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Learning is difficult when the world fluctuates randomly and
ceaselessly. Classical learning algorithms, such as the delta rule with
constant learning rate, are not optimal. Mathematically, the optimal
learning rule requires weighting prior knowledge and incoming
evidence according to their respective reliabilities. This “confidence
weighting” implies the maintenance of an accurate estimate of the
reliability of what has been learned. Here, using fMRI and an ideal-
observer analysis, we demonstrate that the brain’s learning algorithm
relies on confidence weighting. While in the fMRI scanner, human
adults attempted to learn the transition probabilities underlying an
auditory or visual sequence, and reported their confidence in those
estimates. They knew that these transition probabilities could change
simultaneously at unpredicted moments, and therefore that the learn-
ing problemwas inherently hierarchical. Subjective confidence reports
tightly followed the predictions derived from the ideal observer. In
particular, subjects managed to attach distinct levels of confidence to
each learned transition probability, as required by Bayes-optimal in-
ference. Distinct brain areas tracked the likelihood of new observa-
tions given current predictions, and the confidence in those
predictions. Both signals were combined in the right inferior frontal
gyrus, where they operated in agreement with the confidence-
weighting model. This brain region also presented signatures of a
hierarchical process that disentangles distinct sources of uncertainty.
Together, our results provide evidence that the sense of confidence is
an essential ingredient of probabilistic learning in the human brain,
and that the right inferior frontal gyrus hosts a confidence-based
statistical learning algorithm for auditory and visual sequences.
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The sensory data that we receive from our environment are
often captured by temporal regularities—for instance the

colors of traffic lights change according to a predictable green–
yellow–red pattern; thunder is often followed by rain, etc. Knowl-
edge of those hidden regularities is often acquired through learning,
by aggregating successive observations into summary estimates (e.g.,
the probability of the light turning red when it is currently yellow).
When sensory data are received sequentially, learning can be de-
scribed as an iterative process that updates the internal estimates
each time a new observation is received. Learners must therefore
constantly balance two sources of information: their current esti-
mates and the new incoming observations.
Any learning algorithm must find a solution to this balancing

act. Finding the correct balance is especially critical in a world that
is both stochastic and changing (1), i.e., where observations are
governed by probabilities that can change over time (a situation
called volatility). An excessive reliance on incoming observations
will make the learned estimates dominated by fluctuations instead
of converging to the true underlying probabilities. Conversely, an
excessive reliance on the previously acquired knowledge will slow
down the learning process and impede a quick reset of the internal
estimates, which is useful when the environment changes.
In the 1950s, learning algorithms were proposed to solve this

weighting problem optimally under specific conditions (e.g., the
Kalman filters and subsequent developments; ref. 2). A general

and normative solution to this problem requires weighting each
source of information according to its reliability (3–12). According
to this Bayes-optimal solution, any discrepancy between a new ob-
servation and a learned estimate should lead to an update of this
internal estimate, but the size of this update should decrease as the
prior confidence in this internal estimate increases. Furthermore,
this prior confidence should depend on two factors: the precision of
the current internal estimate and a discounting factor that takes into
account the possibility that a change occurred. Indeed, a change in
environmental parameters would render the current estimate use-
less for predicting future observations. An optimal algorithm should
therefore maintain distinct types of uncertainty, organized in a hi-
erarchical manner: future events are uncertain because they are
governed by probabilities (level 1); these probabilities themselves
are known only with a certain precision (level 2); and this precision
is limited because a change may have occurred (level 3).
In summary, efficient learning requires the learner to maintain

and constantly update an accurate representation of the confi-
dence in what has been learned. In a previous behavioral study
(13), by engaging human adults in a probability-learning task, we
showed that they possess a sense of confidence in what has been
learned that is remarkably similar to the optimal algorithm. Here,
we propose that learning approaches optimality in humans be-
cause it shares two features of the optimal algorithm: (i) it relies
on a sense of confidence that serves as a weighting factor to
balance prior estimates and new observations; and (ii) confi-
dence is organized hierarchically, taking into account higher-
order factors such as volatility. We aim to provide behavioral
and functional magnetic resonance imaging (fMRI) evidence on
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What has been learned must sometimes be unlearned in a
changing world. Yet knowledge updating is difficult since our
world is also inherently uncertain. For instance, a heatwave in
winter is surprising and ambiguous: does it denote an infrequent
fluctuation in normal weather or a profound change? Should I
trust my current knowledge, or revise it? We propose that hu-
mans possess an accurate sense of confidence that allows them
to evaluate the reliability of their knowledge, and use this in-
formation to strike the balance between prior knowledge and
current evidence. Our functional MRI data suggest that a fron-
toparietal network implements this confidence-weighted learn-
ing algorithm, acting as a statistician that uses probabilistic
information to estimate a hierarchical model of the world.
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the brain mechanisms that implement such a hierarchical confidence-
weighted learning.
We submitted human subjects to a learning task that requires the

tracking of transition probabilities (i.e., the conditional probability
of observing the current item, given the identity of the immediately

previous item), knowing that those probabilities fluctuate randomly
over time (e.g., Fig. 1A). This task is similar to previous studies (1,
14–21), but with several additional features. First, although many
studies resort to reinforcement-learning tasks that evaluated the
learned probabilities indirectly and implicitly (1, 17, 19), we opted

Fig. 1. A normative role for confidence during probabilistic inference. (A) Subjects were asked to continuously estimate the probabilities p(AjB) and p(AjA)
governing the successions between two stimuli, while these probabilities underwent occasional stepwise changes. The probability of change point was held
constant, but transition probabilities and change times varied randomly between sessions and participants. Subjective confidence levels were probed occasionally
at trials marked by red marks. (B) Example sequence. Actual A and B stimuli corresponded to clearly distinguishable pairs of sounds or visual symbols, presented in
distinct auditory and visual sessions. (C) The likelihood distribution of transition probabilities were estimated by a Bayesian observer, based on the observations
received so far and the generative model. Likelihood distributions are presented as slices as a function of time. Each slice corresponds to a marginal distribution
from the actual 2D space defined by combinations of p(AjB) and p(AjA). Confidence in the estimated transition probabilities corresponds to the (negative log) SD
of those marginal distributions. (D) Bayesian theory predicts that confidence should serve as a weighting factor that modulates the incoming evidence during
optimal inference: the update induced by a new observation should be less pronounced when confidence in the prior estimation is high. (E) Values of three key
variables of Bayesian inference were sorted into bins and averaged across all observations presented to subjects. Notations: y is the sequence of observations
received, θ the estimated transition probability, σ its SD, and KL (Kullback–Leibler divergence) quantifies the distance between two probability distributions, high/
low C stands for high/low confidence. Blue/orange corresponds to expected (likelihood >0.5)/unexpected (likelihood <0.5) outcomes. Note that confidence in the
current transition does not depend on the eventual outcome because it is not yet observed (the blue/orange curves overlap perfectly).
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for an explicit statistical learning task in which participants overtly
reported on a numerical scale their probability estimates and their
subjective confidence levels in those estimates.
Second, we did not ask for a behavioral response on each trial,

