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Résumé – Bases neuronales de binding dans des représentations
symboliques

Le travail présenté dans cette thèse fait partie d’un programme de recherche qui vise à comprendre comment le cerveau
traite et représente les structures symboliques dans des domaines comme le langage ou les mathématiques. L’existence de
structures composées de sous-éléments, tel que les morphèmes, les mots ou les phrases est très fortement suggérée par les
analyses linguistiques et les données expérimentale de la psycholinguistique. En revanche, l’implémentation neuronale
des opérations et des représentations qui permettent la nature combinatoire du langage reste encore essentiellement
inconnue. Certaines opérations de composition élémentaires permettant une représentation interne stable des objets
dans le cortex sensoriel, tel que la reconnaissance hiérarchique des formes, sont aujourd’hui mieux comprises[120].
En revanche, les modèles concernant les opérations de liaisons(binding) nécessaires à la construction de structures
symboliques complexes et possiblement hiérarchiques, pour lesquelles des manipulations précises des composants doit
être possible, sont encore peu testés de façon expérimentale et incapables de prédire les signaux en neuroimagerie.

Combler le fossé entre les données de neuroimagerie expérimentale et les modèles proposés pour résoudre le
problème de binding est une étape cruciale pour mieux comprendre les processus de traitements et de représentation des
structures symboliques. Au regard de ce problème, l’objectif de ce travail était d’identi�er et de tester expérimentalement
les théories basées sur des réseaux neuronaux, capables de traiter des structures symboliques pour lesquelles nous avons
pu établir des prédictions testables, contre des mesures existantes de neuroimagerie fMRI et ECoG dérivées de tâches de
traitement du langage.

Nous avons identi�é deux approches de modélisation pertinentes. La première approche s’inscrit dans le
contexte des architectures symboliques vectorielles (VSA), qui propose une modélisation mathématique précise des
opérations nécessaires pour représenter les structures dans des réseaux neuronaux arti�ciels. C’est le formalisme
de Paul Smolensky[172], utilisant des produit tensoriel (TPR) qui englobe la plupart des architectures VSA
précédemment proposées comme, par exemple, les modèles d’Activation synchrones[170], les représentations réduites
holographique[158], et les mémoires auto-associatives récursives[35].

La seconde approche que nous avons identi�ée est celle du "Neural Blackboard Architecture" (NBA), développée par
Marc De Kamps et Van der Velde[187]. Elle se démarque des autres en proposant une implémentation des mécanismes
associatifs à travers des circuits formés par des assemblages de réseaux neuronaux. L’architecture du Blackboard
repose sur des changements de connectivité transitoires des circuits d’assemblages neuronaux, de sorte que le potentiel
de l’activité neurale permise par les mécanismes de mémoire de travail après un processus de liaison, représente
implicitement les structures symboliques.

Dans la première partie de cette thèse, nous détaillons la théorie derrière chacun de ces modèles et les comparons,
du point de vue du problème de binding. Les deux modèles sont capables de répondre à la plupart des dé�s théoriques
posés par la modélisation neuronale des structures symboliques, notamment ceux présentées par Jackendo�[99].
Néanmoins, ces deux classes de modèles sont très di�érentes. Le TPR de Smolenky s’appuie principalement sur des
considérations spatiales statiques d’unités neurales arti�cielles, avec des représentations explicites complètement
distribuées et spatialement stables mises en œuvre par des vecteurs. La NBA en revanche, considère les dynamiques
temporelles de décharge de neurones arti�ciels, avec des représentations spatialement instables implémentées par des
assemblages neuronaux.

Dans la deuxième partie de la thèse, nous testons empiriquement le principe de superposition qui stipule que l’activité
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associé à une structure est la somme des activités de ses parties. Ceci est une des hypothèses les plus cruciales du
TPR de Smolensky. A�n d’obtenir un ensemble de données pertinent pour tester ce principe, nous avons créé une
expérience IRMf dans laquelle les participants lisaient ou entendaient des pseudomots composés de deux syllables CV.
Nous avons employé un approche de décodage de l’activité BOLD a�n d’analyser comment ces bisyllabes sont encodées
dans diverses régions cérébrale. Nous avons obtenu de bon scores de classi�cation dans certaines régions sensorielles et
nous avons reproduit des e�ets connus, tel que les représentations semi-locales superposées induites par la rétinotopie.
Dans le cas des régions auditives, nous avons trouvé un faible évidence en faveur de la superposition dans les zones
supérieures dans la hiérarchie de traitement auditif. Nous avons montré que la classi�cation des items bi-syllabiques
dans les régions 44 et 45 de Broca etait signi�cative et que l’ensemble de ces régions montrait des preuves en faveur de
la superposition.

De plus, nous avons trouvé des résultats qui militent contre l’existence de représentations superposées dans la zone
de la forme visualle des mots (VWFA), ce qui est cohérent avec les recherches antérieures sur la représentations de
mots entiers dans cette région[75]. Nous avons également véri�é qu’il était possible de décoder les représentations
auditives dans la VWFA, suggérant que cette région est impliquée aussi bien dans le traitement de la parole que des
mots écrits[205]. Toutefois, un résultat surprenant a été l’absence totale de généralisation des modèles de décodage
utilisés d’une modalité sensorielle à une autre. Ce maque de généralisation pourrait être interprété comme un manque de
sensibilité dû à la variabilité du signal des représentations, ou encore comme l’absence de représentations amodales pour
un pseudo-mot bi-syllabique simple. En dehors des zones sensorielles, nous avons observé dans la plupart des régions
avec des scores de classi�cation signi�catifs, une variabilité extrême des scores de précision pour des items individuels,
de sorte que peu d’entre eux avaient des scores particulièrement élevés, alors que la plupart restaient de façon uniforme
à un niveau de chance. Ce pattern particulièrement précis pourrait s’expliquer par le manque de parcimonie et la faible
variabilité dans la distribution spatiale des valeurs des vecteurs neuraux sous-jacents aux représentations neuronales,
pour lesquels nous n’avons par chance, capturé quelques segments déviants. Au regard de ces résultats, nous pensons
qu’il serait intéréssant dans une perspectives future de tester le principe de superposition avec des signaux BOLD, en
utilisant des résolutions spatiales plus élevées comme celles obtenues par des techniques récentes telles que l’IRMf
laminaire[111].

Nous nous sommes également intéressés à la dynamique temporelle des liaisons qui pourrait être détectée dans les
mesures de neuro-imagerie IRMf et ECoG. Etant donné que le TPR de Smolensky n’a pas de prédictions particulières
sur la dynamique temporelle neurale ou sur les décharges neuronales biologiques, nous nous sommes focalisés sur
les prédictions de la NBA. Dans la deuxième partie de la thèse, nous avons créé une nouvelle implémentation de la
NBA basée sur les techniques de densité de population, qui nous a permis de faire des prédictions temporelles de haute
résolution de la dynamique neurale liée au processus de liaison. Une partie importante de ce travail a été réalisée en
collaboration avec Marc De Kamps.

Nos simulations s’appuient sur la dynamique des modèles de point de décharges des neurones : Les neurones qui
Leaky-integrate-and-re (LIF) et adaptive-exponential-integrate-and-re (AdEx). Plutôt que de simuler des milliers de
neurones en décharges, nous avons utilisé des techniques de densité de population (PDT) pour modéliser la dynamique
au niveau de la population. Bien que liée aux modèles basés sur les taux de décharge, pour les PDTs la correspondance
avec les quantités de population moyennées de neurones en décharge peut être montrée rigoureusement. En particulier,
nos simulation montrent que les dynamiques transitoires sont capturées avec plus de précision par les PDT que par les
modèles basés sur les taux de décharge. Le contraste entre les modèles LIF et ADEx nous ont permis de démontrer que,
bien qu’ils ne soient pas di�érenciés par la dynamique moyenne, leur paramétrisations ont de fortes implications pour
le timing et le contrôle des événements de traitement des phrases.

Nous montrons que notre implementation de l’architecture NB, avec des paramètres réglés unqiauement pour
répondre à des contraintes opérationnelles, reproduit qualitativement les pro�ls d’activités neuronales de deux
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expériences de neuro-imagerie, utilisant l’EcoG[141] et l’IRMf[153], et mettant en oeuvre des opérations de binding
linguistique. En même temps que la �exibilité partiellement explorée de la NBA pour représenter des structures d’arbres
binaires arbitraires et des schémas d’analyse, ces résultats en font un outil prometteur pour l’exploration des hypothèses
linguistiques et une prise en compte quantitative subtile des mesures de neuroimagerie multi-échelles.
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Summary – Neural bases of variable binding in symbolic representations
The aim of this thesis is to understand how the brain computes and represents symbolic structures, such like those

encountered in language or mathematics. The existence of parts in structures like morphemes, words and phrases
has been established through decades of linguistic analysis and psycholinguistic experiments. Nonetheless the neural
implementation of the operations that support the extreme combinatorial nature of language remains unsettled. Some
basic composition operations that allow the stable internal representation of sensory objects in the sensory cortex,
like hierarchical pattern recognition, receptive �elds, pooling and normalization, have started to be understood[120].
But models of the binding operations required for construction of complex, possibly hierarchical, symbolic structures
on which precise manipulation of its components is a requisite, lack empirical testing and are still unable to predict
neuroimaging signals.

In this sense, bridging the gap between experimental neuroimaging evidence and the available modelling solutions
to the binding problem is a crucial step for the advancement of our understanding of the brain computation and
representation of symbolic structures. From the recognition of this problem, the goal of this PhD became the identi�cation
and experimental test of the theories, based on neural networks, capable of dealing with symbolic structures, for which
we could establish testable predictions against existing fMRI and ECoG neuroimaging measurements derived from
language processing tasks.

We identi�ed two powerful but very di�erent modelling approaches to the problem. The �rst is in the context of the
tradition of Vectorial Symbolic Architectures (VSA) that bring precise mathematical modelling to the operations required
to represent structures in the neural units of arti�cial neural networks and manipulate them. This is Smolensky’s
formalism with tensor product representations (TPR)[172], which he demonstrates can encompass most of the previous
work in VSA, like Synchronous Firing[170], Holographic Reduced Representations[158] and Recursive Auto-Associative
Memories[35].

The second, is the Neural Blackboard Architecture (NBA) developed by Marc De Kamps and Van der Velde[187],
that importantly di�erentiates itself by proposing an implementation of binding by process in circuits formed by
neural assemblies of spiking neural networks. Instead of solving binding by assuming precise and particular algebraic
operations on vectors, the NBA proposes the establishment of transient connectivity changes in a circuit structure
of neural assemblies, such that the potential �ow of neural activity allowed by working memory mechanisms after a
binding process takes place, implicitly represents symbolic structures.

The �rst part of the thesis develops in more detail the theory behind each of these models and their relationship from
the common perspective of solving the binding problem. Both models are capable of addressing most of the theoretical
challenges posed currently for the neural modelling of symbolic structures, including those presented by Jackendo�[99].
Nonetheless they are very di�erent, Smolenky’s TPR relies mostly on spatial static considerations of arti�cial neural
units with explicit completely distributed and spatially stable representations implemented through vectors, while the
NBA relies on temporal dynamic considerations of biologically based spiking neural units with implicit semi-local and
spatially unstable representations implemented through neural assemblies.

For the second part of the thesis, we identi�ed the superposition principle, which consists on the addition of the
neural activations of each of the sub-parts of a symbolic structure, as one of the most crucial assumptions of Smolensky’s
TPR. To obtain a relevant dataset to test this principle, we created an fMRI experiment where participants perceived
bi-syllabic CVCV pseudoword items in auditory and visual modalities, looking for sensory independent representations,
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and used decoding techniques to analyse how these were encoded in diverse brain regions. We achieved high accuracy
scores in our decoding models for representations in sensory areas and reproduced known e�ects like the superposed
semi-local representations induced by retinotopy. In the case of auditory regions we found weak evidence in favour
of superposition in areas higher in the auditory processing hierarchy. We show that bi-syllabic item classi�cation is
signi�cant in regions 44 and 45 of the Broca’s complex and that the whole complex portrays evidence in favour of
superposition.

Moreover we found evidence against superposed representations in the visual word form area (VWFA), which
is coherent with previous evidence of whole word representations in that region[75]. We also veri�ed that it was
possible to decode auditory representations form the VWFA, providing additional evidence to the literature body
claiming that this region can be modulated by speech as well as reading[205]. We were surprised by a global lack of
generalization from decoding models trained in one sensory modality to the other, which can be either interpreted as a
lack of sensitivity due to variability of the representations signal or as the absence of amodal representations for simple
bi-syllabic pseudowords. We observed in most regions with signi�cant classi�cation scores, outside of sensory areas,
extreme variability in the accuracy scores of individual items, such that few had particularly high scores while most
remained uniformly at chance level. This particular accuracy pattern could be explained by lack of sparsity and low
variability in the spatial distribution of values of the neural vectors underlying the neural representations, for which
we captured only some deviant segments by chance. From this we still think that it would be worth to further test the
superposition principle with BOLD signals but only if taking advantage of higher spatial resolutions as those o�ered by
recent techniques like laminar fMRI[111].

We were also interested in the temporal dynamics of binding which could be re�ected in fMRI and ECoG neuroimaging
measurements. As Smolensky’s TPR do not have particular predictions on neural temporal dynamics or biological
neural spiking, we decided to focus on predictions of the NBA. So for the second part of the thesis we created a new
implementation of the NBA based on population density techniques, that allow us to make temporal high resolution
predictions of neural dynamics linked to the binding process. A large amount of work, done in collaboration with Marc
De Kamps, was needed to actually implement the NBA.

Our simulations are based on the dynamics of spiking point model neurons: leaky-integrate-and-�re (LIF) and
adaptive-exponential-integrate-and-�re (AdEx) neurons. Rather than simulating thousands of spiking neurons, we
use population density techniques (PDTs) to model dynamics at the population level. Although related to rate based
models, for PDTs the correspondence to population-averaged quantities of spiking neurons can be shown rigorously.
In particular transient dynamics are captured more accurately than by rate based models. Contrasting LIF and AdEx
models allowed us to demonstrate that, although they are not importantly di�erentiated by average dynamics, their
parametrization have strong implications for the timing and control of phrase processing events.

We demonstrate that an NBA implementation, only tuned to operational constraints, qualitatively reproduces
the neural activity patterns of at least two neuroimaging experiments involving linguistic binding at di�erent spatio-
temporal scales. With the sole implementation of the binding mechanism we qualitatively reproduce temporal segments
of the neural dynamics of sentence comprehension from intracortical recordings (ECoG) patterns[141]. Our model
also replicates sub-linear patterns of hemodynamic responses caused by phrase constituency manipulations[153] and
produces an alternative hypothesis to explain it, based on the number of binding operations executed during phrase
processing. These results, alongside the partially explored �exibility of the NBA to represent arbitrary binary tree
structures and parsing schemes, makes it a promising tool for linguistic hypothesis exploration and future re�ned
quantitative accounts of multi-scale neuroimaging measurements.
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1 Theories of variable binding

In this chapter we introduce the binding problem in neuroscience.
We also explain two main modelling approaches to the problem, namely
Smolensky’s tensor product representations and the Neural Blackboard
Architecture (NBA).

1.1 Approaching the binding problem in language
neuroscience

The binding problem

We want to understand how the brain computes and represents symbolic
structures, such like those encountered in language. The existence of parts
in structures like morphemes, words and phrases has been established
through decades of linguistic analysis and psycholinguistic experiments.
Nonetheless the neural implementation of the operations that support the
extreme combinatorial nature of language remains unsettled. Some basic
composition operations that allow the stable internal representation of sensory
objects in the sensory cortex, like hierarchical pattern recognition, receptive
�elds, pooling and normalization, have started to be understood[120]. But
models of the binding operations required for construction of complex symbolic
structures on which precise manipulation of its components is a requisite, lack
empirical testing and are still unable to predict neuroimaging signals.

The term binding was introduced into the neuro-scienti�c community
by von der Malsburg[196] during the �rst explorations of neural phase
synchronization. At this �rst stages of the study of binding, the term was
really being used to study “feature binding”, which just consists on association
of concepts to form an object internal representation that will not have its
properties confused with another object. An example would be to not confuse
the colors of a "blue square" and a "red circle" presented together on a screen.
Binding was also motivated by the empirical discovery of the distributed and
segmented encoding of features along the cortex. For example color and shape,
in the case of vision, are robustly integrated during perception, but can be
independently impaired by brain damage, which implies that the two features
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are represented independently in the cortex, even though we perceived them
in unity.

If we consider the binding problem in generality, as presented by
Feldman[65], it has several sub-problems from which “feature binding” is
one of them. The current work is motivated instead by the “variable binding”
sub-problem. Feldman[65] presents “variable binding” as an abstract high
level cognitive faculty, mainly required by symbolic thought. As explained by
Marcus et al.[120], it consists on creating a transitory link between two pieces
of information: a variable (like Z in a equation, or a placeholder like noun in a
phrase) and an arbitrary instantiation of that variable (like a number to replace
Z in the equation, or a word that corresponds to the noun placeholder). It goes
beyond the extensively studied sensory, attention and short-term memory
phenomena of “feature binding”, that only require appending features to a bag
or set, to avoid confusion with other simultaneous representations.

The need for “variable binding” is to run logical inference on data structures
that encode relationships between their items. For example the sentence “Mary
owns a book" allows to establish a relation of the type own(Mary, book) that
implies owner(book, Mary), such that we can later ask the question “Who owns
this book?”, which would not be answerable under a simpler “feature binding”
mechanism that would just confuse the three words in a bag as just belonging
to the same group. To implement this in language, most linguistic theories
propose that there are types of words, named grammatical categories, like
’noun’ and ’verb’, that are instantiated during sentence comprehension to be
combined under a �nite set of constraints. These instantiated word types
would point to each other to form a graph data structure, a tree, on which
query and join operations can be performed, and they would also point to their
corresponding speci�c words. Then solving “variable binding” in language,
requires a biologically feasible implementation of a pointer mechanism that
can link instantiated grammatical categories and their corresponding words.
For the rest of this work, whenever we use the term binding for simplicity, we
will really be referring to the more speci�c “variable binding” sub-problem.

Additional challenges for the neural implementation of
language processing

In "Foundations of Language", Jackendo� presents four important challenges
that any proposal for the neural implementation of language processing must
face[98], from which “variable binding” is only one of them. These challenges
are the massiveness of binding, the problem of 2, the problem of variables
(“variable binding”) and the short and long term encoding problem.

The massiveness of binding is related to the combinatorial explosion that is
encountered in symbolic structures like language, suggesting the impossibility
to store in advance all combinations in memory. The problem of 2 is related to
the representation of the same component, for example the same word, in the
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same structure but with a di�erent purpose or meaning, for example to denote
two di�erent objects. A concrete example would be the word "ball" in "the
blue ball and the red ball". The problem of variables is to propose a mechanism
to manipulate a symbolic structure to extract partial information from it, for
example to ask "where did the children go?" and extract "the park" from the
sentence "the children went to the park". The short and long term memory
encoding problem is related to the fact that the brain has to be able to represent
in short term memory transitory new formed structures to perform certain
cognitive operations, as well as structures that will be stored and retrieved from
long term memory. It is necessary to explain how both mechanisms operate
together to completely account for the encoding of symbolic structures.

The basic properties of any model considered must at least be able to
answer Jackendo�’s challenges, besides providing the neural mechanism to
instantiate symbolic representations and perform binding.

Summary of models identified to approach the binding problem

We identi�ed two powerful but very di�erent modelling approaches to
the problem. The �rst is in the context of the tradition of Vectorial
Symbolic Architectures (VSA) that bring precise mathematical modelling
to the operations required to represent structures in the neural units of
arti�cial neural networks and manipulate them. This is Smolensky’s formalism
with tensor product representations (TPR)[172], which he demonstrates can
encompass most of the previous work in VSA, like Synchronous Firing[170],
Holographic Reduced Representations[158] and Recursive Auto-Associative
Memories[35].

The second, is the Neural Blackboard Architecture (NBA) developed by
Marc De Kamps and Van der Velde[187], that importantly di�erentiates itself
by proposing an implementation of binding by process in circuits formed by
neural assemblies of spiking neural networks. Instead of solving binding by
assuming precise and particular algebraic operations on vectors, the NBA
proposes the establishment of transient connectivity changes in a circuit
structure of neural assemblies. The potential �ow of neural activity allowed by
working memory mechanisms after a binding process takes place, implicitly
represents symbolic structures.

Both modelling approaches considered in this work, namely Smolensky’s
tensor framework and the Neural Blackboard Architecture, satisfy Jackendo�’s
challenges[98].

1.2 Smolensky’s tensor product representations
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The integrated connectionist/symbolic cognitive architecture
(ICS)

In the Harmonic Mind[172], Smolensky presents an integrationist view of
the current theoretical approaches to model cognition. On one hand, the
brain architecture seems to be best represented by a purely connectionist
approach, in which interconnected neural units parallely process vectorial
representations. On the other hand, symbolic architectures and computation
has been behind the most successful models to explain the mind and its
related behaviors[160; 84; 170; 158; 35]. These two di�erent approaches have
been put at odds by the eliminativists, that claim we do not need anything
besides purely connectionist models to account for cognition. On the other
hand the implementationalists claim we only need symbolic computation to
develop cognitive theories. Smolensky argues instead for what he calls a
split-level architecture, in which the highest symbolic computational provides
functionally relevant structure, while the lowest connectionist computational
level provides physically relevant structures.

Similar to a previous proposal of Marr[122] called the Purely Symbolic
Architecture (PSA), Smolensky provides a framework on which, with
tensor algebra in his case, the gap between the connectionist and symbolic
levels is �lled to explain all aspects of symbolic thought in cognition.
This is accomplished by establishing an equivalence or isomorphism
between the constituents in symbolic and vectorial representations. Also
a correspondence is established between tensor algebraic operations and
algorithms implementable in feed-forward and symmetric recursive neural
networks. This isomorphism is then codi�ed in what Smolensky refers to as
tensor product representations.

Representations Principle of ICS and implementation of basic
tensor product representations

The main assumption of the representation principle in ICS is that cognitive
representations are implemented by widely distributed neural activity patterns
(activation vectors), which have a global structure that can be described with
the discrete data structures of symbolic cognitive theory. Three basic structural
operations are proposed to act on the symbols or constituents of symbolic
structures: combination by superposition, variable binding by tensor products
and embeddings with recursively de�ned role vectors.

Combinations by superposition mean that parts of a structure are
represented by vectors with the same dimension, that are then simply added
together to create the complete structure vector, as illustrated for the phonemes
of the word "cat" in Figure 1.1.

This addition operation raises the question of how complete information
about individual components can be extracted from the �nal vectorial structure.
In particular there is an issue to determine order of the constituents, because
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Figure 1.1: Superposition
illustration from Smolensky’s
Harmonic Mind: This plot was
taken from Smolensky’s Harmonic
Mind. It illustrates the neural
activation vectors corresponding
to the bindings of each of the
phonemes of the word "cat", such
that their sum would constitute
the activation vector of the word
according to the superposition
principle. Phonemes are considered
as Fillers and node positions in the
structure tree as Roles

addition is a commutative operation. To address this issue Smolenky proposes
that each constituent is formed by the binding, through a tensor product, of a
symbol or content vector, called a Filler, with a slot of the complete symbolic
structure called a Role.

The idea of Role vectors is similar to the notion of "frame" introduced by
Minsky in 1975[135], which corresponds to the assignment of a �xed set of
atomic elements to a �xed set of atomic roles. The nature of the Role vectors
could be based on positional roles that denote absolute coordinates of a graph
structure, like a vector representing the second node of the left branch in a tree.
Alternatively they could be based on contextual roles, such that properties are
bound together, like if we had the tensor product of an Adjective and a Noun
to denote that the Adjective modi�es the speci�c Noun. How we de�ne the
roles that will be part of the binding of a symbol is an open question. Currently
positional roles are considered as a plausible explanation for the tree node
positions of syntactic trees, while contextual roles are considered plausible to
bind semantic concepts to relevant semantic contexts.

By assuming linear independence between the Filler vectors and between
the Role vectors, it is possible to secure perfect recovery of a Filler vector
by computing the inner product of the corresponding Role vector with the
complete structure vector. It is also possible then to recover Role vectors by
the inner product of their bound Filler vectors. Nonetheless if the same Filler
is bound to more than one Role, like the word "star" in the sentence "The big
star above the small star", the linear combination of all the respective Roles
would be retrieved instead of a speci�c one.
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Enforcing linear independence importantly restricts the amount of neural
units necessary to be greater than the number of concepts encoded and not
enforcing it would create intrusion, where the extracted Filler vector will also
contain a linear combination of all other Filler vectors. Nonetheless there
is a graceful degradation of the encoded representations with the degree of
dependency of the Role or Filler vectors, that degrades as the square root of N
for the N dimensional space given by N neural units. The expected intrusion
(EI) has the form given in Equation 1.1. This graceful degradation also implies
a graceful saturation of a connectionist network of �xed size with N neural
units, such that the exact most conservative estimate of the expected total
magnitude of intrusions for m bindings also grows as the square root of N.

EI =

√
2

π(N − 1)
(1.1)

The mathematical form of a tensor product representation is provided in
Equation 4.1. In Figure 1.2 we illustrate the tensor product of a Filler and a
Role vector, which operates in a similar way to an outer product, multiplying
each item of the �rst vector by each item of the second vector to determine
the value of the neural units.

Structure = Filler1 ⊗ Role1 + ... + Fillern ⊗ Rolen (1.2)

Figure 1.2: Tensor product
illustration: The tensor product
operates like the outer product
of a Role and a Filler vector, of
dimensions 4 and 3 respectively
in the �gure. Then each neural
unit in the resulting binding neural
activation vector, of dimension 12 in
this case, encodes the multiplication
of one component of the Role by
one component of the Filler. The
neural activation vectors of multiple
bindings would be summed
according to the superposition
principle.

another important property of Role vectors is that they permit the de�nition
of recursive embeddings. Hierarchical tree structures, as those proposed by
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phrase grammars in language, require de�nition of roles at each level of the
proposed trees and need to have the �exibility to implement as many levels
as the faculty of language allows. Nonetheless there are several ways to
implement such hierarchies from which Smolensky emphasize two. First
the possibility to have local representations, with dedicated neural units, for
each level of the tree. Second to have completely distributed representations
that use all neural units for all levels, by binding tree level Role vectors to
their corresponding upper level nodes in the tree hierarchy. In the case of
asymmetric branches that would create a dimensionality di�erence in the
Roles outer products, a dummy Role vector is introduced to rebalance the tree
branches.

Local, semilocal and distributed representations

An important property of the ICS tensor product representations is that they
have the �exibility to accommodate any degree of locality, which means that
they can be made local, semilocal or completely distributed. The locality of
a representation consist on the amount of neural units that are employed by
the di�erent Filler and Role vectors. Representations that correspond to a one-
to-one mapping between possible elements represented and neural unit sets
are purely local representation. If only the Role vectors have a local structure,
then these would be role register or semilocal representations, for which an
example would be roles modelling the position of an image with respect to
the eyes, since there are inverse hemispheric projections in primary visual
areas of the two eyes. Finally in fully distributed representations all neural
units can be recruited for any representation.

There are three important examples in the previous literature of fully
distributed representations, supporting the idea of Parallel Distributed
Processing (PDP): the coarse coding representations of Hinton McClelland
and Rumelhart[169], that focus on the many-to-many relation between visual
positions and the activation of receptive �elds; the conjunctive coding of
McClelland and Kawamoto[128] that consist on three-way conjunctions of the
learned features of nouns, verbs and semantic roles; and the wickelfeatures
of Rumelhart and McClelland[168] that employed the 1-neighbour context
decomposition to learn the binding of phonetic segments as Fillers to phonetic
contexts as Roles to represent the past tense of english verbs.

It is important to understand which is the degree of locality of
representations in a cognitive domain, because local and distributed networks
di�er in several properties. In the case of linear networks there is a
transformation from any local representation to its distributed version and
vice-versa, but this is not the case with non linear activation functions like
those describing saturation and adaptation phenomena in neurons. Neural
damage would have di�erent e�ects depending on network locality since
distributed representations are more resilient to local damages. Learning of
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distributed patterns by networks could be more challenging and take more
time, due to the interference of synergy of the concepts representations. There
is better generalization of representation patterns in the case of distributed
representations due to the similarity that can be established with unseen
patterns, while in a local network representations must be orthogonal. Finally
there is an important di�erence in the representational capacity of the
network, since "N" neural units can only support "N" local representations,
but a distributed network can maintain a higher number of representations
for which exactness decrease gracefully.

Generalization of tensor product representations to accomodate
previous vectorial symbol architectures (VSA)

One of the most powerful features of Smolensky’s tensor product
representations is that he can encompass most of the previous work in vectorial
symbol architectures (VSA), like Synchronous Firing[170], Holographic
Reduced Representations[158] and Recursive Auto-Associative Memories[35].

In Chapter 7 of the Harmonic Mind, Smolensky performs an in-depth
analysis of the typology of previous vectorial symbol architectures (VSA) in
the literature to show how they can be accommodated by tensor product
representations. Some models, like the parietal cortex model of Pouget and
Sejnowski[160] and the propositional information models of Halford, Wilson
and Phillips[84], are simply equivalent to tensor product representations.
Other important models, including Synchronous Firing[170], Holographic
Reduced Representations[158] and Recursive Auto-Associative Memories[35],
can be considered as tensor product representations if we generalize them by
inclusion of postprocessing operations from tensor algebra.

The Synchronous Firing[170] model became important for its biological
plausibility and the e�ciency of employing time as an additional neural
resource. It is also the simplest model to accommodate, since it does not require
additional tensor algebra operations, but only reconsidering conceptually the
neural resources and the nature of Role vectors. Using time as a neural resource
simply requires that we de�ne time slot Role vectors alongside semantic Role
and Filler vectors. Shastri et al[170] proposes to implicitly bind a semantic
role like "giver" to a semantic �ller like "John", by explicitly binding both
of them to a common formal role representing a time slot, which di�ers
from previous considerations of contextual/semantic roles formulated to bind
directly "giver" to "John". The roles distinction is portrayed in equations 1.3 and
1.4, that correspond to contextual and formal role considerations respectively.
Formalizing this model with tensor product representations facilitates its
comparison to other models and makes its extension from local to completely
distributed representation almost trivial.
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giver⊗ John, contextual/semantic role (1.3)
giver⊗ timeslot1 + John⊗ timeslot1, formal role (1.4)

In the case of Holographic Reduced Representations[158], developed to
model human memory, they are of interest because they predict empirical
results on how people relate structured elements. In this model Filler/Role
bindings are achieved by employing a vector operation called circular
convolution instead of a tensor product. For Filler and Role vectors of
dimension n, this operation is attractive because the dimensionality of the
output vector remains as n, while a traditional tensor product would produce
an output vector with dimensionality n2. Since the requirements of tensor
products grow exponentially with the depth of trees in hierarchical structures,
circular convolution is a more economical operation in terms of neural
resources, at the cost of renouncing to exact or general-purpose representations
to have instead inexact or special-purpose representations. To accommodate
this model and others based on vector reduction operations, Smolensky
introduces the tensor contraction linear operator from tensor calculus, to
be applied to the �nal symbolic representations, and proves that circular
convolution is just a particular case of tensor contractions.

