (32.5% errors,z =
2.17; P < 0.05), with a smaller impairment in approxi-
mate calculation with small items (15% errors,z = 2.52;
P < 0.01), and normal performance in the other two con-
ditions. A two-step analysis clarified these results. First,
BRI showed the same general pattern as controls, namely
a main effect of problem size (χ2(1) = 4.4; P < 0.05).
Second, as indicated onFig. 4, her difference with con-
trols consisted of a widely exaggerated size effect in the
exact task (interactionz = 2.22; P < 0.05). A further dif-
ference relative to controls was an apparent inversion of
the size effect in the approximation task. However the size
effect did not differ significantly between BRI and con-
trols for this task (z = 1.76; NS). In sum, BRI’s only
clear-cut deficit was a severe impairment in solving exact
large problems, contrasting with a relatively preserved abil-
ity to identify an approximate solution for the same pro-
blems.
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Fig. 5. Median correct response times in exact and approximation tasks.

The pattern of response times was parallel to that of er-
ror rates. BRI was significantly slower than controls overall
(z = 10.06; P < 0.0001). Her slowness was particularly
pronounced with large operands, resulting in a significantly
larger size effect relative to controls (z = 5.58;P < 0.0001)
(Fig. 5). The interaction of task by size was also signifi-
cantly larger in BRI than in controls (z = 3.02;P < 0.005),
indicating that the size effect in BRI was disproportionately
larger in exact calculation than in approximation. It is note-
worthy that patient BRI was equally slow in both exact and
approximate calculation with large numbers, but that she
eventually attained the correct response to most approxima-
tion problems (5% errors) while she often erred with exact
problems (32.5%). Thus a speed-accuracy trade-off might
have affected her performance in approximate calculation,
but not in exact calculation where both RTs and error rates
suggest a genuine deficit.

4.2.4. Patient LEC
As shown onFig. 4, LEC’s overall level of performance

was normal with a mean of 4.4% errors (z = 0.2; NS). There
was no significant size effect (χ2(1) = 0.03; P > 0.5), and
no interaction of problem size with task (χ2(1) = 2.7; NS),
perhaps because of the small sample size.

Despite an excellent performance level, however, LEC’s
behavior was abnormal in several respects. First, the patient
initially refused to perform the approximation task, claim-
ing that she was utterly unable to do this. When she even-
tually agreed to try to solve the approximate problems, she
indicated that she mentally computed the exact result and
compared the result to the proposed answers. According to
her introspection, she never resorted to an approximation
strategy.

Second, her response latencies were severely slowed down
(mean latency= 2992 ms;z = 23.04; P < 0.0001). Fur-
thermore, her latencies in the approximation task were as
much as 1434 ms slower than in the exact task. This relative
difficulty of the approximation task was much larger than in

normal controls (z = 23.58; P < 0.0001). LEC’s latencies
were not significantly affected by problem size.

4.2.5. Discussion
In the exact and approximate addition tasks, patients BRI

and LEC both differed from normal subjects but showed
dissimilar patterns.

Patient BRI had a very high error rate for large exact
problems and a lower error rate for the approximation task.
These results suggest that, as predicted, her verbal impair-
ment mostly interfered with exact calculation while sparing
approximation abilities. What remains surprising is that, in
approximation, she was essentially perfect with large prob-
lems (5% errors), but somewhat impaired on small problems
(15% errors). In control subjects, an automatic activation of
the retrieval of addition facts has been observed (Girelli &
Delazer, 1996; Lefevre, Bisanz, & Mrkonjic, 1988; Lemaire,
Barrett, Fayol, & Abdi, 1994). Thus, it is possible that, in
spite of instructions to avoid calculating the exact result, sub-
jects cannot help but access their exact memory store in the
approximation condition with small problems. FMRI in nor-
mal subjects provides some support for this hypothesis by
showing that the supramarginal region, which has been im-
plicated in verbal memory, was more activated by small than
by large approximation problems (Stanescu-Cosson et al.,
2000). Assuming that patient BRI had the same bias, her
few errors with small approximation problems could then
be explained by an occasional automatic activation of her
impaired store of arithmetic facts. Whatever the merits of
this interpretation, BRI’s superior performance in approxi-
mation than in exact calculation with large problems clearly
indicates a dissociation in the predicted direction.