which could have perturbed the continuity of the learning process
and interfered with fMRI measurements. Instead, we interrupted
the stimulus sequence only occasionally to ask for subjective reports.
We developed a mathematical model that solved the learning task
optimally (an “ideal observer”) to quantify the trial-by-trial fluctu-
ations in the hidden inference process as a function of the observed
sequence of stimuli (e.g., Fig. 1B). We derived quantitative and
qualitative diagnostic predictions for the brain signatures of an
optimal learning algorithm. We examined whether brain signals,
measured between behavioral reports, conformed to the predictions
of an ideal observer. We also checked that the subjects’ behavior
closely resembled the ideal observer’s.
Third, we added a hierarchical component to our task by re-

quiring the estimation of two distinct transition probabilities that
changed suddenly and simultaneously, at unpredictable times.
Subjects were fully informed about these properties of changes.
This feature allowed us to probe the brain’s ability to entertain a
hierarchical model that requires the monitoring of two distinct
but interdependent confidence levels, attached to each transition
probability. In particular, we examined whether the confidence
in both parameters collapsed simultaneously when it was likely
that a change in probabilities had occurred. Such a finding would
support the hierarchical model.

Results
Behavior During the Task.During each fMRI session, subjects were
presented with a sequence of two arbitrary stimuli, termed A and
B. In distinct sessions, those stimuli could be either auditory or
visual, thus allowing us to probe whether a given brain region
operates in a modality-specific manner or in an abstract amodal
manner. Sequences of stimuli A and B were generated according
to a 2 × 2 transition-probability matrix that remained constant
only for a limited period (Fig. 1 A and B). The entire matrix (i.e.,
two independent transition probabilities) was resampled when-
ever a change occurred. Subjects were fully informed about the
task structure. They were asked to constantly keep track of the
transition probabilities that were used to generate the observed
sequence. During a training session, they were asked to detect
occasional sudden changes in probabilities. Furthermore, every
15 stimuli on average, they evaluated, with a cursor, the proba-
bility of the next stimulus given the identity of the previous one,
and their confidence about this estimate (Fig. S1).
In a previous behavioral study (13), we provided a detailed

comparison between subjects’ responses and a mathematical
model of an ideal observer performing the same task. This study
revealed a tight parallel between subjective and ideal estimates.
Here, after one training session with this behavioral task design,
fMRI signals were acquired while subjects performed four ses-
sions of a trimmed-down and almost fully covert version of this
learning task. In this fMRI version, the reports of changes and
probability estimates were omitted, and subjects only occasion-
ally reported, on a four-level scale, their confidence in their
covert probability estimate at the moment of the question. In
addition to keeping behavioral reports to a minimum, this
method allowed us to verify that subjects engaged in the task and
that their subjective confidence conformed to the normative
model. As in our previous study (13), subjective confidence levels
correlated linearly with the optimal confidence levels (linear
regression, t20 = 6.40, P = 3 × 10−6). When optimal confidence in
the relevant transition probability (the one corresponding to the
stimulus preceding the question) and in the irrelevant one were
both entered in the same regression to model subjective confi-
dence levels, the regression weight was significantly higher for
the relevant transition probability than for the irrelevant one

(paired difference, t20 = 7.16, P = 6 × 10−7). This indicates that
subjects selectively monitored and reported the confidence at-
tached to each transition probability.
We also reanalyzed the data from our previous behavioral study

(13) to evidence the role of online confidence weighting during
learning in this task. We compared the ideal-observer model, which
implements a dynamic confidence weighting, with the delta-rule
model with fixed learning rate (22), which implements a fixed
weighting of the incoming information and is devoid of any repre-
sentation of confidence. For the learning rate, we used the value that
minimized the mean squared error (MSE) between the delta-rule
estimates and the actual generative probabilities for the sequences
presented to subjects. Nevertheless, subjects’ estimates of probabil-
ities were better captured by the ideal observer than by this opti-
mized delta-rule model (difference in MSE across subjects: t17 = 5.8,
P = 2.0 × 10−5). We also performed a Bayesian model comparison of
the ideal observer and a delta rule whose optimal learning rate was
separately fitted for each subject, instead of being fixed to the op-
timal value. This comparison revealed a 19:1 posterior probability
ratio in favor of the hypothesis that the ideal observer is the more
likely model of the subjects’ probability estimates. Although the
exact algorithm underlying human probabilistic learning remains
unknown, our behavioral results indicate that this algorithm must
implement some form of confidence weighting. In the following, we
therefore used the ideal observer as a principled description that
closely approximates the subjects’ inference algorithm.

Predictions of the Ideal-Observer Model. Given the hierarchical
nature of our task, the ideal observer’s inference must unfold
over several levels (Fig. S2A). Starting from the observed se-
quence (level 1), it estimates the current transition probabilities
underlying observations (level 2), knowing that those transition
probabilities undergo stepwise changes from one trial to the next
with a fixed probability that must itself be estimated (the “vol-
atility,” level 3).
Volatility could itself change with time, potentially adding a

level 4 to our hierarchical design—and indeed, previous research
has suggested that the human brain and even rodents can track
fluctuations in volatility (1, 23). However, such fluctuations in
volatility do not contribute to the present task. Volatility was
held constant and furthermore, the ideal-observer model, when
inferring volatility, quickly converged to a value very close to the
constant generative value within a single training session, even in
the absence of any prior information (Fig. S2B). Because sub-
jects benefited from even more information (they were instruc-
ted that changes were rare), the ideal-observer analysis suggests
that, in the present task, unlike in previous work (1), the as-
sumption of fluctuations in volatility (level 4) was not required.
In the remnant of this paper, volatility (level 3) can therefore be
considered constant.
This constant, nonzero volatility is nevertheless a crucial factor

in our experimental design: it is because changes occur at un-
predictable times that a confidence-weighted learning algorithm
must constantly endeavor to adjust the weights of incoming ob-
servations. We concentrate on the level at which the ideal ob-
server predicts that inference should produce dynamic quantities
(Fig. 1B): the two unknown transition probabilities p(BjA) and
p(AjB) (level 2). These two probabilities suffice to character-
ize the 2 × 2 transition probability matrix, because p(AjA) = 1 −
p(BjA) and p(BjB) = 1 − p(AjB).
A Normative Dissection of the Inference Process. The ideal-observer
analysis allows the key ingredients of the optimal confidence-
weighted inference to be summarized by several unambiguous
mathematical quantities (Fig. 1E). The confidence in the esti-
mated statistic relates to the width of the estimated posterior
distribution, which can be summarized as the negative log SD
(12, 13, 24). We adopted a log space because it is the natural
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space for variance and SD parameters (which are simply pro-
portional in log space) (25); and because we previously found that
subjective confidence relates linearly to the log SD in this task (13).
However, this choice does not affect our conclusions. Following
information theory, the surprise elicited by a given observation
corresponds to the negative log likelihood of this observation (14,
18, 26, 27). The unpredictability of the outcome is formalized by the
notion of entropy (the expected surprise). Finally, the magnitude of
the update is the distance between the distributions estimated be-
fore and after each observation, which is technically a Kullback–
Leibler divergence (18, 27). Fig. 1E summarizes the expected pro-
files of those distinct quantities during the task.

