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Abstract: In group average analyses, we generalize the classical one-sample t test to account for hetero-
geneous within-subject uncertainties associated with the estimated effects. Our test statistic is defined as
the maximum likelihood ratio corresponding to a Gaussian mixed-effect model. The test’s significance
level is calibrated using the same sign permutation framework as in Holmes et al., allowing for exact
specificity control under a mild symmetry assumption about the subjects’ distribution. Because our
likelihood ratio test does not rely on homoscedasticity, it is potentially more sensitive than both the
standard t test and its permutation-based version. We present results from the Functional Imaging
Analysis Contest 2005 dataset to support this claim. Hum Brain Mapp 27:402–410, 2006.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

To date, the vast majority of inference procedures avail-
able in neuroimaging analysis packages rely on standard t or
F decision statistics. Underlying those statistics is an implicit
homogeneity assumption about the input data; more pre-
cisely, the measurements are assumed identically and nor-
mally distributed (conditionally on the model parameters).
In single-subject analyses, this is reflected by the common
usage of stationary Gaussian noise models for functional

MRI (fMRI) time series. Although idealistic, such models
may produce reliable inferences provided the degrees of
freedom (DF) are large enough, i.e., the number of unknown
parameters involved is small compared to the number of
scans acquired for one subject.

However, in group random-effect analyses, where the
goal is to generalize single-subject findings to a population,
DF are limited by the usually small number of subjects
undergoing the same fMRI experiment. In this case, even
subtle deviations from homoscedasticity or normality may
result in significantly biased inferences, in terms of both
specificity (control of false-positives) and sensitivity (control
of false-negatives). Previous studies [Kherif et al., 2004; Mé-
riaux et al., 2004] have revealed that the homogeneity as-
sumption is often violated in fMRI group datasets.

Permutation testing methods [Brammer et al., 1997; Bull-
more et al., 1999; Hayasaka and Nichols, 2003; Holmes et al.,
1996; Nichols and Holmes, 2002] have the potential to cor-
rect for specificity bias, as they can calibrate any test based
on mild, nonparametric distributional assumptions. In ad-
dition, because they circumvent the classical approximations
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*Correspondence to: Sébastien Mériaux, CEA, Service Hospitalier
Frédéric Joliot, Orsay, France. E-mail: meriaux@shfj.cea.fr
Received for publication 20 October 2005; Accepted 27 December
2005
DOI: 10.1002/hbm.20251
Published online 4 April 2006 in Wiley InterScience (www.
interscience.wiley.com).

� Human Brain Mapping 27:402–410(2006) �

© 2006 Wiley-Liss, Inc.



underlying random field theory (RFT), they offer a robust
solution to the multiple comparison problem. However, cur-
rently available permutation tests, as implemented for in-
stance in the Statistical nonParametric Mapping (SnPM)
toolbox, use standard t or F statistics, and may henceforth be
suboptimally sensitive.

Over the past few years, “mixed-effect” models have been
proposed [Beckmann et al., 2003; Friston et al., 2002; Neu-
mann and Lohmann, 2003; Woolrich et al., 2004; Worsley et
al., 2002] in order to relax the usual assumption that BOLD
effects estimated from the within-subject analysis level are
identically distributed across subjects. Their ground motiva-
tion is that “fixed-effect” variances (the within-subject vari-
ances estimated in the first-level analyses) are bound to be
subject-dependent, reflecting the simple fact that some sub-
jects may yield more accurate response estimates than oth-
ers.

While mixed-effect models account for possibly heteroge-
neous first-level variances, their statistical calibration is usu-
ally performed based on the assumption that the random
effects (only estimates of which are available) are normally
distributed across subjects. We propose here to fill the gap
between mixed-effect models and permutation testing ap-
proaches, thus designing a permutation test that employs a
“mixed-effect” decision statistic. More precisely, our deci-
sion statistic is defined as the maximum likelihood ratio
corresponding to a Gaussian mixed-effect model. It amounts
to a nonstandard t statistic, which essentially reweights the
subjects in a nonuniform fashion according to the reliability
of their respective estimated effects.