In contrast, patient LEC made few errors on both tasks,
but she was very severely slowed, most strikingly in the ap-
proximation task. It should be noted that the approximation
task could always be solved by performing the exact cal-
culation in full and then selecting the closest result. Thus,
in principle it is difficult to evidence a selective deficit of
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approximation in a patient with relatively preserved exact
calculation abilities. In general, one should not expect such
a deficit to show up in elevated error rates, but rather in a
drastic slowing down of responses to grossly false problems
that a normal subject would never resolve by tedious ex-
act calculation. Patient LEC’s behavior is compatible with
these predictions. She spontaneously claimed that she was
unable to approximate and that she had to calculate first,
then compare her result with the proposed choices. Her ab-
normally slow performance in approximation supports this
introspection and provides evidence that approximation can
be severely impaired in Gerstmann’s syndrome.

4.3. Subitizing and counting

We now turn to the assessment of non-symbolic number
processing abilities. According to the triple-code model, the
quantity representation plays an important role in our ability
to evaluate the numerosity of arrays of dots. We first evaluate
this prediction in the range of small numerosities 1–8, using
an exact enumeration task in which subjects have to name
the exact numerosity of an array of dots. Verbal counting is
the default strategy for the precise enumeration of objects.
However, numerosities in the range 1–3 can be “subitized”
precisely without counting (Mandler & Shebo, 1982), pre-
sumably because over this range, the quantity representation
is sufficiently precise to be associated with a unique number
word (Dehaene & Cohen, 1994). Thus, the triple-code model
predicts that patient BRI should show spared subitizing, but
that her aphasia would interfere with counting. Conversely,
patient LEC’s quantity impairment should be reflected in a
subitizing deficit.

4.3.1. Method
Patients and control subjects were asked to name as fast as

possible the numerosity of arrays of 1–8 randomly arranged
squares. The squares were white on a black background,
and varied in size from trial to trial, in order to avoid any
confound between numerosity and luminance. A stimulus
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Fig. 6. Performance in subitizing and counting. Median correct reaction times for each correctly identified numerosity for patients and control subjects.

remained on the screen until subjects responded. Ten trials
were presented for each numerosity, for a total of 80 trials.

4.3.2. Controls
Normal subjects performed very well (2.1% errors). Er-

rors affected primarily the largest numerosities (70% of the
errors were on items 7 and 8). The mean correct reaction time
was 1155 ms. As expected, distinct response profiles were
observed over the subitizing range and the counting range
(Fig. 6). From 1 to 3 dots, the response times curve was al-
most flat, with a mean slope of 24 ms per dot (S.D. = 49.6)
suggesting the use of a fast numerosity apprehension pro-
cedure (“subitizing”:Mandler & Shebo, 1982). For larger
quantities, response times increased linearly with numeros-
ity (mean slope 291 ms, S.D. = 85), suggesting the use of
a counting strategy.

4.3.3. Patient BRI
BRI made 6/80 errors (7.5%), thus performing at a lower

level of accuracy than controls (z = 2.04; P < 0.05). As
in normal subjects, BRI’s errors affected trials with a large
number of squares (100% of her errors occurred on items
7 and 8). As usual, BRI was slower than controls (BRI’s
mean RT: 2518 ms;z = 6.87; P < 0.0001) but her subitiz-
ing seemed to be preserved, with a mean slope of 77 ms
per dot for numerosities 1–3, which was non-significantly
slower than normals (z = 1.05, NS). For larger numerosi-
ties, her slope was much steeper (1196 ms per dot;R2 =
0.56; z = 10.7; P < 0.0001) and was significantly slower
than normals (z = 10.69, P < 0.0001). The drop in RT for
the largest numerosity (8) could be attributed to a “guessing
end effect” (Mandler & Shebo, 1982). Thus, BRI’s perfor-
mance indicated a qualitatively normal pattern of subitizing,
but a significant slowness and somewhat elevated error rate
during counting.

4.3.4. Patient LEC
LEC made 2/80 errors (2.5%), both with large numerosi-

ties (6 and 8), thus performing at the same level of accuracy
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as controls (z = 0.15; NS). However, LEC was slower than
controls (3115 ms;z = 9.88;P < 0.0001). Furthermore, she
showed an increase in RTs for numerosities in the range 1–3
(540 ms per dot;R2 = 0.31; P < 0.005) that was signifi-
cantly larger than controls (z = 10.3; P < 0.0001). She also
showed a steep progression of RT as numerosities increased
from 4 to 8 (838 ms per dot;R2 = 0.52; P < 0.001), which
exceeded that of controls (z = 6.5; P < 0.0001). This pat-
tern of response times suggests that LEC did not subitize
small sets of dots, and also was slow in counting.