To probe the brain networks involved in probabilistic inference,
we first regressed the fMRI time series on the optimal values of
estimation update. Fig. 2 shows the whole-brain statistical maps
[general linear model 1 (GLM1); Materials and Methods], with
local maxima in the intraparietal sulcus, the posterior superior
temporal sulcus, the inferior frontal gyrus, the frontal eye field, the
supplementary motor area, which were observed irrespective of
the sensory modality used in the task (Tables S1 and S2). How-
ever, optimal confidence-weighted updates depend on two factors:
they are larger when surprise is higher and when confidence is
lower (Fig. 1E). Therefore, positive correlations of brain signals
with the optimal estimation update could reflect the update pro-
cess itself or alternatively, one of those factors (confidence or
surprise). To disentangle the variables underlying the inference
process, we adopted a factorial analysis (GLM4): we first stratified
trials by predictability levels, and we then further stratified by
confidence and surprise levels. As shown in Fig. 1E, this sorting
results in profiles for surprise, confidence, and update that were
clearly distinguishable from one another in the ideal observer. The
results of the factorial analysis are presented below. In Fig. S4 we
report an alternative analysis, a multiple regression including
confidence and surprise in the same model, which largely repli-
cates the results of the factorial analysis.

Brain Correlates of Confidence. Using the factorial strategy, we
looked for a main effect of confidence while controlling for the
levels of predictability and surprise in GLM4. We found several
clusters, notably in the right intraparietal sulcus [x, y, z: (32, −68,
59)] and the right inferior temporal gyrus [x, y, z: (56, −46, −14)],
see Fig. 3A and Table S3. Plotting the fMRI signals in these
regions for each category level (Fig. 3B) confirmed that they

Fig. 2. Brain regions whose signals correlatedwith the internal updates predicted
by the ideal-observer model. The statistical maps show the group-level significance
of positive (red) and negative (blue) regression coefficients, when fMRI activity was
regressed at every trial and all sessions on the optimal (Bayesian) amount of esti-
mation update (GLM1). Inset shows the results of the analysis restricted to audio
and visual sessions (see also Fig. S3). Maps are thresholded at the voxel level (P <
0.001 uncorrected) and the cluster level (P < 0.05 FWE).

Fig. 3. Cortical correlates of confidence. (A) Main effect of confidence in an ANOVA also controlling for surprise and predictability levels (GLM 4). Maps are
thresholded at the voxel level (P < 0.001 uncorrected) and the cluster level (P < 0.05 FWE). (B) The fMRI signals (plain lines) are plotted following the categorical
approach presented in Fig. 1E. Signals were extracted with cross-validation: voxels were identified from ANOVA in one session type (auditory or visual) and tested
in the other (Materials and Methods). The plot shows the average of both cross-validated extractions. To facilitate visual comparison, optimal confidence levels
(dashed lines) are overlaid after adjusting for offset and scaling for each cluster (and not each subplot). Blue vs. orange correspond to expected vs. unexpected
outcomes, following the ideal observer’s estimates. (C) Cross-validated variations in fMRI signals as a function of the theoretical confidence predicted by the ideal-
observer model (binned into 6 percentiles) (GLM5). Squares correspond to the signal extracted in auditory sessions, triangles to visual sessions. Fitted lines cor-
respond to the average of fitted individual data. Error bars are SEM across subjects (B and C). (D) Interindividual variations in neural signals predict interindividual
variations in behavior: A significant between-subjects correlation was observed between the neural fit (regression coefficients between fMRI signals and ideal-
observer confidence levels—GLM2) and behavioral fit (regression coefficients between subjective confidence reports and ideal-observer confidence levels).
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tracked the level of confidence. To avoid the frequent circularity
inherent in plotting fMRI signals from selected voxels (28), we
used a cross-validation strategy across sensory modalities. Within
broadly defined anatomical regions of interest, we first selected
the voxels (n = 100) showing the strongest effect of confidence
when the ANOVA (GLM4) was restricted to the auditory ses-
sions, and then extracted and plotted the signals from the same
voxels in the independent data from the visual sessions. Doing the
converse yielded similar results, and we report the average values
in Fig. 3B. Plotting fMRI signals in percentiles of the predicted
confidence levels (GLM5; Fig. 3C) showed that, in all of the above
regions and in both modalities, activation decreased essentially
monotonically as confidence increased. To quantify whether these
effects of confidence were modality independent, we regressed
activity in suprathreshold voxels on optimal confidence levels in
auditory and visual sessions separately, and we tested for their
equality with a Bayesian t test (29). The effect was similar across
modalities in the intraparietal sulcus [Bayes factor (BF): 4.3] and
to a lesser extent in inferior temporal gyrus (BF: 2.8).
We also examined whether interindividual differences in activity

in these regions predicted interindividual differences in behavior.
Because subjective confidence levels were occasionally sampled
from subjects, we tested whether interindividual differences in
the tightness of the fit between those fMRI signals and optimal
confidence levels, measured in between the behavioral reports
(GLM2), predicted interindividual behavioral differences in the
tightness of the fit between subjective confidence ratings and op-
timal confidence levels at the moment of reports. We found sig-
nificant correlations (intraparietal sulcus: ρ21 = −0.60, P = 0.004;
inferior temporal gyrus: ρ21 = −0.55, P = 0.010). These correlations
were negative because fMRI signals decreased with confidence,
i.e., increased with uncertainty. Thus, the subjects whose brain
activation best corresponded to the ideal-observer predictions
were also those whose subjective confidence reports best tracked
the optimal values.

Brain Correlates of Surprise. Similarly, we looked for a main effect
of surprise, while controlling for predictability and confidence
levels in GLM4. Surprise signals were found in several clusters,
notably in the right superior temporal sulcus [x, y, z: (50, −31, 0)]
and the frontal eye field [on the right, x, y, z: (30, –6, 54), and left,
x, y, z: (−60, 5, 35)], see Fig. 4A and Table S4. Using cross-
validation between modalities and plotting fMRI signals for
each category level (Fig. 4A) revealed that they conformed to
surprise signals. We checked that variations of cross-validated
fMRI signals in these regions parametrically followed the opti-
mal surprise levels by plotting fMRI signals against percentiles of
surprise (GLM6; Fig. 4C). Regression coefficients for optimal
surprise levels (GLM3) were all positive, and coefficients were
significantly similar in auditory and visual sessions in right frontal
eye field (respective BF: 3.6) and to a lesser extent in the right
superior temporal sulcus (BF: 1.6).