MATERIALS AND METHODS

Assume n subjects were scanned during a cognitive ex-
periment, and their respective fMRI data were processed
individually so that, for each subject i, a pair of summary
statistics (�̂i, �̂i)is available: �̂i is an image of estimated
BOLD effects relative to a given contrast of experimental
conditions and �̂i is an image of voxelwise standard error
estimates of �̂i. For the sake of clarity, we will restrict our-
selves to scalar (one-dimensional) effects in this article. Our
aim is to perform a random-effect analysis on the mean
population effect using the image pairs (�̂i, �̂i) as input data.
Although generally not exhaustive for the unknown true
subject’s effect �i(in particular, we do not retain DF and
spatial covariance information from the first-level analysis),
those summary statistics exploit more information from the
fMRI data than the effect images alone, with the potential to
produce more sensitive inferences.

Nonparametric Model

In order to relate the individual summary statistics to the
unknown population mean effect �G, we adopt a nonpara-
metric two-level model:

� ��̂i, �̂i���i � fi��̂i, �̂i��i�
�i��G�g��i��G), (1)

where the conditional density fi models the within-subject
variability inherent to any statistical approach to fMRI signal
modeling. We allow fi to be subject-dependent in order to
account for heteroscedasticity, i.e., possibly different
amounts of noise across datasets. At the second level, the
density g models the intrinsic between-subject variability of
the BOLD response. Marginalizing out the true effect �i, the
two-level model may be compacted into:

pi��̂i, �̂i��G)�� fi��̂i, �̂i��i�g��i��G)d�i, (2)

which accounts for the composite variability resulting
from both within-subject and between-subject sources of
randomness.

In the remainder of this article we will work under the
following statistical assumptions:
(A1) The input statistic images are independently, although

nonidentically, distributed so that their joint distribu-
tion has a factored form:

p��̂1, �̂1, �̂2, �̂2, . . . , �̂n, �̂n��G� � �
i�1

n

pi��̂i, �̂i��G) (3)

(A2) The true effect is symmetrically distributed in the
population of interest, i.e., the density g(�i��G) is
symmetric with respect to �G.

(A3) First-level estimators are location equivariant and
scale invariant:

� i, � �a, b� � �2,

fi��̂i, �̂i��i� � �a�fi�a�̂i � b, �a��̂i�a�i � b� (4)

Assumption (A1) is justified as long as subjects are drawn
independently from the population to which findings are to
be generalized, and BOLD signal measurement errors in-
duced by the scanner are not reproducible across sessions.
Population symmetry (A2) is the usual assumption underly-
ing permutation tests in group average analyses [Holmes et
al., 1996; Nichols and Holmes, 2002], and is milder than
normality. Finally, (A3) is a natural consistency requirement
that is met by standard within-subject estimation techniques
based on the general linear model. Together (A2) and (A3)
imply that each subject’s summary statistics are symmetri-
cally distributed about the mean population effect, that is:
pi(2�G � �̂i, �̂i��G) � pi(�̂i, �̂i��G).

Permutation Test Framework

We wish to test the global null hypothesis H0: �G � 0 that
all voxels have a zero mean population effect. For each voxel
k, consider a decision statistic:

Dk � d� ��̂1k, �̂1k�, ��̂2k, �̂2k�, . . . , ��̂nk, �̂nk�� , (5)
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that depends on the input data at voxel k regardless of other
voxels. This property guarantees the subset pivotality con-
dition required for family-wise error strong control [Nichols
and Hayasaka, 2003]. Notice that statistics using locally
pooled variance estimators [Holmes et al., 1996; Worsley et
al., 2002] require additional assumptions to fulfill subset
pivotality.

Assumptions (A1), (A2), and (A3) stated above imply that
estimated effects’ signs are exchangeable under H0, that is:
each subject’s data can be arbitrarily shuffled according to
(�̂i, �̂i) 3 (��̂i, �̂i) without modifying the joint distribution
of all subjects’ data. This exchangeability property yields a
straightforward generalization of the permutation frame-
work developed in Holmes et al. [1996] and Nichols and
Holmes [2002] where first-level variances can now be taken
into account.

The permutation test consists of tabulating the multivar-
iate null distribution of the decision statistics (D1,…,DK) by
permuting the first-level statistic images across all possible
flips of effect images’ signs, the number of which is 2n. The
resulting distribution is, in fact, conditional on the nonex-
changeable part of the observations, namely, the absolute
effect and standard error images (��̂i�, �̂i). In this conditional
sense, the permutation test is exact, although its sensitivity is
intrinsically limited by the finite number of possible permu-
tations.