Butterworth (1999)described a similar case of impaired
subitizing in the patient Charles. However, recent testing of
this patient indicates that when targets were presented very
briefly, he showed a pattern of subitizing similar to nor-
mals (Manuela Piazza, personal communication, September
2002). This suggests that the initial impairment might have
resulted from a lack of self-confidence rather than a genuine
deficit: the patient felt that he had count even for numbers
that he could have subitized. In order to test whether this
procedure would also normalize LEC’s behavior, we pre-
sented 54 arrays of dots varying in numerosity between 1
and 6, each for a short duration (500 ms). LEC made more
errors (24.1%) than in the standard task (2.5%). Crucially,
errors were present even for small numerosities (25% errors
for numerosity 1, where she responded “two”; 33% errors
for numerosity 2, where she responded “three”). Further-
more, LEC did not present the traditional pattern of reaction
times. Her RTs were now flat as a function of numerosity
(slope−30 ms in the range 1–6;R2 = 0.08; NS). Overall,
these results suggest that flashing the dots prevented LEC
from counting and that under those conditions; she made a
large number of errors with small numerosities, confirming
the presence of major subitizing impairment.

4.3.5. Discussion
BRI and LEC presented dissociated patterns of subitiz-

ing. BRI showed normal subitizing but disproportionately
slow counting, consistent with the thesis that counting, but
not subitizing, is bound to verbal processes. BRI’s verbal
impairment reduced her speed of reciting numerals, which
probably explains her slower counting rate. The fact that the
subitizing range was not affected by a similar slowness con-
firms that subitizing relies on a non-verbal estimation pro-
cess (Dehaene & Cohen, 1994; Gallistel & Gelman, 1992;
Mandler & Shebo, 1982; Whalen et al., 1999).

Conversely, LEC showed impaired subitizing, with an in-
crease of 540 ms per item in the 1–3 range. The use of
a control task with fast presentation revealed that this im-
pairment did not result from a lack of self-confidence but
from a genuine deficit in quantification of small numerosi-
ties. Such a deficit may also parsimoniously account for her
slower counting. Normal subjects typically report counting
by small groups of two or three items. Impaired subitizing
would prevent this strategy and oblige patient LEC to count
the items one by one, even if her counting procedure itself
was perfectly intact. The fact that LEC’s counting rate was

two to three times slower than that of controls is consistent
with this hypothesis.

In the literature, a few cases of dissociation between
subitizing and counting have already been described. A pat-
tern of impaired counting and intact subitizing was described
in simultagnosic patients (Dehaene & Cohen, 1994): These
patients with visual impairments associated with parietal
lesions were impaired on counting but showed preserved
subitizing. Conversely, impairments in subitizing have been
described only twice. In the first case (Butterworth, 1999), as
described above, the authors discovered a posteriori that the
results normalized when a very fast presentation was used.
The second case (Cipolotti, Butterworth, & Denes, 1991)
is a patient with severe acalculia and a complete inability
to process numbers above 4. Even below this limit, she did
not succeed in saying how many dots were presented on a
screen unless she could count verbally using finger pointing.
It could thus be argued that both subitizing and counting
were severely impaired. Patient LEC’s results suffer from
the same problem—and indeed, as argued above, it is likely
that any impairment in subitizing would also impact on the
speed of counting a larger number of items. Furthermore,
LEC’s results need to be interpreted cautiously given the
presence of simultagnosia on clinical testing, which may
also contribute to slower counting. Nevertheless, the pres-
ence of a subitizing deficit in patient LEC is supported by
fine-grained response time data (a very elevated slope of
540 ms per item) as well as errors on even the simplest dis-
plays when the stimuli were flashed.

Overall, the finding that subitizing may or may not be
impaired in two patients with superficially similar counting
behavior confirms that these two quantification processes
are distinct (Dehaene & Cohen, 1994; Gallistel & Gelman,
1992; Mandler & Shebo, 1982; Whalen et al., 1999), and
refute models that view them as lying on a single continuum
of difficulty (Balakrishnan & Ashby, 1992). The relation
between counting and subitizing is likely to be more complex
that a simple relation of continuity: counting is facilitated
by the ability to subitize small groups of items, but also
calls on specific processes of verbal recitation and attention
orientation that are not required for subitizing (Piazza et al.,
2003).