Brain Correlates of Estimation Update, Reflecting Confidence-Weighted
Surprise. The central property of a confidence-weighted updating
mechanism is that it should reflect both confidence and surprise.
The theoretical analysis suggests that the combination may be
nearly additive (Fig. 1E), and we therefore searched the whole
brain for a conjunction of the main effects of optimal confidence
and optimal surprise (GLM4). This conjunction was maximally
significant in the right inferior frontal gyrus [x, y, z: (44, 6, 46), both
main effects were significant at P = 0.001, uncorrected]; see Fig.
5A. Using cross-validation between modalities to plot the inferior
frontal gyrus response in each cell of the factorial analysis (Fig.
5B) revealed that it conformed to an update signal. We checked
that variations of cross-validated fMRI signals in this region
parametrically followed the optimal update levels by plotting
fMRI signals against percentiles of update (GLM7; Fig. 5C).
Regression coefficients were positive and significantly similar in
auditory and visual sessions (BF: 4.2). Overall, these results in-
dicate that the right inferior frontal gyrus conforms to an amodal
representation of the amount of update needed to optimally revise
the internal model of learned transition probabilities, given the
latest sensory observation received.
We also reasoned that, if the inferior frontal gyrus integrates

both confidence and surprise, it may have significant functional
connectivity with the brain regions whose activity reflects either
confidence or surprise separately. We therefore looked for re-
gions in which the fMRI signals correlated simultaneously with
those of seed regions corresponding to the best confidence and
surprise signals reported above. For confidence, signals were
taken from the intraparietal sulcus and for surprise, from the
frontal eye field (we discarded the superior temporal sulcus and
inferior temporal gyrus because they showed only moderate ev-
idence of an amodal response). Conjunction analysis of func-
tional connectivity from the intraparietal sulcus and frontal eye
field seeds (GLM8) was maximally significant in a brain site lo-
cated in the right inferior and middle frontal gyrus [x, y, z: (32, 6,
59), at pFWE < 0.05], see Fig. 5D and Table S5.

The Estimation Update Reflects a Hierarchical Inference. The use of
two distinct transition probabilities in our experiment allowed us
to test specific predictions of the hierarchical inference process,
which is thought to underlie the update. We tested those pre-
dictions on inferior frontal gyrus signals because this region was
identified above as a putative “update region.” We used the in-
ferior frontal gyrus cluster (that extends in the middle gyrus)
identified with functional connectivity analysis (GLM8) rather
than a direct contrast of task factors to avoid circularity. How-
ever, the results were similar when using the conjunction of
contrasts reported above.
A first prediction is that, because the task involves two tran-

sition probabilities, p(AjB) and p(BjA), two confidence levels
have to be constantly monitored. However, their relevance for

Fig. 4. Cortical correlates of surprise. (A) Main effect of surprise, in an
ANOVA also controlling for confidence and predictability levels (GLM4).
Maps are thresholded at the voxel level (P < 0.001 uncorrected) and the
cluster level (P < 0.05 FWE). In B, dashed lines represent the optimal surprise
signal and in C, bins correspond to 6 percentiles of the optimal surprise levels
(GLM6). Same format as Fig. 3 (including cross-validation for B and C).
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learning changes across trials, depending on the identity of the
preceding stimulus. Only the confidence in the transition prob-
ability corresponding to the preceding stimulus should be used to
weight the incoming evidence. To test this first prediction, we
examined whether fMRI signals in the inferior frontal gyrus
correlated specifically with the confidence that was relevant on
the current trial. Brain activity conformed to those expectations:
when confidence levels in the relevant and irrelevant transitions
probabilities were both included in the fMRI model (GLM9),
significant coefficients were found only for the relevant transi-
tion (P = 2 × 10−7) but not for the irrelevant one (P = 0.14), and
this dissociation was significant (P = 0.0016).
A second prediction is that, although the optimal confidence

levels attached the two transition types probabilities are largely
independent, they should show parallel fluctuations at very
specific moments in the task; namely, whenever a change is
suspected. Changes play such an overarching role in our design
because, whenever a change occurs, both transition probabilities
are simultaneously reset to new values (and participants were
explicitly informed of this fact). Therefore, given only evidence
in favor of a change in one transition probability, one can infer
that the other transition probability is also likely to have
changed. For instance, when an observed succession (e.g., A→A)
is so surprising as to arouse a suspicion of a change, confidence
in both this transition probability p(AjA) and the other transition
probability p(AjB) should be reduced, even if the other type of
succession (from B) was not observed. On the contrary, when
there is little surprise and hence no evidence for a global change,
confidence in the transition probability corresponding to the
current stimulus can increase and leave the estimate of the other
transition probability essentially unchanged.
Streaks of repeated A’s or B’s (AAA. . . or BBB. . .) offer an

opportunity to test this normative property. When such a streak
is finally discontinued, the succession type that was not observed
during the streak becomes relevant for learning again, and the
confidence attached to it should therefore be seen in the inferior

frontal gyrus. The model predicts that the confidence associated
with this transition probability should be lower after the streak
than before it, but only when the streak aroused a suspicion of a
change (Fig. 6A). We therefore screened the sequences that were
presented to subjects for streaks of three or more repeated ele-
ments, and sorted into those in which optimal confidence levels in
the observed succession type increased steadily from one obser-
vation to the next (thus plausibly licensing the inference that no
change occurred) and those in which it decreased at least once
(thus licensing the inference that a change occurred). In the ideal
observer, confidence levels in the succession type not observed
during the streak dropped as explained above when a change was
suspected (post/pre streak change: −0.199 ± 0.011 in log-SD unit),
otherwise they remained stable (difference in post/pre changes
between the two streak types: −0.12 ± 0.02). As predicted, we
observed a similar dissociation in the inferior frontal gyrus
(GLM10), see Fig. 6B: the fMRI signals measured before and
after the streaks were significantly different for streaks within
which the optimal confidence levels decreased (post/pre streak
change: 0.64 ± 0.35 in arbitrary fMRI signals, P = 0.04); and this
difference was much larger than the one observed for the other
streak type (difference in post/pre changes between the two streak
types: 1.00 ± 0.55, P = 0.04). Thus, the inferior/middle frontal
gyrus signal accurately reflects the subtle changes in confidence
that are predicted by a hierarchical ideal-observer model.