In the case of the autoencoder model of Recursive Auto-Associative
Memories[35] (RAAM), it is of interest because of its capacity to learn
which Role vectors allows the relevant structures received as input to be
encoded, while displaying in some cases the same fully parallel processing
implementable with standard tensor product representations. Smolenky
demonstrates that the encoded representations in the middle layer of the
RAAM model can be reproduced by tensor product representations by applying
a squashing (sigmoidal) function element-by-element to a contraction of the
superposition of the bindings performed with the RAAM input vectors.

We display the extension of the basic tensor products of Equation 1.5, with
the contraction operator in Equation 1.6, followed by the element-by-element
application of a function in Equation 1.7. Then the generalized tensor product
is the element-by-element application of some function to the contraction
over some pair of indices of the (superposition) addition of the tensor products
representing the bindings of Filler and Role vectors. The basic tensor product
representations are then just the speci�c case where the function is the
identity and the contraction is the trivial contraction that do not perform a
dimensionality reduction. Generalizing tensor product representations to allow
post-processing by contraction and/or squashing allows to subsume under
one formalism all alternatives in the literature, while keeping the principles
of binding by tensor product and superposition of symbolic representations
intact, since the generalization only add post-processing steps.
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∑
i

Filleri ⊗ Rolei, Basic Tensor Products (1.5)

C[∑
i

Filleri ⊗ Rolei], with Contraction (1.6)

F[C[∑
i

Filleri ⊗ Rolei]], with element-by-element Function (1.7)

How Jackendo�’s problems are answered by tensor product
representations in ICS

First, “The massiveness of binding” is addressed by the binding operation
de�ned with tensor products alongside the graceful saturation of inexact
representations. Second, “The problem of variables” is handled by the linear
independence assumption between Filler vectors and between Role vectors
that permits unbinding with the inner product, with a graceful degradation of
information when the linear independence assumption is violated. Third, “The
Problem of 2” is managed by binding the same Filler vector to di�erent Role
vectors, nonetheless if we were interested in querying the Role of a repeated
Filler we would have problems, since we would recover the linear combination
of all the corresponding Role vectors. Finally, learning the Filler and Role
vectors in neural networks is analogous to a long term memory mechanism,
while implementing the tensor product operations would permit instantiating
in short term memory new symbolic structures from the binding of Filler and
Role vectors. Moreover the generalization of tensor products to account for
memory related models like Holographic Reduced Representations and RAAM,
demonstrates its �exibility to model diverse memory related mechanisms.

1.3 The Neural Blackboard Architecture (NBA)

Neural models of language

To understand how the cognitive faculty of language operates, we need to
take into account, not only the underlying supporting structures, but also
their dynamics. This means that we have to consider simultaneously the
grammars given by linguistic theory and a temporal component to give birth
to computational mechanisms, like automaton models, capable of explaining
behavior[83]. To extend this into neuroscience we have to go even further
and also provide reasonable implementation models, corresponding to the
biological components of the brain. This implementation is necessary to be
able to go beyond behavioral measurements and ultimately test computational
hypotheses directly against the currently available spatio-temporal neural
measurements.

A good example of success in this direction is the computational theory of
visual receptive �elds[113] which has made impressively accurate predictions



neural bases of variable binding in symbolic representations 17

about the shape of the biological visual �elds in the retina. Knowledge of
these basic units of visual perception has even recently allowed to correlate the
mechanisms behind deep convolutional neural networks to visual pathways[80;
58] and has in�uenced our understanding of higher-level visual phenomena
such as visual illusions[57]. Although expecting at the moment something
similar in the case of language might sound overambitious, we must note that
basic phonetic features have already been decoded in the Superior Temporal
Gyrus from electrocorticography (ECoG)[133].

Numerous Arti�cial Neural Networks (ANNs) have been implemented,
motivated by biological principles in the brain[18; 39; 134; 200; 173],
to model particular aspects of brain language function or to reproduce
behavior in speci�c language tasks. Nonetheless they lack dynamic
biological considerations necessary to match their output with neuroimaging
measurements, and except for Vector Symbol Architectures (VSA)[172], they
are di�cult to integrate into a general framework for the implementation of
complete language functions.

More relevant to our work are previous e�orts to model language function
with more biologically plausible Spiking Neural Networks (SNNs)[94; 166;
18; 121; 56; 162; 161; 72; 123], that would eventually allow to establish a
mechanistic link between neural measurements and computational linguistic
hypothesis. Contrary to the VSA and the Neural Blackboard Architecture
(NBA)[187], these do not follow a general theoretical framework, to address all
the neural challenges of a complete language function implementation, that
can also provide a mechanistic explanation for the most basic computational
components and behaviors.

In most models, biological details necessary to match high temporal
resolution in-vivo neural patterns of language processes have been kept out
of scope. This has been a reasonable strategy considering the computational
cost of building circuits with detailed neural models based on simulations
of each neuron. Nonetheless recent developments like population density
techniques[47] now permit to simulate state-of-the-art temporally detailed
dynamics of circuits of neural populations.

In this work we will go beyond previous SNN simulations that were limited
in scope to describe language function and temporal resolution of the neural
dynamics. We will implement a temporally detailed spiking neural network
circuit inspired by the Neural Blackboard Architecture[187]. The circuit
implementation will be capable of realizing the binding operation for any
level of language processing and for any grammar theory and parsing scheme,
but we will focus on its application to the syntactic structure of phrases.

Introduction to the Neural Blackboard Architecture

Van der Velde and De Kamps[190] argue in favour of a small world network
model that, thanks to transient changes in its connectivity, allows the
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formation of complex structures. Binding takes place in the Neural Blackboard
Architecture by conditionally co-activating neural assemblies representing
grounded concepts and instances of variable types, which is a process driven
by a control mechanism. The co-activation of the neural assemblies activates
a working memory mechanism that last for a short period of time, to permit
future activation of one bound neural assembly by its pair.

In this framework, working memory acts as a control that reduces
inhibition on paths of neural �ow necessary to maintain the bindings
established by the initial transient co-activation, such that pointers have been
declared implicitly between the co-activated concepts. Data structures are
implicitly encoded by the short lived reinforced paths of neural activity �ow.
Then query operations are possible by reactivating nodes - included in the
query - that induce co-activation of answer nodes, thanks to the reinforced
connectivity. This successive co-activation of neural assemblies referred as
"binding by process", leads to a short-term lived graph that implicitly encodes
the �nal data structure.

The level of abstraction of the NBA allows to apply it to several cognitive
functions like motor control, attention and symbolic thought. In the case
of syntactic parsing during language comprehension, one needs a grammar
to specify the necessary variable type relations and some parsing scheme
to determine the bindings’ timing. The NBA provides a circuit with nodes
that can be readily interpreted in terms of spiking neural populations. This
can be conceptually linked to the notion of cell assemblies, whose existence
and functional relevance, as computational units, is supported on substantial
biological evidence[95].

Circuits of the architecture

A complete illustration of the blackboard architecture is provided in Figure
1.3. Nodes in Figures 1.3.A and 1.3.B represent neural cell assemblies
that can be interpreted as linked spiking neural populations. There are
several previous implementations of sub-circuits of the NBA with varying
degrees of biological plausibility, the latest relying mostly on Wilson Cowan
population dynamics[52]. Some of the previous simulations attempted to
address diverse aspects of language processing, such as ambiguity[67] and
learning control from syntactic stimuli[188]. Other simulations addressed
circuit implementation issues like how to develop a connectivity matrix with
randomly connected networks[189] and how to implement a central pattern
generator sub-circuit for sequential activation [191].

We will focus on providing a summary of the Neural Blackboard
Architecture operation from a perspective relevant to variable binding. For
a deeper review of the NBA circuit and mechanisms we recommend reading
a recent paper with a circuit design and examples that focus on sentence
processing[48], as well as the original framework proposal introducing abstract
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combinatorial structures[187].
A “Gating Circuit”, illustrated in Figure 1.3.A, is the most basic component

of the NBA, from which all other circuits are built. The main idea is that neural
activity would �ow from the assembly X to the assembly Y, but is blocked by
the Gate Keeper (GK) assembly, which is also excited by assembly X. So to
allow directional activity �ow from X to Y, a Control (Ctl) assembly has to
inhibit the GK assembly. Notice that it is trivial to extend the gating circuit for
bidirectional control of activity �ow as illustrated in Figure 1.3.B. Introducing
bidirectional conditional control signals is what gives the NBA the possibility
of implementing separately queries like ’what follows X?’ or ’what follows
Y?’.

Another basic mechanism of the NBA is a proposal for working memory
(WM). Persistent neural activity in response to stimuli is considered to be the
neural process underlying active (working) memory, and its implementation
is hypothesized to be based on excitatory reverberation[199]. Based on this,
the NBA considers a Delay Activity[45] mechanism as a biologically plausible
implementation of WM. It consists on a neural assembly, that after being
excited beyond a certain threshold, achieved by the coactivation of input
populations, will maintain a constant amount of activation for a short period
of time. By maintaining its activity, WM acts as a short lived bidirectional link
between two assemblies. This process can be equated to the creation of an
implicit pointer from one assembly to the other, such that future reactivation
of one assembly can be driven from the other to perform query operations.
The respective “Memory Circuit” is shown in Figure 1.3.B.

Two bidirectional “Gating Circuits” connected by a “Memory Circuit”
form a “Compartment Circuit” capable of implementing variable binding and
query operations. The key point of this circuit is that Main assemblies (MA),
representing grounded concepts or instances of variables types, activate Sub
assemblies (SA), if a control signal driven by another mechanism allows it.
Then co-activation of SAs is what realizes a temporary binding of MAs by
activating WM. So one “Compartment Circuit” models speci�cally the neural
activity of a variable binding operation. It is operated by a mechanism that
drives control signals simultaneously in multiple “Compartment Circuits”
to instantiate binary tree like data structures on which query/unbinding
operations can be performed later.

Finally, a “Connection Matrix”, portrayed in Figure 1.3.C, allows the
implementation of a complete “Blackboard”. It contains variable type relations
learned by the “Blackboard” as sets of mutually inhibitory “Compartment
Circuits” that enable the selection of the “Compartment Circuits” requested
by the control mechanism. We portray the “Blackboard” as a regular
grid for illustrative purposes, although there is already a proof of concept
implementation with randomly connected networks[189]. Also implementing
a general syntactic control mechanism should be feasible, as suggested
by the Feed-forward arti�cial neural networks employed in previous
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Figure 1.3: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional
neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is
activated by the X assembly and then inhibits the gate assembly (G). To let information �ow through the gate assembly,
a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment circuit
of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural activity
�ow between two main assemblies possible. Control assemblies regulate the direction of information �ow and allow
the activation of sub assemblies. The two sub assemblies excite the working memory assembly which, once activated,
encode the binding of the main assemblies and allow activation to �ow between them if the controls allow it too. C.
Each connection matrix contain n by m compartment circuits that encode the same relationship type between the
same pair of assembly categories. There are m available assemblies for one category and n available assemblies for the
complementary category and only one cell circuit can activate its working memory assembly to link two particular
assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix
e�ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices
that encode di�erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple
connection matrices, where each of them is de�ned by two node categories and a relationship type between them. E.
Example of a possible tree structure that can be represented based on the speci�ed connection matrices.
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NBA simulations [188] and recent state of the art feed-forward network
architectures that have shown top performance for diverse language parsing
tasks [6]. Moreover a more recent proposed extension of the NBA, that imitates
the motor circuit of the marine mollusk Tritonia diomedea, shows how to
generate patterns for sequential activation control[191]. Simulating these
higher level mechanisms is a task out of the scope of this work, since we
focus speci�cally on reproducing the neural signatures of variable binding
operations.

Instantiation of symbolic representations with the NBA

The level of abstraction of the NBA allows to apply it to several cognitive
functions like motor control, attention and symbolic thought. In the case
of syntactic parsing during language comprehension, one needs a grammar
to specify the necessary variable type relations and some parsing scheme
to determine the bindings’ timing. In contrast to VSA, the NBA provides a
circuit with nodes that can be readily interpreted in terms of spiking neural
populations. This can be conceptually linked to the notion of cell assemblies,
whose existence and functional relevance, as computational units, is supported
on substantial biological evidence[95].

Applying the NBA to syntactic processing in language consists of two
simple assumptions. First, equating the parsing mechanism to the control
mechanism that coordinate binding events of words and word types and phrase
types. Second, determining the number of compartment circuits necessary to
instantiate a complete syntactic structure and the content of MA nodes from
a grammar theory. The NBA has the �exibility to test any arbitrary parsing
mechanism and an important variety of alternative theories of grammar based
on binary trees. For example dependency grammars that assume multiple
direct word bindings instead of the hierarchical phrase bindings modelled in
this work have been employed in previous simulations[188].

To understand how a sentence is processed in the NBA, let us consider
�rst the simplest case of binding two words, like “Sad student”, belonging
to grammatical categories instantiated in the MAs of one “Compartment
Circuit”, such that one MA is an “Adjective” corresponding to “sad” and the
other one is a “Noun” corresponding to “student”. The MAs activate with
timings corresponding to word presentation, re�ecting processing of the word
grammatical category. Then an assumed parsing mechanism determines that a
link operating on “Adjective” and “Noun” types is necessary in the blackboard,
driving activity in several “Compartment Circuits” from which only one, that
we consider as the recruited “Compartment Circuit”, completes co-activation
of SAs to drive WM and realize binding between the word types. To process a
complete phrase this process is repeated by recruiting more “Compartment
Circuits”, realizing an implicit representation in the cortex of the whole phrase
through the activation of the Working Memory neural assemblies.
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How Jackendo�’s problems are answered by the Neural
Blackboard Architecture

First, “The massiveness of binding” is addressed by instantiation of variable
types as assemblies that are bound to grounded concepts and other variable
types instances, allowing the creation of combinatoric structures on demand.
Second, “The problem of variables” is handled by the previously explained co-
activation mechanism capable of creating pointers from grounded concepts to
variable type instances. Third, “The Problem of 2” is managed by having
multiple neural assemblies that instantiate the same variable type in the
architecture but that can occupy di�erent parts of the same data structure.
Finally a working memory mechanism is provided, that allows transient short-
term co-activations of concepts to be maintained without interfering with the
possibility of storing related data structures in the long term in other parts of
cortex with other mechanisms.

1.4 Summary and comparison of the modelling approaches

On one hand Smolensky proposes that the brain employs explicit active
encodings, in neural units, of “uni�ed” data structures produced by tensor
products acting as binding operations on spatially stable, unique and linearly
independent neural unit vectors. These data structures can be later queried
with inner products acting as unbinding operations. The latter are resilient
to squashing functions, like those proposed by Plate, that can importantly
decrease the number of neural units necessary for the �nal representation
as the tensors increase in dimensionality with more complex structures.
Representations in this model can be completely distributed and nothing is
clari�ed about the encoding of parallel representations in memory. Smolensky
o�ers in great detail implementations of VSA with feedforward and symmetric
recursive ANNs[172] and has recently shown how to extend the framework
with an optimization scheme to instantiate input representational vectors[173].
Nonetheless, no important operational consideration is given to time, although
it is possible to employ it as a tensor for vector encoding purposes, as is done
for Synchronous Firing. This limits the neural dynamics predictions of the
framework and its interpretation with SNNs.

On the other hand the Neural Blackboard Architecture proposes that the
brain encodes complete symbolic structures implicitly, encoded by the activity
of short term memory mechanisms. A circuit of neural assemblies on which
neural activity �ows conditioned by control and memory mechanisms allows
both binding and query operations. Since the NBA explicitly de�nes the
architecture and operation of the circuits, it is straightforward to implement
them with SNNs. By representing the bound concepts as speci�c neural
assemblies the NBA induces local representations and by allowing arbitrary
selection of mutually inhibitory competing sub-circuits (Compartment circuits)
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makes the representations themselves dynamic and spatially unstable.
From the description of these models we can appreciate that they approach

the problem very di�erently, which motivates experimenting with both of
them. They employ di�erent practical neural implementations and simulations.
Also they assume di�erent properties of the internal neural representations
of concepts. In Table 1.1 we present together all the di�erent aspects of
both modelling approaches. Smolenky’s TPR relies mostly on spatial static
considerations of arti�cial neural units with explicit completely distributed
and spatially stable representations implemented through vectors, while the
NBA relies on temporal dynamic considerations of biologically based spiking
neural units with implicit semi-local and spatially unstable representations
implemented through neural assemblies. Another di�erence between models
is how they handle multiple parallel representations in memory. Smolensky
do not propose any particular mechanism, although using the same neural
units for this would work with the creation of memory slot roles. The NBA
handles parallel representations in memory explicitly, by keeping separate
neural assemblies assigned to each structure, but then its capacity is limited by
the size of blackboard and the dynamics introduced by the mutual inhibition
of compartment circuits in a connection matrix.

Aspect Smolensky’s TPR NBA

About modelling:
Neural simulation Arti�cial NN Spiking NN
Temporal dynamics Not included Included
Representation Neural unit vectors Neural assemblies
Parallel repr model Memory slot roles? Separate neural assemblies
Representation properties:
Declaration Explicit Implicit
Spatial stability Static (temporally stable) Dynamic (temporally unstable)
Locality Distributed or local Local
Operation implementation:
Composition of bindings Superposition (addition) Compartment recruitment
Binding Tensor product Working memory assembly activation
Unbinding Inner product Reactivation of bound neural assemblies

Table 1.1: Modelling approach comparison: We present all binding related
aspects studied in this work about Smolensky’s tensor product representations
and the Neural Blackboard Architecture.





2 Methodological background

In this chapter we provide a quick summary of methodological
details useful to better understand the superposition experiment analysis
(BOLD-fMRI related methodology) and the implementation of the Neural
Blackboard Architecture (neural simulation related methodology).

2.1 BOLD-fMRI

The BOLD-fMRI signal

The �rst studies of BOLD-fMRI, that showed how sensory stimulation
modulated a blood oxygenation level dependent contrast date back to
1992[146]. BOLD-fMRI is one of the most common neuroimaging techniques,
that captures non-invasively indirect measures of neural activity in a
whole brain volume, with a high spatial resolution (1-3mm3) and a low
temporal resolution (1-3 seconds). This technique takes advantage of the
fact that "ferrous iron on the heme of deoxyhemoglobin is paramagnetic,
but diamagnetic in oxyhemoglobin"[36]. This means that a strong magnetic
�eld can detect changes in the concentration of oxygen in the blood stream,
which is modulated by neural activity. The shape of the modulation of oxygen
concentration due to changes on neural activity is called the hemodynamic
response function (HRF). Boynton et al.[22] showed that a double gamma basis
function, applied with a linear regression model, could capture well the HRF.
Although the HRF can take up to 30 s to completely develop, it was shown that
the response of two stimuli add linearly if their presentation is separated by
at least 2 seconds[30]. We show an example double gamma basis function[76]
in Figure 2.1.
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Figure 2.1: Canonical Double
gamma basis function
(HRF)[76]: The HRF �rst shows a
quick increase from 1 to 5.2s, then
"undershoots", drops below baseline,
from 5.2 to 12.2s, and �nally comes
back to baseline from 12.2 to 30s.

BOLD-fMRI preprocessing

To acquire brain images, a subject is introduced in an MRI scanner and from
the pulse sequences of an acquisition protocol, images, formed by "voxels"
of a certain volume, for example 1.5mm3, are reconstructed. The obtained
datasets are preprocessed with a variety of pipelines, some of which have
been extensively evaluated[177]. Common pipeline steps are: slice timing
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correction, motion correction, spatial co-registration, spatial normalization
and spatial smoothing. Since the brain volumes are acquired by slices in
di�erent time points, it is necessary to extrapolate to a common time point
the measurements of all slices which leads to slice timing correction. Subject
movements during the acquisition have to be taken into account to build a voxel
time series that correctly represents spatial location, so motion correction is
implemented. Functional images that contain the BOLD signal are commonly
co-registered with a T1 anatomical scan of the subject to be able to extract
voxels corresponding to anatomical structures like gray matter and allow
normalization. Then anatomical images from subjects are projected into the
space of a reference image, such that group level activations can be estimated
by compensating an important portion of inter-subject variability[85]. Finally
and optionally, the resulting images are smoothed with a Gaussian kernel to
increase the local signal-to-noise ratio (SNR), due to spatial correlation of voxel
activations. More details on di�erent preprocessing steps can be consulted in
Lindquist review1. 1 M. A. Lindquist. The statistical analysis of

fmri data. Statistical Science, pages 439–464,
2008

E�ects estimation in univariate analysis

After preprocessing, traditionally BOLD time series are analysed with a
General Linear Model (GLM)[71]. This practice remained because it was
demonstrated that BOLD responses to stimuli add approximately linearly if
the stimuli presentation is separated for at least 2 seconds[30]. To �t the
GLM, a design matrix is produced in which di�erent conditions are modelled
with di�erent regressors. In each condition, the onsets and durations of the
corresponding events are modelled as a stepwise constant (boxcar) signal, that
is then convolved by an HRF like the one shown in Figure 2.1. In Figure 2.2 we
show the construction of an example design matrix with four conditions. A
GLM model, described by Equation 2.1 and illustrated in Figure 2.3, is applied
separately to each voxel.
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Figure 2.2: Illustration of a
design matrix: Event onsets from
four fMRI experimental conditions
are convolved with the HRF to
approximate the BOLD response.

Y = X β + ε, (2.1)

The design matrix corresponds to the X in the GLM estimation and the β

(betas) corresponds to the estimated amplitude of the BOLD response of each
condition in a voxel. The betas of all voxels considered together are called
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Figure 2.3: GLMmodel: The signal
in each voxel is modelled as a linear
combination of the time series given
in the design matrix plus noise.

"beta maps", which are then employed to compare conditions across the brain.
The comparison is done by testing if a particular linear combination of betas,
called a contrast, is di�erent from 0. Staying with the four conditions example,
a contrast vector c ∈ R4 would be de�ned as c = [+1, 0,−1, 0] to test in
which voxels there is a signi�cant positive di�erence between the �rst and
third conditions[114]. From this contrast, a t, z or F statistic map, normally
called statistical parametric maps, will be computed and then thresholded at
some level of p-value signi�cance to interpret the surviving spatial clusters
of activations in the brain. We illustrate the computation of the p-value for a
z-test in Figure 2.4.

Figure 2.4: Classical z-test: In
a z-test a gaussian distribution
provides the reference for which
we can estimate the accumulated
probability of a particular value α,
such that we can compute its p-
value.

Alternatively to this way of computing p-values, it is also possible to employ
non parametric approaches in which, under some theoretical constraints, we
can estimate the empirical distribution of the contrast of permuted condition
labels and observe the probability of the real labels on that distribution. More
details on the statistical analysis of fMRI data can also be consulted in Lindquist
review2. 2 M. A. Lindquist. The statistical analysis of

fmri data. Statistical Science, pages 439–464,
2008

Decoding of activation maps

The GLM mass univariate fMRI analysis is a forward model. Forward models,
also called encoding models, model brain responses following a stimulus.
Inverse models, also called decoding models, go in the opposite direction, they
predict stimuli from brain images. A scheme of these concepts is shown in
Figure 2.5.

Figure 2.5: Encoding and
decoding scheme: We provide a
scheme showing how decoding and
encoding models relate to brain
activations and stimulus.

With decoding models we explore the possibility that the spatial neural
activity patterns, re�ected in the amplitude of estimated BOLD responses in
voxels, carry distributed information beyond the overall activity of individual
voxels. This type of multivariate approach, has been very in�uential in the
analysis of fMRI data [192]. It was named initially as "multivoxel pattern
analysis" [143] and later as “multi-variate pattern analyses” [88]. It has been
shown that the relationship between stimuli and beta maps can be captured
appropriately by linear models, considering that non-linear models tend to
have a similar performance as the linear ones[136]. Moreover employing
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linear models can give better insights into how each individual feature (voxel)
contribute to the �nal prediction[87].

A commonly used decoding model in fMRI is linear support vector machines
(SVMs), that from a set of "support vector" points draw an hyperplane to
maximize the "margin" distance between the hyperplane and the nearest data
points from two classes of points. The SVM expresses the hyperplane as the
coordinates of a vector orthogonal to the hyperplane, such that the absolute
magnitude of each coordinate or "coe�cient" related to a feature (voxel) can
indicate how important the feature is for the separation of classes. In Figure 2.6
we illustrate a particular mathematical formulation of the SVM called NuSVM,
in which the number of support vectors selected by the algorithm is controlled
by the "nu" parameter in the model.

a) small nu

b) large nu

Figure 2.6: NuSVM example: We
present two classes as blue and
brown points. The NuSVM learns
a hyperplane, a line in this two
dimensional case, to discriminate
the two classes. The nu parameter
permits to regularize the algorithm
by controlling the number of
support vectors selected. For small
value of nu, few observations
are selected as support vectors,
while for a large value of nu, all
observations are selected.

A decoder is evaluated by its capacity to predict correctly a stimulus or
condition from a given set of voxel activations (from beta maps). In the case of
classi�cation of balanced conditions, the typical evaluation metric is accuracy,
computed from the number of correctly classi�ed samples over all samples.
Accuracy of a trained model should be evaluated on left out unseen data to
secure we correctly capture true generalization performance of the model. This
is necessary due to the risk of over�tting or over-learning the particularities
of the samples selected to train the model instead of the general trend.

A common procedure to select the best model, to optimize generalization
accuracy, is to perform K-fold cross-validation[7]. This procedure consists on
dividing the dataset in "K" data segments, such that iteratively a segment will be
left out as unseen data to evaluate the accuracy of a model, which was trained
on the rest of the data. The selection of model parameters (hyperparameters),
like nu in a NuSVC classi�er, should also be cross-validated to avoid the
introduction of a positive bias in the generalization accuracy of the model,
with a nested cross-validation scheme[33].

After we have estimated the generalization accuracy of the model, it
is desirable to be able to assess its signi�cance, in particular considering
the possibility of �nding accuracy scores slightly better than chance. This
veri�cation is important due to the possible biases and �uctuations that can be
introduced in the accuracy scores by noise in fMRI data and the small sample
sizes normally available. A typical procedure to achieve this is to randomly
exchange condition labels on the data points, to obtain permuted labels, and
train a new model on the permuted labels. The empirical distribution obtained
from the accuracy on the "N" permuted label sets allows to compute a p-value,
by assessing how extreme is the accuracy of the model trained on the real
labels.

Another problem we face with fMRI data is that of feature (voxel) selection.
Considering the curse of dimensionality, which explains that we need an
amount of samples that grow exponentially with the number of features
considered, and the small sample sizes commonly available, we are encouraged
to diminish the amount of features (voxels) considered by a model as much as



neural bases of variable binding in symbolic representations 29

possible.
There are two ways to deal with this problem. The �rst is by "�ltering",

which consists on selecting features based on some procedure unrelated to
the accuracy score of the trained model. A typical way of doing this in fMRI is
by ranking voxels according to scores obtained from univariate tests, like an F
test to detect any di�erence between all conditions in a voxel. The second is by
"wrapping", for which we consider subsets of features as an hyperparameter of
the model and then decide on the best subset in the same way that we would
select other hyperparameters of the model, by nested cross-validation.

2.2 Neural simulation

We assume that the Neural Blackboard Architecture (NBA) lives in the cortex,
and seek a good compromise between realistic modelling of the cortical
dynamics and the tractability of the simulation. State-of-the-art simulations
of larger cortical structures are based on point model neurons that allow the
inclusion of biological details such as synaptic dynamics and adaptation, but are
restricted to about the size of a cortical column [159]. For larger scale networks,
such as ours, a population-based approach is currently the only feasible
approach. The two choices are: rate based models or population density
techniques (PDTs). In rate based models, the population is described by a single
variable, usually related to the population �ring rate or average membrane
potential of neurons in the population. A prominent example is the Wilson-
Cowan equation [201], which describes the dynamics of the population activity
as a �rst order linear di�erential equation driven by inputs. Another example is
the Jansen-Rit model [100], which is primarily motivated by phenomenological
considerations. In both examples, the relationship with the underlying neural
state is unclear. We have opted for PDTs, also a population based approach,
but one where the relationship with the dynamics of a group of spiking point
model neurons can be made rigorous. Although they are computationally more
expensive than rate based models, they are easier to manage than a full-blown
model using spiking neurons, which would need hundreds of thousands of
neurons at the scale of the cortical network considered here. We will brie�y
set out the assumptions that we use in modelling populations and describe
the numerical methods involved.

Consider a leaky-integrate-and-�re (LIF) neuron, which is characterized by
a single state variable: the membrane potential. If the neuron has a potential
di�erent from its equilibrium potential, or when it experiences an external
drive, for example generated by a synaptic current, the potential evolves
according to:

τ
dV
dt

= −(V −Vrev) + I(t). (2.2)

Here V is the membrane potential in V, τ the membrane time constant in s,
Vrev the reversal potential and I(t) and external current, which may comprise
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contributions from other neurons in the form of spikes, and therefore may
be stochastic. If the membrane is driven far above the equilibrium potential,
at a potential Vth, the threshold, the neuron spikes. We assume it will be
inactive for an absolute refractive period τre f and then �nds itself reset to
the equilibrium potential after that. This scenario is easy to simulate: using a
simulator like NEST [74], or BRIAN [176], one can create populations of LIF
neurons. In the simplest case a population is driven by synthetically generated
input spike trains, where the spike train events are created by a random
generators. The default assumption is that inter-spike intervals are Poisson
distributed, although this can be extended to non-Markov processes [108]. It is
clear that I(t) in Eq. 2.2 now should be considered as a stochastic variable and
that the threshold crossings of LIF neurons themselves are stochastic events
as a consequence. Fig. 2.7 A demonstrates a simple scenario: a population
of 10000 LIF neurons, driven by a stochastic input - Poisson generated spike
trains, where each LIF neuron experiences about 800 input spikes per second.
The simulation shows a spike raster of the population response: �rst nothing:
although each LIF neuron receives input spikes and as a consequence has its
membrane potential driven up, none of the neurons have reached threshold;
then a spike volley: most neurons hit threshold at approximately the same time;
followed by a period of relative silence: only interrupted by a few stragglers;
at last a gradually achieved �nal neural state of asynchronous random �ring.
More complex networks can be formed by feeding the output spikes of one
population into other populations.

This is a fascinating but unwieldy process and statistical methods have
been used to describe it at the population level [175; 105; 150]. A population
is described by a density function, which expresses how the population is
distributed over state space. For LIF neurons this is a function ρ(V), where
ρ(V)dV is the fraction of neurons with their membrane potential in interval
[V, V + dV) (when we integrate the density function over a certain state
interval, we will refer to the result as the amount of mass in that interval).
The initial distribution of the neurons in the population must be chosen, but
the evolution of the density is tractable. It is clear that neurons move through
state space due to the deterministic neural dynamics, Eq 2.2 for LIF neurons,
and also go transitions due to the input spikes. The collective contribution of
the stochastic process to the evolution of the density pro�le can be modelled
using a Poisson master equation [73]; the contribution of the deterministic
dynamics can be modelled using an advection equation (see [150] for a lucid
explanation).