4.4. Comparison and addition of quantities

As a final evaluation of our hypothesis, we evaluated the
patients’ ability to process large approximate numbers in
symbolic and non-symbolic form. We presented numbers
between 11 and 99, either as two-digit Arabic numerals, or
as a cloud of dots that could not be precisely enumerated.
The patients either had to compare two such numbers, or to
compute an approximate addition on two such numbers and
compare its result to a third number. We predicted that LEC
would be severely impaired on all such tasks, consistent with
her hypothesized impairment in the quantity representation.
BRI, on the other hand, was predicted to perform normally
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since her verbal impairment was not expected to impact on
the evaluation and comparison of approximate quantities.

4.4.1. Method
The two patients and the control subjects were given

two experimental tasks (simple comparison and addition
+ comparison), each with two formats of stimuli (Arabic
numerals and arrays of dots), resulting in a total of four ex-
periments.

In the simple comparison task, subjects were first pre-
sented with a number presented in yellow displayed for
400 ms, followed by a second number presented in light
blue for 400 ms (e.g. 34 followed by 67). Subjects had to
choose the larger of the two numbers. They were instructed
to respond using a right-hand key if the blue number was
larger and a left-hand key if the yellow number was larger.
In 50% of trials the larger number was presented first. The
two numbers were selected pseudo-randomly with the fol-
lowing constraints: (1) the first number was between 23 and
49 and the second between 11 and 99; (2) tens (20, 30, etc)
were excluded from the stimulus set in order to discourage
exact symbolic calculation; (3) on equal numbers of prob-
lems, the ratio of the two numbers was about 1.3, 1.5 or 2.
Our goal with this manipulation was to measure the psycho-
metric curve for discrimination and derive the Weber frac-
tion for each subject, but since this test was taken only once,
the data were not sufficient for this calculation.

The addition+ comparison task was derived from the
simple comparison task by dividing the first quantity into two
successively presented numbers, both displayed in yellow
color for 400 ms. The blue number was then presented as in
the simple comparison task (e.g. 12, then 22, followed by
67). Subjects had to decide whether the sum of the yellow
numbers was larger or smaller than the blue number, and
they responded following the same method as in simple
comparison.

In the non-symbolic version of the tasks (arrays of
dots), precautions were taken to prevent confounds with

Fig. 7. Sample stimuli for the non-symbolic number tasks. Panels A and B show stimulus pairs for the comparison task, at a Weber ratio of 1.5
corresponding to the medium level of difficulty used in the test. Panel C shows a typical stimulus pair for the addition+ comparison task.

non-numerical variables. The visual parameters that we
took into account were dot size, density, total luminance and
total occupied area (for examples, seeFig. 7). Each visual
parameter was congruent with numerosity on half of the
trials and incongruent with numerosity on the other trials.
Thus, subjects could not consistently base their responses
on any parameter other than numerosity.

4.4.2. Controls
The performance of controls and patients is summarized

in Figs. 8 and 9. Tasks with dots produced higher error
rates than tasks with Arabic digits (F(1, 27) = 59.78; P <

0.0001). Simple comparison and addition+ comparison
were similar in difficulty (F(1, 27) = 0.1; NS). The inter-
action between task and format also was non-significant
(F(1, 27) = 0.01; NS).

The reaction times analysis presents a different pattern:
a significant task effect (F(1, 27) = 6.72; P < 0.05), no
significant format effect (F(1, 27) = 3.36; NS) and a highly
significant interaction (F(1, 27) = 25.28;P < 0.001). In the
Arabic format, the addition+ comparison task was slower
than the simple comparison task.

4.4.3. Patient BRI
BRI’s error rates did not differ from controls in any of the

four experimental conditions (allP > 0.1), and the effects
of task, format, and their interaction also did not differ. BRI
was significantly slower than controls overall (z = 6.15;
P < 0.0001;n = 28). This betrayed only a global slowness
however, since the effects of task, format, and their interac-
tion did not differ between BRI and controls (allP > 0.1).