Discussion
Confidence weighting of surprise signals is a normative property of
Bayesian learning algorithms. Our results provide evidence for
confidence weighting of surprise in the human brain, independently
of the sensory modality tested, and human subjects were engaged in
the covert estimation of the time-varying probabilities generating

Fig. 5. Cortical correlates of confidence-weighted update. (A) Conjunction
of the main effects of surprise and confidence in an ANOVA also controlling
for predictability levels (GLM4), shown at P < 0.005 uncorrected. In B dashed
lines represent the optimal update signal and in C, bins correspond to
6 percentiles of optimal update levels (GLM7), same format as Fig. 3 (in-
cluding cross-validation). (D) Conjunction of functional connectivity with the
intraparietal sulcus (signaling confidence; Fig. 3A) and the frontal eye field
(signaling surprise; Fig. 4A) [results are shown at a voxel level P < 0.05 FWE
(GLM8)]. The two seed clusters are shown in blue.

Fig. 6. Evidence for a hierarchical representation of confidence. (A) In the
ideal-observer model, two transition probabilities are simultaneously mon-
itored, each with its own confidence level (Fig. 1C). However, changes in the
generative process are global, impacting both transition probabilities at
once. Therefore, when a change is suspected, confidence in all transition
probabilities should drop, even if this suspicion arises from the observation
of a single succession type. To provide evidence of this effect with the actual
sequences presented to subjects, optimal confidence levels were averaged
during streaks with three or more repetitions (ABBBA, BAAAB, ABBBBA, etc.;
note that A and B play symmetric roles). The plot shows confidence in the
transition probability that is relevant during the streak (black) and confi-
dence in the other transition probability (colors), separately for streaks
within which confidence increases (no change is suspected, green) and
within the others (in which a change is suspected, purple). When confidence
in the observed succession type increases, the confidence for the unobserved
succession type remains stable, but when confidence in the observed suc-
cession type decreases, the other one also drops: there is an interaction
between streak type and the post- versus pre-streak optimal confidence
levels. (B) The predicted interaction was observed in the inferior–middle
frontal gyrus (I/MFG). The plot shows the difference in fMRI responses on
trials that preceded and followed a streak of repeated items (filled, colored
circles in A). Note that the activity in this region relates negatively to con-
fidence, we therefore reverted the y axis to facilitate the visual comparison
with the ideal observer. Error bars correspond to SEM across subjects; they
were extremely small in A and thus omitted. *P < 0.05.
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sequences of stimuli. The areas observed included the inferior
frontal gyrus, intraparietal sulcus, and frontal eye field. By focusing
on particular trials, we showed that each region exhibited a unique
profile that was characteristic of either confidence, surprise, or
update signals. We also showed that update signals in the inferior
frontal gyrus conform to a hierarchical inference.

A Computational Definition of Confidence. Much confusion still
surrounds the formalization of subjective confidence (12, 30, 31).
In studies that investigate decision confidence (32–35), confi-
dence formally corresponds to the probability of the decision
being correct. Here, however, we studied confidence in the
context of a learning task, where participants infer the value of
hidden variables and use them to predict future outcomes. In this
case, confidence in the continuous variable that is learned should
be captured by the estimated SD of this variable, and confidence
in the outcome (the upcoming stimulus) should be captured by
the estimated probability of the outcome. It is essential to avoid
conflating those two notions because they are normatively dis-
tinct components of the updating process.
Here, confidence depends on the evidence conveyed by obser-

vations, which can be quantified by an ideal observer: this origin is
“external” (36). We did not explore “internal” or subject-specific
fluctuations in confidence that may arise, for instance, due to im-
perfect computations or to temporary distraction. However, confi-
dence should produce the same effect irrespective of its origins: in
either case, lower confidence should trigger more learning from new
observations. We identified the brain mechanisms of confidence by
correlating brain activity with the levels of confidence predicted by
the ideal observer. It might have been more efficient to collect trial-
by-trial reports of subjective confidence, and use them as predictors
of brain activity. In practice, however, frequent reports could also
perturb the fMRI signal and hinder the inference process itself.
Instead, we showed here and in our previous study (13) that the
optimal externally driven confidence is a significant determinant of
subjective confidence in our task. Thus, we used the ideal-observer
algorithm as a starting point for modeling brain activity common to
all subjects. Future work should investigate deviations from opti-
mality and interindividual differences.
The ideal-observer approach also affords a theory-driven

mapping of computational variables onto brain signals, as in
previous studies (1, 14, 16–18, 21). Such model-based approach
typically involves regressing the brain activity on explanatory var-
iables. We acknowledge that this regression approach may not
fully capture all of the brain signals involved in coding for the
underlying computational variables (37), a problem that is ag-
gravated by the low spatial and temporal resolution of fMRI. We
therefore complemented standard regression analyses with a
principled approach (38) in which we checked the ordering of
fMRI signals in bins of predicted values (Figs. 3C, 4C, and 5C)
and also designed categorical contrasts focusing on particular
trials to identify response profiles associated with each computa-
tional variable (Figs. 3B, 4B, and 5B). We also tested the predic-
tions of hierarchical Bayesian inference in the form of predicted
differences and interaction (Fig. 6B).

The Role of Confidence in Learning. Confidence not only has a clear
definition here, but also a precise computational role: it should
control the weight of the incoming evidence, i.e., how much is
learned from a new observation. Past research on the brain’s
learning algorithms has primarily focused on how surprising
observations, i.e., prediction errors, drive the learning process
(22, 39). It is only more recently that researchers have realized
that the learning rate should also depend on confidence (10, 40).
The fact that the human learning algorithm includes an ad-

justable learning rate was first demonstrated in the context in
which such an adjustment is most crucial, i.e., in unstable envi-
ronments (1, 15, 17, 19, 20, 41, 42). For instance, Behrens and

colleagues (1) showed that the apparent learning rate increases
with environmental volatility, i.e., when changes in generative
characteristics are more frequent. This effect was paralleled by
stronger activity in the anterior cingulate cortex. Indeed, a full
hierarchical Bayesian analysis shows that, in the ideal observer,
higher estimates of volatility decrease the confidence in cur-
rent estimates (Fig. S2; Eq. 1). However, the present paper kept
volatility constant and capitalized on a different effect: confidence
should also decrease whenever an environmental change is sus-
pected, even if the frequency of such change (i.e., volatility) is kept
constant (19, 20). Accordingly, several studies have shown that a
drop in confidence boosts learning (15, 20) and may even reset the
learning process altogether (43, 44). The present study presents a
detailed analysis of the brain mechanisms underlying this rational
behavior, and leads to the conclusion that the human brain closely
approximates the confidence-weighted hierarchical learning algo-
rithm, which is optimal in the present circumstances. Because our
results demonstrate a strong influence of confidence on brain
activity and learning rates, they are incompatible with two general
classes of alternative models of the learning process: classical
learning algorithms with fixed learning rate, such as the Rescorla–
Wagner or delta-rule models (which cannot account for the
modulation of surprise signals by confidence), and nonhierarchical
learning models (which cannot account for the overarching effect
of change detection on both transition probabilities). Our findings
do not preclude that the brain may resort to these simpler alter-
natives in different situations, or within specific brain circuits.
However, they do show that the human brain performs better than
these classical learning algorithms predict, and indeed makes
near-optimal use of all of the available evidence when updating its
internal model. An important issue for future research is whether
such high-level performance is typical only of the adult educated
human brain performing an explicit learning task, as studied in the
present work, or whether confidence-weighted learning may also
be observed during implicit tasks, or in nonverbal organisms.