As a consequence, the process of simulating thousands of neurons is now
replaced by modelling the evolution of a density which is given by a single
equation:

∂ρ

∂t
− 1

τ

∂

∂v
(ρv) =

∫
dhp(h)ν(ρ(v− h)− ρ(v)), (2.3)
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Here p(h) is the distribution of synaptic e�cacies, ν the frequency of
the incoming spike trains, ρ the density function, t the time since start of
simulation and v the membrane potential. Mass that is being pushed across
threshold corresponds to neurons spiking; consequently the �ring rate of the
population can be calculated directly from the mass �ux across threshold.

E�cient and stable simulation methods are available [145; 44; 46; 96], and
remarkably, the process of solving Eq. 2.3 is computationally less expensive
for LIF neurons than the direct simulation using NEST [145]. The process of
keeping track of a single density function, and the communication between
populations using �ring rates rather than individual spikes, frees the modeller
from keeping track of thousands of spikes per second and leads to simpler
simulations. Figure 2.7 shows the very close correspondence between direct
simulations of LIF spiking neurons and population density results. It shows,
�rst, that the simulation results indeed are very close to that of the spiking
simulation, and second, that Wilson-Cowan dynamics must be tuned in a way
that PDTs do not: the correct steady state activation must be provided to the
Wilson-Cowan dynamics in the form of a sigmoid, while in PDTs the correct
steady state �ring rate is calculated from �rst principles - input �ring rate,
synaptic e�cacies and neural parameters - without any need for tuning.

The population density formalism can be extended to higher dimensional
models. For example, the adaptive-exponential-integrate-and-�re neuron
(AdEx) [27] is a two dimensional model that has the membrane potential
and an adaptivity parameter as a variable. Consequently, the state space is
two dimensional. The motivation behind this model is that �rst, it includes
adaptation, and second that it is the e�ective approximation of the complex
conductance-based processes that take place in a real neuron. The equations
of the model are:

We consider the AdEx model as presented by Brette and Gerstner [27],
which describes individual neurons by the following equations:

Cm
dV
dt

= −gl(V − El) + gle
(V−VT )

∆T (2.4)

τw
dw
dt

= a(V − El)− w

Where Cm is the membrane capacitance, gl the leak conductance, El the
leak potential (equivalent to the reversal potential for the LIF), VT a threshold
potential, ∆T a shape parameter for the spike, τw the adaptation time constant,
a the subthreshold adaptation parameter, V the membrane potential and w
the adaptation parameter. Upon a spike, the neuron is undergoes a transition
in w: w → w + b, where b is the spike adaptation parameter. We use the
parameters given by Brette and Gerstner (2005).

We illustrate the dynamics of the neuron in Fig. 2.8. The direction of the
dynamics is shown by arrows, the speed of the dynamics by the size of the cells:
big cells implies fast dynamics as the cells represent equidistant time steps.
This shows that at w = 0 dynamics are leaky, i.e. towards the equilibrium,
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Figure 2.7: LIF dynamics: A. A spike raster showing an LIF population undergoing a jump response. Neurons are at
equilbrium at t = 0. From t = 0 each neuron receives a Poisson distributed input spike train (λ = 800 Hz, h = 0.03,
i.e. an input spike raises the PSP by 3% of the di�erence between threshold and equilibrium potential, τ = 50 ms,
following [150]). B. Firing rate calculated from the PDT method (solid curve), compared to �ring rate from spiking
neuron simulation (red markers). C. The density calculated by the PDT method (solid curve) at t = 0.3 s, compared
to a histogram of the membrane potential over the population at the same time. D. Wilson-Cowan prediction for the
�ring rate, compared to PDT result. Importantly, Wilson-Cowan output must be tuned: the steady state value to which
it converges is not predicted by the Wilson-Cowan equations, but must be provided as a sigmoid. In contrast, the
PDT method calculates the �ring rate from �rst principles, and agrees well with the spiking neuron simulation, within
statistics.

except at high values of V, on the right, which corresponds to spike generation.
At high values of w, there are two e�ects: stronger leak (larger cells) and a
lower (more negative) equilibrium potential, which makes it harder for a cell
at high w to be driven across threshold, precisely the e�ect one expects due
to adaptation. At low w, the opposite happens: cells become more excitable.
For very low w values, which can not be reached under cortical conditions, at
least not for the parameters we used, there is the theoretical probability of a
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rebound (neuron always spikes).
A density function now lives in this two dimensional space: ρ(V, w). The

evolution equation is a direct generalization of Eq. 2.3. For a model with n
state variables ~V, a point model takes the form:

τ
d~V
dt

= ~F(~V) (2.5)

and the density equation:

∂ρ

∂t
+

∂

∂~V
· (
~Fρ)

τ
=

∫
dhp(h)ν(ρ(~V −~h)− ρ(~V)) (2.6)

, where~h represents the e�ect of an input spike.
We represent the density function by a heat plot on state space: the highest

values or white, low values are red. We are able to simulate the density function
by a method analogous to that of [47; 96], generalized to two dimensions. In
Fig. 2.8 we show the result of a simulation: the density function as a �xed
point in time. As before, we can calculate the �ring rate of the population by
calculating the the �ux across threshold (which is still given by V = Vthreshold,
i.e. the right hand side of the grid).

The simulation software, MIIND, is publicly available3. The LIF version of 3 http://miind.sf.net

the algorithm has been available for some time [49], while the two dimensional
version has become available recently.

http://miind.sf.net




3 Objectives

Bridging the gap between experimental neuroimaging evidence and the
available modelling solutions to binding, is a crucial step for the advancement
of our understanding of the brain computation and representation of symbolic
structures. From the recognition of this problem, the goal of this PhD became
the identi�cation and experimental test of the theories, based on neural
networks, capable of dealing with symbolic structures, for which we could
establish testable predictions against existing fMRI and ECoG neuroimaging
measurements derived from language processing tasks.

We identi�ed two powerful but very di�erent modelling approaches to
the problem: Smolensky’s tensor product representations and the Neural
Blackboard Architecture (NBA). In the case of Smolensky’s tensor products,
we considered the superposition principle to be one of its crucial assumptions,
so we decided to acquire a new fMRI dataset to test it in di�erent brain regions.
In the case of the NBA, we built a new simulation to be able to perform
predictions on the temporal dynamics and spatial patterns of binding observed
in the neuroimaging literature.

Objectives outline:

1. Test the superposition principle of Smolensky’s tensor product
representations with BOLD-fMRI

(a) Design experimental manipulation for the acquisition of a two-syllabic
pseudoword representations BOLD-fMRI dataset.

(b) Extract pseudoword representation patterns with traditional univariate
techniques

(c) Develop tests with decoding algorithms to provide evidence in favour or
against superposition in brain Regions of Interest and study the locality
of those representations.

2. Test the neural activity and temporal dynamics predicted by the
Neural Blackboard Architecture

(a) Implement a compartment circuit simulation with spiking neural
networks employing population density techniques
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(b) Tune the implemented circuit only for correct binding operation

(c) Generate the neural activity of selected stimuli from fMRI and ECoG
experiments

(d) Evaluate the qualitative similarity between the NBA circuit predictions
and the results reported by the fMRI and ECoG experiments



Part II

Testing the superposition
principle with bi-syllabic

pseudowords
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4 The superposition principle with BOLD-fMRI

In this chapter we introduce the problem of testing the superposition
principle, that depend on Smolensky’s tensor product representations,
with BOLD-fMRI and how bi-syllabic pseudowords are modelled.

4.1 BOLD-fMRI interpretation of superposition and
vectorial representations

The superposition principle: In Smolensky’s Integrated Connectionist/Symbolic
architecture (ICS)[172], the neural activation of a symbolic structure is given
by the union of the Filler/Role bindings belonging to the symbolic structure.
The set of Fillers that can be assigned, as well as the set of Roles will depend
on the modelled stimuli. We could consider for example phonemes as Fillers,
to be assigned to node positions in a tree structure as Roles, to �nally form
morphemes and words as the resulting symbolic structure. Smolensky
proposes to employ the linear operation of addition as the union operator of
the bindings, such that the neural activity of an abstract symbolic structure is
given by Equation 4.1. We present a concrete example in Equation 4.2, where
the word "cat" is formed by adding the bindings of the phoneme Fillers "k",
"ae" and "t", with their respective positional Roles in a tree structure.

Structure = Filler1 ⊗ Role1 + ... + Fillern ⊗ Rolen, Abstract representation
(4.1)

Scat = Fk ⊗ R0 + Fae ⊗ R10 + Ft ⊗ R11, Example word
(4.2)

S f igu = Ff i ⊗ Rle f t + Fgu ⊗ Rright, Example pseudoword
(4.3)

In this work we will consider pseudowords composed of the combination of
two syllables of one consonant and one vowel (CVCV). We present in Equation
4.3 the modelled representation of the pseudoword "�gu" as an example.
Moreover in Figure 4.1 we show the BOLD-fMRI interpretation of neural
vectors. The main idea is that BOLD activity in voxels is meant to represent



42 martín pérez-guevara

the aggregated neural activity of a set of neural units from the representations
neural vectors. Aggregation of neural activity implies an important loss of
information that could impede decoding of the representations if the values of
neural activations are similarly distributed in di�erent segments of the neural
vector established for each voxel.

Figure 4.1: Illutration of
superposed tensor product
representation in BOLD-fMRI:
We present the example neural
vectors of the syllables "na"
and "gu" bound to the left and
right positions of a bi-syllabic
pseudoword. We illustrate how
the level of BOLD activity should
re�ect the aggregated activity
of a segment of the neural units
that form a representation. The
superposition principle consists
on the sum of the vector values
from each binding, to obtain the
�nal total activity in a voxel. The
voxel values of the pseudoword
"nagu" correspond to the plots of
the neural vectors and those of the
pseudoword "guna" were derived in
a similar way. Due to the e�ect of
aggregation, only one voxel in the
example permits di�erentiating the
two pseudowords.

Stability, uniqueness and intrusion of vectorial representations: An
important assumption behind tensor product representations is that the
hypothesized Filler and Role vectors have been learned by the cortex and
are �xed to a speci�c set of neural units and values. Nonetheless there are
some biological and theoretical factors that could go against this assumption.
It is known that there is state-dependent adaptation in the cortex[103] and
�ring thresholds can be altered according to arousal state[129], which can also
complexify the behavior of neurovascular coupling[101; 125]. Moreover there
is evidence for the existence of cell assemblies in parts of the cortex, like the
hippocampus, where neural spiking is importantly a�ected by local network
interactions[86], and the formation and dissolution of dynamic cell assemblies
have been demonstrated during cognitive processing[24].

These possibilities could increase importantly the variability of the unit
neural activity or even imply the existence of more than one pattern assigned
to a particular Filler or Role vector. An analogy of how this type of e�ects
would operate against pattern identi�cation is changing gaze position with
respect to visual stimuli presentated on a screen. Not accounting for gaze
position would give the impression of multiple representation patterns for
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the same image, even though retinotopic representations are very stable and
precise relative to other activations in the cortex, because the activation vectors
would change spatial location (change neural units) from trial to trial.

Smolensky also proposes that the neural activation vectors of the Fillers
and Roles should be linearly independent in the best case to allow for exact
unbinding operations in the cortex, although linear independence is not a
strict demand, because there is a graceful degradation as the correlation
between vectors increases on a distributed representation. Nonetheless even
if it was the case that underlying distributed neural unit representations
were linearly independent, this do not imply that the aggregated activity
of arbitrary segments of those neural units would remain independent, or
even di�erentiable from each other to the necessary degree to detect it with
the signal to noise ratio of the BOLD signal. For example in Figure 4.1 we
illustrate the possibility of not being able to di�erentiate the pseudowords
"nagu" and "guna" in their voxel activations, which was the case of Voxel 2
in the plot, even though their underlying Filler and Role neural vectors are
linearly independent.

Locality and sparsity of vectorial representations: The tensor
framework proposed by Smolensky allows for the possibility of completely
distributed representations and encourages it, since distributed representations
have several advantages in terms of pattern generalization and memory
e�ciency over local representations. From the neurobiological point of view,
it seems likely that there are broadly distributed representations when we
are able to �nd with coarse random sampling neurons tuned to speci�c
experimental stimuli. Consider for example the work by [4], that characterizes
the receptive �eld of a set of sampled neurons to moving dots. Spatially
broadly distributed representations would be an advantage for BOLD-fMRI
detection of neural patterns, since it increases the amount of voxels that would
contain information about the patterns. Nonetheless this would only be the
case if the spatial distribution of activation values across neural units is not
uniform, such that we can capture higher random spatial di�erences between
the aggregated activity patterns of the neural units.

Another property that would help pattern identi�cation with BOLD-fMRI
is having enough sparsity in the distributed representations to augment
di�erences in the aggregated activity or even cause semilocal representations.
A trivial example of semi local representations would be the inversed
hemispheric retinotopic projections of the visual information shown to the
di�erent eyes. From the neurobiological point of view, it seems likely that
there is certain degree of sparsity. Olshausen et al. shows how a coding
strategy that maximizes sparseness is su�cient to account for important
properties of the mammalian primary visual cortex, which are considered to
be spatially localized, oriented and bandpass, comparable to the basis functions
of wavelet transforms[149]. In the neuroscienti�c literature the actual degree
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of sparseness related to neural representations is still debated, sometimes even
only one neuron is found to be responsive to very speci�c stimuli, giving rise
to the hypothesis of grandmother cells. An interesting debate on this account
is developed by Bowers et al.[21], in which it is made clear that the degree of
sparsity observed depends on the experimental stimuli de�ned and will vary
across neural areas. The neural sampling methodologies employed so far in
humans have not been able to completely characterize the degree of sparsity,
because they are still not capable of capturing the separated neural activity of
complete local neural populations.

Stimuli selected to test superposition on syntactic operations: There
are few explorations in the neuroimaging literature about composition
operations. Additive models of composition for sensory stimuli, similar to
the superposition principle in tensor product representations, have been
tested with multi unit neural recordings in monkeys. It seems that the
composition operations employed by the brain depend importantly on the
features considered. For example in the monkey’s inferotemporal cortex,
evidence was provided for conjunctive non additive models in the case
of shapes composition[10], but when considering jointly shape and color
in the same region, evidence for linearly additive composition was found
instead[131].

More work has been done with sensory stimuli on other animal models,
but testing speci�cally for symbolic representations is more complicated due
to the limited measurement techniques that we have for the human brain. In
the case of BOLD-fMRI there are already some studies employing a variety
of machine learning techniques, that have tried to approach the problem in
di�erent cognitive domains. Decoding methods, classifying stimuli conditions
from BOLD signals, have been used to demonstrate a compositional code
similar to superposition for rule representations in the human prefrontal
cortex[165]. In the case of language, Mitchell et al. tested an additive model
of semantic features with encoding models, that predicted the BOLD brain
images associated to English nouns[137], but no similar work has been done
for syntactic features yet.

In this work we were interested in testing the additive model proposed by
superposition on syntactic operations of language, which in most levels of
language processing are hypothesized to depend on hierarchical tree structures.
The idea of assuming positional Roles representing nodes of trees is relatively
uncontroversial at the phonological and morphological level of language
processing and previous work have been successful in characterizing the
neural representations of isolated syllables with BOLD-fMRI[62]. Moreover
several neural activity e�ects spread in the fronto-temporal language network,
linked to phonological manipulations and pseudowords processing, have been
reviewed in various metanalysis[195; 178]. Taking all this into account, we
decided to test superposition of the syntactic representations of bi-syllabic
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pseudowords with decoding techniques in BOLD-fMRI, for which modelled
representation examples were given in Equation 4.3 and Figure 4.1.

4.2 From neural unit recordings to BOLD-fMRI measures
of aggregated activity

In Smolensky’s Integrated Connectionist/Symbolic architecture (ICS)[172], the
implementation of symbolic representations is done through the activation of
neural units that form part of a neural network. This means that Smolensky’s
tensor product representations have a straight interpretation on the spiking
activity of Multi Unit Activity recordings (MUA) of neurons.

To test properties of Smolensky’s proposal with other neuroimaging
techniques like BOLD-fMRI, that re�ect aggregated neural activity, it is
important to verify that there is a linear mapping between the underlying
neural activity and the aggregated activity. So we need a correspondence
between the spatial location and neural activity values with respect to single
neural unit measurements. Moreover, since in this work we want to test the
additive model brought forward by superposition, it is important that the
mapping from neural activity to BOLD remains approximately linear.

Regarding spatial localization of the signals, Siero et al. studied the spatial
properties of the hemodynamic (BOLD) signal at 7T and recon�rmed its spatial
correspondence with intracortical (ECOG) time series in the motor cortex for
a �nger tapping task[171]. They managed to decode spatially the tapping of
di�erent �ngers and found that the spatial correlation between signals for the
di�erent �ngers is high (on average R=0.54) and their maxima co-localized
within 3 mm distance.

In the case of the mapping of neural activity values to aggregated activity,
Cardoso et al. designed a visual task, in which drifting sine-wave gratings were
presented passively to monkeys during 3-4 s while they �xated[32]. With this
task they demonstrated high predictability (0.94 R squared) of a component
of the BOLD hemodynamic response, the cerebral blood volume (CBV), from
direct neural measurements (MUA and LFP). Nonetheless the BOLD signal
itself is more complex, it depends on the coupling between cerebral blood
volume (CBV), cerebral blood �ow (CBF) and oxygen concentration measures
(CMRO2), where the last two have been linked to adaptation and other non-
linear e�ects[139]. For example Toyoda et al.[181], employing chequerboard
visual stimuli with durations between 1 and 8 seconds, showed that the
contribution of the oxygen extraction fraction (OEF) to the BOLD signal,
which is a measure related to CMRO2, can be four to seven times greater than
the contribution attributed to the CBV under the range of plausible parameters
of neural activity and adaptation. But they also showed that the contribution
ratio of OEF over CBV can be compensated with the experimental design,
since the ratio decreases as the duration of the stimuli increases.

Despite this complexity of the BOLD signal, a consensus is emerging on a
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linear relationship for long duration stimuli of enough intensity[8; 9; 29; 89;
110; 124; 152; 184]. Important exceptions exist, but often they are related to
sensory stimuli of short-duration[5; 174; 193; 204], or low-intensity that do
not overcome the activity threshold necessary to generate an hemodynamic
response[193]. For example, strong evidence of a linear relationship between
BOLD and MUA, for long-duration sensory stimuli with varying stimulation
frequency, was provided by Devonshire et al.[53]. They studied regions
inside and outside of the cortex and demonstrated the e�ect with electrical
stimulation of the entire whisker pad on the left of a rat’s snout, during 40
s with di�erent pulse frequencies. All the mentioned evidence points to the
idea that it is reasonable to interpret and test neural unit level representations
with BOLD-fMRI, as long as temporal variables of the experimental design like
length of stimulation or inter-stimuli intervals are manipulated to minimize
the in�uence of BOLD non-linearities.



5 The syllables superposition experiment

In this chapter we present the two tasks of the experimental design,
the Bold-fMRI data acquisition, preprocessing and processing, and
the analysis methods employed to assess the likelihood of superposed
representations in the Regions of Interest considered.

5.1 Experimental design

Participants: Five native French speakers participated in the experiment
(two females with ages 22 and 32 and three males with ages 23, 26 and 36). All
subjects had high school background from French universities (Bac) and were
right handed with a Laterality Quotient (LQ) of at least 40 (mean 70, SD 20.98),
as measured by the Edinburgh Handedness Inventory[147]. The experiment
was conducted at the NeuroSpin center and all subjects came on four di�erent
days, for a total of four scanning sessions. The experiment was sponsored
by the Unicog lab U-992 in NeuroSpin, and received ethical approval by the
regional ethical committee (Comite de Protection des Personnes, hopital de
Bicetre). All subjects gave written informed consent and received 80 euros for
their participation.

Introduction to the experimental design: Two experimental designs
were developed; a language localizer[118], to identify in each subject language
processing regions, and a pseudoword representations design to obtain brain
representations of the syntactic union of two syllable combinations devoid
of semantic content. All experimental tasks were implemented with python
scripts exploiting the capabilities of the Expyriment python library[107].

For both designs, visual and auditory sensory modalities were used for
stimulation, since in language regions we aim to �nd abstract representations
insensitive to sensory modality. Visual Stimuli consisted of text, projected
one word at a time in rapid serial visual presentation (RSVP), on a translucent
screen with a digital light processing projector (PTD7700E, panasonic, frame
rate: 60 Hz, resolution of 1024 x 768), with a viewing distance of 89 cm.
Auditory Stimuli were delivered through MRI-compatible headphones (MR
confon), and the volume was adjusted for each participant to a comfortable
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hearing level.

Language Localizer

Stimuli: The stimuli consisted in blocks of three phrases and blocks of three
non language stimuli that varied in implementation with the sensory modality.
These blocks were presented in an alternated fashion with the purpose of
extracting brain areas processing language from the contrast of these block
categories[118]. Visual stimuli was text presented in the screen with a �xed
point Inconsolata font1. The text comprised 0.72 degrees of vertical visual 1 https://fonts.google.com/specimen/Inconsolata

angle and a maximum of 5.8 degrees of horizontal visual angle, with the
longest word having 14 letters. The visual non language stimuli was formed
by replacing words in the phrases with consonant strings, for example "the
cat" could be replaced by "ztr pfg". Auditory stimuli consisted on the same
phrases digitally recorded at 22.05 kHz in a quiet room by a male speaker.
Phrase recordings had a mean duration of 2.33 seconds (SD, 0.41 s), giving a
total average duration of 7 seconds for a block made of three sequences. To
generate the control auditory non language stimuli, the phrase recordings
were scrambled with the multiband approach suggested by Ellis and Lee[60],
but with python code using the Brain Hears software[66].

Task and trial structure: The subjects were instructed to read or listen
attentively to all stimuli presented. Each trial consisted on presenting one of
the blocks designed, which were the grouped phrases or non language stimuli.
Each block contained three phrases or three consonant strings, the �rst made
of 9 units, the second of 10 units and the last of 9 units. A �xation cross was
presented before the presentation of each phrase or string, for 500 ms, followed
by a blank screen for 500 ms. In the visual case, each text unit was presented
regularly for 200 ms, which is not the case in the auditory modality that has
variable sequence duration. Between the presentation of the three stimuli a
blank screen was presented for 600 ms. At the end of the presentation of the
three stimuli a blank screen was presented for 7 seconds waiting for the next
trial (the next block). There were 4 runs of acquisition and in each of them 90
trials were presented. In Figure 5.1 we show an example of a sequence in the
visual modality.

CVCV Pseudowords presentation

Stimuli: The "CV" syllables "�", "gu" and "na" were selected to form all
possible "CVCV" pseudowords from their combinations: "��", "�gu", "�na",
"gu�", "gugu", "guna", "na�", "nagu" and "nana". These syllables were selected
under two constraints. The �rst was that all syllabic combinations could
not lead to word formation, such that we could assume similar sensory
and language processing of symmetric representations like "�gu" and "gu�",
expecting only syllable position e�ects. The second was that we wanted to
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Figure 5.1: Visual trial of the
language localizer: Each black
square represents the screen at
a di�erent time point. Only
one example phrase and consonant
string is shown, which comprises
only one third of a block stimuli.

improve auditory discriminability, so we maximized the featural distance
between consonants and between vowels. We selected one velar consonant
"gu", one labio-dental "�" and one alveolar "na" with their respective high-back
tongue "u", high-front tongue "i" and low-back tongue "a" vowels. The e�ect of
featural distances in auditory representations was demonstrated in the cortex
by the work on phonetic organization of spatial patterns of Bouchard et al[20].

The pseudowords were presented in a visual and auditory modality. In
the visual case they were presented as text in the screen with a �xed point
Inconsolata font. We decided to make the text as big as possible to increment
expected retinotopic e�ects but also tried to avoid the stimuli perception to
be too tiring for the subjects, so �nally the pseudowords were presented as
lower-case text centered on the screen, spanning maximum 2.39 degrees of
vertical visual angle and maximum 5.05 degrees of horizontal visual angle.
For the auditory stimuli, three tokens of the syllables ’gu’, ’na’ and ’�’ were
recorded at 22.05 kHz in a sound-proof room by a male speaker. They were
edited to have the same duration, by cutting some of the periods inside the
vocalic part. They were then concatenated to generate the nine bisyllabic
experimental stimuli. These stimuli all had a duration of 660ms. Probe stimuli,
required by the task, consisted on smaller upper-case text spanning 0.6 degrees
of vertical visual angle and 1.68 degrees of horizontal visual angle for the visual
modality and modi�ed recordings of the syllables with 10% higher pitch for
the auditory modality.

Task and trial structure: The task consisted on keeping the pseudowords
in memory for a possible comparison with a second pseudoword. The
instruction given to the subjects was to �xate a green dot and to keep in
memory a following pseudoword, until the arrival of a red dot that signalled
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the end of the trial. From time to time the subjects had to make a comparison
with a second pseudoword presented in the middle of the trial, in which
case, con�rmation of a positive match was indicated with a right hand button
press and of a negative match with a left hand button press. We included the
matching task to make sure subjects were complying with the task and paying
attention to the stimuli, but we did not include a matching task on each trial
to try to maximize the amount of stimuli presented in a session.

We show the structure of a trial from the visual modality in Figure 5.2.
The green dot appeared for 0.5 seconds followed by a �ashing presentation
of the pseudoword, in the visual case, to be kept in memory for 3.2 seconds
with a 0.25 seconds jitter. We decided to present the visual pseudowords for
only 0.2 seconds to minimize the in�uence of saccades in the estimation of
brain activations. The pseudowords were �ashed twice for 0.1 seconds to
increase visual response. In the matching task trials, the second pseudoword
was presented for 0.5 seconds followed by a response and rest period of 6.5
seconds. At the end of the trial the red dot was presented for 0.5 seconds
followed by a 2.5 seconds resting period. Each imaging run consisted of 45
trials (5 per pseudoword), where the order of presentation of the pseudoword
conditions was shu�ed. In total there were 8 runs in a session, with two
auditory sessions and two visual sessions, for a total of 80 trials per condition
per modality. Only nine trials were randomly selected to contain a second
pseudoword to perform a matching task. In the auditory case the trial structure
is identical except for the 660 ms duration of the pseudowords recordings, in
which case the memory time was reduced to 2.8 seconds to have the same trial
total duration as in the visual case.

Figure 5.2: Visual trial example
of the pseudoword matching
task: A green dot is presented for
500 ms, followed by a pseudoword
�ashed twice for a total presentation
duration of 200 ms. It has to be
kept in memory for a period of
3200 ms with a 250 ms jitter. Nine
times in a run a second upper-
cased pseudoword is presented for
comparison during 500 ms with a
response period of 6500 ms.

5.2 Data acquisition and processing

Imaging: The acquisition was performed with a 3 Tesla Siemens Prisma
Fit system equipped with a thirty two channels coil. Anatomical images
were taken using a 3D Gradient-echo sequence and voxel size of 1x1x1 mm.
Functional images were acquired as T2*-weighted echo-planar image volumes
(Multi-Band EPI C2P from Minnesota University). The MultiBand EPI consisted
on the parallel acquisition of 4 slices at a time, reconstructed by a parallel
imaging reconstruction algorithm[34]. Eighty transverse slices covering the
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whole brain were obtained with a TR of 1.5 s and a voxel size of 1.5 x 1.5 x
1.5 mm (TE = 26.8 ms, �ip angle = 70, no gap). Moreover accurate timing
of stimuli presentation relative to FMRI acquisition was achieved with an
electronic trigger at the beginning of each run.

Acquisition sessions: Each subject had four sessions of scanning with a
similar structure. The �rst two sessions included the visual version of the
pseudoword matching task and the last two sessions the auditory version.
Each scanning session lasted 78 min and 6 sec with an anatomical scan and 10
functional runs structured as follows:

1. Anatomical T1 (1 volume, 7 m 46 s)
2. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
3. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
4. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
5. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
6. Language localizer task "Visual" (435 volumes, 11 m 27 s)
7. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
8. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
9. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

10. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)
11. Language localizer task "Auditory" (435 volumes, 11 m 27 s)

Data preprocessing: The OASIS-30 Atropos template atlas from
Mindboggle2 was used as reference for normalization and segmentation 2 http://www.mindboggle.info/data.html

of the subjects anatomy. The methodology behind this atlas is based on state
of the art algorithms from the Advanced Normalization Tools (ANTS) and a
cohort of 101 manually segmented subjects, giving very precise probabilistic
maps and anatomical ROIs[104]. A transformation between this template and
one provided by ICBM in MNI space was also performed for MNI coordinate
reports and visualization. The ICBM 2009a Nonlinear Asymmetric template
was considered[42].

After normalization and segmentation of each subject anatomy. The
functional runs of all tasks were slice timed with SPM with reference to the 1st
slice (default SPM behavior) and realigned with respect to the 3rd volume of
the �rst acquired run of the �rst session. Realignment was performed with FSL
MCFLIRT algorithm and co-registration was also performed with FSL but with
the FLIRT algorithm employing a boundary based registration that takes into
account previously performed white matter segmentation of the anatomy[79].
All preprocessing steps were implemented with the Nipype software[78].

Data processing: Two General Linear Model (GLM) estimations were
performed, one on the non-smoothed, non-normalized and realigned
functional images and the second on the smoothed version of the same
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images, with a 6 mm Gaussian kernel. The non-smoothed beta maps derived
were employed for decoding, while the smoothed beta maps were employed
for parametric statistical tests. The GLM was implemented with the Nistats3 3 https://github.com/nistats/nistats

software, which is part of the Nipy and Nilearn[2] ecosystem. A glover HRF
was employed for the estimation with an additional cosine drift model to
high-pass �lter above 1/128Hz.

The language localizer was modelled with two regressors for the block
conditions, alongside motion regressors extracted from the realignment
preprocessing step. Statistical estimation of a contrast between the two block
conditions was performed on the smoothed images to extract the language
network.

In the case of the pseudoword matching task, each pseudoword condition
was modelled with one regressor, alongside left and right motor events derived
from the behavioral responses and motion regressors extracted from the
realignment preprocessing step. The condition beta maps corresponding to the
smoothed images were employed for statistical estimation of motor contrasts
and syllable position e�ects, for which a �xed e�ect model was considered
across runs and sessions in each subject. To obtain statistical e�ects of syllable
position, we modelled the conditions as two factors (left and right position),
with three levels (syllables �, gu and na). We estimated contrast vectors for
the e�ect of left position, e�ect of right position and interaction of left and
right positions, by employing the contrasts vector speci�cation procedure of
Henson and Penny[91].

It has been shown that taking into account trial-to-trial variability is
desirable for multivoxel pattern analysis (MVPA)[1; 140]. As we wanted to look
into the representational patterns of the di�erent pseudowords, we decided to
also estimate one beta map per trial, following the same methods employed for
beta-series analysis[40]. This is also desirable to capture attention modulated
variability in the voxel patterns of the pseudowords, since the task do not
allow us to verify the processing integrity of each trial but only to motivate
subjects engagement.

5.3 Data analysis

All data analysis was performed employing diverse Python scienti�c open
source libraries[148]: Numpy[198], Pandas[130], Matplotlib[93], Ipython[156],
Scikit-Learn[155] and the neuroimaging library Nilearn[2].

Regions of Interest (ROIs)

Sensory-Motor regions: In Figure 5.3 we display the contours of primary
sensory-motor regions, taken from the cytoarchitectonic SPM toolbox[59],
projected on the anatomy of Subject 1 alongside the gray matter mask, the
brain glass template contours were adapted to the T1 anatomy of the subject.
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Notice that the primary regions are broad, since we considered any voxel with
non zero probability to be part of the region, and cover both hemispheres.