Single threshold test

We use critical regions Dk � � to threshold the decision
statistical map, where � is constant across the search volume
and is chosen so as to control the false-positive rate (FPR) at
a specified level �. Hence, we have to solve:

� � ��FP�H0� �
1
K 	

k

P�Dk � ��H0�, (6)

where K is the number of voxels in the search volume and
P(Dk � ��H0) is the marginal reference probability that Dk

exceeds the threshold, which is a priori voxel-dependent
unless the decision map is stationary. Exploiting subset piv-
otality, each distribution pk(D�H0) may be tabulated by per-
muting voxelwise data only. From Eq. (6), � is then found to
be the 100(1 � �)-th percentile of the across-voxel average
distribution, p� (D) 	 (1

K
) ¥k pk(D�H0). In practice, we ap-

proximate p� over a sufficient number of randomly se-
lected voxels in order to save both computation time and
memory load.

Once the FPR-controlling threshold is tuned, P values
corrected for multiple comparisons are computed using an
imagewise permutation test on the Dmax statistic, similar to
Holmes et al. [1996] and Nichols and Holmes [2002]. The test
also tabulates the distribution of the maximum suprathresh-
old cluster size [Bullmore et al., 1999; Hayasaka and Nichols,
2003], hence producing cluster-level P values for each FPR-
surviving cluster. This second stage is typically more time-
consuming.

Decision Statistic

An essential component of the test procedure is the deci-
sion statistic Dk, which, for optimal sensitivity, should be
chosen according to the Neyman-Pearson theorem, pro-
vided that the statistical model is fully specified. However,
being nonparametric (see Nonparametric Model), our model
is obviously misspecified. A natural workaround is then to
consider a parametric restriction of the model and derive the
decision statistic accordingly. We shall stress that restrictive
assumptions do not need to hold for the test’s specificity to
be correctly assessed; however, a potential lack of sensitivity
is to be expected if the true distribution of the data deviates
substantially from the restricted model.

Following previous work on hierarchical linear models
[Beckmann et al., 2003; Friston et al., 2002; Neumann and
Lohmann, 2003; Woolrich et al., 2004; Worsley et al., 2002],
our restricted model assumes locally normal distributions
both at the within-subject and between-subject levels:


 fi��̂ik, �̂ik��ik� � 
� �̂ik � �ik

�̂ik
� fi��̂ik�

g��ik��Gk� � 
��ik � �Gk

�Gk
� ,

(7)

where 
 denotes the normalized Gaussian, and fi(�̂ik) is an
arbitrary marginal distribution assumed independent from
�ik, which will hence play no role in the decision statistic.
This restricted model is specified up to only one hyperpa-
rameter, namely, the group standard deviation �Gk. Notice
here within-subject variance estimates are implicitly assim-
ilated with their true values. Sensitivity could be further
improved by considering the effective DF, hence using Stu-
dent distributions instead of Gaussians at the first level. This
approach, however, leads to significantly increased compu-
tation time.

As is a customary frequentist approach, we define the
decision statistic as the (log) maximum likelihood ratio
(MLR):

Dk � � 2 log�
sup

�Gk���

L�0, �Gk�

sup
��Gk, �Gk������

L��Gk, �Gk�� , (8)

where L(�Gk, �Gk) is the likelihood function associated with
the restricted model, which reads:

L��Gk, �Gk�  �
i�1

n 1

�Gk
2 � �̂ik

2 exp� �
��̂ik � �Gk�

2

2��Gk
2 � �̂ik

2 �� (9)

Essentially, the MLR compares the profile likelihood of H0

with the maximum profile likelihood over all alternative
hypotheses. It is easily seen that the ratio in Eq. (8) ranges
from 0 to 1, hence Dk is always nonnegative. Since a high
value of Dk indicates that H0 is unlikely, the critical region
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for the likelihood ratio test is of the form Dk � �, where � is
some threshold. Owing to Wilks’ theorem, Dk is actually an
approximate �1

2-score. This result provides a rough signifi-
cance assessment, but is of little use to accurately control
specificity because the �2 approximation is only valid as-
ymptotically (for large samples) and under the restricted
model.