Implementation of Confidence Weighting in the Brain. Our results
suggest a mechanism by which adjustable learning rates may be
implemented in the brain. The brain appears to independently
track (i) the discrepancy between observations and predictions,
as manifested by pure surprise signals in the frontal eye field and
in the sensory cortices; and (ii) the confidence in these proba-
bilistic forecasts, as manifested by pure confidence signals in the
intraparietal sulcus. Both signals could then be combined into a
confidence-weighted surprise signal in the inferior frontal gyrus.
Anatomical segregation of different learning signals has already
been reported for simple prediction errors and weighted pre-
diction errors (45). Note that we focused primarily on the most
significant loci for surprise, confidence and update signals, but
our results suggest the existence of distributed brain networks
interacting during learning.
In our view, confidence may serve as a gate for incoming in-

formation. This mechanism is similar, in computational terms, to
the role traditionally ascribed to selective attention in the regu-
lation of learning. Following an earlier proposal by Dayan et al.
(4), information gating by a frontoparietal network could explain
why this network is found here during learning but also in complex
problem solving both in human and nonhuman primates (46, 47)
and in visuospatial attention (48). Indeed, these tasks involve a
similar notion of filtering that may be implemented by fronto-
parietal networks: at any given moment, some stimuli, features, or
thoughts, provided either simultaneously or sequentially, are se-
lected and given more weight for further processing.
It is interesting to note that the clusters identified here related

to confidence were mostly lateralized to the right hemisphere.
This finding accords well with the known lateralization of the
attention system (48). Such a lateralization is also reported in the
metacognition literature, where interindividual differences in
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metacognitive abilities correlate with differences in white matter
structure (49), fMRI signals (50), and even lesions (51) that are
mostly observed in the right hemisphere, although not always (52).
Beyond confidence weighting, our results illustrate another

property of optimal inference in the brain: its hierarchical nature.
Indeed, not only was there an overarching effect of change de-
tection on both transition probabilities, but confidence weighting
in the inferior frontal gyrus was specific to the context provided by
the preceding item. Contextual control of information could be a
distinctive feature of the lateral prefrontal cortex, as reported in
other studies (53, 54). Confidence weighting in this region was
controlled by a higher-order statistic: the rate of the overarching
changes. Other parts of the prefrontal cortex, such as the anterior
cingulate cortex (1) could be involved in monitoring this higher-
order statistic and its changes.
One limitation of our study is that the brain networks reported

here could be specific to our learning task (although we do show
that they are amodal, being similarly activated in distinct audi-
tory and visual sessions). However, other studies of hierarchical
probabilistic inference found similar networks despite important
differences in the task used. For instance, several such studies
involved a binary choice on every trial, which requires collapsing
the estimated probability distribution (1, 16, 17) or a single value
(15, 20). In some studies, the estimated probability was also
further used in the task for the valuation of outcomes (1, 20) or
to orient visuospatial attention (18, 21).
Although our study reveals the brain networks engaged in

hierarchical probabilistic inference, the details of their internal
computations remain open. Where is the learned probabilistic
model of sequences stored? Our results are certainly compatible
with a locus within the inferior frontal gyrus itself, but this locus
could also be a mere node in the information-processing pathway
that implements confidence-weighting of surprise. Furthermore,
what is the neural code underlying the type of sophisticated
Bayesian computations that the present ideal-observer model
requires? The brain may compute with full probability distribu-
tions (8, 11), or with scalar estimates of sufficient parameters as
in learning rules with adjustable learning rates. In the future, a
major step forward will be to investigate how confidence is
represented at the neuronal level, and thereby how it should
translate in fMRI signals. Our results do not speak directly to the
representational format by which confidence is encoded, but
merely to its use: they uncover the functional brain-scale con-
sequences of fluctuating confidence levels in the regulation of
learning. Future work should aim to clarify the format for these
probabilistic computations and their orchestration in large brain-
scale networks.

Materials and Methods
Participants and Task. The studywas approvedby the local Ethics Committee (CPP
08–021 Ile de France VII), and participants gave their informed written consent
before participating. Twenty-one participants (12 females), aged between
20 and 33 (mean 25.3, SEM: 0.73) were recruited by public advertisement.

The task was run using Octave (Version 3.4.2) and PsychToolBox (Version
3.0.11). The experiment was divided into one training session, performed
outside the scanner, and then four sessions performed in the MRI scanner.
Each session presented a sequence of 380 stimuli, denoted A and B, which
were perceived without ambiguity. In the scanner, A and B were either
auditory or visual stimuli presented on alternated sessions. The modality of
the first session was counterbalanced across participants. Due to technical
problems, one participant only had visual sessions and another participant
had three visual sessions and one auditory session (instead of two and two).

Fig. S1 depicts the task and timing. A fixation dot separated the visual
stimuli and remained present during the auditory blocks. The sequences
were generated according to the same process as in ref. 13. We summarize
the key points here. A and B stimuli were drawn randomly based on pre-
defined transition probabilities between stimuli, e.g., p(AjB) = 0.8 and
p(AjA) = 0.5. Transition probabilities were constant only for a limited
number of stimuli. The length of stable periods was itself randomly sampled
from a geometric distribution with average length of 75 stimuli, truncated

at 300 stimuli to avoid overly long stable periods. In each stable period,
transition probabilities were sampled independently and uniformly in the
0.1–0.9 interval, with the constraint that, for at least one of the two tran-
sition probabilities, the change in odd ratio p/(1 − p) between consecutive
stable periods should be at least fourfold. With these constraints, the actual
values covered the 2D range 0.1–0.9 × 0.1–0.9 uniformly. In particular, there
was no correlation between generative transition probabilities (Pearson
correlation ρ = 0.006), even when restricted to values that follow the first
change-point of a session (ρ = 0.015).

The sequence was paused every 15 stimuli on average, with a jitter of ± 1,
2, or 3 stimuli, to probe subjects about their inference. During the training
session, subjects were asked to report their estimate of the transition
probability, p(AjA) or p(AjB) depending on whether the stimulus preceding
the question was A or B, and confidence in this estimate. They indicated
their answers using continuous sliders. They were also asked to report when
they detected a change in the transition probability. In the MRI scanner,
subjects were only asked about their confidence, which they reported on a
four-step scale with dedicated push button (Fig. S1).