L R

Visual hOc1 region
Auditory Te10 region
Auditory Te11 region
Auditory Te12 region
Motor 4a region

Figure 5.3: Sensory-motor
regions projected on Subject 1
anatomy: Contours are shown
for the projected primary Visual,
Auditory and Motor regions,
alongside the subject extracted gray
matter. The brain glass template
contours were adapted to the T1
anatomy of the subject.Language regions: Two sets of language regions were selected for the

analysis. The �rst set of regions, shown in Figure 5.4, was selected to evaluate
the quality of the language localizer contrasts from a study done by Mahowald
and Fedorenko[118]. In this study activation parcels were derived from similar
language localizer acquisitions in hundreds of subjects, covering the whole
fronto-temporal language network.

L R

PostTemp
AntTemp
AngG
IFG
IFGorb
MFG

Figure 5.4: Language localizer
parcels projected on Subject 1
anatomy: Contours are shown
for the projected language localizer
parcels reported by Mahowald and
Fedorenko. The brain glass template
contours were adapted to the T1
anatomy of the subject.

The second set of regions is shown in Figure 5.5. Diverse regions, also
covering the fronto-temporal language network, that have been directly linked
to binding or constituency e�ects, from di�erent sources, were selected to
facilitate the analysis and interpretation of the results4. 4 Besides the ROIs �nally considered, we

explored peaks of pseudoword phonetic and
morphological e�ects from various meta-
analysis[195; 178]. The e�ects reported were
numerous and spread across the whole fronto-
temporal network. We veri�ed that the
ROIs covered most of the e�ects and opted
to perform the analysis in a smaller set of
bigger ROIs than what would be obtained
from spheres centered at the reported e�ect
peaks. It could be argued that we are missing
speci�c e�ects, but since we will implement a
searchlight selection procedure of voxels, any
speci�c e�ects should be selected inside their
containing ROIs for the decoding models

First we considered the left visual word form area (VWFA) that has been
linked to binding of visual and verbal representations in both words and
pseudowords, for early stages of language processing[41; 194; 50; 75; 205]. The
VWFA was built as a 4 mm sphere centered at the x=-46, y=-61 and z=-10 in
MNI space[50].

Second we considered the left hemispheric regions derived from neural
activation clusters related to phrase constituency e�ects, observed in the
experiment of Pallier et al.[154]. In this experiment two groups of clusters
were found to respond di�erently to constituency manipulations in phrases
and jabberwocky stimuli. Some regions responded only to semantic coherence
from phrase stimuli, namely the anterior superior temporal sulcus (aSTS), the
temporal pole (TP) and the temporo parietal junction (TPJ). Other regions
responded also to syntactic coherence from the jabberwocky stimuli that
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contained pseudowords to minimize semantic content, namely the posterior
superior temporal sulcus (pSTS) and the inferior frontal gyrus pars triangularis
and pars orbitalis (IFGtri and IFGorb)[154].

Finally we considered Broca’s complex for its long standing link to binding
operations in language[82]. We took the Broca 44 and 45 regions from the
cytoarchitectonic SPM toolbox[59], which are broad due to non zero probability
consideration of voxels in the probabilistic map.

L R

VWFA
TP
aSTS
pSTS
TPJ
IFGorb
IFGtri
Broca 44 and 45

Figure 5.5: Language regions of
interest projected on Subject 1
anatomy: Contours are shown
for the projected left hemispheric
language regions of interest. We
include the VWFA, the 6 regions
reported by Pallier et al. related to
constituency e�ects and the joint
Broca 44 and 45 regions taken from
the cytoarchitectonic SPM toolbox.
The brain glass template contours
were adapted to the T1 anatomy of
the subject.

Sanity checks

To verify the integrity of the language localizer acquisitions, we compared
the thresholded activations of the contrasts (word sequence over non words
sequence), with the parcels of Mahowald and Fedorenko. These parcels
represent probable activation derived from thresholded maps at p < 0.001
for hundreds of subjects, so not being able to cover them with our language
localizer could signal problems with the acquisition and limit our interpretation
of syllabic representations in the derived language network.

In the case of the pseudoword matching task runs, we validated the
estimated activation maps in two ways. First we veri�ed the statistical e�ect
of the left vs right motor response contrast and checked that we could decode
left and right response activation maps derived from the GLM estimation.
Second we looked for expected retinotopic e�ects of the centered text in the
visual modality, that implied a separation of the statistical e�ects of the �rst
syllable position and second syllable position in the right and left hemispheres
respectively.

Sensory-Motor Classification methods

Classification of motor responses: Motor classi�cation was simply
performed on the average beta maps of each session derived from the smoothed
images GLM model, masked by the motor 4a region of the cytoarchitectonic
maps. We standardized voxel activations to form the features used for training
a nonlinear SVC classi�er based on a radial basis functions kernel with default
parameters from the Scikit-Learn[155] software. We employed the multiclass
One Vs Rest (ovr) classi�cation strategy, such that the decision function is
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based on one classi�er per condition, with a Leave One Out Cross Validation
(LOOCV) procedure based on sessions.

Sensory and language classification methods

Classification models: In each Region of Interest (ROI), we trained three
decoding models: the �rst identifying full bi-syllabic pseudowords (CVCV
model), the second identifying only �rst position syllables (CV1 model) and
the third identifying only second position syllables (CV2 model). Chance on
the CV1 and CV2 models was 33.33% for the three conditions "�", "gu" and "na",
and 11.11% on the CVCV model for the nine pseudoword conditions. Moreover
we trained one model per sensory modality, so we trained one model on the
visual stimuli and one model on the auditory stimuli for each ROI, except for
the visual and auditory regions. In all models we tested generalization to the
opposite sensory modality.

Searchlight and voxel selection procedure for ROI analysis: The ROIs
that we considered had thousands of voxels (features), which could impact
negatively the performance of the classi�ers, so we �rst decided to select
promising voxels by running a Searchlight[61] classi�cation procedure on a
5 millimeter radius spheres. We ran the searchlight on a selection of voxels
in the gray matter mask of each subject constrained by additional statistical
considerations. For all regions we considered only voxels on which a 3 mm
sphere centered on them contained at least one statistical e�ect of syllable in
�rst position, of syllable in second position or position interaction with a p-
value < 0.001. For language regions we also constrained the 3 mm voxel sphere
to contain at least one statistical e�ect of the language network contrast with
a p-value < 0.001. For the searchlight classi�ers we employed the average beta
maps of each session from the non smoothed images GLM model. We ran in
each sphere the three classi�er models for each sensory modality dataset. The
classi�ers accuracy was assigned to the center voxel of each sphere, resulting
in three accuracy maps. Then voxels from each map were ranked and the top
"n" voxels of each map alongside a 3 mm sphere around them were taken as
features for the �nal ROI classi�er. The number "n" of top voxels to consider
was cross validated in a parameter grid search of the ROI classi�ers, taking
values from 1 to 40 in sensory regions and from 1 to 20 in language regions.

Classification procedure: For all classi�cation models, we employed the
multiclass One Vs Rest (ovr) classi�cation strategy, such that the decision
function is based on one classi�er per condition. A Leave One Out Cross
Validation (LOOCV) procedure based on sessions was implemented for all
trained classi�ers, taking into account activation maps from the 720 trials
of each sensory modality. We took into account only the voxels (features)
selected by the previously explained searchlight preprocessing procedure in
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an ROI. The trials in the training set were employed to standardize the beta
activation values of all trials inside each feature. The standardized features
were then passed to a NuSVC linear classi�er, for which we performed a grid
search for the best value of the "nu" parameter taken from 0.2, 0.5 and 0.8,
alongside the number "n" of top voxels.

To estimate p-values for accuracy and other values taken from the classi�er,
we retrained a model 100 times with the same dataset but shu�ed labels
(shu�ed models)5. From each classi�cation model we extracted confusion 5 Taking into account only a 100 permutations

introduced a limited precision of 10−2 in the
estimation of p-values, such that 0.01 is the
best threshold that can be tested. This had to
be done to reduce the computational time that
was, already for a 100 permutations, around 2
hours for each model per ROI in a parallelized
setup on a machine with an 8 cores 3 Ghz
AMD CPU

matrices and the model coe�cients for further analysis.

Structural tests of representations

Null distributions for interpretation of representations tests: We
will test the superposition principle and the locality of representations by
interpreting measurements taken from the confusion matrix and coe�cient
weights of the NuSVC linear classi�ers. Since the classi�er has particular
biases, it is important that we de�ne appropriately a null distribution, such
that we can assess how extreme or signi�cant are the obtained measurements
for a given dataset and condition labels. As was done to evaluate the classi�ers
accuracy, we built the null distribution by repeating the measurement in the
results of the 100 shu�ed models, in which the same dataset was employed
but condition labels were uniformly shu�ed. For demonstration here we
took the shu�ed models of an example dataset corresponding to the selected
voxels for the visual hOc1 region classi�er of Subject 4. As an additional
check, we trained a 100 NuSVC classi�ers with a fake white noise dataset of
same dimension as the example dataset (white noise models), such that an
alternative null distribution was generated using the same 100 label shu�es
of the shu�ed models. In the following paragraphs we demonstrate that the
null distribution given by the shu�ed models is similar to that of the white
noise models.

Reminder of the implications of the superposition principle: The
superposition principle predicts that neural representations (voxel activations)
should follow Equation 5.1. This means that the activation value of a
pseudoword at a voxel is the sum of the activation value of a syllable bound
to the �rst position and the activation value of the other syllable bound to the
second position. Then we expected the representation patterns of pseudowords
sharing syllables in the same position to be more similar to each other than
completely unrelated pseudowords. Moreover we expected pseudowords
sharing syllables in di�erent positions to not be more similar to each other
than to other unrelated pseudowords, since the neural activity of a syllable is
meant to change after being bound to its position according to Smolenky’s
framework.
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Activation = Syllable× Position1 + Syllable× Position2 + Noise (5.1)

Testing superposition with confusion matrices: In Figure 5.6 we
identify each of the cells of a classi�er confusion matrix according to the
relationship between the syllables of the true and predicted pseudowords.
Besides the diagonal of the confusion matrix, that represents predicting the
same original pseudoword label, encoding the accuracy of the condition, we
have three more types of cells: when the pseudowords have a syllable in the
same position (overlapping syllables); when there is a shared syllable but in a
di�erent position (shared syllables); and when there are no common syllables
between pseudowords (di�erent syllables).

Syllables comparison
Same
Overlapping
Shared
Different fifi fig

u
fin

a
gu

fi
gu

gu
gu

na na
fi

na
gu

na
na

fifi

figu

fina

gufi

gugu

guna

nafi

nagu

nana

Accuracy
Position overlap
Crossed overlap
No overlap

Figure 5.6: Cell types in
the confusion matrix of a
pseudoword classi�er: The
diagonal represents the same
true and predicted pseudoword.
The rest of the pairs correspond
to pseudowords that have an
overlapping syllable in one position
(Overlapping), a common non
overlapping syllable (Shared) or no
common syllables (Di�erent)

The representation similarity structure given by the linear terms in the
superposition equation should be re�ected in the confusion between conditions
in a linear classi�er, which means that we can compare the mean confusion
of the di�erent cell groups to provide evidence for or against superposed
representations. The principle predicts that the mean confusion between
conditions with overlapping syllables should be higher than between those
sharing syllables with no overlap or with di�erent syllables. In Figure 5.7 we
show how the mean confusion of the di�erent cell groups are related in the
case of the null distributions. We provide evidence in favour of superposition
if the mean confusion values of the cell groups in a tested model are located
above the diagonal of both plots in the Figure 5.7.

Also we have to verify that mean confusion values of a tested model have
a distance from the center reference higher than chance, which is given by
the vector (0.11, 0.11, 0.11) that describes equal confusion for all pseudoword
categories. To make this con�rmation, we computed the empirical distribution
of distances between the mean confusion vectors of the shu�ed models and
the chance vector, from which we calculate a p-value for the vector of a tested
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model. We observe in the Figure 5.7 plots that the projected distribution of
the cell groups mean confusion of the shu�ed models is similar to that of
white noise models, so we consider sensible to take the empirical distribution
of shu�ed models as reference to estimate p-values.

Figure 5.7: Superposition test: We
present the relationship between
the mean confusion of cell groups
representing overlapping syllables,
shared syllables and di�erent
syllables. The red dots correspond
to example shu�ed models taken
from the classi�er of the visual
hOc1 region of Subject 4. The green
dots correspond to the white noise
models using the same shu�ed
labels as the example shu�ed
models. If the mean confusion
values of a tested model is re�ected
as a dot above the black line in both
plots, then we have evidence for
superposition.

Locality of syllable representations: We also tested if representations
of syllables in di�erent positions are partitioned (semilocal representations),
which is expected for example in visual areas due to the hemispheric separation
of syllable positions given by retinotopy. Smolensky’s framework propose that
completely distributed representations are more likely to be implemented due
to their memory e�ciency over local representations. Moreover if this was the
case, our BOLD-fMRI voxel decoding should be more a�ected by the neural
sparsity encoding considerations mentioned in the Introduction Section 4.1.

From ranking the feature (voxel) coe�cients of the linear classi�ers of the
CV1 and CV2 models we can get an idea of the level of partition of position
related information in a region. Based on the voxel selection procedure, we
have that the voxels selected for both models are the same or at least one set
of voxels is completely contained in the other. Thanks to this we can take the
"N" best voxels subset of each model and then look at the proportion of shared
voxels between the two sets. We expect an statistically extreme overlap of the
best voxels subsets in case of distributed representations, while we expect less
overlap than that given by chance in the case of semilocal representations. We
can obtain the null distribution for the overlap of each N best voxels subset
from the shu�ed CV1 and CV2 models.

We show in Figure 5.8 several curve distributions to demonstrate how our
argument operates in practice: a red distribution derived from an example
CV1 and CV2 shu�e models taken from the visual hOc1 region of Subject
4; a green distribution derived from the corresponding white noise models.
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and a theoretical blue curve distribution that illustrates the overlap in subsets
taken from two ordinary lists, that share voxel indexes, uniformly permuted to
create fake random voxel rankings, which re�ects our intuition of the amount
of overlap that can be achieved by random uniform permutations of rankings;

Figure 5.8: Locality test: Each
curve in the plot represents the
proportion of overlap between
best voxel subsets from CV1 and
CV2 models. The blue curve
distribution represents repeated
overlap comparison of uniform
random permutations of an index
list to create fake random rankings.
The red curve distribution was
derived from an example set of
shu�ed models taken from the
visual hOc1 region of Subject
4. The green curve distribution
was derived from shu�ed models
trained on Gaussian noise data
with the same shu�ed labels as the
example set.

As we can appreciate from the green curve distribution, the amount of
overlap introduced by an SVM model trained on white noise is quite di�erent
from the intuition given by a simple uniform random permutation of rankings,
suggesting the need to estimate an empirical distribution from each SVM
model. We also observe that the shu�ed models null distribution behave
similar to the white noise models null distribution, so it is sensible to use
the empirical distribution of the shu�ed labels to estimate p-values of the
low deviation, towards semilocal representations, or high deviation, towards
distributed representations. We will test the overlap deviation for each "N"
best voxel subset of the target CV1 and CV2 models.





6 Experimental results

In this chapter we report the data analysis results. We comment on the
successful pass of all required sanity checks and analyse the properties of
pseudoword representations in the selected brain regions. In particular
we will demonstrate evidence in favour of superposition in anterior brain
regions and other interesting e�ects.

6.1 Behavioral performance

Four subjects (1 to 4), had a behavioral performance above 97% in both
visual and auditory CVCV Pseudowords presentations, while Subject 05, that
reported concentration span issues over all the acquisition, had a lower overall
performance of 90%. Note that due to the experimental design structure,
in which we only query few random samples, small score decrements can
imply distraction over an important task segment. Subjects 01 and 04 reported
in the second auditory session that the volume was not high enough to be
comfortable, although this did not re�ect on their behavioral performance. So
we consider all subjects data apt to neuroimaging interpretation, with caution
over Subject 05. Behavioral performance details are provided in Table 6.1.

Subject Visual (%) Auditory (%) Overall (%)

01 97.22 97.22 97.22
02 100.00 98.61 99.31
03 97.92 97.22 97.57
04 99.31 99.31 99.31
05 92.36 88.89 90.62

Table 6.1: Behavioral
performance on the
Pseudowords matching task:
Performance correspond to
correctly identifying if the
pseudowords were the same
or di�erent, with no answer
considered as incorrect. Visual
and Auditory headers refer to the
sensory modality of the task, where
overall is the mean performance of
both modalities.

6.2 Sanity checks

Language localizer activations: The contours of the language localizers’
contrasts, thresholded at p-value < 10e-3, for both auditory and visual
modalities are presented in Figure 6.1. We also show in Figure 6.2 the coverage
of Mahowald et al. parcels[118] by the thresholded language localizers for all
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Subject 1 Subject 2 Subject 3

Subject 4 Subject 5

Visual modality
Auditory modality

Figure 6.1: Language localizers:
We show left and right hemispheric
contours of the language localizer
contrast of word sequences
over control stimuli (consonant
strings or scrambled recordings),
thresholded at a p-value < 10e-3.
Statistical images are projected
in the anatomical space of each
subject.

subjects. We observe a left lateralization of the detected language network
with more than 40% coverage of all the language parcels, which covers the
fronto-temporal language system that has been well depicted in previous
imaging studies[118; 63; 51; 16]. There is variability between the modalities,
that particularly disfavours activations of the visual one, in which the subjects
can get distracted from perceiving and processing the stimuli more easily,
than in the auditory case. This could be expected from the intrinsic variability
of di�erent experimental designs in language localizers as demonstrated by
Mahowald et al.[118]. Subjects 1 and 5 have a de�cient coverage that will
diminish our capacity to interpret syllabic representation e�ects along their
cortex. In particular Subject 5, who reported concentration problems, have an
extremely de�cient coverage of the language network.

Subject
01
02
03
04
05

Figure 6.2: Language localizer
parcel coverage: We show the
parcel coverage of each language
localizer for the 6 language parcels
derived by Mahowald et al. in
both hemispheres. Each subject
is represented in a radial chart to
emphasize the overall coverage
of the language localizers of each
subject. Also the left and right
hemisphere parcels have been
arranged symmetrically in the
radial charts.Motor activations: We veri�ed the integrity of the activation maps of the

CVCV Pseudowords presentation with statistical tests portraying the left and
right hand button press contrast. Z score maps of the left over right button
press contrast, for all subjects, are shown in Figure 6.3, con�rming a good
statistical separation of hand responses.

We also veri�ed that we can employ a Support Vector Classi�er (SVC) to
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Figure 6.3: Button press e�ects:
We show the left button press
over right button press contrast Z
scores from the auditory modality,
thresholded at p < 10e-4, for
all subjects. Statistical images
correspond to the anatomical space
of each subject.distinguish left and right button press average activation maps derived from

the CVCV Pseudowords presentation General Linear Model (GLM) runs. There
were in total 32 maps for each condition corresponding to one map per run
per session (8 runs in 4 sessions). As can be seen in Table 6.2, we achieve
high classi�cation scores of right and left button press events for all subjects.
Moreover, the classi�cation generalize across sensory modalities.

(Train, Test) (V, V) (A, A) (V, A) (A, V) (V-A, V-A)
Subject (%) (%) (%) (%) (%)

01 84.38*** 93.50*** 80.84*** 76.94*** 90.88***
02 95.38*** 92.50*** 84.03*** 93.03*** 95.31***
03 98.00*** 99.00*** 93.91*** 98.75*** 100.00***
04 97.38*** 99.50*** 97.50*** 98.72*** 100.00***
05 86.62*** 77.62*** 90.12*** 74.28*** 93.56***

Table 6.2: Classi�cation of
left and right button press
maps of CVCV Pseudowords
presentation: "V" corresponds
to the Visual modality and "A"
to the Auditory modality. "V-A"
corresponds to pooling together
both datasets for training and
testing.
chance: 50%
* : p < 10e-2,
** : p < 10e-3,
*** : p < 10e-4
Bonferroni corrected for 25 similar tests
performed

Visual activations: From the statistical tests performed in the GLM beta
maps, of syllable position e�ects and position interaction, we observed that
the statistical e�ects (any syllable di�erence) in left and right syllable position
in the Visual hOc1 region corresponded to inversed hemispheric projections.
In the experimental design we asked the subjects to �xate a centered green
dot before stimuli presentation. The inversed hemispheric e�ect can be seen
in Figure 6.4, where Subjects 1 and 4 have the clearest retinotopic activations.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
L R L R L R L R L R

First
Syllable
Second
Syllable

Figure 6.4: Retinotopic e�ect:
We show �rst and second syllable
position e�ects masked by the
Visual hOc1 region, thresholded at
a p-value < 0.005. Statistical images
correspond to the anatomical space
of each subject.
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6.3 Superposed semi-local representations in Visual
region (hOc1)

CVCV CV1 and CV2 (1 or 2)

Subject
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02
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05
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Figure 6.5: Accuracy in Visual-
h0c1: Chance baseline has been
substracted from all accuracy scores.
Chance is 11.11% for the CVCV
model. Chance is 33.33% for the
CV1 and CV2 models. We show
at the left the CVCV accuracy and
at the right the CV1 and CV2
accuracy together. (1) denotes the
CV1 model and (2) denotes the CV2
model. The accuracy score points
are denoted with stars whenever
they are signi�cant with p-value <
0.05

We obtained signi�cant classi�cation scores for almost all condition
categories in all subjects, with subject 4 having an exemplary performance,
distinguishing signi�cantly all conditions in all classi�ers. We show in Figure
6.5 accuracy scores from which chance baseline was substracted for each
condition. All the classi�ers were trained on the visual stimuli and were not
able to generalize to auditory stimuli, as would be expected from primary
visual areas. Signi�cant scores are marked with a star in case of a p-value <
0.05. We observe, from the relative area of accuracy above chance, that we
could decode syllables in each position and pseudowords best in Subjects 1
and 4. Moreover Subject 5, that reported problems with attention, had the
worst classi�er performance.

Subject
01
02
03
04
05
All

Figure 6.6: Superposition test
in Visual-h0c1: We present
the relationship between the
mean confusion of cell groups
representing overlapping syllables,
shared syllables and di�erent
syllables. The smaller cyan dots
correspond to the shu�ed models
of all subjects. All other dots
correspond to subjects. A star
means signi�cance with a p-value
< 0.05. The pattern of all Subjects
support superposition, where
Subjects 1 and 4 and the group are
signi�cant.

We also observe in Figure 6.6, evidence in favour of superposed
representations, as all subjects have a higher mean confusion values on
pseudowords with position overlapping syllables. Subjects 1 and 4, that
had the highest classi�cation scores, as well as the group as a whole have
a signi�cant mean confusion vector, with signi�cance given by a p-value
< 0.05. We also observe in Figure 6.7 signi�cant segments of semi-local
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representations in all Subjects except Subject 5. The best segment belongs to
Subject 4 that had the most accurate models. More details about decoding
performance in this region can be veri�ed in the Appendix section A.1.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure 6.7: Locality test in visual
regions: We show in black the
overlap of the "N" best voxel sets
given by the two syllable position
classi�ers. In red we show the
overlap distribution given by the
shu�ed models. In green we denote
segments of signi�cantly inferior
overlap with a p-value < 0.05 with
respect to the shu�ed distribution.

6.4 Superposed semi-local representations in anterior
auditory regions (Te12)

L R

Auditory Te10 region
Auditory Te11 region
Auditory Te12 region

Figure 6.7: Auditory regions projected on Subject 1 anatomy: Contours
are shown for the projected auditory regions. Area Te12 extends from Te10
towards anterior regions while Te11 extends to posterior regions. The brain
glass template contours were adapted to the T1 anatomy of the subject.

We trained separate models for the auditory hierarchy of regions, shown
in Figure 6.4. We observed signi�cant classi�cation results in all regions
for all Subjects. In all CVCV models there were 5 or less pseudowords with
individual signi�cant accuracy scores and 4 or less syllables with signi�cant
scores considering the CV1 and CV2 models together. Nonetheless the level of
classi�cation in auditory areas was far less than that obtained in visual areas
and for any subject only �ve or less pseudowords had an individual signi�cant
accuracy score. In Figure 6.8 we show the high variability in accuracies in
some conditions with respect to others in the CVCV models of all regions.

The more anterior auditory region Te12 shows evidence in favour of
superposition at the group level, contrary to Te10 and Te11 that show no
particular pattern. We show in Figure 6.9 the pattern change with respect
to superposition from region Te10 to Te12. Moreover while region Te10
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Te12 CVCV Te10 CVCV Te11 CVCV
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Figure 6.8: CVCV accuracy in auditory regions: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for all pseudoword conditions. The
accuracy points are denoted with stars whenever they are signi�cant. Signi�cance represents a p-value < 0.05 derived from the shu�ed models. We present �rst the most
anterior region and last the most posterior region.

Te12 superposition test Te10 superposition test

Subject
01
02
03
04
05
All

Figure 6.9: Superposition test pattern change from Te10 to Te12: We present the relationship between the mean confusion of cell groups representing overlapping
syllables, shared syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the
mean confusion values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with
a p-value < 0.05

displays signi�cant segments of distributed representations in Subject 5 and 1,
region Te12 changes in behavior to display important segments of semi-local
representations in all Subjects except Subject 4. We show in Figure 6.10 the
locality test pattern changes in Subjects 1 and 5 from Te10 to Te12. Region
Te11 shows no particular distinctions from Te10.

In summary more anterior auditory regions seem to encode semi-local
superposed representations of syllables. More details on the locality test plots
of regions Te10 and Te12 can be veri�ed in the Appendix Figures A.36 and
A.42 respectively. More details on the decoding models of the regions Te10,
Te11 and Te12 can be checked in the Appendix sections A.12, A.13 and A.14
respectively.
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Te12 Sub 1 Te12 Sub 5 Te10 Sub 1 Te10 Sub 5

Figure 6.10: Locality comparison between Te10 and Te12: We show in black the overlap of the "N" best voxel sets given by the two syllable position classi�ers. In red
we show the overlap distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05 with respect to the
shu�ed distribution.

6.5 Superposed distributed representations in Broca’s
complex

We observed signi�cant classi�cation scores (p < 0.05) in all Subjects and
sensory modalities for Broca 44 and Broca 45, except for the auditory dataset
of Subject 4 in Broca 44. In all CVCV models there were 5 or less pseudowords
with individual signi�cant accuracy scores and 4 or less syllables with
signi�cant scores considering the CV1 and CV2 models together. No model
generalized from the sensory modality in which they were trained to the other.
Both Broca regions have some signi�cant subject or group e�ect in favor of
superposition in at least one sensory modality, while the rest of non signi�cant
patterns are coherent with superposition as well. In Figure 6.11 we show the
signi�cant patterns in favour of superposition for the visual modality in Broca
44 and the auditory modality in Broca 45.

Broca 44 visual Broca 45 auditory

Subject
01
02
03
04
05
All

Figure 6.11: Superposition tests in the Broca’s complex: We present the relationship between the mean confusion of cell groups representing overlapping syllables,
shared syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

In the case of the locality test, in the visual modality, Subject 2 displays
a segment of signi�cant distributed representations in Broca 44 and in the
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auditory modality Subjects 3 and 5 in Broca 44 and Subject 1 in Broca 45.
We show the distributed representation segments of the subjects in Figure
6.12. Alongside the signi�cant segments appreciated there are no subjects
displaying strong patterns of semi-local representations, which lead us to
interpret representations in the whole Broca complex as distributed. More
details on the locality test plots of Broca 44 in visual and auditory modalities
and Broca 45 in the visual and auditory modalities, can be veri�ed in the
Appendix Figures A.27, A.63, A.30 and A.66 respectively. More details on the
decoding models can be checked in the Appendix sections A.9, A.21 A.10 and
A.22 respectively.

Broca 44 Sub 2 Vis Broca 44 Sub 3 Aud Broca 44 Sub 5 Aud Broca 45 Sub 1 Aud

Figure 6.12: Distributed representations in Broca’s complex: We show in black the overlap of the "N" best voxel sets given by the two syllable position classi�ers. In
red we show the overlap distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05 with respect to the
shu�ed distribution.

6.6 Weak evidence for non additive representations in
the VWFA
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Figure 6.13: Accuracy in VWFA:
Chance baseline has been
substracted from all accuracy
scores. Chance is 11.11% for the
CVCV model. We show at the
left the CVCV model of the visual
modality and at the right the CVCV
model of the auditory modality.
The accuracy score points are
denoted with stars whenever they
are signi�cant with p-value < 0.05

We observed that few Subjects had signi�cant accuracy scores in the CVCV
model, with few signi�cant pseudoword individual accuracies, as can be seen
in Figure 6.13. There seems to be a bias in the models towards pseudowords
containing the syllable "�", which is particularly emphasized by the accuracy
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score patterns of Subjects 1 and 4 in the auditory CVCV model. No model
generalized from the sensory modality in which they were trained to the other.

Although not signi�cant, patterns of the superposition test suggest evidence
against superposition in this area, supporting instead a non additive model. We
observed in Figure 6.14 that the mean confusion between pseudowords with
overlapping syllables is less than that of pseudowords with shared syllables or
di�erent syllables for all Subjects. We did not �nd substantial patterns in the
locality test to support semi-local or distributed representations. More details
on the visual and auditory decoding models can be checked in the Appendix
sections A.2 and A.11 respectively.

Subject
01
02
03
04
05
All

Figure 6.14: Non additive
representations in VWFA:
We present the relationship
between the mean confusion of cell
groups representing overlapping
syllables, shared syllables and
di�erent syllables. The smaller cyan
dots correspond to the shu�ed
models of all subjects. All other
dots correspond to subjects. If the
mean confusion values of a tested
model is re�ected as a dot above
the black line in both plots, then
we have evidence for superposition.
A star means signi�cance with a
p-value < 0.05

6.7 Bimodal distribution of pseudoword accuracy scores

A recurrent pattern in the pseudoword accuracy scores of the CVCV models
with signi�cant overall accuracy was that some of the pseudowords (4 or
more) would have a non signi�cant accuracy very close to chance levels, while
the signi�cant ones seemed to have extremely better accuracy values. This
motivated us to verify the distribution of pseudoword accuracy scores from the
CVCV models of regions that demonstrated evidence in favor of superposition,
namely the auditory region Te12 and Broca’s complex. In Figure 6.15 we show
that is possible a bimodal distribution describes the accuracy scores according
to their signi�cance. From the three regions there were in total 24 signi�cant
models (with p-value < 0.05) and from these models we considered separately
the accuracies of pseudowords that were signi�cant, shown in red, and those
that were not, shown in blue.
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Figure 6.15: Possible bimodal
distribution of accuracy scores
in superposition regions:
From the regions Te12, Broca
44 and Broca 45 we considered
all Subject CVCV models for
which the overall accuracy was
signi�cant with a p-value < 0.05.
In total there 24 models were
signi�cant. From these models we
considered separately the individual
accuracies of pseudowords that
were signi�cant with a p-value <
0.05, in red, and those that were
not, in blue. A bimodal distribution
appears to describe the accuracy
scores categories. The black line
indicates the 0.11 chance level of
classi�cation.