Computation

Except in special cases (see Consistency with Student’s
statistic), none of the two maximum likelihood problems
involved in Eq. (8) can be solved explicitly. In practice,
numerical solutions are found using an expectation-maximi-
zation (EM) algorithm [Dempster et al., 1977] detailed in the
Appendix. Convergence towards a unique solution is al-
ways guaranteed because the likelihood function (9) can be
shown to have a single global maximum, both in the con-
strained (fixed �G � 0) and unconstrained settings.

One-sided test statistic

So far we have considered the point-null hypothesis, H0:
�G � 0, upon rejection of which it is impossible to conclude
about the mean effect’s sign. This is the typical drawback of
two-sided tests such as the F test as compared to one-sided
tests such as the t test. To derive a decision statistic suitable
for one-sided testing, we need to recast H0 as the composite
hypothesis H0: �G 	 0, and redefine the MLR statistic ac-
cordingly. The resulting MLR boils down to a simple sign
modulation of the previously defined MLR (8):

D̃k � sign��̂Gk�Dk, (10)

where �̂Gk is the maximum likelihood estimate of �Gk, as
provided by the EM algorithm. Square rooting is used to
render D̃k roughly comparable with a z-score (see Decision
Statistic). The one-sided test can be calibrated using the sign
permutation framework described in Permutation Test
Framework (above), although a monotonicity property is
required. For any subset of voxels �, any threshold � and any
uniformly nonpositive map �G (@k � V, �Gk 	 0), the deci-
sion statistic needs to verify:

P� �k�V{D̃k � ����G)	P� � k�V {D̃k � ���H0) (11)

It turns out that the property holds for D̃k (the proof mainly
relies on the fact that D̃k is decreasing under negative shifts
in the samples).

Consistency with Student’s statistic

In the case of homoscedasticity, that is, when all first-level
variances are identical (�̂1k � �̂2k � . . . � �̂nk), the one-sided
MLR enjoys a closed-form expression which is a strictly
increasing function of the standard t statistic:

D̃k � sign�Tk�n log�1 �
Tk

2

n � 1� ,

with Tk �
n�n � 1� �̂Gk

¥i��̂ik � �̂Gk�
2

, (12)

given that, in this special instance, �̂Gk identifies with the
classical sample mean. This implies that, under homoscedas-
tic measurements, the one-sided MLR is fully equivalent to
the t statistic from a decision theoretical standpoint. This
justifies referring to D̃k as a mixed-effect t statistic.

We note that Worsley et al. [2002] proposed a similar
extension of the t statistic, which turns out to be an MLR
variant in which the nuisance parameter �Gk is preestimated
by restricted maximum likelihood, then held fixed in Eq. (8)
instead of being optimized over two different spaces. We
have not carefully studied the practical difference between
these approaches.

EXPERIMENTS

We now present results of the method on the Functional
Imaging Analysis Contest (FIAC) 2005 dataset described in
Dehaene-Lambertz et al. [2006]. While the experimental pro-
cedure comprised four sessions, two using a block design
and two using an event-related design, only the results of
the block experiment are reported here.

Data Processing

First-level analyses were conducted using SPM2 (Statisti-
cal Parametric Mapping software). Data were submitted
successively to motion correction, slice timing, normaliza-
tion to the MNI template, and spatial smoothing using a 5
� 5 � 5 mm3 full-width at half-maximum (FWHM) Gauss-
ian filter. For each of the 15 available subjects, summary
statistics were obtained from a fixed-effect analysis on both
sessions, except for subject FIAC10, who was known to be
sleeping during his second session.

A model consisting of five conditions was set up: Same
Sentences – Same Speakers (SSt-SSp), Same Sentences – Dif-
ferent Speakers (SSt-DSp), Different Sentences – Same
Speakers (DSt-SSp), and Different Sentences – Different
Speakers (DSt-DSp). The first sentence of each block was
excluded from all four above conditions and modeled as a
fifth condition. Low-frequency drifts were compensated us-
ing a temporal highpass filter with a 1/128-Hz cutoff fre-
quency, and noise was modeled as an AR(1) process. Each
condition was modeled as a single event; however, further
experiments (not reported here) revealed that group analy-
ses were almost insensitive to block duration modeling.