Before the experiment, subjects were fully informed about the task
structure, and notably the process generating the sequences. An interactive
display made intuitive the notions of randomness, transition probabilities,
and changes in these probabilities.

The Ideal Observer: An Optimal Bayesian Model. The ideal observer “inverts” the
generative process underlying the sequences: it optimally estimates the like-
lihood of the current hidden transition probabilities (θt) given the observations
received so far (y1:t). The observer assumes that these probabilities are volatile:
they can change from one stimulus to the next, with probability ν = 1/75
(which is the generative value). It also assumes that when a change occurs,
both transition probabilities are resampled randomly and independently from
a prior distribution (π) that is uniform here.

The generative process has one key property that makes the estimation
computationally tractable: the Markov property (55). The value of θ at time t
must be the same as at time t + 1 if no change occurred. In case a change
occurred, which happens with probability ν, the new value of θ is drawn
from the prior distribution π, and it determines the likelihood of the stimulus
observed at time t + 1. Therefore, to estimate θ at time t + 1, all that one
needs to know is π, ν, θ at time t, and the new observation yt+1. Crucially,
past observations are no longer needed. Thanks to this Markov property, θ
can be estimated iteratively, by going forward. At stimulus t + 1, the ideal
observer updates optimally its estimation using Bayes rule:

pðθt+1jy1:t+1, ν, πÞ∝pðyt+1jθt+1, ytÞ
Z

pðθt+1jθt , ν, πÞpðθt jy1:t , ν, πÞdθt . [1]

In Eq. 1, p(θt+1jθt, ν, π) captures that θ may change, with probability ν, and be
resampled from the prior distribution π. Eq. 1 provides the likelihood dis-
tribution, up to a scaling factor, over any value of θ. We computed this
distribution and the scaling factor by numeric integration on a grid.

The probability of the next stimulus can be read as the mean of this
likelihood distribution (25):

pðyt jy1:t−1, ν, πÞ=
Z

pðyt jθtÞ  pðθt jy1:t−1, ν, πÞdθt

  =
Z

θtpðθt jy1:t−1, ν, πÞdθt
. [2]

Confidence in the probability of the next stimulus can be read as log SD; that
is, the negative log of the SD of the distribution. Further details on the al-
gorithm and its implementation can be found in ref. 13.

For all analyses but one, the volatility ν was not learned by the ideal
observer, but fixed to the generative value. We relaxed this constraint only
once, to provide in Fig. S1B the trial-by-trial estimation of the posterior
probability distribution of the volatility (ν). To this end, we assumed that all
volatility levels are equally probable a priori, meaning that p(ν) is a constant
and thus that the posterior probability is proportional to the likelihood:

pðνjy1:t , πÞ∝pðy1:t jν, πÞ
∝ ∏

t

i=1
pðyi jy1:i−1, ν, πÞ . [3]

The second line is derived using the chain rule, and the Markov property of
the generative process highlighted above. The probabilities appearing in the
product can be computed with Eq. 2.
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Delta-Rule Model with Constant Weighting and Bayesian Model Comparison.
The delta rule with fixed learning rate α updates the transition probabilities
θt as follows (56):

8<
:

θt+1ðAjytÞ= θtðAjytÞ+ αð1− θtðAjytÞÞ  if yt+1 =A
θt+1ðAjytÞ= θtðAjytÞ− αθtðAjytÞ  if yt+1 =B
θt+1ðAj:ytÞ= θtðAj:ytÞ  for   the  stimulus  not
                                   observed   at   time  t

. [4]

Note that only one stimulus is observed at a given trial, and that the transition
probability from the stimulus that was not observed is kept unchanged. We
initialized the transition probabilities without bias (equal to 0.5).

First, we compared the best possible delta rule and the ideal observer.
Using a grid search (resolution 0.025) and the actual sequences presented to
subjects, we estimated the value of α that minimized the mean square error
between generative values and fitted probabilities. The optimal, best fitting
value was α = 0.10. Predictions from both models were then compared
against subjects’ reports.

We also compared the ideal observer and the delta rule, when its learning
rate was let free to fit the data of each participant. This introduces a free
parameter in one model; we therefore performed a Bayesian model com-
parison with balances optimally the goodness-of-fit and model complexity.
The likelihood of a subject’s probability estimate was computed with the
ideal observer and the delta-rule models, as one minus the distance between
the subject’s and model’s probability estimates. For the delta rule, this
likelihood depends on the value of α. We computed for each subject the
model evidence (i.e., the marginal likelihood):

pðr1:N jMÞ=
Z

pðαjMÞ∏
N

i
pðri jα,MÞdα, [5]

where M denotes the model and r1:N the subject’s probability estimates. We
considered a uniform prior probability for α in the delta-rule model; note
that there is no free parameter for the ideal observer. We used the random
effect analysis developed by Stephan et al. (57) and implemented in the SPM
toolbox (function spm_BMS.m) to compute the “exceedance probability” of
models, based on log model evidence values in each subject. This statistic
quantifies the belief that a given model is more likely than the other in the
general population, based on the group data.

MRI Data Collection and Preprocessing. MRI data were acquired on a 3 Tesla
scanner (Siemens Trio) with a 32-channel coil. Functional echo planar images (EPI)
were acquired with a T2*-weighted contrast. The first four scans of each session
were discarded to allow for equilibration effects. We used a multiband acquisition
(58, 59), with acceleration factor = 3, GRAPPA 2, TE = 30.4 ms, flip angle = 74°,
84 interleaved slices, to cover the whole brain with a repetition time of 2 s and an
isotropic 1.5-mm resolution. The encoding phase direction was from posterior to
anterior (occipital to frontal) within sessions. To estimate distortions, we acquired
two slices with opposite phase encoding direction: one slice in the anterior to
posterior direction (AP) and one slice in the other direction (PA), with TR =
7.860ms, TE= 54ms. Structural T1-weighted imageswere also acquired (1.0×1.0 ×
1.1 mm, 160 slices) and coregistered with the mean EPI for each subject.

All preprocessing steps (expect the TOPUP correction) were performed using
the SPM12 software (Wellcome Trust Center for Neuroimaging, University
College London). EPIs were corrected for slice timing and realigned, using
affine rigid body transformations, on the AP slice. The multiband acquisition
produced distortions in particular in the occipital and frontopolar regions,
which we corrected by estimating the susceptibility field with the AP/PA slices
and unwrapping the EPIs using the TOPUP software (FSL, fMRIB).

Anatomical images were segmented into gray matter, white matter, and
cerebrospinal fluid, bias corrected and spatially normalized to the standard SPM
template in the Montreal Neurological Institute (MNI) space. The segmented,
normalized anatomy of the first subject served to render group-level statistical
maps on a representative cortical surface for display purpose. EPIs were spatially
normalized using the same transformation as for anatomical images and
smoothed with a 5-mm full width at half maximum (FWHM) Gaussian kernel.
MRI images showed focal folding artifacts in the cerebellum of several subjects;
data from this anatomical region were therefore excluded from further analysis.