6.8 Final remarks

So far we have not mentioned results related to the language constituency
regions extracted by Pallier et al., namely aSTS, TP, TPJ, pSTS, IFGorb and
IFGtri. The reason can be veri�ed in the decoding model details provided in
Appendix A. All these regions have very low accuracy scores, with only few
subjects showing signi�cant accuracy scores in a few conditions, which adds
di�culties to the interpretation of any patterns in the locality or superposition
tests. Moreover their superposition tests are inconsistent, for example Subject
4 has a signi�cant value against superposition in the visual modality of IFGorb,
but every other Subject, although not signi�cant, follow a pattern that would
be congruent instead with superposition. We show this inconsistency in Figure
6.16. It seems that we were not able to decode well the bi-syllabic pseudoword
representations in any region along the temporal lobes and we did not �nd
any CVCV, CV1 or CV2 model that generalized their predictive power across
sensory modalities.

Subject
01
02
03
04
05
All

.

Figure 6.16: Inconsistent
evidence in IFGorb: We present
the relationship between the
mean confusion of cell groups
representing overlapping syllables,
shared syllables and di�erent
syllables. The smaller cyan dots
correspond to the shu�ed models
of all subjects. All other dots
correspond to subjects. If the mean
confusion values of a tested model
is re�ected as a dot above the black
line in both plots, then we have
evidence for superposition. A star
means signi�cance with a p-value <
0.05

To summarize, although we were not successful at decoding in several
language regions, we found several e�ects of representations in anterior
regions, namely the auditory Te12, Broca 44 and Broca 45 shown in Figure
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6.8. All this regions provided evidence in favour of superposition and
demonstrated support for di�erent levels of locality in representations, where
Te12 strongly supported semi-local representations while Broca’s complex
pointed at distributed representations. Moreover we found in these regions
evidence for a bimodal distribution of the particular pseudoword accuracy
scores. Finally we provided weak evidence for non additive representations in
the VWFA and modulation of the region by auditory stimuli.

L R

Broca 44
Broca 45
Auditory Te12

Figure 6.16: Superposition regions projected on Subject 1 anatomy:
Contours are shown for the projected superposition regions. The brain glass
template contours were adapted to the T1 anatomy of the subject.





7 Discussion

In this chapter we interpret the results obtained from the analysis of
sensory and language related representations of pseudowords. Then we
comment on the decisions and limitations of the experimental design.
Finally we provide our perspective for further experimentation to test
Smolensky’s superposition principle and other properties of tensor
product representations.

7.1 Results interpretation

We expected, from well known retinotopic e�ects in the primary visual cortex
[180], to see an hemispheric partition of left and right syllable position e�ects,
such that left syllable e�ects would be emphasized in the right hemisphere
and right syllable e�ects in the left hemisphere. This was the case, but we
could also appreciate in the images that some subjects did not manage to
completely follow the �xation instruction, since e�ects of both positions were
present together in both hemispheres. It could have been useful to have eye
tracking recordings to be able to account in visual areas for gaze position
when evaluating representations, nonetheless this was not crucial for us since
superposition of representation in visual areas is known and was just looked
for as a quality check of the activation maps. The size of the text presented
in the Pseudowords matching task, around �ve horizontal degrees, allowed us
to induce enough spatial spread in the voxel activations, due to retinotopic
mapping. Thanks to this we obtained high classi�cation results across all
pseudoword conditions, even while ignoring e�ects of gaze movement.

In the case of auditory representations, since we maximized the featural
distance between consonants and between vowels[20], we expected to be
able to decode syllables with higher accuracies than the ones we observed.
Nonetheless other experiments in which syllable representations have been
decoded employed fast sparse protocols that allowed presentation of syllables
during a silence gap[62]. Our decision of not employing a di�erent acquisition
protocol across sensory modalities, to have comparable results in abstract
representations, compromised our capacity to perform decoding in the auditory
cortex.
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Still our decoding results are coherent with evidence of hierarchical
organization of the auditory and speech pathways. Previous evidence suggest
that speech-speci�c responses to isolated syllables are only observed in later
stages of processing[90; 112; 183], and we decode syllables better on the
Te12 more anterior region of the primary auditory areas. Moreover we
were able to demonstrate evidence in favour of superposition and semi-local
representations in this region.

We also found evidence for superposition in the Broca’s complex (Broca 44
and Broca 45), that had the best signi�cant accuracy scores from the language
related regions tested. It has been shown through a series of neuroimaging
studies pooled in a meta-analysis[206], that Broca 44 is consistently engaged
with syntactic binding operations, alongside the posterior superior temporal
sulcus (pSTS) and the superior temporal gyrus (STG). In the same metaanalysis
it is argued that Broca 44 is a pure syntactic processor, while pSTS and
STG integrate syntactic and semantic information. The fact that we also
�nd evidence for distributed representations in the Broca’s complex turns it
into the most promising region to further test Smolensky’s tensor product
representations.

In the rest of the language regions extracted from the study of Pallier et
al.[154], for which semantic and syntactic coherence e�ects of constituency
were demonstrated, we were not able to �nd any clear patterns to report and
most accuracy scores were insigni�cant. In the case of the regions aSTS, TP and
TPJ that were only sensitive to semantic coherence, not �nding pseudoword
representations could be expected. On the other hand pSTS, IFGorb and IFGtri
were also sensitive to syntactic coherence, so we considered the possibility
of �nding pseudoword representations. The fact that we did not �nd any
signi�cant representations in these regions could be explained by the claims of
the meta-analysis of Zaccarella et al.[206], in which IFG was not particularly
linked to binding operations and pSTS was linked to the integration of syntactic
and semantic information that we lack in pseudowords. Moreover Matchin
et al.[126] demonstrate that pSTS, IFGtri and IFGorb might be related to top-
down syntactic prediction instead of basic syntactic combination. Since we are
presenting pseudowords in isolation we would not expect top-down syntactic
predictions to take place.

The VWFA, linked to binding of visual and verbal representations in both
words and pseudowords, for early stages of language processing[41; 194; 50;
75; 205], showed evidence against superposition or in favor of non additive
models. This result goes in hand with the study of Glezer et al.[75] that argues
against theories of sublexical representation in the VWFA. Moreover the fact
that we found signi�cant accuracy scores in the auditory modality supports
previous evidence about speech modulation of the VWFA[205].

One important clari�cation to make regarding evidence against
superposition is that such evidence do not necessarily immediately discards
Smolensky’s model of generalized tensor product representations, but only
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its basic version, in which the �nal composition step of symbolic structures
is given by addition. In the generalized version other operations are allowed
to take place after construction of the �nal symbolic structure, like tensor
contractions, exempli�ed by the memory e�cient holographic reduced
representations of Plate[158]. More analysis of the origin of the non additive
pattern observed in the VWFA will be necessary to completely discard
application of Smolensky’s framework to its internal representations.

We observed an extreme variability between pseudowords with signi�cant
and non signi�cant accuracy scores. We con�rmed this variability by simply
plotting the histograms of the separate distributions of signi�cantly and
non signi�cantly classi�ed conditions. We found an approximate bimodal
distribution. This result is di�cult to interpret without more detailed
inspection of the decoding models. Other factors related to model training
could in�uence this result, like the bias introduced for not doing a nested
cross validation or the greedy voxel spheres selection approach implemented.
Nonetheless we think this result can be explained by a lack of sparsity or
variability in the spread of neural activations of the underlying neural unit
patterns. Lacking variability in the spatial distribution of activations decreases
the probability of �nding substantial di�erences in the aggregated neural
activity values of voxels. An example in which underlying neural patterns
lead to aggregated activity in voxels that can not di�erentiate pseudoword
conditions is shown in Figure 7.1.

A �nal unexpected result was the complete lack of generalization between
sensory modalities in all classi�cation models. This can be accommodated by
two di�erent interpretations. On one hand it is possible that noise in BOLD-
fMRI measurements or non unique spatial assignment of neural vectors to
neural units do not let us generalize across datasets. On the other hand it
is also possible that there are no amodal abstract representations for simple
stimuli like bi-syllabic pseudowords. We would require further tests of stability,
outliers and to assess generalization across more datasets to con�rm which is
the case.

7.2 Limitations of the experimental design and methodology

With the objective of testing the superposition principle on syntactic
operations of language, we opted for the simplest stimuli we could use as
a �rst approach, namely two-syllabic pseudowords. Nonetheless even with
this simple stimuli, due to the nature of BOLD imaging, our experiment su�ered
from several methodological limitations.

Following Devonshire et al.[53] guidelines to counteract possible non-
linearities in the mapping from neural activity to the BOLD response, we
designed a task to keep a pseudoword in memory to prolong its duration
and tried to extend ISI as much as possible, 7 seconds, to still preserve a
good sample size of the 9 stimuli conditions, 40 samples per condition per
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Figure 7.1: Illutration of
superposed tensor product
representation in BOLD-fMRI:
We present the example neural
vectors of the syllables "na"
and "gu" bound to the left and
right positions of a bi-syllabic
pseudoword. We illustrate how the
level of BOLD activity should re�ect
the aggregated activity of a segment
of the neural units that form a
representation. The superposition
principle implies the sum of the
vector values from each binding to
give the �nal total activity in a voxel.
The voxel values of the pseudoword
"nagu" correspond to the plots of
the neural vectors and those of the
pseudoword "guna" were derived
in a similar way. Due to the e�ect
of aggregation, no voxel in the
example permits di�erentiating the
two pseudowords, even though the
neural unit patterns are linearly
independent between Roles and
between Fillers.

session. Nonetheless this is far from the actual long stimuli durations of 40
s at which linearity was ensured[53]. We consider testing in the future the
modulation of BOLD responses to the target stimuli instead of using heuristics
to setup design parameters, which will be important to test this kind of model
assumptions, that are sensitive to the underlying neural interpretation of the
BOLD response.

Regarding the task, the fact that we did not probe every trial limited
our capacity to assess attention modulation and outliers of the internal
representations. Considering that we did not �nd a uniform increase in
accuracy across the di�erent pseudoword conditions, it could have been useful
to assess if the variability in representations could be explained by correlates
of attention.

In the case of the decoding methodology, there are several decisions that
were made heuristically to save computational resources. For example we
did not smooth the data to avoid inducing additional voxel correlations that
would complicate interpretation of the feature coe�cients of the classi�er
and to better exploit any extreme e�ects in particular voxels, but we could
have explored the e�ect of di�erent smoothing kernel sizes. Also for the
searchlight voxel selection procedure we �xed the radius of the spheres to 5
mm, which means a 2 voxel radius for our acquisition parameter to search
for local e�ects, and passed the complete spheres to the classi�er. Instead
we could have also determined empirically how this radius a�ects classi�ers
performance. Moreover the fact that we performed a grid search without
a nested cross validation could have introduced a small positive bias in the
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classi�cation results[33]. To improve classi�cation accuracy and compensate
the high number of features in the classi�ers, a 100 or more, we decided to ask
the same subjects to come for several sessions to increase our sample size, such
that we would have at least 80 samples per condition per sensory modality,
but with respect to the number of features in classi�ers this remains a very
small sample size.

7.3 Future perspective

In this work we selected the simplest stimuli possible as a �rst approach to
test the superposition principle in syntactic operations of language, but it will
be interesting to go further and test superposition in more complex syntactic
stimuli like pseudoword lists and jabberwocky phrases. Nonetheless this would
increase the challenges faced when working with BOLD-fMRI by introducing
additional variables in the experimental design like stimuli duration, length in
terms of number of words and rate of word presentation.

All this additional experimental factors have been shown to induce
nonlinear BOLD responses. Saturation from long phrase reading and nonlinear
modulation from word presentation rate have been demonstrated[164].
Nonlinear e�ects of presentation rate have been shown to be similar in
words and pseudowords and spatially heterogeneous across brain regions[132].
Also nonlinear e�ects of stimuli duration have been shown to be spatially
heterogeneous[17]. If we expect representations of multiple words to be
completely distributed we also have to be careful about the rate of presentation
due to possible neural adaptation e�ects[103]. It will be necessary to study in
detail the optimal setup of the mentioned experimental parameters, to diminish
or correct the nonlinearities that can a�ect evidence for additive linear models
of composition like the superposition principle.

In our experiment we only found evidence for superposition in a small
set of regions located close to each other, namely Broca’s complex and the
anterior primary auditory region Te12. Considering that there is spatial
heterogeneity of BOLD activation patterns across the brain, the best path
of action would be to focus future acquisition of images in speci�c brain
regions. Focusing on acquiring only a sub-volume of the cortex can facilitate
improving spatial and temporal resolution of the BOLD signal. Moreover the
uneven classi�cation of individual pseudowords conditions, that we interpret
as lack of variability in the spatial distribution of neural activations at the
3T 1.5 mm isometric resolution analysed, suggest to attempt similar and
new experiments at higher imaging resolutions. For example high resolution
laminar imaging with boundary based surface registration has been shown
to reveal internal visual representations discernible with the bare eyes[111].
In addition, focusing on speci�c regions facilitates the design of functional
localizer paradigms to better segment target regions for analysis and reduction
of the amount of voxels (features) provided to decoding models.
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Also exploring sub-volumes of anterior brain regions in future experiments
suggest to rely more on speech than reading. Since we also found evidence for
superposition in auditory regions linked to later stages of speech processing
(Te12), it will be interesting to study in detail how the properties of auditory
representations change from non additive to superposed and from semi-local
to completely distributed. Lack of consideration of the problems introduced by
the fMRI acoustic noise greatly diminished the performance of our classi�ers.
Future experiments should carefully pilot the e�ect of fast sparse protocols on
the study of the properties of representations like the superposition principle,
since they add their own constraints to the experimental design[157]. Studying
in detail superposition and hierarchical processing of individual pseudowords
in auditory regions with laminar fMRI, might be a good �rst step before
continuing the analysis to the Broca’s complex with pseudoword lists and
jabberwocky.

Regarding our �ndings in the VWFA, we consider running future tests
on this region to con�rm in more detail the non additive nature of its
representations will be interesting. For future experiments, considering the
small size of the VWFA, we recommend also designing a localizer task to
delineate with more certainty its location in individual subjects.

Besides further testing the superposition principle, it will also be important
to better assess the stability of representations, which we considered was a
weakness in our work. We had signi�cant classi�cation scores, but these were
still quite low, only around 20%, to evaluate individual representations. We
were not able for example, to determine if the bimodal distribution of accuracy
scores could be explained by outliers or attention modulation e�ects. Since
neural �ring thresholds are known to alter according to arousal state[129],
it will be important to include in future tasks processing con�rmation of
individual stimuli and assessment of attention modulation.

In conclusion, we think we have provided enough evidence for the
superposition principle in anterior brain regions to motivate further
experimentation based on Smolensky’s tensor product representations.
We expect to have illustrated well the great challenges behind testing
experimentally even the simplest assumptions of this theoretical model.
Considering the contrast between the maturity of theoretical models and the
lack of empirical tests of their most basic assumptions, we hope to incentivize
more work in the experimental direction.
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8 Language binding e�ects in neuroimaging and the
Neural Blackboard Architecture

In this chapter we present some language neuroimaging studies
of binding that we consider important and interesting to attempt
reproduction with simulation of the Neural Blackboard Architecture
(NBA). We also introduce the application of the NBA to syntactic
representations in phrases.

8.1 Some language neuroimaging studies of binding

Most linguistic theories assume a constituency property that allows to combine
and replace smaller phrases in larger phrases. Since solving variable binding
requires an explanation of how to implement links between bits of information
- like words and word types - to create basic data structures, like phrases in
language, it is likely to also explain how to create links between such basic
structures.

Behavioral evidence for constituents in phrases has been around for
a while[15; 3], with more recent studies demonstrating the reuse of
recently heard syntactic structures through syntactic priming experimental
paradigms[19; 23]. But only recently we have started to characterize the
detailed neural correlates of constituency and word binding with diverse
brain-imaging techniques [141; 64; 25; 54; 12; 153; 11; 117].

We selected The ECoG analysis of Nelson et al.[141] as the �rst study to
compare to our model. It is one of the only two studies so far demonstrating
spatially speci�c and temporally detailed neural dynamics of phrase processing,
made possible by analyses of intracranial neurophysiological data taken from
epileptic patients. Moreover it is the �rst one to characterize the speci�c
patterns of phrase-structure formation, possibly revealing the �rst neural
signatures of variable binding related operations. Nelson et al. refer to them
as "merge" operations that combine syntactic objects (word types and phrase
types). In the study words were presented sequentially to patients in a screen
to be read under a Rapid Serial Visual Presentation paradigm. The task was
to keep a phrase of up to 10 words in memory to compare it just after with a
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probe sentence composed of 2 to 5 words. We will show that simulation of the
NBA portion responsible for variable binding, while only tuned for correct
operation, generates strikingly similar temporal patterns of neural activity
when aggregating the binding operations corresponding to complete phrase
processing, assuming the phrase grammar and bottom-up parsing scheme
employed by Nelson et al. in their analyses.

As a second study, we selected an fMRI experiment [153] to portray the
capacity of the model to capture results from multiple neuroimaging spatio-
temporal scales. In this experiment, trials with lists of 12 words obtained by
concatenating phrases of a given length, were presented to healthy subjects.
Conditions were formed from all combinations of m by n that give 12, satisfying
the form n phrases of m words, like 2 phrases of 6 words. Besides normal
words, the design also included pseudoword conditions that maintained
morphological markers and closed-class (function) words. This allowed the
authors to demonstrate a clear separation of syntactic and semantic binding
neural activation patterns in language related regions, which is interesting to
us, since syntactic speci�c patterns are the closest to the abstract considerations
of binding of our model, assuming the same phrase grammar and parsing
scheme employed for comparison with the ECoG results. The authors found a
sub-linear pattern of neural activation as the number of constituents increase,
which could not be explained by a simple "accumulation" model motivated by
measurements of sequence learning tasks in awake macaque monkeys. The
Neural Blackboard Architecture predicts this sub-linear e�ect from the circuit
recruitment process required by the number of binding operations, alongside
expected patterns of hemodynamic peak onset di�erences from delay activity
considerations.

8.2 The Neural Blackboard Architecture (NBA) applied
to language

The details presented in this section are a literal reminder of those already
developed in subsections 1.3 and 1.3 of Chapter 1, so in case that chapter was
consulted recently we recommend skipping to the next chapter 9. What we
present here are only the key aspects of the Neural Blackboard Architecture
that must be understood to follow details of the circuit implementation
presented in the following chapters. To understand more details about the
properties of neural representations in the NBA please consult section 1.3 of
Chapter 1.

There are several previous instantiations of sub-circuits of the NBA with
varying degrees of biological plausibility, the latest relying mostly on Wilson
Cowan population dynamics[52]. Some of the previous simulations attempted
to address diverse aspects of language processing, such as ambiguity[67] and
learning control from syntactic stimuli[188]. Other simulations addressed
circuit implementation issues like how to develop a connectivity matrix with



neural bases of variable binding in symbolic representations 85

randomly connected networks[189] and how to implement a central pattern
generator sub-circuit for sequential activation [191]

In the following paragraphs we summarize the main abstract mechanisms
and assumptions behind the NBA to implement binding operations. A complete
illustration of the blackboard architecture is provided in Figure 8.1. For a
deeper review we recommend reading a recent paper with a circuit design
and examples that focus on sentence processing[48], as well as the original
framework proposal introducing abstract combinatorial structures[187].

Figure 8.1: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional
neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is
activated by the X assembly and then inhibits the gate assembly (G). To let information �ow through the gate assembly,
a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment
circuit of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural
activity �ow between two main assemblies possible. Control assemblies regulate the direction of information �ow and
allow the activation of sub assemblies. The two sub assemblies excitep the working memory assembly which, once
activated, encode the binding of the main assemblies and allow activation to �ow between them if the controls allow it
too. C. Each connection matrix contain n by m compartment circuits that encode the same relationship type between
the same pair of assembly categories. There are m available assemblies for one category and n available assemblies for
the complementary category and only one cell circuit can activate its working memory assembly to link two particular
assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix
e�ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices
that encode di�erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple
connection matrices, where each of them is de�ned by two node categories and a relationship type between them. E.
Example of a possible tree structure that can be represented based on the speci�ed connection matrices.
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Nodes in Figures 8.1.A and 8.1.B represent neural assemblies that can be
interpreted as linked spiking neural populations. The most basic component
of the NBA is a “Gating Circuit” illustrated in Figure 8.1.A. The main idea
is that neural activity would �ow from the assembly X to the assembly Y,
but is blocked by the Gate Keeper (GK) assembly, which itself is excitepd by
assembly X. So to allow directional activity �ow from X to Y, a Control (Ctl)
assembly has to inhibit the GK assembly. Notice that it is trivial to extend the
gating circuit for bidirectional control of activity �ow as illustrated in Figure
8.1.B. Introducing bidirectional conditional control signals is what gives the
NBA the possibility of implementing separately queries like ’what follows X?’
or ’what follows Y?’.

Another basic component of the NBA is a proposal for working memory
(WM). Persistent neural activity in response to stimuli is considered to be the
neural process underlying active (working) memory, and its implementation
is hypothesized to be based on excitatory reverberation[199]. Based on this,
the NBA considers a Delay Activity[45] mechanism as a biologically plausible
implementation of WM. It consists on a neural assembly, that after being
excited beyond a certain threshold, achieved by the co-activation of input
populations, will maintain a constant amount of activation for a short period
of time. By maintaining its activity, WM acts as a short lived bidirectional link
between two assemblies. This mechanism can be considered as the creation of
an implicit pointer from one assembly to the other, such that future reactivation
of one assembly can be driven from the other to perform query operations.
This conforms a “Memory Circuit” as depicted in Figure 8.1.B.

Two bidirectional “Gating Circuits” connected by a “Memory Circuit”
form a “Compartment Circuit” capable of implementing variable binding and
query operations. The key point of this circuit is that Main assemblies (MA),
representing grounded concepts or instances of variables types, activate Sub
assemblies (SA) if a control signal driven by another mechanism allows it. Then
co-activation of SAs is what realizes a temporary binding of MAs by activating
WM. So one “Compartment Circuit” models speci�cally the neural activity of
a variable binding operation. It is operated by a mechanism that drives control
signals simultaneously in multiple “Compartment Circuits” to instantiate
binary tree like data structures on which query/unbinding operations can be
performed later.

As might be evident by now, applying the NBA to syntactic processing in
language consists of two simple assumptions. First, equating the parsing
mechanism to the control mechanism that coordinate binding events of
words and word types and phrase types. Second, determining the number of
compartment circuits necessary to instantiate a complete syntactic structure
and the content of MA nodes from a grammar theory. In this work we will
only employ a phrase grammar and bottom-up parsing scheme following
theoretical assumptions of selected neuroimaging experiments. Nonetheless, a
promising feature of the NBA is that it has the �exibility to test any arbitrary
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parsing mechanism incorporating top-down considerations and an important
variety of alternative theories of grammar based on binary trees. For example
dependency grammars that assume multiple direct word bindings instead of
the hierarchical phrase bindings modelled in this work have been employed
in previous simulations[188].

To understand how a sentence is processed in the NBA, let us consider
�rst the simplest case of binding two words, like “Sad student”, belonging
to grammatical categories instantiated in the MAs of one “Compartment
Circuit”, such that one MA is an “Adjective” corresponding to “sad” and the
other one is a “Noun” corresponding to “student”. The MAs activate with
timings corresponding to word presentation, so we are assuming that words
were recognized to motivate their corresponding instantiated grammatical
categories before we attempt to link them. Then an assumed parsing
mechanism determines that a link operating on “Adjective” and “Noun” types is
necessary in the blackboard, driving activity in several “Compartment Circuits”
from which only one, that we consider as the recruited “Compartment Circuit”,
completes co-activation of SAs to drive WM and realize binding between the
word types.

In the case of a complete phrase, like “Fat sad student”, if we are assuming
the instantiation of phrase types that form a hierarchical tree theorized by
a phrase grammar, then the time at which the binding of the instantiated
grammatical categories of “sad student” takes place would be the time at which
a “Noun Phrase” is activated and bound to the “Adjective” corresponding to
“Ten”.

Finally, a “Connection Matrix”, portrayed in Figure 8.1.C, allows the
implementation of a complete “Blackboard”. It contains variable type relations
learned by the “Blackboard” as sets of mutually inhibitory “Compartment
Circuits” that enable the selection of the “Compartment Circuits” requested
by the control mechanism. We portray the “Blackboard” as a regular
grid for illustrative purposes, although there is already a proof of concept
implementation with randomly connected networks[189]. Nonetheless in
this work we will ignore the “Connection Matrix” dynamics by considering
the “Compartment Circuits” as individual isolated circuits, since we lack
information to form hypothesis about the size of the Blackboard, total number
of Connection matrices and other important parameters. Simplifying our
simulation by ignoring the “Connection Matrix” dynamics should only a�ect
substantially predictions on language processing variables unrelated to binding,
like memory constraints, which we do not explore in this work.

To implement a general syntactic control mechanism, although challenging,
should be feasible, as suggested by the Feed-forward arti�cial neural networks
employed in previous NBA simulations [188] and recent state of the art
feed-forward network architectures that have shown top performance for
diverse language parsing tasks [6]. Moreover a more recent proposed
extension of the NBA, that imitates the motor circuit of the marine mollusc
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Tritonia diomedea, shows how to generate patterns for sequential activation
control[191]. Nonetheless we considered that simulating the higher level
mechanisms of control is a task out of the scope of this work, since we
focus speci�cally on reproducing the neural signatures of variable binding
operations.



9 Simulation setup of the Neural Blackboard Architecture

In this chapter we present the architectural decisions of the simulation,
how we determined the diverse parameters of the Compartment Circuit
of the Neural Blackboard Architecture (NBA) and the experiments
performed to tune the circuit for correct binding operation.

9.1 NBA simulation

Previous simulations of the NBA approximate the mean activity of neural
assemblies with Wilson Cowan dynamics [67]. Nonetheless, as explained
in Chapter 2 Section 2.2, direct simulations of leaky-integrate-and-�re (LIF)
neurons [150] have di�erent transient behaviour than the dynamics described
by the Wilson Cowan equations.Since we are interested in modelling the
transient dynamics of variable binding in order to compare the simulation
with real temporally detailed patterns of intracortical neural measurements
like ECoG, we feel the need to model spiking neuron dynamics is important.

The decision to use AdEx, rather than LIF neurons has two motivations:
�rst, adaptation is ubiquitous and its inclusion has a substantial impact
on the dynamical range allowed within the constraints of the blackboard
architecture. Second, it has been shown that 2D models, like AdEx, can
already predict correctly 96% of the spikes of detailed conductance models[27].
Also, this model reproduces many known electro-physiological features, as
can be appreciated in the spike-frequency adaptation review of Benda et al.
[13; 14]. Our approach is consistent with a trend towards simpler, geometrically
motivated 2D models that preserve the essence of more complex biophysically
motivated models [97].

AdEx is now available in MIIND. To our knowledge this is the �rst time
that the AdEx model will be employed to approximate the neural dynamics of
a circuit of this magnitude reproducing cognitive function.

In the case of Delay Activity (DA) populations like Working Memory (WM),
we decided as a �rst approach to model such a mechanism phenomenologically.
We plan to address the di�erent alternatives to model persistent cortical
activity with interacting neural populations in future work. As suggested by de
Kamps[45] not only models of recurrent excitation but also recurrent inhibition
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can account for this phenomena. In the current simulation, a constant �ring
rate for DAs is kicked o� by a speci�ed level of input, resulting in activation
that is sustained for a predetermined period of time. Contrary to previous
simulations [186], we do not consider Sub-Assemblies (SAs) as DA populations.
We �nd that SAs can show rich and interesting dynamics just by ful�lling
their function of mediating activation for WM.

We model Main-Assemblies (MAs) as receiving input from DA populations,
representing word types in some cases, and WM populations representing
phrase types in other cases. We do this to satisfy the assumptions of a phrase
grammar that requires representation of deep tree hierarchical structures, so
that we can separate the notion of a phrase resulting from previous word
type bindings stored in WM, from the recruitment of MAs representing
word grammatical category instantiations that take place during sentence
processing. Note that for other grammar types, like dependency grammars
considered in previous NBA simulations[186], to consider words as nodes in
their syntactic representations, we only need to model word types for the MAs
of the necessary compartment circuits.

9.2 Compartment circuit parameters

The compartment circuit contains two di�erent types of neural populations.
Arti�cial neural populations following a boxcar event model, shown in Figure
9.1.B and biological neural populations following LIF or AdEx neural models.
We took LIF parameters from Omurtag et al. (2000) [150] and AdEx parameters
from Brette and Gertsner [26].

As a �rst step we wanted to only explore the general behavior of the circuit
of neural populations following well studied sets of parameters. Nonetheless
it is clear that studying the neural dynamics of speci�c brain regions might
require adapting the parameters of the neural models to local measurements.
Each neural population is either excitatory or inhibitory; this means that
a population that is excitatory (inhibitory) on one population is excitatory
(inhibitory) on others as well, respecting Dale’s law.

The dynamics of most populations are given by the PDTs and ultimately
determined by the underlying model of spiking neurons. These neural
populations comprise a pair of Main Assemblies (MA), a pair of Sub Assemblies
(SA), six Gate Assemblies (G) and six Gate Keeper Assemblies (GK).

Nonetheless there are a few other populations for which we simpli�ed
the simulation to the phenomenological level with an imitation of Delay
Activity, which means that, after transient stimulation, a population retains its
activation above a certain threshold for a given period of time. For instance,
the biophysical mechanisms of WM are still not understood completely, but its
characterization as Delay Activity is relatively uncontroversial. We modelled
in this way, Control assemblies (Ctl), Working memory assemblies (WM),
Event Input Assemblies (Inp) and a Baseline Assembly (B) that drives baseline
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Figure 9.1:Compartment circuit example: A. Details of the Compartment Circuit implementation. Only half of
the circuit is shown since the design is symmetric. The baseline (B) and Event input (Inp) populations are part of the
simulation and not of the original abstract circuit proposal. B. The behavior of the arti�cial neural populations and their
selected parameters is shown

neural activity of all completely simulated neural populations. A complete
diagram of the compartment circuit with example parameter values for LIF
populations is given in Figure 9.1.

We use a boxcar event model for persistent activity. This model requires
speci�cation of the starting point of events, the persistent �ring rate of the
population and the duration of the persistent activity. In the case of the Delay
Activity of WM we also have to provide a kicko� input rate threshold that
automatically triggers the boxcar event instead of providing a start time point.
The duration of persistent activity was pragmatically set up long enough
for the neural dynamics to reach steady state and allow the formation of all
required bindings between phrase types and word types. Finally the persistent
activity rate and kicko� rate threshold were arbitrarily selected from possible
parameter range values as a result of simulations of the circuit dynamics that
will become clear in the following section.