The permutation testing framework described in Materi-
als and Methods was implemented in C and binded with
Matlab to be part of the Distance toolbox for SPM (v. beta
2.0, freely available at http://www.madic.org) designed to
provide advanced diagnosis and inference tools for group
analysis in fMRI. Two particular permutation tests were
considered in this study: the one based on the mixed-effect
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(MFX) t statistic (see Decision Statistic) and the one based on
the standard t statistic. Notice that the latter is equivalent to
the one-sample test implemented in SnPM when no variance
smoothing is selected.

For all contrasts presented here, the statistical maps were
thresholded at P 	 0.01 uncorrected, then corrected for
cluster extent at 5%. Practically, the height threshold was
computed using approximate voxelwise permutation tests
involving 2,000 random permutations instead of 215

� 32,768 exhaustive permutations, and then averaging ref-
erence distributions over 1,000 randomly selected voxels
(see Computation). Cluster-size inference was carried out
using an approximate permutation test involving 10,000
random permutations. This implies that cluster-level P val-
ues are approximated with a standard error of �(P � P2/
10,000), and are thus accurate to the second decimal point.
Clusters were defined in the sense of the 18-connectivity.

We performed group analyses on a manually segmented
symmetrical mask of 2,920 voxels surrounding the perisyl-
vian areas, which are known to be linguistically and acous-
tically sensitive and are the ones that the experimental pro-
tocol was intended to study. However, for comparison with
other results published in this special issue, we also report
whole-brain analyses (45,484 voxels) that are inevitably
more conservative in terms of corrected inferences (results
are given in parentheses in the tables below). For each
mask-restricted analysis the total computation time was on
the order of 20 seconds for the permutation t test and 15

minutes for the permutation MFX t test on a standard PC
(2.80-GHz single processor) running Linux. These times
were significantly higher, respectively, about 5 min and 3 h
45 min, for the whole-brain analyses.

We also report results of the parametric t test as imple-
mented in SPM, when thresholded at the same level (P
	 0.01 uncorrected) using the Student distribution with 14
DF. Cluster-size inference in SPM uses an approximation
formula based on random field theory [Friston et al., 1994].
In the following, clusters are reported if their corrected P
value is less than 5% in at least one of the three statistical
procedures. We do not account for the multiple comparison
problem associated with performing several tests on several
contrasts, as the scope of this article is to compare analysis
methods under various conditions.

RESULTS

We first report the group analysis results obtained con-
sidering each factor separately while holding the other fac-
tor fixed or not (sentence in the following section, then
speaker in the Speaker Factor section). The results of the
interaction between the two factors are presented in the
section Interaction.

Sentence Factor

Table I summarizes the results of group average activation
obtained when focusing on the sentence factor. It shows

TABLE I. Results of the contrasts of interest relating to the sentence factor

Cluster anatomical location and statistical test procedure
Cluster-level,

Pcorr

Cluster extent
(voxels)

Voxel-level peak,
Pcorr

Peak position (mm):
x, y, z

Sentence effect
Left superior temporal sulcus (middle STS)

Parametric t test (SPM) 0.00 (0.00) 255 (275) 0.00 (0.01) �63, �15, 0
Permutation t test 0.00 (0.03) 264 (285) 0.00 (0.01) �63, �15, 0
Permutation MFX t test 0.00 (0.03) 322 (378) 0.00 (0.00) �63, �15, 0

Right superior temporal sulcus (anterior STS)
Parametric t test (SPM) 0.03 (0.16) 49 (49) 0.12 (0.99) 60, 0, �3
Permutation t test 0.05 (0.35) 51 (51) 0.03 (0.45) 60, 0, �3
Permutation MFX t test 0.05 (0.33) 60 (72) 0.00 (0.00) 63, �3, 0

DStSSp � SStSSp
Left superior temporal sulcus (middle STS)

Parametric t test (SPM) 0.00 (0.00) 247 (261) 0.02 (0.24) �63, �12, 3
Permutation t test 0.00 (0.04) 259 (277) 0.01 (0.09) �63, �12, 3
Permutation MFX t test 0.00 (0.04) 333 (377) 0.00 (0.00) �63, �15, 0