4.4.4. Patient LEC
LEC made many errors in all four tasks (Fig. 8). Her per-

formance was significantly worse than controls (z = 6.51;
P < 0.0001;n = 28), although the effects of task, format,
and their interaction did not differ (allP > 0.5). Most strik-
ingly, LEC was essentially at chance on the tasks with dots,



1954 C. Lemer et al. / Neuropsychologia 41 (2003) 1942–1958

Fig. 8. Error rates in symbolic and non-symbolic numerical tasks.

and severely impaired with Arabic digits. In both cases, per-
formance was approximately equally bad at all levels of the
ratio between the targets numbers. LEC was also signifi-
cantly slower than normal subjects (z = 11.55;P < 0.0001;
n = 28). However, the slowing was not equivalent across
the tasks (interactionz = 6.37; P < 0.0001;n = 28). LEC
was slower in the addition+comparison task and this effect
was larger than in controls (z = 11.7; P < 0.0001;n = 28).
Moreover, as shown onFig. 9, there was an exaggerated
slowing of responses for Arabic stimuli in the patient rela-
tive to controls (interaction z=5.43;P < 0.0001;n = 28).

4.4.5. Discussion
As in the previous quantity processing tasks, patient BRI

showed slow but otherwise normal performance. Patient
LEC, in contrast, presented an abnormal pattern of perfor-
mance with a high rate of errors and very slow RTs, par-
ticularly with Arabic digits. LEC performed at chance on
comparing dot patterns, and her slow and error-prone per-
formance with Arabic digits suggests that she lacked any

Fig. 9. Median correct response time in symbolic and non-symbolic numerical tasks.

intuition of numerical quantity relations and had to resort to
complex strategies.

5. General discussion

5.1. Summary of BRI and LEC’s results

In simple arithmetic, the aphasic patient BRI presented
a severe deterioration of multiplication fact retrieval (78%
errors) with a significantly better ability to subtract (17%
errors). Tests of exact and approximate calculation revealed
an impairment in exact addition with large problems (33%
errors) but normal performance on large approximate addi-
tion. Finally, with arrays of dots, BRI showed normal perfor-
mance both in subitizing small numbers and in comparing
and calculating with large quantities, but severely showed
performance in tasks requiring verbal counting. Conversely,
patient LEC, who presented with Gerstmann’s syndrome,
showed a moderate impairment in subtraction (19% errors),
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with a significantly better ability for multiplication (6% er-
rors). Although error rates in tests of exact and approximate
calculations were low (<10%), LEC was drastically slower
in approximation and claimed that she resorted to exact cal-
culation followed by comparison to perform the approxima-
tion task. With dot arrays, she gave evidence of impaired
subitizing: she enumerated small sets using a slow but ac-
curate serial counting procedure. Finally, she exhibited high
error rates in comparing and calculating with large quanti-
ties of dots.

5.2. Two distinct patterns of acalculia

The goal of our paper was to identify two distinct clus-
ters of deficits (“associations of dissociations”) that could
be predicted from the hypothesis of a basic distinction be-
tween verbal and quantity systems for number processing.
Our results provide support for this approach.

A first cluster of deficits was observed in patient BRI.
In a nutshell, we found impaired multiplication, associated
with a relative preservation of subtraction and, more gener-
ally, of quantity knowledge in symbolic and non-symbolic
tasks. Similar evidence for a relative sparing of elementary
numerical abilities has been reported before in other pa-
tients with semantic dementia and aphasia (Cappelleti et al.,
2001; Grafman et al., 1989; Pesenti et al., 1994). Patient
BB (Pesenti et al., 1994) showed early-onset dementia with
moderate deficits in language, memory and intellectual func-
tions together with strong impairments in calculation. Like
BRI, BB showed a relative preservation of quantity-based
operations, with a dissociation between multiplication (57%
errors), addition (33% errors), and subtraction (8% errors).
Even more strikingly, patient IH (Cappelleti et al., 2001)
showed a total preservation of number semantics in the con-
text of a severe semantic dementia for other domains of
words knowledge. Again, subtraction was much better than
multiplication (5% versus 27% errors), and symbolic tasks
(bisection of numbers, comparison of magnitude from Ara-
bic numbers) as well as non-symbolic tasks (comparisons
of sets of dots) were preserved.

The presence of dementia raises the question whether such
patients might merely show greater deficits for the more
difficult tasks. At least for patients BRI and GC (Grafman
et al., 1989), this explanation can be rejected. Patient BRI
was not systematically more impaired on tasks that were also
more difficult for the controls. She showed difficulties even
in tasks that were very easy for the controls, such as counting
or exact calculation with small items, and she performed
well on some tasks that were judged more difficult such as
approximate calculation. The double dissociations observed
between patients BRI and LEC on the same tasks confirm
that task difficulty alone cannot explain BRI’s cluster of
results.