Selecting �ring rates to tune the compartment circuit is a complex task
given the contrast between the extremely simpli�ed circuit and real neural
networks that contain multiple types of neurons with diverging behavior
across cortical layers [202]. Wohrer et al [202] show, from measurements in
rat cortex, that the actual �ring rate distributions of neural networks do not
di�er much between resting state and evoked activity. The small di�erence
would come from very few neurons that manage to drive up the mean �ring
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rate in recordings while most neurons in the population are almost silent, some
with rates as low as 0.1 Hz [102], whose activity might not even be picked up
by most recording devices. Although theoretical analysis of the distribution
of �ring rates in randomly recurrently connected networks of LIF neurons
near the �uctuation-driven regime suggests considering mean �ring rates
around 6.4 Hz [167]. Based on the review of Wohrer et al. [202], particularly
on the �ring rate in motor areas of behaving macaques, we decided to kickstart
biological neural populations activity up to a conservative baseline �ring rate
of 1 Hz and study the neural dynamics of circuit input �ring rates of up to
10Hz.

There are two parameters governing transmission of neural activity
between neural populations. First, the synaptic e�cacy of connections, which
was setup to be uniform across the circuit under the lack of appropriate
hypothesis to tinker it in a detailed manner. According to London [116],
current understanding of synapses is limited and contextual measurements and
parametrization of e�cacy might be more appropriate than �xing individual
connection parameters. For example recent evidence [28] shows that synaptic
e�cacy might be modulated by attention processes. In the study of Briggs [28]
neurons of the thalamus were stimulated while measuring evoked responses
from corresponding monosynaptically connected neurons in primary visual
cortex. With this procedure the authors showed that, the percentage of shocks
that evoke a postsynaptic response, the average e�cacy, ranged from 28%
to 36% depending on the type of neurons considered and the attention state.
Considering the possible e�cacy variability in cortex, we decided to verify,
through simulations of a sub-circuit, the sensitivity of the circuit temporal
dynamics to low (10%) and high (30%) values of synaptic e�cacy, where
percentages are taken with respect to the di�erence between equilibrium and
threshold potential, for both LIF and AdEx populations.

The second parameter governing transmission of neural activity was
the number of connections between a pair of neural populations. Unlike
synaptic e�cacy, the number of connections were determined from a series
of simulation experiments. First the number of connections from baseline
persistent activity was set such that, during rest, the circuit steady state activity
would stabilize around 1 Hz. The number of baseline connections necessary is
a function of input �ring rate, synaptic e�cacy and neural model, such that a
lower synaptic e�cacy required a higher number of connections. Then the
number of connections coming from excitatory populations was determined
such that bidirectional gating circuits would have a stable steady state �ring
rate when both Gs allow neural activity to be transmitted. Finally the number
of connections coming from inhibitory nodes were setup high enough to block
neural activity �ow in a gating circuit, which means that GKs driven by MAs
would be able to completely inhibit activity in Gs. Our simple approach to
neural rate transmission ignores many intricacies like activity regimes that
might allow rich internal computations. [151]. Also connections distribution
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might have an impact in spike based communication [144]. Still we decided to
keep connections between populations as simple and homogeneous as possible
for a �rst approach.

9.3 Simulation experiments performed

Since it is possible to tune the circuit to reproduce a wide range of �ring
rate absolute values under which circuit dynamics are similar and stable, we
simply aimed at picking reasonable parameter values such that the circuit
would maintain overall modest �ring rate values with respect to the literature
of neural measurements. To setup parameters and compare in detail the
compartment circuit dynamics for LIF and AdEx neural populations, four
simulation experiments were performed taking di�erent sub-circuits into
account. A diagram of each sub-circuit is shown in Figure 9.2.

Figure 9.2: Sub-circuit simulation
topologies: For better visualization
baseline activity nodes are excluded
from the topologies. A. Single
neural population driven by baseline
activity. This topology reminds
of the fact that all MA, SA, G and
GK populations are driven initially
in the same way by a persistent
baseline �xed rate. B. Chain
of populations where activity is
temporally interrupted by a control
node. C. Excitatory loop between
SAs when Working Memory is
activated. D. Excitatory loop broken
thanks to GKs inhibition.

The �rst simulation simply consists of the activity of one neural population
driven by a �xed activity rate of 1 Hz. We used this simulation to explore the
necessary number of baseline connections to drive baseline activity in the
circuit to approximately 1 Hz. The second simulation allowed us to explore how
neural activity �ows through a chain of neural populations being regulated
by a control mechanism. The third simulation explores how neural activity is
enhanced by a closed loop between a MA and SA, since it will be the case in
the memory sub-circuit that activity is allowed to �ow bidirectionally once
the WM delay activity is unleashed. Finally the fourth simulation consists on
adding GKs to the closed loop sub-circuit of the second simulation to explore
how many inhibitory connections are necessary to keep activity from �owing
in the circuit unless the control mechanism allows it.

After determining reasonable parameter values, we simulated the complete
circuit, shown in Figure 9.1, for both LIF and AdEX neural populations. Then
we compared the resulting neural patterns of the MA, SA, G and GK neural
populations to binding and constituency e�ects available in the neuroimaging
literature.

We simulated the binding activity related to the processing of complete
phrases, by assuming a syntactic tree structure given by a phrase grammar
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and the order of control events given by a bottom up parsing scheme. As a �rst
simpli�ed approximation to the NBA dynamics, we instantiated the required
compartment circuits independently to represent the complete assumed tree
structure and temporally align their neural signals according to input onsets.
Like this we obtained entire phrase neural time series, by summing activity
across similar node categories of the multiple independent compartment
circuits instantiated. We used this procedure to simulate the neural activity
of simple phrases, corresponding to increasing size right branching tree
structures, to be compared with two di�erent neuroimaging signals.

First, we showed similarities between the activity of simple phrases
and ECoG time series patterns of binding revealed by Nelson et al[141].
We naively compared the �ring rates of our simulation directly to the
patterns observed in ECoG recordings, considering the correlation that exist
between the high gamma power of local �eld potential signals and �ring
rates[163; 119]. Nonetheless a quantitative comparison would require a more
careful consideration, employing recent models tuned to electro-physiological
measurements that o�er a way to translate neural activity to local �eld
potentials[127; 81].

Second, we concatenated simple phrases to reproduce the stimuli of Pallier
et al. (2011)[153]. Then we convolved the stimuli neural time series with
the Glover Hemodynamic Response Function[77]. This allowed us to make a
qualitative comparison with the hemodynamic constituency e�ects depicted
by Pallier et al. (2011)[153].

Since the quantitative level of neural activity can be easily tuned for a wide
range of parameter values with similar behavior, when comparing the circuit
neural dynamics with the neuroimaging literature, we only focused on the
qualitative neural temporal patterns observed.



10 Simulation outcomes

In this chapter we present the outcome of the circuit tuning
experiments, the phrase syntactic processing patterns of the simulator
after tuning and how we reproduce diverse evidence from BOLD-fMRI
and ECoG neuroimaging experiments.

10.1 Sub-circuit simulations

Experiment 1: Simple neural population

In the �rst experiment we explored the steady state rate and temporal behavior
of the di�erent neural models with di�erent synaptic e�cacies. As indicated
in the circuit topology of Figure 10.1, neural populations were driven by a
persistent 1 Hz input rate. We show the steady state rate as a function of
the number of baseline connections in the top plots of each neural model in
Figures 10.1 and 10.2. In the bottom plots we display the respective �ring rate
dynamics for di�erent number of connections.

In the case of a LIF population, by manipulating the number of connections,
we can tune to any value the steady state rate. For all synaptic e�cacy
values, the �ring rate increases smoothly until achieving the steady state
at approximately 200 ms. The AdEx population has a di�erent temporal
behavior. An immediate transient peak of activity on initial stimulation is
driven down by adaptation, achieving a steady state at approximately 600 ms.
The adaptation e�ect, on a 30% synaptic e�cacy, limits the range of values
that the steady state rate can take by manipulating the number of connections.

As explained in the Methods section 9.2, binding takes place in the
Compartment Circuit when the kicko� input rate threshold of the Working
Memory (WM) population is reached. The total input rate of WM depends on
the sum of the �ring rate of both Sub-Assemblies in the Compartment Circuit,
which themselves are driven by separate input events. Since steady state rate
values are limited in the AdEx model with high synaptic e�cacy, operation of
the circuit would be more constrained with non simultaneous input events,
than in the low synaptic e�cacy case.

Because we wanted to explore the behavior of the Compartment circuit
for all possible timings of input events, we decided to restrict all remaining
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Figure 10.1: LIF Baseline neural
dynamics: The plots at the top
show how the steady state rate of
a neural population relates to the
number of baseline connections for
a baseline input of 1Hz. The plots
at the bottom show the temporal
dynamics for di�erent number of
baseline connections.

simulations to a 10% synaptic e�cacy. We also �xed the number of baseline
connections to 115 and 1646, for LIF and AdEx populations respectively, since
these values best approximated the desired 1Hz steady state �ring rate under
a 10% synaptic e�cacy.

Experiment 2: Neural activity flow and control release

For the second experiment we wanted to understand how �ring rate, in the Sub-
assemblies of the Compartment Circuit, would vary with the timing of the onset
of input and control events. To accomplish this we employed the sub-circuit
topology presented in Figure 10.3. In this topology the Gate (G) population is
permanently inhibited by a Control (Ctl) population with persistent activity,
such that the Sub-Assembly (SA) can not be driven by the Main-Assembly
(MA) until a control event, that inhibits the Control population, takes place.
For this experiment, the number of excitatory connections was �xed to 9 for
LIF populations and 20 for AdEx populations. The e�ect of modifying the
number of excitatory connections will be explored in Experiment 3 in Results
section 10.1.

We considered two possible persistent rates for the input event, 10 Hz or
20 Hz for the LIF model and 20 Hz or 30 Hz for the AdEx model. We needed
higher input rates for the AdEx model since adaptation induces smaller steady
state rates with respect to the LIF model. There are three possible extreme
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Figure 10.2: AdExBaseline neural
dynamics: The plots at the top
show how the steady state rate of
a neural population relates to the
number of baseline connections for
a baseline input of 1Hz. The plots
at the bottom show the temporal
dynamics for di�erent number of
baseline connections.

cases of timing between the input and control events; When the input event
takes place at 0 ms and the control event at 1000 ms (Input First); When both
events start at 1000 ms (Simultaneous); And when the control event starts
at 0 ms followed by the input event at 1000 ms (Control First). These timing
of events are extreme cases because 1000 ms is enough time for the neural
populations to achieve a steady state rate after any event initiated at 0 ms.
Any other timing in which populations have still not achieved a steady state
before the arrival of the second event would produce neural dynamics with
patterns in between the extreme cases. For language stimuli, timing cases can
be interpreted as di�erent types of parsing mechanisms, where Control First
corresponds to a predictive (top-down) one and Simultaneous and Input First
to a reactive (bottom-up) one. We show in Figure 10.3 the �ring rate time
series of the Sub-Assembly (SA) for all possible event timing cases and input
�ring rates.

First we observe that the input rate do not change the relative behavior of the
timing cases but only increase the steady state rate and transient �uctuations.
We see that the timing cases do not modify the �nal steady state rate, which
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Figure 10.3: Neural dynamics of
input and control events: We plot
the temporal dynamics of the Sub
Assembly population corresponding
to the sub-circuit topology shown.
9 and 20 excitatory connections
are assumed for the LIF and AdEx
models respectively. We show the
time series after 1000 ms, time at
which all neural populations have
achieved a steady state rate from
their initial events at time 0. For
each neural model two constant
input rates are simulated for the
input events, 10 Hz and 20 Hz for
LIF, and 20 Hz and 30 Hz for AdEx.
There are three possible extreme
cases of timing between the input
and control events; When the input
event takes place at 0 ms and the
control event at 1000 ms (Input
First); When both events start at
1000 ms (Simultaneous); And when
the control event starts at 0 ms
followed by the input event at 1000
ms (Control First).

only depends on the input rate, but in�uence the maximum rate of the transient
activity �uctuations. In the case of AdEx, the speed at which the steady state is
approximated is also a�ected by the timing cases, for example the Simultaneous
case takes approximately 400 ms more than the Control First case, to achieve
the steady state, for a 30 Hz input rate. The steady state rate is in most cases
and neural models the lowest �ring rate, with some short transient exceptions.
Moreover the timing cases have di�erent relative behaviors depending on the
neural model, as can be seen from the Control First case that has the lowest
transient rates for AdEx but the highest ones for LIF.

Successful binding in the Compartment Circuit depends on the sum of
activity of two SAs, that reaches the kicko� threshold rate of the Working
Memory (WM) population. Assuming activity of SAs is driven by two separate
input events, like two words to be bound presented 200 ms apart, the timing
of the two input events and the timing cases of their respective control events
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will determine the possible range of values for the WM kicko� threshold. We
can also think the other way around and say that the range of values of the
WM kicko� threshold constrain the possible timing of all events.

An example scenario, illustrated in Figure 10.3 for a LIF population with
20 Hz input, would be that the onset of input events correspond to the onset
of word presentation, 200 ms apart, where the timing of the �rst SA input
event follows the Input First case and the timing of the second SA input event
follows the Control First case. In that scenario any WM kicko� threshold
between 16 Hz and approximately 44 Hz would be reached by the sum of the
15 Hz steady state rate of the �rst SA and the �ring rate of the second SA
achieving a transient maximum of approximately 29 Hz.

Since we wanted to consider all possible event timings when studying the
Compartment Circuit dynamics, we took from this experiment the cases with
the highest transient rates for each neural model, to later analyse the circuit
parameter space. We see in Figure 10.3 that the Control First case has the
highest transient rate for the LIF model, while the Simultaneous case has the
highest transient rate for the AdEx model.

Experiment 3: Circuit operation according to the parameter
space

In a third experiment, we studied the parameter space of the input rate, the
number of excitatory connections and the WM kicko� activation threshold,
to understand the operational, event timing related, constraints of the
Compartment Circuit when attempting to instantiate binding under di�erent
regions of the parameter space. As shown in Figure 10.4, to explore the circuit
behavior, we have to consider the Sub-Assembly (SA) temporal dynamics
presented in Results section 10.1 and a sub-circuit topology representing an
excitatory loop between two SAs.

As shown in the Compartment Circuit diagram of Figure 9.1 of Methods
section 9.2, once the Working Memory (WM) Delay activity is unleashed, both
Gate Keepers (GKs) are inhibited, creating an excitatory loop between the Sub-
Assemblies (SAs). Beyond a certain number of excitatory connections, there is
the possibility of runaway activity in the excitatory loop, which motivates a
constraint in the parameter space of the Compartment Circuit. The excitatory
loop activity considered is only driven by the 1 Hz baseline input rate, as
would be the case in the circuit once the input events stop driving activity in
Main-Assemblies (MAs) and as a consequence in SAs. In Figure 10.4 we plot
the space of excitatory connections up to 11 connections and 21 connections
for LIF and AdEx respectively, values at which we observed runaway activity
in the excitatory loop.

Alongside the excitatory loop baseline steady state rate curve of the SA,
we also plot the input driven maximum transient �ring rate and steady state
rate of an SA, according to the di�erent events’ timing behavior presented in
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Figure 10.4: Excitatory loop
and WM activation parameter
regions: At the top the two sub-
circuit topologies from which SA
�ring rate curves are derived. Rate
curves consist on �ring rate as a
function of the number of excitatory
connections for a given input rate
of 10 Hz and 25 Hz for the LIF and
AdEx models respectively. From the
chained neural population topology
we consider the highest maximum
transient rate and the steady state
rate. From the excitatory loop
topology we consider the steady
state rate driven only by baseline
activity. We color the regions
between the curves to indicate
the di�erent WM activation cases
determined by the value of the WM
"half" kicko� threshold rate. The
four parameter regions refer to the
possible combination of input and
control events that would allow
binding to take place if the WM
"half" kicko� threshold falls in the
region: The perpetual activation
region implies that WM will get
permanently reactivated; The
�exible activation region implies
that all events cases can produce
binding; The constrained activation
region implies that only some
combination of events’ timings
can permit binding; Finally the
impossible region implies that no
binding can take place for the given
WM kicko� rate.

Results section 10.1. The �ring rate curves correspond to an input of 10 Hz
and 25 Hz for LIF and AdEx populations respectively. All the �ring rate curves
correspond to the activity of only one SA, so whenever we represent the WM
kicko� rate threshold in Figure 10.4, we refer to the "Half" kicko� threshold.
For example the convenient "Half" kicko� rate threshold of 6 Hz, marked with
a green line in the LIF Model plot, implies a total WM kicko� rate threshold
of 12 Hz.

From the relationship between the three �ring rate curves, we can establish
four parameter regions with di�erent implications for the behavior of the
Compartment Circuit: First, below the excitatory loop baseline steady state
rate, we have a parameter region for which WM would be continuously
reactivated. The initial activation of WM leads to the excitatory loop steady
state rate, so if the kicko� threshold is below it, WM will be reactivated
perpetually. We call this the WM perpetual activation region; Second, in the
area between the loop steady state and the input steady state curves, all input
and control event timing cases will lead to activation of WM, which can be
explained by the steady state rate being the lowest transient rate. We call
this the WM �exible activation region; Third, in the region between the input
driven maximum transient rate and the steady state rate curves, activation
of WM will not take place for some timings of input and control events. The
higher the WM kicko� threshold in this region, less input and control event
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timing cases can activate WM. We call this the WM constrained activation
region; Finally, above the input driven highest maximum transient rate, it
is clear that activation of WM can not be achieved under any circumstance,
which is why we denote it as the WM impossible activation region.

To understand the constrained activation region, it helps to take a look
back at Figure 10.3 of Results section 10.1. Consider the AdEx model with a 30
Hz input rate. We can see that a WM kicko� rate of 14 Hz would be reached
by adding the steady state of one SA and the transient rate of any events’
timing case for the second SA. If we raise the WM kicko� rate to 20 Hz then
we would need the events driving the second SA activity to follow the Input
First or Simultaneous timing cases, while raising it further to 25 Hz would
leave the Simultaneous case as the only option.

We still do not know the parameter variability allowed by the cortex to
implement the circuit, so we consider the proportion between the constrained
and �exible activation parameter regions as a indicator of the di�culty to
operate the Compartment Circuit under the di�erent neural models. Based on
this, we observe in Figure 10.4 that the AdEx model is more likely to induce
constraints in the timing of input and control events to perform the bindings
necessary to represent complete structures in cortex. To allow the most �exible
behavior exploration of the Compartment Circuit, when simulating language
processing, we decided to select parameters in the �exible activation region.
We selected a combination of 10 Hz and 20 Hz input rates, 8 and 20 excitatory
connections and 10 Hz and 9 Hz WM kicko� rates for LIF and AdEx populations
respectively.

Experiment 4: Inhibition of undesired activity spill

In the fourth experiment, we tuned the amount of inhibitory connections
between Gate Keepers (GKs) and Gates (Gs) to avoid undesired spill of neural
activity from the Main Assemblies (MAs) to the Sub-Assemblies (SAs). We
wanted any spill to be practically insigni�cant for any number of excitatory
connections and arbitrary input activity �uctuations to which the AdEx model
is sensitive. We decided to study this with the sub-circuit topology of Figure
10.5.

We plot, in Figure 10.5, the maximum transient �ring rate of the SA as
a function of the number of inhibitory connections for a varied number of
excitatory connections. If the amount of inhibitory connections is not enough,
transient activity of the SA will be increased beyond its baseline activity,
denoted with a black line. We determined how many inhibitory connections
are necessary by looking at the amount of inhibitory connections at which
the maximum �ring rate becomes practically insensitive to the number of
excitatory connections. It is clear from the plots that, after a certain number
of inhibitory connections, unidirectional activity will be allowed only by
controlled inhibition of the GKs. From these experiment observations, we
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Figure 10.5: Inhibition to avoid
excitatory loop: The sub-circuit
topology at the right depicts the
inhibition of Gates (Gs) by the
Gate Keepers (GKs) that are driven
themselves by the Main and Sub
Assemblies (MA and SA) to avoid
an excitatory loop between them.
Activity in the sub-circuit is driven
only by a 1 Hz baseline rate.
Each curve in the plots represent
how the maximum transient rate
of SA for a given number of
excitatory connections varies as we
increase the number of inhibitory
connections. We present one plot
for each neural model (LIF and
AdEx). The maximum �ring rate
is employed instead of the steady
state rate to observe sensitivity to
transient rate �uctuations.

decided to set the number of inhibitory connections to 70 and 250 for LIF and
ADEX populations respectively.

10.2 Complete compartment circuit simulations

After selecting a set of parameters in line with the previous experiments, we
analysed the behavior of the complete compartment circuit simulation. The
dynamics of the compartment circuit can be summarized by a combination of
the input events that drive activity in Main-Assemblies (MAs) and the control
events that inhibit Gate Keepers (GKs) such that activity can �ow from MAs
to Gates (Gs) and from the latter to Sub-Assemblies (SAs). In Table 10.1 we
present a summary of the parameters taken for LIF and AdEx simulations and
in Figure 10.6 we present the temporal dynamics of the compartment circuit
for a complete and incomplete binding.

Parameter LIF AdEx
baseline connections 115 1646
excitatory connections 8 20
inhibitory connections 70 250
Input rate (Hz) 10 20
WM/Ctl rate (Hz) 10 20

Table 10.1: Complete simulation
parameters

First, we show the baseline dynamics of the circuit when no event takes
place in part A of �gure 10.6. In this case all neural populations are only
receiving an input baseline rate of 1 Hz. So the di�erent populations just
re�ect with their �ring rate the architecture of the circuit. Gs show a low rate
of activation due to GKs inhibition, while GKs show the highest rate driven by
MA and baseline activity. MAs show an activation close to the approximated
1 Hz baseline as well as SAs that have been isolated in the circuit thanks to
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Figure 10.6: Pro�les of neural activity: A. Neural activation driven only by baseline input. B. Neural activation of
the circuit when only one MA is activated by a word event or WM at 500 ms. Shows the neural activity related to an
erroneous control signal at 800 ms. It is possible to see that the steady state of neural activity is resilient to a slip of
control, going to the appropriate levels of neural activity once the control activity is over. C. Neural activity of the
Compartment Circuit for a successful binding. The second MA gets activated at 800 ms alongside the controls. Since
both MAs are active, the SAs manage to activate WM to instantiate the binding of the MAs. Two interesting dynamics
arise from the binding: The �rst is that a spike of activity in SAs, GKs and Gs takes place due to the sudden inhibitory
activity of WM on the GKs; The second is that the memory circuit internally raises its baseline activity due to the
excitatory loop formed.

GKs inhibition.
Second, we show the activity of the circuit for an incomplete binding in

part B of Figure 10.6. This means that only one MA is driven by an input event,
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after which a Control (Ctl) event allows activity �ow from both MAs to SAs,
even though there is no binding to be done. Due to stimulation of the MA, the
GK �ring rate raises to stop activity to �ow to the SA until the control event
takes place to inhibit the GK. As only one SA is driven by input, the total rate
contribution to the WM population do not achieve the WM kicko� threshold
rate necessary to perform a binding. Both neural models display a transient
spike of neural activity in the SA, G and memory sub-circuit GKs during the
time window the control permits activity to �ow to the SA. In the case of the
AdEx dynamics, shown in Figure 2.8, there is the possibility of an activity
rebound after inhibition, in which neurons will respond more vigorously than
if they would not have been inhibited, re�ected in the GKs after control stops.

Third, we show the circuit dynamics of a successful binding in part C of
Figure 10.6. When both MAs are driven by an input event and a control event
takes place. In this case the added activity of the SAs reaches the WM kicko�
threshold and kickstarts the Delay activity of WM. Then activity in the SAs
and Gs of the memory sub-circuit raise to a new baseline due to the excitatory
loop created by WM inhibition of GKs, which also generates an initial transient
spike of activity in SAs. A similar behavior to this one, simulating sentence
parsing, was also reported by previous work with the NBA[67]. Finally, after
the WM Delay activity stops, the LIF model activity goes back to baseline, but
the AdEx model exhibits a �nal transient rise of �ring rate in the GKs of the
memory sub-circuit, similar to that of the GKs a�ected by control inhibition
release.

10.3 Simulation of complete phrase processing

With the neural dynamics of several isolated Compartment Circuits, simulated
independently of each other, we approximated the binding of complete phrases.
As explained in the Introduction section 8.2, we simpli�ed the simulation of the
Blackboard by ignoring mutually inhibitory Compartment Circuits dynamics
determined by a Connection Matrix. The right branching hierarchical structure
that corresponds to an example phrase of 4 words, determined by a phrase
grammar, is shown in Part A of Figure 10.7. In this example only three
Compartment Circuits are necessary to realize all the bindings that would
correspond to the phrase processing, and the exact input event onsets were
taken from the LIF simulation. The onset of input events driving Main
Assemblies that represent word grammatical categories were matched to word
presentation onsets spaced 600 ms apart from each other. In the case of phrasal
nodes, we assumed that their input event onset corresponds to the previous
realization of a binding, determined by the moment at which their respective
Working Memory population was activated. In this way, phrasal nodes can be
represented by activity in the Main-Assemblies of a Compartment Circuit and
be bound to other word grammatical categories or phrasal nodes.

We needed to prolong the Main-Assemblies and Working Memory activity
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Figure 10.7: Sentence processing example: A. Tree structure hypothesized for a given 4 words phrase. It is shown
how compartment circuits correspond to sections of the tree structure and how the nodes corresponding to grammatical
categories of words processed or phrase nodes are instantiated in time under a bottom-up parsing approach. B. Blackboard
time series that correspond to the simulated processing of the considered tree structure and time of activation of the
nodes. The separate activity of the LIF populations of each compartment circuit are shown separately, followed by their
summary and total activity. C. Same as B but for AdEx populations.

long enough to instantiate all the necessary bindings, so in this example we
assumed WM and input events to last 2300 ms for all simulations. As indicated
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in the second phrasal node (PN2) of the tree example, if input events were
active for less than 1972 ms then activation of the �rst word MA would cease
before the accompanying phrasal node MA comes into play to realize the last
binding. In the Compartment Circuit simulation presented in Figure 10.6, there
was a di�erence in timing of WM activation between the LIF and the AdEx
neural models, that was not easy to see in the plots. The Working Memory
population became active 86 ms after all input and control events take place
in the LIF simulation, while in the AdEx simulation this only took 42 ms.
This time di�erence originates in the faster initial transient response of the
AdEx dynamics in contrast to the LIF dynamics, that can be seen in Figures
10.2 and 10.1 respectively. By contrasting the LIF and AdEx complete phrase
simulations in Figure 10.7 we can better appreciate how this di�erence adds
up to accelerate phrase processing in the AdEx model.

To later compare the phrase processing simulation with neuroimaging
patterns, we �rst substracted baseline activity from the time series of each
neural population in each Compartment Circuit. Then we summed the aligned
time series of the same neural population category belonging to di�erent
Compartment Circuits. Finally, to obtain total neural activity of phrase
processing, we summed activity from all the non phenomenological neural
populations and the Working Memory population, such that they would all be
equally weighted under the absence of a more detailed hypothesis about the
neural population sizes and their spatial distribution in the cortex.

10.4 �alitative reproduction of ECoG pa�erns

As presented in the Introductory section 8.1, the ECoG analysis of Nelson
et al.[141] is the �rst to characterize the speci�c temporal patterns of
phrase-structure formation from intracranial neurophysiological data, possibly
revealing the �rst neural signatures of binding operations. Nelson et al.
demonstrate two patterns that are of particular interest to our simulations: �rst,
the average temporal dynamics of processing increasing size right branching
phrases. Second, the average neural dynamics for hypothesized number of
pending binding operations, during phrase processing, under a bottom-up
parsing approach. In Figure 10.8 we show the aggregated neural activity
predicted by our LIF and AdEx simulations, alongside the temporal dynamics
of phrase processing presented by Nelson et al., from the mean high gamma
power of the intracortical recordings.

As can be seen in the top plots, our simulations suggest the existence
of four qualitatively di�erent segments of neural dynamics: �rst, as words
are presented to the circuit, input events drive activity in Main-Assemblies
(MAs) corresponding to the grammatical categories of words. The activity of
all the MAs accumulate but still do not change the activity of other neural
populations on the Compartment Circuits, since for parsing a right branching
tree under a bottom up parsing scheme, control events that allow bindings, do
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Figure 10.8: Simulation
comparison with intracortical
(EcoG) recordings: In the top
plots we show phrase processing
for the LIF and AdEx simulations.
We denote with arrows the four
segments of neural dynamics
identi�ed in the simulations;
The Main Assemblies (MAs)
activity increase the segment; The
accumulated binding operations
segment; The Main Assemblies
(MAs) activity release segment; And
the Working Memory (WM) release
segment. We denote with red bars
the magnitude of Working Memory
activity in the circuit that depends
on phrase length and remains at the
end of phrase processing. In the
bottom plots we identify, in Figures
modi�ed from Nelson et al., the
segments of intracortical recordings
that resemble the simulation and
denote with red bars the possible
Working Memory related activity
that remains at the end of phrase
processing.

not occur until the last word is presented. The second segment correspond
to the succession of bindings that take place after the last word of the phrase
is processed. The neural activity allowed by the control events creates a
transient rise in activity that stabilizes with the accumulated Delay activity of
the Working Memory populations and the still ongoing input activity. The
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third segment is characterized by the gradual drop of input related activity.
And the fourth segment corresponds to the �nal drop of Working Memory
activity, such that all the neural populations return to their baseline steady
state rate.

We see in the bottom plots of Figure 10.8, modi�ed from the Figures in
Nelson et al., that we can qualitatively identify the three initial segments
predicted by the simulation in the high gamma power time series. We
observe an initial increase in neural activity, for which a later onset and
higher magnitude of the peak appear to depend on phrase length, as would
be explained by the �rst segment of the simulation based on an increase of
activity in Main Assemblies (MAs). The following transient �uctuations of the
ECoG time series could be identi�ed with the binding related segment and the
�nal activity drop with the release of MA activity. In the simulation, because
we deactivate MAs on discrete time steps, we observe plateaus of MA activity,
while the ECoG time series suggest a more abrupt drop after bindings have
taken place, which complicates distinguishing the neural �uctuations related
to the binding operations, from those related to the MAs activity release. In
the longer 6 words phrase "Ten sad students of Bill Gates", there is a middle
sentence high transient �uctuation that is not expected from a bottom up
parsing scheme.

We indicate with red bars, that the activity drop of the ECoG time series
stops at a higher level than the initial baseline, which is compatible with the
hypothesized ongoing Working Memory (WM) activity of the simulation. The
AdEx model distinguishes itself from the LIF model, during WM inactivation,
by predicting a �nal burst of activity due to the inhibition release of the
Gate Keepers in the memory circuit. Nonetheless, due to the task of the
ECoG experiment, which requires retaining in memory the phrase for later
comparison with another phrase, we should not be able to observe the �nal
drop of WM activity predicted by the simulation, as is the case.

In Figure 10.9 we show, in the top plots, the simulation time series aligned
on the last word onset, to demonstrate the neural activity �uctuations linked
to the number of accumulated and executed binding operations, which Nelson
et al. refer to as the number of nodes closing. In the bottom plots we show
modi�ed Figures from Nelson et al., where the e�ect is demonstrated in the
case of middle sentence operations and sentence end operations.