MRI Data Analysis. Statistical analyses of MRI data were performed using
SPM12 and general linear models (GLM) that included realignment param-
eters as covariates of no interest. The other regressors were convolved with
the canonical hemodynamic response function (HRF) and its first temporal
derivative to allow for temporal adjustment. GLMs were estimated using
restricted maximum likelihood (the classical estimator in SPM). Individual
coefficient maps corresponding to regressors convolved with the HRF were

smoothedwith a 6-mmFWHMGaussiankernel andmasked for graymatter and
were taken for the group level F contrasts (GLM4) and T contrasts (otherwise).
Gaussian random field theory was used to compute cluster statistics (with a
cluster-defining threshold of P < 0.001, unless stated otherwise) and peak
statistics, and their significance levels corrected for multiple comparison over
the entire brain with family-wise error (FWE). We report results at a cluster-
level threshold pFWE < 0.05, unless stated otherwise.

GLM1–3 included one regressor modeling the onsets of stimuli, and an-
other for parametric modulation by the optimal estimation update induced
by the current observation (GLM1) or the optimal confidence in the transi-
tion probability leading to the current observation (GLM2) or the optimal
surprise elicited by the current observation (GLM3); they also included re-
gressors modeling the onsets of motor responses, their modulation by re-
action times and subjective confidence level.

GLM4 was used for the analysis of variance. It comprised 12 categorical re-
gressors of stimulus onsets, corresponding to combinations of three pre-
dictability levels, two confidence levels, and two surprise levels, all computed
from the ideal observer. Predictability levels corresponded to log2(p)< 0.816 and
log2(p) > 0.953, these values were determined to form equally filled bins of
trials across subjects. Confidence levels were determined by median split of
trials within each predictability level, across all subjects. Surprise levels corre-
sponded to expected (P > 0.5) and unexpected (P < 0.5) outcomes. The GLM
also included as covariates, regressors for the onset of the first stimulus, ques-
tions onsets, and response onsets (and the modulation by reaction times and
confidence levels). Individual categorical regression maps entered a group-level
ANOVA, with subjects as independent factors, and predictability, surprise,
confidence, and predictability x surprise (the interaction) levels as dependent
factors. F contrasts for main effects of confidence and surprise are shown in
Figs. 3A and 4A, respectively. The same ANOVA without the predictability x
surprise interaction yields almost the exact same maps as Figs. 3A and 4A.

GLM5–7 were used to estimate fMRI signals in six bins of trials defined
based on the ideal-observer confidence (GLM5), surprise (GLM6), and esti-
mation update (GLM7). They also included the response onsets, and their
modulation by the reaction times and subjective confidence.

GLM8 modeled the functional connectivity of the intraparietal sulcus and
frontal eye field. Time series of fMRI signals in each region of interest (ROI) were
extracted as the first eigenvariate and adjusted for linear effects of no interest
(movement parameters, the onsets of stimuli, the onset of questions, the onset of
responses, and their modulation by reaction times). The GLM included the fMRI
time series from each ROI and the white matter, gray matter, and cerebrospinal
fluid signals, defined with the standard SPM templates, to capture global
physiological variations. The conjunction of functional connectivity profiles
identified voxels showing positive correlations with both seed regions at a
threshold pFWE < 0.05.

GLM9 comprised one regressor modeling the onsets of stimuli, and its
modulation by the relevant confidence (i.e., confidence associated to the
transition probability related to the identity of the preceding stimulus) and
one regressor modeling the onsets of stimuli, and its modulation by the ir-
relevant confidence (i.e., confidence associated to the transition probability
related to the stimulus not observed at the preceding trial). The same onset
regressor is included twice but with different parametric modulations, so that
the parametric modulations are not serially orthogonalized by SPM (which
could have favored one over the other).

GLM10 focused on the observations preceding (“pre”) and following
(“post”) a streak of at least three repeated stimuli. These stimuli were
modeled with four categorical regressors, distinguishing streaks within
which confidence in the observed succession type always increased, and the
others (all based on the ideal observer). To avoid potential confounds, we
also included: a regressor modeling the onsets of all stimuli not modeled by
the four categorical regressors, its modulation by the optimal confidence
level, the onsets of questions and the onsets of responses, and their mod-
ulation by reaction times and subjective confidence levels.

GLM11 included one regressor modeling the onsets of stimuli and its
modulation by the optimal confidence level; one regressormodeling the onsets
of stimuli and its modulation by the optimal surprise level. Optimal confidence
and surprise levels were not orthogonalizedwith respect to one another. It also
included regressors modeling the onsets of motor responses, and their mod-
ulation by reaction times and subjective confidence level.
Definition of ROIs. For the regression analyses and comparison between mo-
dalities with a Bayesian t test, the clusters were defined with suprathreshold
voxels as they appear in Fig. 3A for confidence regions (ANOVA analysis),
Fig. 4A for surprise regions (ANOVA analysis), and as the conjunction of both
main effects at P < 0.005 for the update region. For generating the plots
Figs. 3 B and C, 4 B and C, and 5 B and C with cross-validation between
sensory modalities, we took the 100 most significant voxels (in one modality)
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within broadly defined anatomical regions from the Anatomy toolbox (60).
More precisely, we used the atlas MacroLabel.img and the label file Macro.
mat that can be found in the SPM12 software. All regions were defined
bilaterally; we report the region names as they appear in the atlas. For Fig. 3
B and C and region intraparietal sulcus, we took the superior and inferior
parietal lobules, the postcentral gyri; for the region inferior temporal gyrus,
we took the inferior temporal and occipital gyri. For Fig. 4 B and C and re-
gion superior temporal sulcus, we took the superior and middle temporal
gyri and the medial temporal pole; for the frontal eye field we took the pre-
and postcentral gyri. For tests about hierarchical processing in the inferior/
middle frontal gyrus, we took the suprathreshold voxels of the cluster at
that location as it appears in Fig. 5A in the conjunction of functional
connectivity analyses.
Availability of data. Nonthresholded whole brain maps are available for
display and download on the public repository neurovault.org/collections/
1181/.

Bayesian t Test. Bayesian t tests allow one to assess the significance of a mean
being zero or different from zero. We computed paired differences at the
subject level of the coefficients obtained from regression of fMRI signals on
the ideal-observer confidence (or its surprise, its estimation update) in the two
sensory modalities. A zero mean would denote no difference between mo-
dalities. We computed the Bayes factor in favor of zero mean using the Bayes
Factor R package described in ref. 29. Note that the maximum possible value in
favor of the null hypothesis (mean being zero) is 4.3 with our group size.
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