Right superior temporal sulcus (anterior STS)
Parametric t test (SPM) 0.00 (0.02) 74 (75) 0.12 (0.99) 60, �6, �3
Permutation t test 0.01 (0.16) 84 (85) 0.04 (0.41) 60, �6, �3
Permutation MFX t test 0.01 (0.12) 147 (169) 0.01 (0.02) 60, �6, �3

DStDSp � StDSp
Left superior temporal sulcus (middle STS)

Parametric t test (SPM) 0.00 (0.00) 112 (113) 0.00 (0.03) �63, �15, 0
Permutation t test 0.01 (0.10) 115 (116) 0.00 (0.02) �63, �15, 0
Permutation MFX t test 0.01 (0.10) 146 (164) 0.00 (0.00) �63, �15, 0

Left superior temporal sulcus (posterior STS)
Parametric t test (SPM) 0.02 (0.02) 54 (66) 0.74 (1.00) �51, �39, 3
Permutation t test 0.04 (0.23) 58 (70) 0.32 (0.95) �51, �39, 3
Permutation MFX t test 0.04 (0.25) 72 (92) 0.04 (0.17) �51, �39, 3

Whole-brain analysis results in parentheses.
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very similar suprathreshold clusters for the three compared
statistical procedures (Fig. 1). We notice that the SPM ap-
proach is the least conservative in terms of cluster-level P
values, although the permutation MFX t test approach de-
tects the most extended cluster. This issue will be addressed
in the Discussion.

The sentence main effect (DStSSp � DStDSp � SStSSp
� SStDSp), reveals two bilateral suprathreshold clusters
(first two clusters in Table I): one widespread cluster located
in the left STS middle and one less extended in the right STS
anterior. As surveyed in Belin et al. [2004], several studies
have outlined the same specific involvement in speech per-
ception of the middle and anterior parts of the bilateral STS.

When restricting the sentence main effect to the same
speaker (i.e., DStSSp � SStSSp), the same clusters (third and
fourth clusters in Table I) are found in the left and right STS.
Moreover, when restricting the sentence main effect to dif-
ferent speakers (DStDSp � SStDSp), the right STS cluster
does not remain significant at the considered thresholds,

while the left STS cluster seems to subdivide in one middle
STS cluster (fifth cluster in Table I) and another smaller
posterior STS cluster (sixth cluster in Table I).

These results indicate that the left STS (Fig. 1C) may be
seen as a normalization region for the speaker factor, as it
responds identically to sentence variations whether the
speaker changes or remains the same. This region seems to
respond significantly to linguistic information, which is in
accordance with Pallier et al. [2003] and Dehaene et al.
[1997].

Speaker Factor

Table II summarizes the results obtained when focusing
on the speaker factor. The only clusters surviving 5% cluster
extent correction are detected using the permutation MFX t
test approach, confirming the benefit of taking into account
the first-level variability. It is also interesting to notice the
disagreement between the corrected cluster-level P values as

Figure 1.
Maximum intensity projection (MIP) of group average activation maps obtained for the DStDSp � SStDSp contrast (no cluster-level
correction). See Table I. A: Parametric t test (SPM). B: Permutation t test. C: Permutation MFX t test.

TABLE II. Results of the contrasts of interest relating to the speaker factor

Cluster anatomical location and statistical test procedure
Cluster-level,

Pcorr

Cluster extent
(voxels)

Voxel-level peak,
Pcorr

Peak position (mm):
x, y, z

Speaker effect
Left superior temporal sulcus (posterior STS)

Parametric t test (SPM) 0.53 (1.00) 14 (14) 0.62 (1.00) �63, �42, 9
Permutation t test 0.18 (0.89) 14 (14) 0.19 (0.94) �63, �42, 9
Permutation MFX t test 0.05 (0.35) 51 (59) 0.07 (0.36) �63, �42, 9

DSpSSt � SSpSSt
Left superior temporal sulcus (posterior STS)

Parametric t test (SPM) 0.13 (0.64) 30 (30) 0.82 (1.00) �66, �45, 9
Permutation t test 0.07 (0.45) 33 (33) 0.35 (0.99) �66, �45, 9
Permutation MFX t test 0.03 (0.21) 83 (103) 0.07 (0.32) �60, �30, 6

Right superior temporal sulcus (middle STS)
Parametric t test (SPM) 0.41 (0.99) 17 (17) 0.73 (1.00) 57, �12, �3
Permutation t test 0.15 (0.75) 18 (18) 0.28 (0.96) 57, �12, �3
Permutation MFX t test 0.04 (0.25) 68 (84) 0.12 (0.49) 57, �12, �3

Whole-brain analysis results in parentheses.
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estimated by SPM and by the permutation t test, although
the cluster extents are very similar. This suggests that RFT
approximations are not valid here (see Discussion).