10.5 �alitative reproduction of BOLD-fMRI pa�erns

As explained in the Introductory section 8.1, we also reproduced patterns
from an experimental design employed to show constituency e�ects with
BOLD-fMRI[153]. Stimuli, presented to a subject in a trial, consisted of a list
of phrases with the same number of words (constituents), such that in total 12
words would be presented. All phrases correspond to right branching trees
according to the phrase grammar considered by the authors. The conditions
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Figure 10.9: E�ect of number
of executed binding operations:
In the top plots we show the
phrase processing time series of
the LIF and AdEx simulations,
aligned on the onset of the last
word. We denote with arrows the
segment of transient rise and drop
of neural activity hypothesized to
be linked to the number of executed
pending binding operations, which
we refer to as number of nodes
closing in the plots, following
terminology from Nelson et al.
In the bottom plots we show,
in Figures modi�ed from Nelson
et al., the intracortical recordings
e�ect of executed pending binding
operations at the middle and end of
phrases.

were one list of 12 unconnected words (c01), 6 phrases of 2 words (c02), 4
phrases of 3 words (c03), 3 phrases of 4 words (c04), 2 phrases of 6 words (c06)
and 1 phrase of 12 words (c12).

Besides normal words, the design also included pseudoword conditions
that maintained morphological markers and closed-class (function) words.
We will compare our simulation with the pseudoword e�ects of Pallier et al,
since they provide syntactic speci�c patterns that can be interpreted closer to
the abstract binding operations of our simulation. Moreover we continue to
assume the same phrase grammar and bottom-up parsing scheme employed
for comparison with the intracortical recordings of Nelson et al. To simulate
the Pallier et al. stimuli, we added the repeated neural time series of each of
the right branching trees in a condition. So, for example, to simulate the 4
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phrases of 3 words condition (c03), we aligned and summed, based on word
onsets, the neural activity of 4 simulations of a 3 words phrase.

In the standard analysis of BOLD-fMRI time series, events are modelled
as a constant stepwise function that re�ects the duration of the stimuli,
called a boxcar model. The boxcar model events are then convolved by an
Hemodynamic Response Function (HRF), for which we considered the HRF
proposed by Glover[77], available in the python open source package Nistats
1. The convolved events are then used in a general linear model (GLM) to 1 https://github.com/nistats/nistats

obtain a peak estimate of hemodynamic responses for the di�erent conditions,
as was the done in the Pallier et al. study.

Figure 10.10: Hemodynamic
interpretation of the simulation:
At the top and middle plots we
show the rescaled time series of
the LIF and AdEx simulations
respectively, alongside the HRF
convolved time series. At the
bottom we show a boxcar event
of 3600 ms and its convolution, as
was employed by Pallier et al. to
estimate the amplitude of responses
for the di�erent conditions from
the BOLD-fMRI time series. we
considered the HRF proposed by
Glover, available in the open source
python package Nistats.

We generated a prediction of hemodynamic responses from our simulations
by rescaling the conditions’ time series by the maximum �ring rate of all
conditions and then convolving them with the HRF. We present the predicted
hemodynamic responses in the top and middle plots of Figure 10.10. Since in
the Pallier et al. study, 12 words are presented every 300 ms, we considered
the last word onset of 3600 ms as the duration of the stimuli for a traditional
boxcar event model, shown in the bottom plots, to compare it with our models.
We mark the HRF peak and its onset with black lines on all the HRF convolved
time series.

We observe that the neural time series would predict in all cases a peak
onset displaced many seconds with respect to the traditional boxcar event that
only represents the duration of the stimuli. Looking at the time series, this
would be expected, since the HRF peak onset depends on the center of mass of
the accumulated neural activity, which continues several seconds after the last
word onset in our simulations. The peak onset in the LIF and AdEx models
follow a super-linear increase with respect to the number of constituents, at
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odds with with sub-linear patterns reported by Pallier et al. Also the LIF neural
model introduces an slightly longer onset delay with respect to the AdEx
neural model, due to its slower activation of Working Memory populations.

Figure 10.11: Hemodynamic
peak magnitudes comparison
with BOLD-fMRI experiment:
The top plots show the number
of bindings executed for each
condition alongside the rescaled
Hemodynamic Response Function
(HRF) amplitudes of each of the
Compartment Circuit neural
populations. We demonstrate
that the hemodynamic pattern
of the neural populations in the
simulation follow closely the
number of bindings executed. In
the bottom plots we contrast the
pattern of the total neural activity
in the simulation alongside the
sub-linear patterns reported by
Pallier et al. in the pSTS, IFGorb
and IFGtri brain regions.

In the case of the HRF peak amplitudes, we show in Figure 10.11 that both
LIF and AdEx models predict a sub-linear pattern of peak amplitudes as a
function of the number of constituents. We demonstrate in the top plots
that the HRF magnitudes of added neural activity in all neural populations
of the Compartment Circuit follow the pattern given by the number of
executed bindings in a condition. It is unlikely then, that the sub-linear
pattern appreciated in the HRF amplitudes would be qualitatively changed by
manipulating other parameters of the circuit, like the duration of the input to
Main-Assemblies and Working Memory that could modify qualitatively the
peak onsets pattern.

Pallier et al. reported constituent sub-linear responses in the language areas
TP, aSTS, pSTS, TPJ, IFGorb and IFGtri, but only the regions pSTS, IFGorb
and IFGtri showed a similar response pattern when minimizing the semantic
content of phrases with pseudowords. Since our simulation puts aside semantic
considerations, we consider this type of experimental manipulation to be a
better re�ection of the binding activity modelled in the Compartment Circuit.
In the bottom plots of Figure 10.11, we show the similarity between the HRF
magnitude pattern of the total neural activity in the simulation models with
what is reported by Pallier et al. in the pSTS, IFGorb and IFGtri brain regions.





11 Discussion

In this chapter we discuss results obtained from the Neural Blackboard
Architecture simulation and comment on future perspectives of the
framework for further experimental work.

11.1 The neural models and circuit architecture

Regarding the neural model parameter values, we considered those from
Omurtag[150] and Brette et al.[26] for a �rst approximation of the neural
dynamics. We left for future work consideration of values based on
electrophysiological recordings from speci�c brain regions. For example,
there are di�erent adaptation constants along the cortex, that could change
the AdEx model dynamics. Since we have compared the simulation with neural
activity in speci�c brain regions like aSTS, pSTS, IFGtri and IFGorb, it would
be reasonable to �t the simulations to their speci�c biological reality.

In the case of the Compartment Circuit assumptions, we made many
simpli�cations that should be revised in future work. We approximated
baseline dynamics with a low constant input rate instead of considering the
natural oscillatory activity of the cortex, homeostatic mechanisms in cortical
circuits[182] and balanced networks[203]. Also we adopted homogeneous
synaptic connections instead of testing di�erent synaptic distributions that
could have an impact in the neural dynamics. Moreover, if we allowed random
connectivity to shape the Compartment Circuit architecture our capacity to
control its dynamics with the number of connections would be restrained.

The explicit simulation of Delay Activity in Working Memory was left out
of the current work due to its �exible and still debated implementation[43; 68].
Studying it could reveal important neurobiological limitations on the way we
assess the relative proportion of neural activity between Main-Assemblies and
Working Memory. Also it could provide a more limited set of hypothesis about
the spatio-temporal memory limitations of the Neural Blackboard Architecture,
to be contrasted with neuroimaging and psycholinguistic evidence.

Out of two options, we took the decision to allow the existence of excitatory
loops after Working Memory activation, although this permits the possibility
of unstable runaway neural activity. Neural activity related to these excitatory
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loops was regulated in the Working Memory sub-circuit by careful tuning of the
number of excitatory connections and the number of inhibitory connections
that would close the loops. The second option was to introduce in the
Working Memory sub-circuit a bidirectional control mechanism similar to that
employed to regulate communication between Main-Assemblies (MAs) and
Sub-Assemblies (SAs). Nonetheless the second approach implies additional
complexity in the number of nodes, connections and events that we have
to consider for the circuit operation. Since we do not really know what is
closer to the biological reality of the cortex, we decided to show how the less
complex architecture that includes excitatory loops could be made stable, but
consideration of a more complex architecture would also be possible.

To our knowledge, this is also the �rst time complex neural models like AdEx
are simulated alongside LIF for variable binding and language function related
circuits. In contrast to previous simulations [189; 188; 67; 191], we employed
population density techniques implemented in the MIIND software[49], that
allowed us to approximate the transient �uctuations of the di�erent binding
related events. Thanks to this, we found that the circuit implementation and
neural dynamics interpretation can depend on the underlying neural model in
non trivial ways. For example we observed that in a LIF model there was a non-
consequential trade-o� between synaptic e�cacy and number of excitatory
connections to control the steady state rates of the circuit. On the other hand
the AdEx model was very sensitive to changes in synaptic e�cacy due to
adaptation e�ects, to the point of making us unable to control the magnitude
of the steady state rate of the circuit for high synaptic e�cacy values. If the
physical reality of the cortex was closer to an AdEx model with high synaptic
e�cacies we would then need to restrict our hypothesis about the circuit
operation with input and control events to a subset of the possibilities explored
in our simulation. Adaptation in the AdEx model also had an important e�ect
in the case of lower synaptic e�cacies, making coordination of input and
control events more restricted in a larger portion of the circuit parameter
space. Since we have to take into account the possibility of random variation
of those parameters in the cortex, this e�ect can be crucial to understand limits
and constraints of language processing in di�erent brain regions.

Another important distinction observed between the AdEx and LIF model
was how dynamics after inhibition are qualitatively di�erent under the
in�uence of adaptation. While in the LIF circuit, neural activity on a population
would smoothly recover back to its steady state after inhibition stops, that of
an AdEx circuit would show a renovated burst of activity due to adaptation
decreasing during the inhibition period. The e�ect might be strong enough
to suggest it as a predictive marker for certain events in the circuit, like the
release of Working Memory activity.

Moreover, characterizing the Working Memory activation parameter
regions was important to understand the reliability of the circuit if exposed to
noisy input rates, arbitrary timing coordination of events, control mistakes
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or anticipatory control signals. Although for a bottom-up parsing approach,
we can safely assume control events to take place after input events, this
might not be the case for other parsing strategies like top-down, that could be
implemented with anticipatory control events. Since some parameter regions
restrict the timing of input and control events, we might get insights into the
possible set of parsing mechanisms directly from the anatomical structure of
the cortex that constrain the parameter boundaries.

Finally, the question of how a Compartment Circuit and the Neural
Blackboard Architecture could be formed during brain development and
modi�ed by learning is still work in progress, partially tackled in a previous
study[189]. Demonstrating how neural mechanisms approximated by the
architecture can be implemented with biological realistic Hebbian or STDP
rules alongside random connectivity constraints, during development and
learning, would be an important avenue of future research.

11.2 Circuit implications of the linguistic hypothesis

A strength of the current simulation is its �exibility to predict the neural
activity of diverse grammar theories and parsing schemes, which we only
explore partially in this work. We could in principle, without circuit
modi�cation, predict the binding activity for any structure that can be
represented by a binary tree. This is the case of the phrase grammar of
the minimalist program of Chomsky[38], that represent phrases as binary
trees, and also the case of other theories like dependency grammars[142] that
represent grammatical relations between words. Nonetheless in the case of
dependency grammars, as they do not require a hierarchical representation, we
would not need to assume that the Working Memory of an executed binding
drives the Main-Assembly of another Compartment Circuit.

Because we only modelled a bottom-up parsing scheme, we considered
activation of the Main-Assemblies corresponding to phrase nodes only after
the binding that produces the corresponding phrase took place. For example,
for the phrase "the black cat" we would create an input event for the phrase
node of "black cat" after "black" and "cat" have been bound. If we consider
instead a pure top-down parsing scheme, that implies prediction of future
bindings, or the generalized left corner parsing scheme proposed by Hale[83],
there would be three additional mechanistic options to consider: First, we
could start input events for Main-Assemblies representing the phrase nodes
before their corresponding bindings and only start the control event after
the bindings have been con�rmed; Second, we could start the control events
beforehand, which is an option explored in the simulation, and still make
input events follow the corresponding bindings; Third, we could go ahead
and perform bindings ahead of time, that would need to be deactivated by an
error signal provided by the parsing mechanism. This last option would allow
to simulate the possibility of multiple parallel phrase representations, from
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which only one survives at the end.
A simpli�cation was made regarding the Compartment Circuit selection

mechanism in the Neural Blackboard Architecture. We did not model the
dynamic inhibition of competing Compartment Circuits belonging to the
same Connection Matrix. To do it we would require an hypothesis about
the size of the Neural Blackboard, governed by memory limitations and
the total number of possible grammatical category combinations given by a
grammar. Forming such an hypothesis was out of the scope of this work,
so we opted to assume the simplest selection mechanism possible based
on uniform random selection, which is how we justify simply recruiting
Compartment Circuits as needed. Nonetheless we are only able to ignore
the inhibitory activity of competing Compartment Circuits in complete
Connection Matrices because we are not planning to explore the e�ects
of memory limits under time compressed sentence processing scenarios or
memory tasks. Otherwise important deviations in background neural activity
due to depletion of available Compartment Circuits and additional inhibitory
activity would become a crucial factor for the simulation. We plan to explore
this in future work, to try to reproduce temporal bottleneck e�ects shown
by Vagharchakian et al. on hemodynamic responses, based on a BOLD-fMRI
experiment with an experimental design containing compressed speech and
reading conditions[185].

With respect to the parsing mechanism, we only model its interface with
the Compartment Circuit that implements binding, through the assumed
control signals. We considered that understanding how a parsing algorithm is
learned and implemented by the cortex, such that it can provide the respective
control signals, was a separate research question. Previous work has shown
the feasibility to implement a parsing mechanism with neural networks in
connection to the Neural Blackboard Architecture[188], for a limited set of
possible syntactic structures.

As can be inferred from this discussion, there is already great potential for
exploration of linguistic hypothesis with the current simulation developed, but
there are also many open questions left for future development. We believe
that taking into account more experimental evidence from psycholinguistics
and neuroimaging studies is necessary to guide future re�nements of the
circuit architecture and simulation.

11.3 �alitative reproduction of neuroimaging evidence

Comparison of our simulation with neuroimaging measurements revealed
striking qualitative similarities, even though the circuit was only tuned for its
correct operation, with respect to binding execution. We aggregated the time
series of the simulation in the simplest way possible, uniformly, under the
lack of more precise hypothesis about the spatial distribution of the Neural
Blackboard Architecture in the cortex. Although we interpreted reports of
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the high gamma power of Local Field Potentials and hemodynamic responses
separately, there is the potential to integrate all these di�erent measurements
as coherent quantitative evidence thanks to recent e�orts on modelling their
relationship[92].

High gamma power has been shown to be correlated to the �ring rate time
series of spiking neurons from in-vivo recordings[163], and we decided to make
a direct qualitative comparison between the �ring rate of the simulation and
high gamma power time series. Nonetheless a future quantitative comparison
would require a more precise mapping from the simulation �ring rates to local
�eld potentials, as has been done recently[127; 81].

An important discrepancy between the simulation and the high gamma
power time series, was that the simulation segments of neural activity
identi�ed with binding and Main-Assemblies transient activity drop were not
as clearly separable in the intracortical recordings. Moreover the data seem to
suggest an immediate Main-Assemblies transient drop after a binding event
takes place, instead of the paced inactivation assumed during the simulation.
This would suggest the addition to the Compartment Circuit of a feedback
mechanism from the Working Memory populations to the Main-Assemblies
to knock out their unnecessary activity once binding has been established. It
would be an e�cient strategy from an energetic point of view at the cost of
extra complexity in the circuit architecture.

We also observed a middle phrase activity drop in the intracortical time
series of the longest phrase, which was not coherent with a bottom-up parsing
hypothesis. In the phrase "Ten sad students of Bill Gates" the activity drop
took place after "Ten sad students", and was compensated immediately after
to bind the remaining phrase "of Bill Gates". Two possibilities arise from
this observation: The obvious �rst one is to consider an alternative parsing
mechanism combining a bottom-up and top-down approach, a generalized left
corner parsing scheme, to explain the �uctuation; The second one is di�culties
of the Compartment Circuit to sustain local activity in Main-Assemblies for
prolonged periods of time, such that they need to be reactivated if a binding has
still not taken place. If this was the case, we could also explain the previously
explained apparent immediate Main-assemblies activity drop after binding
as a side e�ect of an imminent deactivation that was going to take place
independently of binding.

To approximate hemodynamic responses, we resorted to a naive
approximation that has to be interpreted with caution since the relationship
between neural activity, cerebral blood �ow and blood oxygenation can be
non-linear under certain circumstances[70; 31] and better represented by
the balloon model than the gamma function considered in this work[197].
A more precise translation from �ring rates to an hemodynamic response
would allow a quantitative �t of simulation parameters and to test linguistic
hypothesis. At the moment we show that the simulation could be adapted
to other hemodynamic peak onset patterns and that it naturally reproduces
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magnitude patterns, although we do not attempt to tune the simulation to
reproduce the relative di�erences between conditions.

Regarding the hemodynamic peak onsets, our �rst observation was that
persistent neural activity in Main-Assemblies and Working Memory can
substantially delay the onset of the hemodynamic response, with respect to
that given by a traditional boxcar model event. Such a large delay demonstrates
the importance of modelling neural dynamics to avoid an event model
misspeci�cation. It has been reported that parametric estimation of gamma
based models, used for General Linear Model estimation to analyse BOLD-
fMRI experiments, quickly deteriorates as model misspeci�cation increases
[115]. To realize a future quantitative comparison between the generated
simulation time series and hemodynamic measurements, we would need to
�t a new linear model for each simulation hypothesis to the available BOLD
time series, looking for the best �t.

The super-linear increase pattern of peak onset we observed was not
coherent with sub-linear patterns reported by Pallier et al. Nonetheless
the peak onset of our simulation depends on the input events and Working
Memory durations, that were arbitrarily set to a constant duration. The Neural
Blackboard Architecture does not provide a particular hypothesis on the timing
of the deactivation of Main-Assemblies and Working Memory, which is why
durations were simply set to a pragmatic constant that secured binding of the
last phrasal node with the �rst word of the longest phrase. Comparison of
our simulation with intracortical recordings in results section 10.4 suggested
a quicker drop of the Main-Assemblies activity after binding operations were
executed, instead of the current choice of persistent activity for a constant
amount of time after binding. Modifying the simulation to drop activity in
Main-Assemblies after binding, would permit emulating sub-linear patterns of
peak onset as necessary to reproduce the hemodynamic measurements.

Regarding the hemodynamic peak amplitudes, future quantitative
comparison of the levels of neural activity between the word list condition
(c01) and rest of the conditions in which binding takes place, could give
insights into the relative proportion of Main-Assemblies activity and the rest
of populations in the circuit. At the moment, the simulation’s initial slope of
hemodynamic peak amplitude increase was lower than that reported by Pallier
et al, which can be interpreted as an underestimation of the binding related
populations contribution to the total neural activity. Pallier et al. initially
hypothesized a linear pattern of peak amplitudes instead of the sub-linear
one observed. Their initial hypothesis was based on a simple "accumulation"
model where each new word presented would add a constant amount of neural
activity until a binding was not possible, leading to a sudden drop of activity
back to baseline. After their �ndings, the authors revised their hypothesis to
propose instead a model that assigns a logarithmic increase of activity to each
new word presented. Nonetheless our simulation suggest another explanation
for the sub-linear pattern as a direct re�ection of the number of binding
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operations executed during phrase processing. It turns out that the type of
stimuli employed by the authors consisted exclusively of right branching trees
and that their concatenation lead to a sub-linear increase of number of binding
operations, which is why our simulation is at a �rst sight coherent with the
logarithmic word activity addition model. Then our simulation suggest the
possibility that assigning a logarithmic increase of activity to the next word
presented in a phrase is an artefact of the experimental design, due to missing
consideration of other syntactic tree structures for phrases containing the
same number of words.

11.4 Future perspective

Even though the current simulation can still be improved in many ways, we
would like to emphasize with this work the quick progress in the development
of biologically plausible models of cognition. New computational methods
like population density techniques have made it tractable to approximate, at a
circuit scale, point neural models as complex as the adaptive exponential. With
an additional modelling e�ort at the level of the neural populations, we could
close the gap that has delayed physical mechanistic testing of computational
linguistic hypothesis with direct neuroimaging measurements. Taking into
account cytoarchitectonic details, tailored to di�erent brain regions, would
allow to study the spatial distribution in the cortex of the Neural Blackboard
Architecture and other circuit alternatives. Modelling these details would allow
better physical reproduction of temporally and spatially detailed signals, like
Local Field Potentials (LFP)[127; 81] and hemodynamics (BOLD)[31]. Moreover,
it would also be possible to integrate the evidence from multiple spatio-
temporal scales in a coherent way, such as has been done in the literature,
taking as example recent work linking LFP and BOLD signals[92].

We selected two experiments that we considered best characterized key
neuroimaging evidence of binding in phrase processing. Moreover we
think these experiments, coming from di�erent spatio-temporal scales and
experimental designs, demonstrate the potential of our simulations to integrate
varied experimental paradigms. Many other experiments could inform
di�erent parameters and circuit assumptions from the ones explored in
this work. For example we could look at processing speed and memory
constraints of the Neural Blackboard architecture with the BOLD-fMRI
manipulation of Vagharchakian et al.[185] based on compressed speech and
reading conditions. Creating a database of such neuroimaging experiments
alongside psycholinguistic behavioral evidence would create the opportunity
to incrementally and systematically test linguistic computational hypothesis
and their brain implementation.

As we commented in Discussion section 11.2, the current implementation
of the Compartment Circuit allows us to test any grammar theory providing
binary tree representations, combined with any parsing scheme that
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determines the timing of input and control events in the circuit. Although
we focused on one parsing scheme and grammar, it is evident that we can
explore all other alternatives in the future. This means that as we re�ne
the boundary of the circuit parameters and operating assumptions, we can
obtain for any corpus the neural activity of all its phrases for all the di�erent
linguistic hypothesis available. From such arti�cial dataset we could motivate
experimental designs and tests that would be optimal to explore the linguistic
hypothesis space. For example controlling for diverse variables like phrase
length or number of syllables, we could estimate the likelihood of a phrase
grammar versus a dependency grammar theory, by comparing a set of phrases
that maximize neural activity di�erences between the theories with respect to
a set of control phrases.

We think that the proposed framework could lead to quick progress in
our understanding of language function if accompanied by the most recent
neuroimaging techniques. We would imagine a setting in which intracortical
recordings can be systematically positioned with information coming from
quick and reliable fMRI language localizer paradigms[118]. From a language
localizer and anatomical scans, it would be possible to take advantage of
3d printing techniques, already tested in non-human primates[37], to make
frames perfectly adapted to the skull of patients, with electrodes precisely
positioned at the peaks of hemodynamic e�ects. Moreover recent advances in
laminar fMRI[111] are an exciting possible addition for the tuning of models
approximating cortical columns with cytoarchitectonic constraints, which we
propose to extend our simulations.

In conclusion we hope to have demonstrated that we are close to producing
biologically realistic mechanistic neural models of cognitive function. In
particular to provide new ways of testing linguistic hypothesis integrating
evidence from varied neuroimaging techniques with di�erent spatio-temporal
scales. With this work we expect to inspire further e�orts in this direction.



Part IV

Concluding remarks
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12 Final remarks

12.1 Summary of findings

In the experimental part of this work, we identi�ed the superposition principle
to be one of the crucial assumptions of Smolensky’s basic tensor product
representations. To test the superposition principle we created and fMRI
dataset from which we could extract spatial representations of bi-syllabic
pseudowords in visual and auditory sensory modalities.

The decoding analysis in sensory brain regions revealed the highest
accuracy scores and reproduced known e�ects like the superposed semi-local
representations induced by retinotopy. In the case of auditory regions we
found weak evidence in favour of local superposed representations in anterior
areas higher in the auditory processing hierarchy. Decoding on language
related regions only revealed signi�cant classi�cation in Broca’s complex (44
and 45), for which we could provide evidence in favour of superposition and
more distributed representations. Finding superposed representations in Broca
is interesting, since this region has been shown in a meta-analysis of fMRI
studies[206] to be consistently engaged with syntactic binding manipulations.
We were also able to provide evidence against superposition or in favour of
non additive models in the visual word form area (VWFA), which is coherent
with previous evidence of whole word representations in that region[75].

There were also other �ndings not directly related to the superposition
principle. We veri�ed that it was possible to decode auditory representations
form the VWFA, providing additional evidence to the literature body claiming
that this region can be modulated by speech as well as reading[205]. Moreover
we were surprised by a global lack of generalization from decoding models
trained in one sensory modality to the other, which can be either interpreted
as a lack of sensitivity due to variability of the representations signal or as the
absence of amodal representations for simple bi-syllabic pseudowords. Finally
we observed in most regions with signi�cant classi�cation scores, except
Visual, extreme variability in the accuracy scores of individual items, such
that few had particularly high scores while most remained closer to chance
level. We demonstrate this e�ect with an approximate bimodal distribution of
the accuracy scores and we think this pattern could be explained by lack of
sparsity and low variability in the spatial distribution of values of the neural
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vectors underlying the neural representations.
In the modelling part of this work, we created a new implementation

of the Neural Blackboard Architecture (NBA) based on population density
techniques, that allowed us to make temporal high resolution predictions of
neural dynamics linked to the binding process. Our simulations were based
on the dynamics of spiking point model neurons: leaky-integrate-and-�re
(LIF) and adaptive-exponential-integrate-and-�re (AdEx) neurons. Contrasting
LIF and AdEx models allowed us to demonstrate that, although they are not
importantly di�erentiated by average dynamics, their parametrization have
strong implications for the timing and control of phrase processing events.

We also showed that an NBA implementation, only implementing the
binding mechanism and tuned to operational constraints, qualitatively
reproduces the neural activity patterns of at least two neuroimaging
experiments involving linguistic binding at di�erent spatio-temporal scales.
We qualitatively reproduced three out of four predicted temporal segments
of the neural dynamics of sentence comprehension revealed by intracortical
recordings (ECoG)[141]. Moreover our simulation provides a similar drop of
neural activity related to the moment at which a binding operation takes place,
by activating the working memory mechanism, and an increasing activity
baseline that depend on the number of bindings performed. We also reproduce
qualitatively sub-linear patterns of hemodynamic responses caused by phrase
constituency manipulations[153]. Our simulation provides an alternative
hypothesis to explain the sub-linear pattern, based on the number of binding
operations executed during phrase processing. Alongside these results, we
illustrate the �exibility of the NBA to represent arbitrary binary tree structures
and parsing schemes, which makes it a promising tool for linguistic hypothesis
exploration and future re�ned quantitative and integrated accounts of multi-
scale neuroimaging measurements.

12.2 Global perspectives

In this work we parallely explored two modelling approaches to the binding
problem. We selected these approaches for how powerful they are to
handle several aspects of language modelling: like answering Jackendo�’s
challenges[98], being able to represent multiple levels of hierarchical language
processing and �exibly implement multiple linguistic hypothesis. Alongside
being quite powerful, both approaches appear to be importantly distinct in
their underlying assumptions, as we explained in Chapter 1 Section 1.4. In
Table 12.1 we provide a reminder of the comparison.

Although there seem to be many di�erences between the modelling
approaches, we think that the computational operations supporting bindings,
binding and unbinding are the truly fundamental di�erences between them.
The other di�erences are linked to implementational issues that most likely
will converge as we better understand the structural and functional properties
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Aspect Smolensky’s TPR NBA

About modelling:
Neural simulation Arti�cial NN Spiking NN
Temporal dynamics Not included Included
Representation Neural unit vectors Neural assemblies
Parallel repr model Memory slot roles? Separate neural assemblies
Representation properties:
Declaration Explicit Implicit
Spatial stability Static (temporally stable) Dynamic (temporally unstable)
Locality Distributed or local Local
Operation implementation:
Composition of bindings Superposition (addition) Compartment recruitment
Binding Tensor product Working memory assembly activation
Unbinding Inner product Reactivation of bound neural assemblies

Table 12.1: Modelling approach comparison: We present all binding related
aspects studied in this work about Smolensky’s tensor product representations
and the Neural Blackboard Architecture.

of cortical circuits. There are several aspects related to implementation details
that could and should be reconciled to properly compare the approaches
in future work. Two in particular that we thought about are the basic
representational units assumed by the models and the inclusion of temporal
dynamics in Smolensky’s framework.

Neurons are still considered by most models as simple compartment
units although their superior information processing power has been known
for some time[106]. In this regard both approaches might require a
reinterpretation of their implementation. In the case of the Neural Blackboard
Architecture (NBA), its fundamental mechanisms are based on the idea of a
gating circuit and a short term memory device. Although these mechanisms
have been interpreted at the level of a circuit of neural assemblies and
reverberating activity, an alternative implementation at the cellular level for
gating[109] and synaptic short term memory[138] have been demonstrated
in the literature. This means that it could be possible to reimplement the
functionality of complete Compartment Circuits of a Blackboard with few
neurons to bring its implementation at the neural unit level. In the case of
Smolensky’s framework the mapping of cellular activity to theoretical values of
the neural units is not clear and several alternatives based on the computational
complexity of a single neuron should be considered in the future.

The NBA provide a clear temporal depiction of the control and memory
mechanisms necessary to implement binding. On the other hand Smolensky
presents in the Harmonic mind[172], the implementation of tensor products
abstractly as matrix multiplication, were the matrix coe�cients are interpreted
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as synaptic weights in a layered network. The problem with this interpretation
is the in�nite possible concrete network con�gurations that are equivalent
and that the dynamics of computation in real networks is ignored. Recent
work from Smolensky on a dynamic optimization scheme to instantiate
input representational vectors[173] could help bridge the gap on temporal
predictions to compare it with the NBA.

For future experimental designs, besides the intricacies that can be
introduced by the particular neuroimaging modalities employed, there are
three aspects that should be emphasized. First, that future work should
still focus on simple syntactic structures, namely syllable combinations to
form pseudowords, short pseudoword lists and short jabberwocky phrases. It
seems clear from recent meta-analysis[206] that limiting the semantic content
of stimuli importantly reduce the number of brain regions involved in its
processing. For example only Broca 44 is constantly involved in purely
syntactic operations while the the posterior superior temporal sulcus (pSTS)
and the superior temporal gyrus (STG) seem to be involved with syntactic
and semantic integration[206]. Second, based on the previous point and our
�nding of superposition in Broca’s complex and auditory regions, future
experiments should focus speci�cally on anterior brain regions, including
auditory areas higher in the processing hierarchy and Broca’s complex.
Focusing in speci�c regions would also facilitate targeted acquisition with
di�erent neuroimaging modalities that have less spatial coverage but high
temporal resolution like intracortical recordings (ECoG). Third, the stage at
which abstract representations arise in the brain, which we were not able
to demonstrate with simple bi-syllabic stimuli, should be explored in more
detail. The process of formation of abstract representations could be linked to
audiovisual integration and related cognitive phenomena in language like the
McGurk e�ect[179].

Regarding the available linguistic computational hypothesis, it is important
to seriously consider simultaneously grammar alternatives like Phrase
structure grammars and Dependency grammars and parsing schemes like
bottom-up, top-down and generalized-left corner parsing. Both modelling
approaches have the capacity to interpret the diversity of linguistic hypothesis
and their test is intrinsically related to the hypothesis considered. For very
simple stimuli like bi-syllabic stimuli, this do not seem to be a crucial issue, but
processing of jabberwocky phrases is already subject to highly divergent
linguistic theories and we can not avoid assuming one or another when
matching model predictions with neuroimaging measurements. Incrementally
testing the di�erent linguistic hypothesis alongside the modelling approaches
would be an important complementary extension to the e�orts of this work.