We propose instead that BRI’s pattern of impairment can
be understood in terms of the basic distinction between the
specifically human verbal system of number representation

and an evolutionarily older non-verbal quantity system. The
present evidence supplements existing data in babies and
animals by showing that a whole set of tasks (approximate
addition, subtraction, and comparison of sets) are, to a large
extent, independent of language and exact number knowl-
edge. BRI’s case illustrates how one can be severely acal-
culic, to the point of not being to calculate 3× 4, and yet
remain as accurate as controls in judging whether one large
set plus a second set is smaller or larger than a third set.

A different cluster of deficits was observed in patient LEC.
This patient was unable to perform very easy numerical tasks
such as subitizing 2 or 3 dots, or comparing the numerosi-
ties of two arrays of dots differing in a ratio of 2:1 (36 ver-
sus 72 dots). This dramatic loss of quantity processing was
coincident with a moderate deterioration of subtraction, as
predicted by the triple-code model, while multiplication was
performed at the same level as control subjects. Patient LEC
suggests that reading and writing numbers, counting, and
retrieving arithmetic facts from memory can be preserved
in the face of profound deficits in the basic manipulation of
small and large quantities.

Patient LEC suffered from a parietal lesion and
Gerstmann’s syndrome, but also showed clinical signs of
associated visual impairments (simultagnosia). Thus, her
results need to be interpreted cautiously, as there is a pos-
sibility that some of her impairments were due to visual
rather than quantity-based deficits. We doubt, however, that
visual factors alone can explain LEC’s cluster of deficits,
because LEC was impaired even in tasks requiring no overt
or covert spatial movement of gaze or attention, such as
subitizing, which has been shown often to be preserved in
simultagnosia (Dehaene & Cohen, 1994). Visual deficits
might have contributed to LEC’s difficulties in comparing
large sets of dots, but they cannot explain that she was also
severely impaired when the same task was performed with
Arabic digits, or that the approximate calculation task was
more impaired than the exact version, even though the two
tasks used nearly identical visual stimuli. These arguments
suggest that visual difficulties played only a limited role
in LEC’s impairment, although they may have contributed
to her chance performance in the non-symbolic tasks with
large displays of dot patterns. Further work should try
to better disentangle visual and quantity-based factors by
varying the stimulus displays, for instance using visual ver-
sus auditory stimuli (Barth et al., 2003), and by attempting
to find formal parallels between deficits in symbolic and
non-symbolic operations (for instance as a function of the
Weber fraction), thus reducing the probability that their
association could be due to two unrelated impairments.

Several single cases with a more severe impairment
of subtraction than multiplication, have been described
(Dehaene & Cohen, 1997; Delazer & Benke, 1997; van
Harskamp & Cipolotti, 2001; van Harskamp et al., 2002).
Like patient LEC, all of them suffered from left parietal
lesion or atrophy, and all but one were reported to present
Gerstmann’s syndrome. Particularly interesting is the case
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of JG, a patient ofDelazer and Benke (1997)who could re-
solve simple multiplications with few errors (8% errors) but
who seemed unable to understand the meaning of the num-
bers or operations involved. Similarly,Dehaene and Cohen
(1997) described patient MAR who could still multiply
but failed in tasks of number comparison, approximation,
and bisection of numerical intervals. Compared to those
earlier cases, the study of patient LEC adds an important
new set of non-verbal tasks with arrays of dots similar to
those used in infants and animals, and that reveal striking
impairments. Such tasks provide simple indicators that can
be used profitably in neuropsychological research.

5.3. Anatomical correlations

Concerning the anatomy of number processing, the
present observations fit relatively well with the hypotheses
of the triple-code model. Verbal acalculia (patient BRI) was
associated with a left-hemispheric atrophy more marked
around the left temporal language areas. Quantity impair-
ments (patient LEC) were associated with a lesion centered
on the intraparietal sulcus.