The speaker main effect (SStDSp � DStDSp � SStSSp
� DStSSp) yields only one significant cluster located in the
left STS posterior (first cluster in Table II). The same cluster
pops up when restricting the speaker effect to the same
sentence (i.e., DSpSSt � SSpSSt) (second cluster in Table II).
For this contrast of interest, the MFX t test approach is able
to detect another significant cluster located in the right STS
middle (third cluster in Table II). Finally, no significant
cluster is detected when restricting the speaker effect to
different sentences (DSpDSt � SSpDSt).

These results indicate that the left STS posterior region
previously identified as responding to sentences (see Sen-
tence Factor) also keeps acoustic information and is not
selectively sensitive to the linguistic content of speech.

Interaction

To understand the role of the detected right STS region,
we also investigated the interaction between the two factors,
defined as DStSSp � SStDSp � SStSSp � DStSSp. Table III
summarizes the results of group average activation obtained
for this contrast of interest. Again, the permutation MFX
t-test clearly appears as the most sensitive method and re-
veals the same right STS middle cluster as in DSpSSt
� SSpSSt (Fig. 2).

These results indicate that the right middle STS may not
encode for repetition of linguistic aspects of voice when
acoustic variation is introduced. As reported in previous
studies [Belin et al., 2000; Belin and Zatorre, 2003; von Krieg-
stein et al., 2003], this region might be involved in paralin-
guistic aspects of voice processing, such as speaker varia-
tion, as evidenced in this particular study.

DISCUSSION

The main purpose of our study was to demonstrate the
benefit of combining permutations with a mixed-effect de-
cision statistic. It is interesting to notice that the gain in
sensitivity (as compared to the permutation t test) is mod-
erate when the group mean effect dominates the first-level
standard errors. This situation is well illustrated on the
sentence effect (see Sentence Factor), for which effects were
all significant at the within-subject level. With no surprise,
the three group-level testing procedures produced similar
activation maps.

In contrast, when investigating subtle effects that are al-
most swamped in the first-level variability, a much better
sensitivity is achieved using the permutation MFX t test. For
instance, the latter was the only method to detect a signifi-
cant cluster in the right STS on the speaker effect (see
Speaker Factor). Figure 3 illustrates the Sentence � Speaker
interaction in one particular right STS voxel: the heteroge-
neity observed in the first-level variances, and their high

TABLE III. Results of the Sentence � Speaker interaction

Cluster anatomical
location Statistical test procedure Cluster-level Pcorr

Cluster extent
(voxels)

Voxel-level peak
Pcorr

Peak position
(mm): x, y, z

Right superior Parametric t-test (SPM) 0.13 (0.82) 24 (24) 0.70 (1.00) 60, �12, �3
Temporal sulcus Permutation t-test 0.09 (0.64) 25 (25) 0.28 (0.94) 60, �12, �3
(Middle STS) Permutation MFX t-test 0.02 (0.20) 97 (97) 0.04 (0.28) 60, �12, �3

Whole-brain analysis results in parentheses.

Figure 2.
Maximum intensity projection (MIP) of group average activation maps obtained for the Sentence � Speaker interaction (no cluster-level
correction). See Table III. A: Parametric t test (SPM). B: Permutation t test. C: Permutation MFX t test.
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values compared to the estimated effects, explain why a
mixed-effect model is necessary to improve detection. The
gain in sensitivity is perhaps more spectacular at the voxel
level than at the cluster level, presumably due to the small
spatial smoothing effect induced by the MFX statistic as it
compensates within-subject variabilities.