Finally we would like to emphasize the recent advances in neuroimaging
techniques that will provide even richer evidence to future experimental
e�orts, like laminar fMRI[111] and increasingly available intracortical (ECoG)
recordings. Also there are diverse theoretical and computational advances in
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the simulation of neural cortical columns that allow to reproduce complex
neural signals like Local Field Potentials (LFP)[127; 81], hemodynamics
(BOLD)[31] and their relationship[92]. Perhaps soon it will be possible to
produce precise mechanistic predictions of neural signals out of linguistic
computational hypothesis and that future work should aim to arrive to such
reality.

12.3 Conclusion

Neuroscienti�c models of language have matured, while empirical tests of
their assumptions have been left behind. New neuroimaging techniques and
the recent possibility to simulate some of their corresponding neural signals
should not be ignored and lead to a new wave of experiments capable of
mechanistically testing linguistic computational hypothesis. We think we
have been able to give a glance at the value of the approaches considered,
namely Smolensky’s tensor product representations and the Neural Blackboard
Architecture, and the challenges we face to test them empirically. In this work
we have covered just a small segment of the path leading to understanding of
variable binding in symbolic structures and hope to motivate more work in
this direction.





13 Other contributions during the PhD

Other experimental work not included in the manuscript

In addition to the experimental work presented, there are several other projects
that were conducted or are currently in progress, but were not included in
this manuscript.

During my master thesis I performed an empirical investigation, using
fMRI, of the brain regions involved in representing the syntax of mathematical
formula, manipulating their complexity and using structural repetition
priming, which was �nished during the �rst months of the PhD, but I decided
then to focus completely on the binding problem for the PhD and this
manuscript. Also as part of the tests of the superposition principle, we had the
idea to also run a two-digit numbers version of the bi-syllabic pseudowords
experiment. Nonetheless decoding of the number conditions was not sensitive
enough, so I decided to concentrate on language stimuli for the rest of PhD
and this manuscript.

There is currently work in progress on the analysis of an ECoG dataset of
a phrase and word list reading task, to better understand the timing of events
related to the temporal segments and neural assemblies predicted by the Neural
Blackboard Architecture. We are employing supervised learning techniques to
characterize time segments linked to di�erent grammatical features, possibly
connected to the dynamics of some NBA neural assemblies. We are considering
grammatical features from alternative grammar theories, a phrase grammar
and a dependency grammar, such that we can also explore tests to empirically
evaluate the likelihood of these theories. We are also exploring the application
of unsupervised learning techniques, based on time series alignment with
dynamic time warping, to extract clusters of electrodes with similar neural
signatures related to binding dynamics.

Contributions to a study in Pediatric neuro-oncology

As a side project, I carried a substantial contribution to the statistical analysis
and methodological development of a clinical study where we investigated the
relationships between the changes in di�erent cognitive scores and radiation
dose distribution in 30 children treated for a posterior fossa tumor. We showed
two cases for which there was a relationship between the radiation dose in



132 martín pérez-guevara

speci�c brain areas and particular cognitive decline. From my participation I
was recognized as third author of the published study[55]

Children treated for posterior fossa tumor with cranial radiation therapy
often su�er from cognitive impairments. Radiotherapy might speci�cally
impact brain regions implicated in di�erent cognitive functions. Therefore,
identifying regional e�ects of radiotherapy on cognitive functions may help to
propose speci�c rehabilitation interventions adapted to the risk of cognitive
impairment.

Open source so�ware development and assistance to open
science initiatives

I contributed as well code to several Python open source libraries linked to
machine learning and statistical analysis in neuroimaging: Nilearn, Nipype
and Pypreprocess. In the process I became one of the main contributors of
the Nistats library that o�ers an alternative for complete statistical analysis of
BOLD-fMRI datasets. This experience lead me to also get involved with open
science data standards initiatives linked to open sharing of raw BOLD-fMRI
datasets (BIDS) and open sharing of statistical results (NIDM), due to which I
participated in several coding sprints in Paris and Stanford.



A Appendix. Superposition experiment ROIs decoding and
tests

A.1 Visual-h0c1 (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.14 0.25

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.23 0.39

Figure A.1: Accuracy in Visual-h0c1: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the
CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2
model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.30** 0.23** 0.29** 0.19* 0.19* 0.15 0.16* 0.12 0.20** 0.20**
02 0.17 0.20* 0.21* 0.16 0.15 0.09 0.23** 0.15* 0.12 0.17**
03 0.25* 0.19 0.21* 0.14 0.17** 0.12 0.19** 0.14* 0.11 0.17**
04 0.41** 0.45** 0.44** 0.31** 0.31** 0.35** 0.39** 0.33** 0.24** 0.36**
05 0.20* 0.23** 0.16 0.14 0.20** 0.16* 0.15* 0.14 0.11 0.17**

Table A.1: Accuracy Visual-h0c1 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.49** 0.45** 0.39* 0.44** 0.56** 0.42** 0.43** 0.47**
02 0.44** 0.44** 0.44** 0.44** 0.47** 0.39* 0.33 0.40**
03 0.45** 0.40* 0.43** 0.43** 0.38 0.47** 0.40* 0.42**
04 0.73** 0.58** 0.54** 0.62** 0.75** 0.70** 0.64** 0.70**
05 0.42* 0.44** 0.43** 0.43** 0.41 0.42** 0.41** 0.41**

Table A.2: Accuracy Visual-h0c1 CV1 and CV2: * p-value < 0.05, ** p-value
< 0.01.

Subject
01
02
03
04
05
All

Figure A.2: Superposition test in Visual-h0c1: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.3: Locality test in Visual-h0c1: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null
distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.2 VWFA (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.07 0.11

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.4: Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.21* 0.11 0.16 0.16* 0.11 0.07 0.11 0.10 0.20** 0.14*
02 0.10 0.24** 0.21* 0.07 0.16* 0.09 0.06 0.07 0.10 0.12
03 0.17 0.10 0.11 0.07 0.15 0.10 0.09 0.11 0.07 0.11
04 0.07 0.16 0.10 0.10 0.14 0.12 0.15* 0.10 0.04 0.11
05 0.14 0.11 0.17 0.11 0.14 0.19* 0.11 0.16* 0.07 0.13*

Table A.3: Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01.



136 martín pérez-guevara

(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.45 0.31 0.31 0.35 0.57** 0.28 0.30* 0.38**
02 0.42 0.36* 0.33 0.37* 0.33 0.29 0.40** 0.34
03 0.38 0.35 0.31 0.34 0.34 0.34 0.37 0.35
04 0.36 0.30 0.35 0.34 0.35 0.39* 0.32 0.35
05 0.44** 0.33 0.26 0.35 0.54 0.30* 0.22 0.35

Table A.4: Accuracy VWFA CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.5: Superposition test in VWFA: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.6: Locality test in VWFA: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.3 TP (Visual dataset)
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Figure A.7: Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.19 0.20* 0.17 0.14 0.12 0.11 0.11 0.10 0.15* 0.14**
02 0.24** 0.11 0.11 0.12 0.19* 0.09 0.15 0.12 0.11 0.14*
03 0.10 0.12 0.23** 0.06 0.10 0.17* 0.19* 0.16* 0.14 0.14**
04 0.11 0.12 0.12 0.17* 0.15 0.10 0.09 0.11 0.15* 0.13
05 0.16 0.26** 0.10 0.16 0.11 0.11 0.14 0.07 0.09 0.13*

Table A.5: Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.40 0.37 0.38* 0.38* 0.46** 0.38 0.38* 0.41**
02 0.53** 0.40** 0.31 0.42** 0.55 0.30 0.25 0.37*
03 0.55 0.25 0.28 0.36 0.43* 0.32 0.40** 0.38**
04 0.53 0.31 0.30* 0.38** 0.44* 0.33 0.32 0.36
05 0.56 0.27 0.33** 0.38** 0.54 0.30 0.27 0.37*

Table A.6: Accuracy TP CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.8: Superposition test in TP: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.9: Locality test in TP: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.4 TPJ (Visual dataset)
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Figure A.10: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.45** 0.11 0.17 0.06 0.09 0.11 0.00 0.00 0.06 0.12
02 0.23 0.21 0.12 0.15 0.12 0.17** 0.03 0.05 0.11 0.13*
03 0.16 0.09 0.24** 0.12 0.15 0.17* 0.07 0.17* 0.11 0.14**
04 0.06 0.14 0.16 0.23* 0.06 0.14 0.16* 0.20* 0.10 0.14*
05 0.14 0.11 0.11 0.17 0.12 0.20* 0.05 0.11 0.11 0.13*

Table A.7: Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.45 0.26 0.30 0.34 0.56 0.16 0.28 0.33
02 0.39 0.38** 0.33 0.37* 0.40 0.31 0.37 0.36
03 0.40 0.35 0.38* 0.38* 0.46** 0.32 0.34 0.37*
04 0.51 0.32* 0.19 0.34 0.40 0.31 0.36 0.36
05 0.49 0.31 0.28 0.36 0.45 0.26 0.30 0.33

Table A.8: Accuracy TPJ CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.11: Superposition test in TPJ: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.12: Locality test in TPJ: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.5 aSTS (Visual dataset)
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Figure A.13: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.30** 0.15 0.10 0.15 0.16* 0.10 0.14 0.05 0.15* 0.14**
02 0.10 0.17* 0.10 0.21* 0.12 0.15 0.09 0.15 0.10 0.13*
03 0.17 0.28** 0.19 0.16 0.10 0.11 0.09 0.06 0.06 0.14
04 0.21* 0.25** 0.09 0.16* 0.17* 0.16* 0.05 0.11 0.10 0.15**
05 0.14 0.20 0.12 0.14 0.17 0.05 0.11 0.15* 0.12 0.13*

Table A.9: Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.39 0.38* 0.35 0.37 0.38 0.33 0.34 0.35
02 0.47 0.35** 0.33 0.38** 0.42* 0.39* 0.38** 0.40**
03 0.56 0.28 0.28 0.38* 0.61* 0.33* 0.20 0.38*
04 0.46 0.38** 0.29 0.38** 0.38 0.40* 0.38* 0.39**
05 0.57 0.25 0.25 0.35 0.45 0.33* 0.35 0.38*

Table A.10: Accuracy aSTS CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.14: Superposition test in aSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.15: Locality test in aSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.6 pSTS (Visual dataset)
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Figure A.16: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.20 0.16 0.16 0.07 0.12 0.16* 0.10 0.11 0.09 0.13*
02 0.14 0.28** 0.16 0.10 0.14 0.07 0.10 0.09 0.14 0.13*
03 0.12 0.23* 0.14 0.14 0.12 0.19** 0.20** 0.20** 0.14* 0.16**
04 0.24* 0.16 0.19* 0.14 0.09 0.11 0.11 0.05 0.19* 0.14**
05 0.20 0.14 0.06 0.12 0.06 0.15 0.16** 0.06 0.11 0.12

Table A.11: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.47 0.35* 0.36** 0.39** 0.58 0.28 0.23 0.36*
02 0.42 0.36 0.33 0.37 0.44** 0.37 0.35 0.39**
03 0.45 0.35** 0.37** 0.39** 0.54* 0.33* 0.22 0.36*
04 0.44* 0.32 0.37 0.37* 0.42 0.30 0.34 0.35
05 0.50 0.29 0.28* 0.36 0.54 0.31 0.23 0.36

Table A.12: Accuracy pSTS CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.17: Superposition test in pSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.18: Locality test in pSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.7 IFGorb (Visual dataset)
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Figure A.19: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.23** 0.16 0.11 0.19** 0.14 0.11 0.07 0.04 0.14* 0.13**
02 0.20 0.19* 0.09 0.09 0.14 0.19** 0.10 0.17** 0.11 0.14**
03 0.20* 0.07 0.11 0.11 0.12 0.14 0.14 0.16* 0.12 0.13*
04 0.21 0.17 0.15 0.11 0.15 0.12 0.10 0.11 0.11 0.14*
05 0.15 0.17 0.20 0.14 0.05 0.05 0.11 0.11 0.06 0.12

Table A.13: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.50* 0.31 0.34* 0.38** 0.42 0.34 0.30 0.35
02 0.41 0.36 0.36 0.38* 0.53 0.28 0.30* 0.37*
03 0.39 0.34 0.35 0.36 0.42 0.30 0.39* 0.37*
04 0.44* 0.34 0.31 0.36 0.49* 0.32 0.30 0.37*
05 0.49 0.34* 0.32 0.38* 0.51 0.27 0.27 0.35

Table A.14: Accuracy IFGorb CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.20: Superposition test in IFGorb: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.21: Locality test in IFGorb: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.8 IFGtri (Visual dataset)
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Figure A.22: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.14 0.16 0.15 0.15 0.06 0.14 0.15 0.11 0.06 0.12
02 0.17 0.25** 0.11 0.16 0.04 0.15 0.10 0.15 0.17** 0.15**
03 0.12 0.24* 0.12 0.14 0.04 0.10 0.09 0.14 0.12 0.12
04 0.19 0.19 0.09 0.20* 0.10 0.14 0.11 0.07 0.07 0.13
05 0.34* 0.10 0.14 0.07 0.11 0.07 0.10 0.09 0.01 0.12

Table A.15: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.53 0.32 0.26 0.37* 0.58** 0.27 0.28 0.38*
02 0.46** 0.32 0.37* 0.38** 0.43* 0.35 0.37 0.38*
03 0.40 0.31 0.38* 0.36 0.59* 0.31 0.20 0.36
04 0.43* 0.36 0.42** 0.40** 0.43* 0.34* 0.35 0.38**
05 0.51 0.23 0.24 0.33 0.50 0.26 0.25 0.34

Table A.16: Accuracy IFGtri CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.23: Superposition test in IFGtri: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.24: Locality test in IFGtri: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.9 Broca-44 (Visual dataset)
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Figure A.25: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.17* 0.17* 0.23** 0.10 0.21** 0.15 0.12 0.12 0.15 0.16**
02 0.25** 0.21** 0.06 0.20* 0.20** 0.14 0.14 0.19* 0.12 0.17**
03 0.07 0.15 0.25** 0.16 0.15 0.14 0.14 0.05 0.15* 0.14**
04 0.25** 0.11 0.15 0.03 0.14 0.30** 0.17* 0.05 0.28** 0.16**
05 0.14 0.19 0.21** 0.16 0.12 0.10 0.10 0.11 0.10 0.14*

Table A.17: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.43 0.34 0.35 0.37* 0.40 0.37 0.35 0.38*
02 0.41* 0.39* 0.38* 0.39** 0.40 0.41** 0.32 0.38*
03 0.40 0.32 0.37 0.36* 0.34 0.36 0.43** 0.38*
04 0.43* 0.38 0.42** 0.41** 0.47** 0.33 0.40** 0.40**
05 0.39 0.36 0.35 0.36 0.41 0.35 0.40** 0.39*

Table A.18: Accuracy Broca-44 CV1 and CV2: * p-value < 0.05, ** p-value
< 0.01.

Subject
01
02
03
04
05
All

Figure A.26: Superposition test in Broca-44: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05
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Figure A.27: Locality test in Broca-44: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.10 Broca-45 (Visual dataset)
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Figure A.28: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.20 0.19* 0.15 0.10 0.15 0.16 0.16* 0.10 0.12 0.15**
02 0.21* 0.31** 0.11 0.12 0.17* 0.12 0.17* 0.15 0.19** 0.17**
03 0.11 0.23** 0.19 0.14 0.12 0.21** 0.14 0.06 0.06 0.14**
04 0.26** 0.16* 0.12 0.06 0.14 0.24** 0.20** 0.07 0.25** 0.17**
05 0.07 0.25** 0.29** 0.14 0.09 0.14 0.20** 0.10 0.07 0.15**

Table A.19: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.42* 0.34 0.35 0.37 0.46 0.33 0.36 0.38**
02 0.40 0.33 0.38* 0.37* 0.40* 0.37 0.33 0.37*
03 0.43 0.33 0.31 0.36 0.38 0.35 0.45** 0.39**
04 0.39 0.40* 0.38* 0.39* 0.46* 0.33 0.37* 0.39*
05 0.51 0.28 0.25 0.34 0.44* 0.38** 0.42** 0.41**

Table A.20: Accuracy Broca-45 CV1 and CV2: * p-value < 0.05, ** p-value
< 0.01.

Subject
01
02
03
04
05
All

Figure A.29: Superposition test in Broca-45: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.30: Locality test in Broca-45: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.11 VWFA (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.31: Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.17 0.23** 0.20* 0.12 0.12 0.11 0.11 0.10 0.12 0.14*
02 0.17 0.11 0.20* 0.12 0.12 0.11 0.05 0.07 0.09 0.12
03 0.16 0.11 0.15 0.12 0.11 0.07 0.11 0.05 0.09 0.11
04 0.21* 0.20* 0.20* 0.16 0.10 0.11 0.17** 0.09 0.14 0.15**
05 0.17 0.09 0.17 0.11 0.14 0.11 0.12 0.10 0.10 0.12

Table A.21: Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.36 0.33 0.41* 0.37 0.38 0.35 0.36 0.36
02 0.58* 0.25 0.24 0.36 0.34 0.35 0.30 0.33
03 0.49 0.30 0.24 0.34 0.56* 0.22 0.23 0.34
04 0.45* 0.37* 0.28 0.37* 0.42 0.27 0.35 0.34
05 0.46* 0.31 0.29 0.36 0.45 0.26 0.27 0.33

Table A.22: Accuracy VWFA CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.32: Superposition test in VWFA: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.33: Locality test in VWFA: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.12 Auditory-Te10 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.34: Accuracy in Auditory-Te10: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.24** 0.24** 0.15 0.20* 0.15 0.14 0.12 0.09 0.11 0.16**
02 0.19 0.14 0.14 0.10 0.14 0.16* 0.17** 0.09 0.05 0.13*
03 0.25** 0.21* 0.20** 0.10 0.16* 0.12 0.19** 0.16* 0.12 0.17**
04 0.21** 0.14 0.14 0.07 0.19** 0.19** 0.16* 0.09 0.09 0.14**
05 0.12 0.16 0.09 0.19* 0.16* 0.14 0.06 0.14 0.16 0.14*

Table A.23: Accuracy Auditory-Te10 CVCV: * p-value < 0.05, ** p-value <
0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.45* 0.37* 0.33 0.38** 0.44* 0.38* 0.41* 0.41**
02 0.49** 0.29 0.32 0.37* 0.38 0.39* 0.36 0.38*
03 0.47 0.36* 0.33 0.39* 0.50** 0.34 0.40** 0.42**
04 0.40 0.39** 0.36 0.38* 0.40 0.34 0.35 0.37
05 0.34 0.42* 0.38* 0.38* 0.43* 0.36 0.34 0.38**

Table A.24: Accuracy Auditory-Te10 CV1 and CV2: * p-value < 0.05, **
p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.35: Superposition test in Auditory-Te10: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.36: Locality test in Auditory-Te10: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.13 Auditory-Te11 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.37: Accuracy in Auditory-Te11: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.16 0.17 0.11 0.14 0.17* 0.09 0.12 0.10 0.16* 0.14*
02 0.15 0.21* 0.17 0.14 0.14 0.14 0.11 0.11 0.09 0.14*
03 0.24** 0.20* 0.21** 0.21** 0.10 0.10 0.12 0.12 0.09 0.16**
04 0.20 0.16 0.10 0.25** 0.11 0.10 0.09 0.10 0.11 0.14*
05 0.09 0.10 0.06 0.16* 0.15 0.16* 0.09 0.16* 0.19* 0.13*

Table A.25: Accuracy Auditory-Te11 CVCV: * p-value < 0.05, ** p-value <
0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.41 0.35 0.38* 0.38* 0.45* 0.37 0.41* 0.41**
02 0.46 0.32 0.32 0.37* 0.43 0.36* 0.40** 0.40**
03 0.43** 0.33 0.36 0.37* 0.41* 0.40* 0.40** 0.41**
04 0.45* 0.39* 0.42** 0.42** 0.46* 0.30 0.35 0.37*
05 0.49 0.28 0.35* 0.37* 0.44* 0.39** 0.33 0.38**

Table A.26: Accuracy Auditory-Te11 CV1 and CV2: * p-value < 0.05, **
p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.38: Superposition test in Auditory-Te11: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.39: Locality test in Auditory-Te11: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.14 Auditory-Te12 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.070.11

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07

Figure A.40: Accuracy in Auditory-Te12: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.21* 0.23** 0.10 0.19* 0.24** 0.20** 0.11 0.12 0.10 0.17**
02 0.19* 0.16 0.19* 0.25** 0.15 0.12 0.11 0.14 0.09 0.16**
03 0.23** 0.15 0.19* 0.14 0.17* 0.11 0.19** 0.16* 0.14 0.16**
04 0.21** 0.14 0.11 0.05 0.17* 0.14 0.10 0.15 0.09 0.13*
05 0.09 0.17 0.12 0.11 0.15 0.17* 0.12 0.11 0.14* 0.13*

Table A.27: Accuracy Auditory-Te12 CVCV: * p-value < 0.05, ** p-value <
0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.40 0.42** 0.33 0.38* 0.40 0.44** 0.40* 0.41**
02 0.44** 0.40** 0.36 0.40** 0.43 0.38** 0.40** 0.40**
03 0.46* 0.36* 0.37** 0.39** 0.38 0.37 0.43** 0.39**
04 0.38 0.36 0.35 0.36* 0.45** 0.31 0.30 0.35
05 0.38 0.35 0.35 0.36 0.41 0.35 0.36 0.37

Table A.28: Accuracy Auditory-Te12 CV1 and CV2: * p-value < 0.05, **
p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.41: Superposition test in Auditory-Te12: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.42: Locality test in Auditory-Te12: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.15 TP (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.43: Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.19 0.11 0.21* 0.05 0.11 0.11 0.06 0.15* 0.07 0.12
02 0.14 0.15 0.16 0.20** 0.14 0.11 0.14 0.10 0.12 0.14*
03 0.19 0.12 0.20** 0.15 0.12 0.11 0.19* 0.17** 0.14 0.16**
04 0.20 0.14 0.20 0.16 0.09 0.05 0.15 0.07 0.17** 0.14*
05 0.12 0.23** 0.16 0.14 0.10 0.14 0.14 0.10 0.12 0.14*

Table A.29: Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.45* 0.31 0.31 0.36 0.44 0.32 0.34 0.37**
02 0.44** 0.40** 0.35 0.39* 0.42* 0.33 0.39* 0.38*
03 0.45 0.34* 0.28 0.36 0.54 0.29 0.29* 0.37*
04 0.41 0.36 0.34 0.37 0.37 0.36 0.41** 0.38*
05 0.42 0.33 0.39** 0.38* 0.40 0.33 0.36 0.37*

Table A.30: Accuracy TP CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.44: Superposition test in TP: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.45: Locality test in TP: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.16 TPJ (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.46: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.23 0.16 0.14 0.00 0.23 0.07 0.00 0.05 0.16 0.12
02 0.20 0.16 0.12 0.24** 0.10 0.07 0.06 0.09 0.05 0.12
03 0.16 0.15 0.09 0.10 0.10 0.09 0.16* 0.15* 0.06 0.12
04 0.16 0.11 0.10 0.04 0.16 0.11 0.07 0.11 0.16* 0.12
05 0.09 0.14 0.15 0.23* 0.14 0.07 0.11 0.14 0.06 0.12*

Table A.31: Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.49 0.30 0.22 0.34 0.51 0.15 0.34 0.33
02 0.56* 0.30 0.26 0.37* 0.61** 0.33* 0.25 0.40**
03 0.55 0.30* 0.28 0.38** 0.47** 0.34 0.33 0.38**
04 0.56 0.24 0.25 0.35 0.45* 0.33 0.40* 0.39**
05 0.53 0.25 0.23 0.34 0.49 0.36* 0.30 0.38**

Table A.32: Accuracy TPJ CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.47: Superposition test in TPJ: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05
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Figure A.48: Locality test in TPJ: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.17 aSTS (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.09 0.15

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.49: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.19* 0.16 0.07 0.16 0.17* 0.10 0.12 0.12 0.14 0.14*
02 0.20 0.17 0.14 0.16 0.17* 0.09 0.17 0.11 0.14 0.15**
03 0.15 0.14 0.10 0.14 0.14 0.07 0.15* 0.12 0.07 0.12
04 0.14 0.07 0.11 0.19* 0.11 0.11 0.12 0.20** 0.19* 0.14*
05 0.30* 0.14 0.14 0.11 0.10 0.15* 0.07 0.10 0.06 0.13

Table A.33: Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.44 0.33* 0.35 0.37 0.40 0.39 0.42** 0.40**
02 0.47** 0.35 0.37* 0.40** 0.40 0.31 0.38* 0.36
03 0.40 0.33 0.39 0.38* 0.55 0.30 0.28 0.38*
04 0.45* 0.31 0.36** 0.37** 0.40 0.38* 0.40* 0.39**
05 0.52 0.33* 0.22 0.36 0.58 0.27 0.22 0.36

Table A.34: Accuracy aSTS CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.50: Superposition test in aSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05
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Figure A.51: Locality test in aSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.18 pSTS (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.52: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.21* 0.23* 0.11 0.19* 0.05 0.23** 0.12 0.06 0.15* 0.15**
02 0.14 0.15 0.16 0.12 0.15 0.14 0.16* 0.09 0.15 0.14*
03 0.12 0.11 0.15 0.15 0.17* 0.21** 0.16* 0.05 0.12 0.14**
04 0.16 0.15 0.26** 0.16 0.16 0.12 0.14 0.10 0.14* 0.16**
05 0.15 0.12 0.16 0.20* 0.14 0.10 0.14 0.10 0.10 0.13*

Table A.35: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.49 0.33* 0.35** 0.39** 0.40 0.28 0.43** 0.37*
02 0.43 0.35* 0.36 0.38* 0.42* 0.38* 0.42* 0.41**
03 0.53 0.28 0.28 0.36* 0.42** 0.40* 0.40** 0.41**
04 0.42* 0.39* 0.37 0.39** 0.40 0.38** 0.36* 0.38**
05 0.59 0.29 0.22 0.37* 0.49** 0.26 0.37 0.37*

Table A.36: Accuracy pSTS CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.53: Superposition test in pSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.54: Locality test in pSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.19 IFGorb (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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05

fifi
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nana
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(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.55: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.24* 0.16 0.16 0.11 0.09 0.19** 0.15* 0.06 0.06 0.14*
02 0.24* 0.11 0.10 0.07 0.12 0.14 0.14 0.09 0.14 0.13
03 0.11 0.11 0.17* 0.20* 0.19** 0.14 0.09 0.19* 0.10 0.14**
04 0.17 0.15 0.15 0.15 0.14 0.10 0.06 0.05 0.11 0.12
05 0.15 0.15 0.20* 0.21* 0.09 0.14 0.14 0.10 0.09 0.14**

Table A.37: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.47* 0.30 0.31 0.36 0.41 0.32 0.35 0.36
02 0.39 0.40** 0.37* 0.39** 0.48 0.33 0.33 0.38*
03 0.43* 0.40** 0.35 0.39** 0.58** 0.24 0.29 0.37
04 0.48 0.26 0.36* 0.37* 0.50 0.31 0.31* 0.37*
05 0.42 0.37* 0.38* 0.39** 0.51 0.26 0.31 0.36

Table A.38: Accuracy IFGorb CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.56: Superposition test in IFGorb: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.57: Locality test in IFGorb: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.20 IFGtri (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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Figure A.58: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.19 0.14 0.09 0.19* 0.11 0.16* 0.14 0.14 0.19* 0.15**
02 0.28** 0.16 0.14 0.10 0.14 0.15 0.19** 0.11 0.09 0.15**
03 0.19 0.17 0.14 0.21* 0.14 0.09 0.19** 0.11 0.05 0.14*
04 0.23* 0.17 0.14 0.16 0.16 0.19** 0.16* 0.07 0.09 0.15**
05 0.15 0.16 0.23* 0.11 0.09 0.10 0.10 0.05 0.09 0.12

Table A.39: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.44* 0.38* 0.33 0.38** 0.40 0.31 0.37** 0.36*
02 0.59* 0.26 0.28 0.38* 0.53 0.34* 0.27 0.38*
03 0.34 0.39* 0.40* 0.38 0.53 0.31 0.28 0.38**
04 0.53** 0.36* 0.33 0.41** 0.54 0.30 0.26 0.37
05 0.38 0.35 0.35 0.36 0.36 0.36 0.35 0.36

Table A.40: Accuracy IFGtri CV1 and CV2: * p-value < 0.05, ** p-value <
0.01.

Subject
01
02
03
04
05
All

Figure A.59: Superposition test in IFGtri: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.60: Locality test in IFGtri: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.21 Broca-44 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.61: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.19* 0.17 0.21* 0.11 0.14 0.20* 0.07 0.10 0.15 0.15**
02 0.10 0.19* 0.17* 0.14 0.20** 0.14 0.11 0.11 0.16* 0.15**
03 0.23* 0.17 0.16 0.15 0.16 0.07 0.09 0.15* 0.09 0.14*
04 0.15 0.11 0.20* 0.10 0.09 0.15 0.12 0.10 0.10 0.12
05 0.19 0.12 0.14 0.14 0.19* 0.15 0.12 0.10 0.12 0.14**

Table A.41: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.40 0.38* 0.40* 0.39* 0.47 0.30 0.37* 0.38**
02 0.38 0.38 0.40* 0.39** 0.43** 0.38* 0.39* 0.40*
03 0.40 0.40* 0.36 0.38** 0.47* 0.40** 0.34 0.40*
04 0.49 0.30 0.28 0.36 0.45 0.35* 0.33 0.38**
05 0.36 0.41* 0.34 0.37* 0.33 0.32 0.44** 0.36

Table A.42: Accuracy Broca-44 CV1 and CV2: * p-value < 0.05, ** p-value
< 0.01.

Subject
01
02
03
04
05
All

Figure A.62: Superposition test in Broca-44: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.63: Locality test in Broca-44: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.22 Broca-45 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.64: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean
Subject

01 0.09 0.16 0.17 0.11 0.11 0.24** 0.09 0.10 0.25** 0.15**
02 0.12 0.17 0.24** 0.19* 0.11 0.12 0.17* 0.14 0.20* 0.16**
03 0.16 0.11 0.15 0.25** 0.17 0.12 0.15* 0.06 0.19* 0.15**
04 0.21* 0.11 0.15 0.06 0.16* 0.12 0.15 0.09 0.14 0.13*
05 0.17 0.24** 0.19* 0.12 0.15 0.19** 0.10 0.10 0.06 0.15**

Table A.43: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean
Subject

01 0.40 0.41* 0.42* 0.41** 0.43* 0.33 0.39 0.38**
02 0.42* 0.38 0.36 0.39* 0.45* 0.40** 0.44** 0.43**
03 0.50 0.35* 0.26 0.37* 0.43* 0.33 0.41* 0.39*
04 0.41* 0.39* 0.40** 0.40** 0.50 0.31 0.23 0.35
05 0.56** 0.28 0.23 0.36 0.47* 0.36* 0.33 0.39*

Table A.44: Accuracy Broca-45 CV1 and CV2: * p-value < 0.05, ** p-value
< 0.01.

Subject
01
02
03
04
05
All

Figure A.65: Superposition test in Broca-45: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.66: Locality test in Broca-45: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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