However, one complication concerns the lateralization
of quantity representations. The triple-code model postu-
lates a redundancy of quantity representations in the left
and right parietal lobes. This is based on two observations:
the bilateral parietal activations that are generally observed
in neuroimaging of number processing tasks (Dehaene
et al., 1999), and the fact that a single disconnected right
hemispheric can perform elementary quantity-based tasks
(Seymour, Reuter-Lorenz, & Gazzaniga, 1994). The model
therefore predicts that only a bilateral or diffuse cerebral
lesion should cause extended difficulties in quantity pro-
cessing, whereas LEC presented only a left parietal lesion.
Why was her putative right-hemisphere quantity representa-
tion not sufficient to perform the requested quantity tasks?
A similar issue was raised for patients CG (Cipolotti et al.,
1991) and MC (Polk et al., 2001), two cases with broad nu-
merical impairments due to a unilateral left parietal lesion.

One should first note that, in the absence of direct func-
tional neuroimaging evidence, we cannot exclude a dys-
function of the right parietal lobe. The deafferentation of
the right parietal lobe following the degeneracy of callosal
fibers from the lesioned controlateral parietal lobe may
cause distant dysfunction, a “diaschisis” which might have
been revealed by SPECT or PET examinations. Note that
the patient’s MRI showed relatively diffuse white matter
hyperintensities that may have favored such deafferenta-
tion processes. Furthermore, patient LEC did suffer from a
small occipital hemorrhage that occurred after the parietal
lesion and the associated acalculia, but before the present
experimental study, a lesion that may or may not play a
functional role in the present observations.

Another interpretation relies on inter-subject variability.
The capacities of the right hemisphere may differ across indi-
viduals, and some may be strictly left-lateralized for numer-

ical processing. Such inter-individual variability is not ap-
parent in most neuroimaging studies, which average across
a group of subjects. Chochon et al.’s fMRI study (Chochon
et al., 1999) was designed to study the implication of the left
and right parietal lobes in tasks of digit naming, comparison,
multiplication and subtraction. Some inter-individual differ-
ences were noted. Five subjects showed a clearly bilateral
pattern of activation in the vicinity of the intraparietal sul-
cus, but three subjects showed significant activation only in
the left intraparietal region. Perhaps patient LEC was more
similar to the latter subjects premorbidly. Such a hypoth-
esis might explain the differences between patients MAR
(Dehaene & Cohen, 1997) and LEC. Although such a com-
parison is complicated by the fact that MAR was left-handed,
suffered from a unilateral right parietal lesion, and thus
seems to have been cross-lateralized, both MAR and LEC
presented Gerstmann’s syndrome and a greater impairment
for subtraction than for multiplication. Patient MAR was
impaired when the quantities were presented in verbal or in
Arabic digits, while he performed much better when the in-
put was non-symbolic. Patient LEC presented impairments
in quantity manipulation regardless of the input format. One
explanation could be the presence, in MAR but not in LEC,
of a rich quantity representation in the non-dominant hemi-
sphere.

A final element of note is that, even within the triple-code
model, the left and right parietal lobe representations of
quantity arenot equivalent. Both are involved in manipu-
lating quantity information, but only the left parietal region
provides a direct interconnection of the quantity representa-
tion with the linguistic code (Dehaene & Cohen, 1995). This
may explain the greater severity of acalculia following a left
parietal lesion. In order to tap purely on quantity processing,
we attempted to design tasks that were strictly non-verbal
and were inspired from the infant and animal literature, such
as the task of selecting the larger of two sets of dots, or of
adding two such sets. Nevertheless, instructions for those
tasks were given verbally, and we cannot exclude that a sig-
nificant component of verbal working memory or some other
verbal mediation contaminated our results. In that respect,
the quantity processing capacities of the right hemisphere
may be easier to evidence in cases of callosal disconnec-
tion (Seymour et al., 1994) or large left-hemispheric lesion
(Cohen & Dehaene, 1991; Grafman et al., 1989), than in
patients with focal left parietal damage. We have often seen
that, in the latter cases, attempts at verbalizing the operation
actually impede successful performance.

6. Conclusion

The main contribution of the present work is to begin the
exploration of acalculia using non-symbolic quantity pro-
cessing tasks of subitizing, approximation and comparison.
We suggest that such tasks cluster in a theoretically co-
herent manner with other deficits such as multiplication or
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subtraction impairments. Of course, an association of
deficits is more difficult to prove than a dissociation, and
cannot firmly established on the basis of only two cases.
Further studies should evaluate the proposed associations
with a large series of cases, and also establish the range of
inter-individual variability in number processing.
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