Also, the experiments enable us to compare two tests that
use the same decision statistic: the classical parametric t test
based on RFT and its permutation version first developed by
Nichols and Holmes [2002], where no RFT is invoked for

multiple comparison correction. The respective statistical
maps have similar height thresholds at the voxel level, in-
dicating that the voxelwise permutation-tabulated cumula-
tive tails are reasonably well approximated by the Student
distribution at P 	 0.01.

However, a major disagreement between the corrected P
values is observed, both at the voxel level and at the cluster
level. In the FIAC study, SPM is generally overconservative.
This can be explained by the fact that, on the one hand, the
fMRI datasets were smoothed using a moderate 5-mm
FWHM and, on the other hand, the group average maps
were submitted to a rather low height threshold (P 	 0.01).
Those values may well fall outside the validity domain of
the RFT approximations underlying SPM [Worsley et al.,
1996]. This confirms the wider applicability of permutation
approaches to both family-wise error control [Holmes et al.,
1996; Nichols and Holmes, 2002] and cluster-size inference
[Bullmore et al., 1999; Hayasaka and Nichols, 2003].

From a cognitive point of view, our results confirm pre-
vious studies investigating voice-selective areas: the left STS
responds to the linguistic content of speech, while the right
STS seems to be more sensitive to vocal variations that might
subserve speaker identification or speaker emotion.

CONCLUSION

We developed a new one-sample permutation test using a
mixed-effect variant of the t-statistic. The FIAC dataset re-
veals significant sensitivity improvement when using the
proposed test as compared to both SPM and SnPM one-
sample tests. By the time we implemented the method, we
observed the same tendency in four datasets out of five. We
therefore believe that the method is of practical interest to
the neuroimaging community.

The permutation test allows for exact specificity control
under a symmetry assumption regarding the distribution of
the random effects, in addition to other mild assumptions
(see Nonparametric Model). We are not aware of any work
confirming or invalidating population symmetry in fMRI
group analyses. However, simple examples such as motor
cortex activation in both right-handed and left-handed sub-
jects suggest that symmetry does not hold in every circum-
stance. The sign permutation method would then be inexact.
We are currently investigating other resampling schemes,
such as the Bootstrap, in order to relax population symme-
try.
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APPENDIX

EM Algorithm

We detail here the EM algorithm used to maximize the
likelihood function given by Eq. (9). The algorithm derives
mechanically from the general EM paradigm [Dempster et
al., 1977] when considering the collection of true individual
effects (�1k, �2k, . . . , �nk) as hidden variables. Given initial
estimates �̂Gk and �̂Gk, the algorithm iteratively refines them
by alternating two steps, the E-step (expectation) and the
M-step (maximization), until convergence. In our implemen-
tation, initial estimates are respectively taken as the classical
sample mean and sample standard deviation of the ob-
served effects (�̂1k, �̂2k, . . . , �̂nk).

E-step. Assume current estimates are exact and compute
the posterior joint distribution of all subject’s true effects.
Since subjects are conditionally independent, this reduces to
computing each subject’s posterior, p(�ik��̂ik, �̂ik, �Gk, �Gk)
which is a Gaussian with parameters (mik, sik):

mik 4
�Gk

2

�̂ik
2 � �̂Gk

2 �̂ik �
�̂ik

2

�̂ik
2 � �̂Gk

2 �̂Gk, sik 4
�̂ik�̂Gk

�̂ik
2 � �̂Gk

2

(A.1)

M-step. Update (�Gk, �Gk) by maximizing the expected
log-likelihood of the complete data:

Q��Gk, �Gk� � n log2��Gk �
1

2�Gk
2 	

i

�sik
2 � ��Gk � mik�

2�,

(A.2)

yielding:
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1
n 	

i

mik, �̂Gk
2 4

1
n 	

i

�sik
2 � ��̂Gk � mik�

2� (A.3)

This algorithm is guaranteed to converge towards the
(unique) likelihood maximizer (�̂Gk, �̂Gk)over � � ��. In the
constrained problem subject to �Gk � 0, the algorithm is
identical except that �̂Gk is forced to zero in the M-step
instead of being updated. Typically a dozen of iterations are
needed to achieve a 1% tolerance on likelihood variations.
Faster EM variants probably exist, as discussed by Worsley
et al. [2002] in a closely related context.

� Mériaux et al. �

� 410 �


