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Abstract
Learning in a stochastic environment consists of estimating a model from a limited amount

of noisy data, and is therefore inherently uncertain. However, many classical models reduce

the learning process to the updating of parameter estimates and neglect the fact that learn-

ing is also frequently accompanied by a variable “feeling of knowing” or confidence. The

characteristics and the origin of these subjective confidence estimates thus remain largely

unknown. Here we investigate whether, during learning, humans not only infer a model of

their environment, but also derive an accurate sense of confidence from their inferences. In

our experiment, humans estimated the transition probabilities between two visual or audito-

ry stimuli in a changing environment, and reported their mean estimate and their confidence

in this report. To formalize the link between both kinds of estimate and assess their accura-

cy in comparison to a normative reference, we derive the optimal inference strategy for our

task. Our results indicate that subjects accurately track the likelihood that their inferences

are correct. Learning and estimating confidence in what has been learned appear to be two

intimately related abilities, suggesting that they arise from a single inference process. We

show that human performance matches several properties of the optimal probabilistic infer-

ence. In particular, subjective confidence is impacted by environmental uncertainty, both at

the first level (uncertainty in stimulus occurrence given the inferred stochastic characteris-

tics) and at the second level (uncertainty due to unexpected changes in these stochastic

characteristics). Confidence also increases appropriately with the number of observations

within stable periods. Our results support the idea that humans possess a quantitative

sense of confidence in their inferences about abstract non-sensory parameters of the envi-

ronment. This ability cannot be reduced to simple heuristics; it seems instead a core proper-

ty of the learning process.

Author Summary

Learning is often accompanied by a “feeling of knowing”, a growing sense of confidence in
having acquired the relevant information. Here, we formalize this introspective ability,
and we evaluate its accuracy and its flexibility in the face of environmental changes that
impose a revision of one’s mental model. We evaluate the hypothesis that the brain acts as
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a statistician that accurately tracks not only the most likely state of the environment, but
also the uncertainty associated with its own inferences. We show that subjective confi-
dence ratings varied across successive observations in tight parallel with a mathematical
model of an ideal observer performing the optimal inference. Our results suggest that, dur-
ing learning, the brain constantly keeps track of its own uncertainty, and that subjective
confidence may derive from the learning process itself. Our results therefore suggest that
subjective confidence, although currently under-explored, could provide key data to better
understand learning.

Introduction
Many animals, human adults and even human babies possess remarkable skills to cope with
the pervasive uncertainty in their environment [1,2]. Learning processes are attuned to uncer-
tainty. They enable one to capture the stochastic characteristics of the environment, as when
one learns how often a probabilistic cue leads to a reward [3]. The environmental uncertainty
actually occurs at several nested levels, as the stochastic characteristics themselves may also
vary suddenly and without warning. The human learning is sophisticated enough to quickly
adapt to such higher-order changes: the probabilities and characteristics that subjects learn are
adequately fitted by statistical models [4–7]. However, in such tasks and environments flooded
with uncertainty, subjects not only estimate the characteristics of the outside world, they also
evaluate the degree of certainty that their estimates are accurate. This more subjective aspect of
learning, the “feeling-of-knowing”, has received little attention so far. Here, we attempt to pro-
vide a formal account of this feeling and its origin.

The feeling-of-knowing, or the sense of confidence, has been primarily demonstrated in
memorization tasks [8] and in perceptual decision-making tasks in humans, monkeys and ro-
dents [9–11]. By contrast, evidence from probabilistic learning tasks is currently limited. Many
learning models actually simply do not consider feeling-of-knowing as a component of the
learning process. Most share a common logic, according to which each parameter of the envi-
ronment is represented at any given moment by a single numerical estimate and is continu-
ously updated based on new observations. Rescorla and Wagner suggested a simple update
rule: the point estimate should be shifted in proportion of the prediction error, i.e. the extent to
which the estimate deviates from the new observation [12]. Such models therefore only provide
point estimates, and they are devoid of any sense of uncertainty. It has been recognized more
recently that the learning rate could actually be modulated as a function of an internal estimate
of the environmental uncertainty, e.g. volatility [4,6] and that learning could even be fully reset
when an environmental change is detected [7]. However, the normative Bayesian approach of
learning suggests that there is a principled distinction between this environmental uncertainty
and the uncertainty in the internal knowledge of what has been learned [13]. We term this sec-
ond kind of uncertainty, the 'inferential uncertainty'. Despite evidence that the inferential un-
certainty could affect learning in humans [5], how humans perceive this uncertainty remains
largely unexplored. Here, we suggest that the feeling-of-knowing, or subjective confidence, cor-
responds formally to the inferential uncertainty and that it derives from the inference that un-
derpins the learning process itself.

Indeed, the fact that humans have distinct degrees in their feeling-of-knowing suggests that
they do not keep track of point estimates of environmental parameters, but instead of a set of
estimates, each with its own degree of plausibility. Supporting this idea, some models assume
that the brain infers full probability distributions [14]. The hypothesis was initially introduced
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for sensory representations, but it may be extended to higher-level tasks [15–17], possibly in-
cluding the learning of any numerical parameter. Following this hypothesis, learning in an un-
certain world would be underpinned by a probabilistic inference that provides, not a single
parameter value, but a distribution of possible values—and therefore affords an estimation of
“feeling-of-knowing” based on the concentration of this inferred distribution onto a single
value [18,19].

To test this idea, we examined whether humans can provide not only accurate estimates of
environmental probabilities, but also accurate confidence ratings in those estimates. Such a
finding would imply that the brain not only computes a point estimate, but also, at a minimum,
the uncertainty in inferring its value, and perhaps even its full distribution. We designed a chal-
lenging probabilistic learning task with two nested levels of environmental uncertainty. Fig 1
shows how we generated the random sequences of visual or auditory stimuli and Fig 2A shows
an example session. First, at any given moment, the sequence depends on two parameters: P(A|
B) and P(B|A), i.e. the transition probabilities between stimuli A and B. Second, these transition
probabilities themselves remain stable only for a limited time, then change abruptly to a new
random value, thus delineating ‘chunks’ in the sequence separated by ‘jumps’. These jumps
were aimed at inducing fluctuations in the inferential uncertainty over time. Subjects were
asked to detect the jumps and, occasionally, to report their estimate of the transition probability
to the next stimulus and their confidence in this estimate.

Fig 1. Behavioral task for the joint assessment of probability estimates and confidence. Subjects were
presented with series of auditory or visual stimuli (denoted A and B) and were occasionally interrupted by
questions asking for their estimate of transition probability (e.g. B!A) and their confidence in this judgment.
The top graph illustrates the characteristics of the hidden process generating the sequence of stimuli in an
example session: transition probabilities changed 5 times at random 'Jump' points, delimiting 6 chunks of
variable length. The middle section shows a portion of the generated sequence. The actual stimuli are
illustrated by gray screen-shots: in different sessions, stimuli were either visual (a line of dots tilted clockwise
or anti-clockwise) or auditory (vowels 'A' or 'O' played through a loudspeaker). The sequence of stimuli was
interrupted every 15 ± 3 stimuli (see red dots). At this moment, the previous stimulus (here B) was displayed
and subjects indicated with a slider their estimate of the probability for the next stimulus to be A or B. In the
actual display, A and B were replaced by the corresponding visual symbols or vowels. Once subjects had
validated their probability estimate, they were asked to rate with a slider how confident they were in their
probability estimate. Subjects also had to report on-line when they detected jumps: they could stop the
sequence at any time by pressing a key to indicate how long ago the jump had supposedly occurred (see the
bottom right-hand screen shot). After such reports, the stimulus sequence was resumed without feedback.

doi:10.1371/journal.pcbi.1004305.g001

Confidence and Probabilistic Reasoning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004305 June 15, 2015 3 / 25



Subjective estimates of transition probabilities can be compared to the true generative prob-
abilities. However, this comparison is not completely fair because the generative parameters
are not available directly to the subject, but can only be inferred from the specific stimuli re-
ceived. Furthermore, confidence is simply not a characteristic of the generative process, but

Fig 2. Example of the time course of a full session. (A) Each dot represents a stimulus in the sequence (dark blue = A, light blue = B). The position on the
y-axis shows the true generative probability of having the stimulus A at a given trial, which is conditional on the preceding stimulus. The 5 changes in
transition probabilities are highlighted in gray. The red dots show the subject's probability estimates that the next stimulus is A (the answer to Question 1 in
Fig 1). The black lines facilitate visual comparison between the subject's estimates and the corresponding generative values. (B) Temporal evolution of the
distribution of transition probabilities estimated by the Ideal Observer. The distribution is updated at each observation, but it is plotted only every 30 stimuli for
illustration purposes. The distribution is two-dimensional: p(A|A) and p(A|B) can be read as marginal distributions along the vertical and horizontal axes. Point
estimates and the related confidence levels can be read respectively as the mean and negative log variance. (C) Temporal evolution of Ideal Observer point
estimates of the transition probabilities. The transition probabilities estimated by the Ideal Observer sometimes differ substantially from the generative ones,
and better account for the subject's estimates, e.g. around stimulus 240. (D) Temporal evolution of the Ideal Observer confidence in the estimated transition
probabilities. Confidence levels from the Ideal Observer and the subject cannot be compared directly: subjective reports were made on a qualitative bounded
scale (Question 2 in Fig 1) whereas the Ideal Observer confidence in principle is not bounded. For illustration purpose, subjective confidence levels (red dots)
were overlaid after adjusting their mean and variance to match those of the Ideal Observer. Several features are noteworthy: drops of confidence levels after
suspicion of jumps (e.g. around stimulus 50) and a general trend for confidence to increase with the number of observations within a chunk (e.g. from
stimulus 1 to 50). (E) Evolution of the posterior probability that a jump occurred around (±5) each stimulus of the observed sequence, as estimated by the
Ideal Observer. Hotter colors denote higher probabilities. This estimation is revised after each new observation. The successive estimations result in the
succession of longer and longer rows as more and more stimuli are observed in the sequence. Jumps reported by the subject are overlaid as white crosses.
For instance, at stimulus 50, the subject pressed the detection key to report a jump located at stimulus 30. This detection was actually a false alarm with
respect to the generative jumps, but the Ideal Observer also estimated that a jump was likely at this moment.

doi:10.1371/journal.pcbi.1004305.g002
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solely of the inference process. This highlights the need to derive both the estimates of transi-
tion probabilities and confidence levels in a principled manner from the inference itself. We
therefore compare subjects' answers with the inference generated by an Ideal Observer en-
dowed with the mathematically optimal inference process. This normative solution formalizes
the link between the inference on the one hand, and the probability estimates and confidence
levels on the other. Indeed, the optimal inference returns a distribution of likelihood over the
transition probabilities, given the specific stimuli received. Both a point estimate and a confi-
dence level in this estimate can be derived from this distribution. The distribution can be aver-
aged to obtain a single best estimate of the transition probability. Confidence should reflect
how precise this estimate is: whether the distribution is spread (low confidence) or concentrat-
ed (high confidence) around this estimate. We thus formalized confidence as the precision of
the distribution (its inverse variance), as previously suggested [19].

The Ideal Observer being normative, it provides a reference to assess the accuracy of the sin-
gle point estimates and the fluctuations in confidence levels reported by subjects. In addition,
since the Ideal Observer formalizes how single point estimates and confidence levels should de-
rive from the inference process, it affords a series of predictions serving as tests of whether the
reported estimates and confidence levels indeed derive from a common inference. And last, if
confidence levels derive from an accurate inference, then they should reveal several specific
properties of this efficient inference system.

Results

Subjects accurately detect changes in the generative process
We first asked whether subjects could detect when the characteristics of the sequence changed
suddenly. We assessed the accuracy of their detection in comparison to the actual position of
jumps with a Receiver Operative Characteristic analysis. Subjects reported more jumps when
transition probabilities were indeed changing (hit) than when they were stable (false alarm):
the difference of hit minus false alarm rates was 0.23 (standard error = ± 0.03; t-test against 0:
p<10–5). To show that this difference is positive not because of chance, but instead because the
detection is based on the actual evidence provided by the observed sequence, we used a more
conservative test. Comparison with surrogate data indicates that the observed difference be-
tween the hit and false alarm rates is significantly higher than expected from a random detec-
tion process (p<0.01, see Methods).

Although the detection of jumps by subjects is better than chance, it is not perfect: some
jumps were missed, and some others falsely reported. However, some of these errors precisely
further demonstrate that subjects based their detection on the actual level of evidence received.
Indeed, in principle, not all jumps can be detected equally easily: for instance, when changes in
transition probabilities are small and frequent, the sequence may not provide enough evidence
for the presence of each jump. The Ideal Observer provides a principled way of quantifying the
likelihood of a jump at each position in the observed sequence. We tested whether subjects are
sensitive to such fluctuations in evidence by analyzing their errors (misses and false alarms)
from the Ideal Observer perspective. A significant difference in jump likelihood at the time of
the subjects' Hits vs. Misses (p = 0.003) indicates that subjects were more likely to miss a jump
when the apparent jump likelihood was misleadingly low. Similarly, a difference between False
Alarm vs. Correct Rejection (p = 0.001) reveals that the subjects' false alarms were more likely
to occur when jump likelihood was high (see Fig 3).

Altogether, these results indicate that subjects partially managed to track the jumps in the
objective generative process, and their responses give evidence of an efficient statistical use of
the available information.

Confidence and Probabilistic Reasoning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004305 June 15, 2015 5 / 25



The estimates of transition probabilities are accurate despite the
instability of the generative process
We next examined whether subjects could estimate the characteristics of the sequence despite
their unpredictable changes in time. The sequence was paused every 12 to 18 stimuli and par-
ticipants were asked to report the probability that the next stimulus would be A or B. Subjects’
responses were correlated across trials with the true generative probabilities (t17 = 8.8, p<10–7),
indicating that subjects' probability estimates, although imperfect, consistently followed the
generative probabilities. The deviations could reflect that the transition probabilities are in-
ferred from the specific and limited amount of stimuli received. We therefore compared the
subjects’ estimates of transition probabilities with the optimal values that could be inferred
from the data, i.e. the parameter estimates inferred by the Ideal Observer. The subjects' re-
sponses were tightly correlated with the optimally inferred probabilities (t17 = 8.5, p<10–6, see
Fig 4A). When both predictors were included in a multiple linear regression, significantly
higher regression weights were found for the optimal estimates than for the generative values
(paired difference of weights: t17 = 4.6, p<10–3).

Given that the Ideal Observer and the subjects are both asked to estimate a probability, we
can not only test whether their estimates are correlated, but also whether they are identical.
Fig 4A reveals a remarkable match, although somehow imperfect: the observed slope is actually
slightly below the identity. This deviation could reflect the distortion of subjective probabilities
classically reported [20]. However, this pattern could also reflect differences in accuracy across
trials and subjects. Indeed, the average of ideal estimates should be perfectly aligned on the di-
agonal, but the average of random estimates would form a flat line at 0.5; therefore a mixture
of both should result in an intermediate slope. Supporting this view, the inspection of individu-
al data revealed that the regression slopes were significantly larger than 0 in most subjects
(p>0.009 for 16 out of 18 subjects), but they were significantly equal to 1 in only 3 subjects (in
these subjects, Bayes factor> 9, see [21] for the computation of this 'Bayesian t-test').

Together, these results show that subjects were able to infer the transition probabilities gen-
erating the observed sequence of stimuli despite their sudden changes in time. Not surprisingly,
subjects were outperformed by the Ideal Observer endowed with the best inference scheme.

Fig 3. Accuracy of the subjects' jump detections. Subjects’ jump detections followed the fluctuations in
jump likelihood provided by the sequence of stimuli. Each trial was sorted into four categories (hit, miss,
correct rejection and false alarm), based on the comparison between the subjective jump detection and the
actual position of jumps in the sequence. This sorting was used as a reference (trial 0) to examine the
fluctuations in the posterior jump probability estimated by the Ideal Observer over the preceding trials. P-
values correspond to two-tailed paired t-tests at trial 0. Solid lines and error shadings correspond to
mean ± sem over subjects.

doi:10.1371/journal.pcbi.1004305.g003
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However, the comparison to the optimum reveals a remarkable accuracy of the subjects'
estimates.

Confidence judgments fluctuate accurately
Subjects were also asked to rate their confidence in their probability estimates. They provided
confidence ratings on a bounded qualitative continuum (see Fig 1). The absolute position of a
given 'feeling-of-knowing' on this continuum is a matter of subjective representation, not a
property of the inference process. However, if the confidence judgment reflects the certainty of
the inferred probability estimate, then distinct confidence ratings should correspond systemati-
cally to distinct levels of evidence. Therefore, we assessed the accuracy of the fluctuations in
confidence judgment with a regression against a principled measure of the level of evidence.
Again, we used the Ideal Observer to this end. Intuitively, confidence should be high if and
only if the estimated distribution of transition probability is concentrated on the reported
value. This corresponds formally to the notion of precision, the inverse variance of the estimat-
ed distribution. Thus, we defined the Ideal Observer confidence as the negative log of the vari-
ance of the distribution. We used the log scale because it is the natural space for variance [22].
Note that the log variance and log standard deviation are strictly proportional, therefore the
choice of one or the other provides the exact same significance levels in the regression analyses.
We found a strong positive correlation between this principled measure of confidence and the
subjective confidence (t17 = 3.94, p = 0.001; see Fig 4B).

In addition, given that the experiment presented visual and auditory stimuli in separate
blocks, we checked the robustness of the previous results by testing each modality separately.
The regression of subjective estimates against the Ideal Observer was significant within each
modality (for probability estimates: both p<10–5; for confidence: both p<0.004). Interestingly,
these regression weights were positively correlated between modalities (for probability esti-
mates, Pearson ρ16: 0.55, p = 0.017, for confidence ρ16: 0.59, p = 0.010), supporting the idea
that inferential capabilities vary between observers and are not tied to one modality but instead
characterize a supramodal level of processing.

Fig 4. Accuracy of probability estimates and confidence. (A) Estimated probability that the next stimulus
is A plotted against the Ideal Observer estimate. These probability estimates correspond to the transition
probabilities p(A|A) or p(A|B), depending on whether the previous stimulus was A or B; both are pooled
together. The dotted line corresponds to the identity. Error-bars and dots are the 75%, 50% and 25%
percentiles across subjects. (B) Subjective confidence plotted against the Ideal Observer confidence. The
steps of the subjective confidence scale were coded such that 0 corresponds to 'Not at all sure' and 1 to
'completely sure'. The Ideal Observer confidence is summarized as the log precision,-log(σ2), with σ² the
variance of the estimated transition probability distribution. The fitted line is the average of the linear fits
performed at the subject level. In A & B, equally-filled data bins were formed along the horizontal axis
because the sequence of stimuli (and hence, estimates that can be inferred) differed across participants. Bins
are used only for visualization and not for data analysis.

doi:10.1371/journal.pcbi.1004305.g004
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Another way to evaluate the accuracy of confidence judgments is to ask whether they pre-
dict performance. Computing confidence can be useful when it serves as a proxy for the accura-
cy of performance—high subjective confidence should predict an objectively low rate of errors.
We verified that this is true for the normative Ideal Observer: across trials, the magnitude of
the error separating the Ideal Observer estimates from the true generative probabilities was
negatively correlated with the Ideal Observer confidence (t17 = -8.67, p<10–6). Crucially, a sim-
ilar relationship linked the subjects’ confidence with the objective error in their probability esti-
mates (t17 = -2.27 p = 0.037). We used simulations to check that this link derives from the
normative nature of the subjects' estimates and not from biases in their probability estimates or
confidence ratings. We used three separate simulations to reassign randomly one variable
(probability estimates, confidence ratings or true generative probabilities), while keeping the
two others unaffected. Each simulation disrupts specific links between the generative probabili-
ties and the subjective estimates to capture potential response biases. The simulations showed
that the negative relationship observed between confidence and objective error is unlikely to
emerge by chance on the sole basis of response biases (all p<0.019).

Altogether, the findings indicate that confidence estimation is accurate: it relates linearly to
the principled inference made by the Ideal Observer, and it is also correlated with
objective performance.

Links between probability estimates and confidence ratings suggesting
a common inference process
Our hypothesis is that estimates of transition probabilities and confidence ratings jointly derive
from a single inference process. In other words, there is a common substrate for both estimates.
An alternative hypothesis would be that confidence ratings are derived from the estimates of
transition probabilities. Our hypothesis leads to several testable predictions that also rule out
the alternative.

We predict that probability estimates and confidence ratings should be partly related: when
information is scarce, the optimal default estimate for transition probability is around 0.5 and
confidence is low. Extreme estimates (toward 0 or 1) are achieved only when there is substan-
tial evidence and hence when confidence is high. Confidence should thus increase when the
probability estimates depart from 0.5: this is a fundamental and inescapable property of proba-
bilistic reasoning. The Ideal Observer estimates robustly showed this U-shape pattern (qua-
dratic weight: t17 = 16.1, p<10–11), and so did our subjects (t17 = 9.77, p<10–7). This effect was
actually significant within every subject (all p<0.0025). However, we also predict that this U-
shape relationship should be only partial, since in principle, one may be more or less confident
in any probability estimate, depending on the number of observations that support it. To illus-
trate this property, we binned the participants' confidence ratings by their subjective probabili-
ty estimates, and within each bin, we then sorted trials by high and low Ideal Observer
confidence with a median split (Fig 5A). Subjective confidence reflected the Ideal Observer
confidence on top of the general U-shape pattern. To quantify this additional effect, we per-
formed a multiple regression of subjective confidence, without binning, including as predictors
both the subject's U-shape transformed probability estimates and the optimal confidence. The
data revealed that the Ideal Observer confidence indeed captures aspects of subjective confi-
dence (t17 = 3.12, p = 0.006) that are not accounted for solely by a quadratic effect of
probability estimates.

In our experiment, subjects reported their probability and confidence estimates sequentially.
We therefore ran a control experiment to check that the nested relationship between probabili-
ty estimates and confidence ratings (as shown in Fig 5A) is a general property of human
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reasoning which cannot be attributed to sequential reporting. New subjects performed a
variant of the task in which the first question about the probability estimate was omitted
(see Methods). Subjective confidence rating still followed the Ideal Observer confidence (t20 =
7.00, p<10–5). As expected from a probabilistic inference, subjective confidence also showed a
quadratic effect of the optimally inferred probability (t20 = 6.97, p<10–5). In addition, subjec-
tive confidence still co-varied with the Ideal Observer confidence on top of the quadratic
effect of the optimal probability (multiple regression: t20 = 3.01, p = 0.007, t20 = 5.13, p<10–5

respectively).
Our main experiment enables to further test the predictions of our hypothesis concerning

the common origin of probability and confidence judgments. If probability estimates and con-
fidence ratings both derive from the same inference, then we also expect that subjects who per-
form the inference accurately should perform accurately in both estimating probabilities and
rating confidence. We defined how accurate subjects were in estimating probabilities and rat-
ing confidence with respect to the Ideal Observer. In both cases, accuracy was summarized as
the correlation coefficient between the subjects’ response and the optimal response. We found
a positive correlation across subjects between the accuracies of probability estimates and confi-
dence ratings (Pearson ρ16 = 0.67, p = 0.002, Fig 5B). We also tested whether this correlation
was significant within subjects. On each trial, we computed the accuracy of probability

Fig 5. Evidence that probability estimates and confidence derive from a single process. (A) Subjective
confidence is higher for extreme estimates of transition probabilities. The fitted lines correspond to the
average of the quadratic fits performed at the subject level: confidence ~ constant + (probability estimate-
0.5)2. Trials were sorted by subjective probability estimates and, within each bin, into high and low Ideal
Observer confidence according to a median split. Equally-filled bins were used for data visualization, not for
data analysis. (B) The accuracies of probability estimates and confidence ratings are correlated across
subjects. The accuracy of probability estimates was computed per subject as the correlation (across trials) of
the subject's and the Ideal Observer's estimates. The same logic was used for confidence. One dot
corresponds to one subject. (C) The link between probability estimates and confidence ratings goes beyond
any mapping. Within each subject, we computed the correlation across trials between accuracies in
probability estimates and confidence ratings. The accuracy of probability estimates was computed at the trial
level as the distance between the subject's and the Ideal Observer's estimates. The same logic was used for
confidence. The observed results are contrasted to two ways of shuffling the data (p-values are from one-
tailed t-test, see Methods).

doi:10.1371/journal.pcbi.1004305.g005
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estimates (or confidence ratings) as the distance between the Ideal Observer and the subject's
responses (see Methods). Again, the two accuracies were significantly correlated across trials
(t17 = 3.27, p = 0.005). Note that these correlations are also consistent with the alternative hy-
pothesis that confidence ratings are derived from probability estimates. However, the within-
subject data disprove this alternative. Indeed, we controlled that the within-subject correlation
we found is not confounded by an effect of an estimation-to-confidence mapping (be it qua-
dratic or not) by comparison with two shuffled data sets (see Methods and Fig 5C).

Altogether, these results show that probability estimates and confidence ratings are likely to
derive from a common inference. In particular, the accurate confidence ratings reflect addi-
tional features of the inference that are not reflected in the probability estimates.

Fluctuations in confidence levels reflect the accuracy of the inference on
a trial-by-trial basis
We now examine whether the data provide cues as to how confidence is computed. The infer-
ence should use the incoming data to constantly update an internal model of the hidden pro-
cess that could have generated the observed sequence of stimuli. There are normative
principles ruling this update process. Therefore, any efficient algorithm should have specific
characteristics. We show that confidence ratings reveal three properties expected from an effi-
cient information processing system.

First, whenever the probability estimates change a lot, indicating a severe revision of the in-
ternal model (for instance, after a jump), then confidence should be low; conversely, when esti-
mates are stable, confidence in the seemingly 'good' value should be high. Questions being
asked only occasionally to the subjects, the subjective model revision cannot be estimated from
their reports. Instead, we estimated the degree of model revision from the Ideal Observer. This
ensures in addition that subjective confidence is regressed against a normative estimate in
every subject. We observed the predicted negative correlation between subjective confidence
and the amount of revision in the probability estimates relative to the previous observation
(t17 = 3.67, p = 0.002; Fig 6A), indicating that subjective confidence tracks the revision of an
internal model.

Second, the number of data samples accumulated since the last detected jump should affect
the level of confidence: more samples should lead to more precise estimations. We counted the
cumulative number of samples between the optimally detected jumps. As predicted, we ob-
served a positive correlation between subjective confidence and the number of samples since
the last jump (t17 = 3.51, p = 0.003; Fig 6B), indicating that subjective confidence increases with
the accumulation of evidence. Again, using the Ideal Observer to estimate the number of sam-
ples in the current chunk provides a normative comparison across subjects. Instead, using the
subjects' jump detection entangles several factors, e.g. whether subjects are accurate and con-
servative in reporting jumps. The same analysis based on the subjects' jump detection however
also revealed a positive correlation (t17 = 2.26, p = 0.037).

Third, confidence should be lower when the estimation of the model is made more difficult
by decreasing the predictability of the sequence. Formally, the unpredictability of a sequence is
characterized within a chunk by the entropy of the generative transition probabilities: it is max-
imal when the transition probability is 0.5 and it decreases as the transition probability goes to-
ward 0 or 1. Note that we quantify here the generative environmental uncertainty, not its
subjective estimate (as in Fig 5A). We therefore examined if confidence was negatively correlat-
ed with this entropy. As predicted, a negative correlation was observed (t17 = -5.58, p<10–4; Fig
6C). As a control, we examined if a similar effect occurred when computing the entropy of the
other, currently irrelevant transition probability (transition from the stimulus which was not
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presented on the previous trial). No significant effect was found (t17 = -0.76, p = 0.50; Fig 6D).
The results therefore indicate that subjects keep a distinct record of the confidence attached to
each of the two transition probabilities that they are asked to estimate.

We checked that the results presented in Fig 6 survive correction for multiple comparisons
and partial correlations by including the four regressors into a multiple regression of confi-
dence levels. The three factors of interest were still significant (amount of model revision
needed: p = 0.006; number of samples received: p = 0.042; entropy of the relevant transition:
p = 10–5, and not the irrelevant one: p = 0.3). We also confirmed that these results coincide
with the normative theory by running the same analysis on the Ideal Observer confidence (ef-
fect of the 3 factors of interest: |t17|>8.7, p<10–7, no effect of the irrelevant transition entropy:
t17 = -0.3, p>0.7). These results support the idea that confidence ratings derive from a rational
process that approximates the optimal probabilistic inference.

Fig 6. Subjective confidence is updated appropriately on a trial-by-trial basis. (A) Confidence varies
inversely with model revision. The revision of probability estimates corresponds to the shift (absolute
difference) in transition probabilities estimated by the Ideal Observer, between two consecutive observations
of this transition. (B)Confidence increases when there is more information. Mathematically, confidence
should increase linearly with the log-number of samples within stable periods; thus a log-scale is used to plot
subjective confidence. The sample count was reset each time the Ideal Observer detects a new jump. (C, D)
Confidence is reduced when transitions between stimuli are less predictable. The entropy reflects how
unpredictable the next stimulus is based on the generative transition probability: p(A|A) or p(A|B). If the
stimulus preceding the question is A, the relevant transition entropy is determined by p(A|A). By contrast p(A|
B) is irrelevant. (E) Evidence that subjective confidence estimation goes beyond all of the above factors taken
together. A multiple regression including the factors in panels A to D was used to compute the residual
subjective confidence, which was then correlated with the Ideal Observer confidence. In all plots error-bars
give the inter-subject mean ± s.e.m; the fitted line is the average of the linear fits performed at the subject
level. Bins are used only for visualization and not for data analysis.

doi:10.1371/journal.pcbi.1004305.g006
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The accuracy of confidence resists simple heuristics and suggests
instead a probabilistic inference
Our hypothesis is that confidence and probability estimates both derive from the probabilistic
inference itself. An alternative is that subjective confidence is derived independently with a
valid heuristic [23,24]. In the current experiment, the probability estimate for instance is a ra-
tional cue for confidence: as discussed with Fig 5A, there is a strong and principled correlation
between confidence and how much the probability estimate departs from 0.5. However, we
showed (in Fig 5A and 5C) that the accuracy of confidence judgment goes beyond this kind of
mapping. This therefore precludes that subjective confidence derives only from a heuristic
based on the probability estimate. An example of such heuristic would be to count the number
of correctly predicted stimuli in the immediately preceding trials to determine a confidence
level.

We then showed that confidence is also systematically impacted by the entropy of the gener-
ative transition probability, the amount of samples accumulated in the current chunk and the
degree of revision of the probability estimates (Fig 6). At a minimum, these results imply that
confidence arises from a sophisticated heuristic that combines the above factors. However,
we can prove here that human confidence ratings are more accurate than such a heuristic
would predict: even after regressing out the effect of the above factors, the residual subjective
confidence still co-varied significantly with the Ideal Observer confidence (t17 = 2.89, p = 0.01,
Fig 6E).

What additional features of the inference process could explain this finding? In deriving the
“number of samples” heuristic, we assumed that subjects discretize the incoming sequence into
discrete chunks separated by jumps, and that this process allows them to track how much evi-
dence they received since the last jump. This heuristic is suboptimal, however: the optimal in-
ference avoids any discrete decision, but computes with the full probability distribution that a
jump occurred at any moment, and uses it to weight recent evidence. To evaluate whether
human subjects integrate jump likelihood into their confidence estimates, we computed, on
each trial, the current uncertainty on the location of the last jump. We quantified it as the vari-
ance of the current chunk length estimated by the Ideal Observer, normalized by its mean
value (over similar positions in the sequence across sessions and subjects) so that values higher
than 1 indicated that it was less clear than average when the last jump occurred. Subjective con-
fidence correlated negatively with this uncertainty on jump location (t17 = -3.12, p = 0.006), ex-
actly as expected from a normative viewpoint (same analysis with Ideal Observer instead of
subjective confidence: t17 = -5.71, p<10–4). It therefore seems that subjects are able to factor an
estimate of jump probability in their confidence judgments. Altogether, these results suggest
that the inference underpinning learning in this task is a probabilistic computation.

Discussion
We present an in-depth analysis of how humans acquire explicit knowledge and meta-knowl-
edge of transition probabilities in an unstable environment. Our results demonstrate that sub-
jects use the available stochastic evidence to learn about the incoming sequence: their estimates
of two transition probabilities P(A|B) and P(B|A) accurately track the true generative values.
Most importantly, by asking subjects to systematically rate their confidence in those estimates,
we show that humans can accurately evaluate the uncertainties associated with each piece of in-
formation that they acquire. This sense of confidence, which affords a quantitative and explicit
report, is available in a modality independent manner for both visual and auditory sequences,
and it closely tracks the fluctuations in uncertainty that characterize an accurate probabilistic
inference process.
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Distinct forms of uncertainty
Several classifications of uncertainties have been proposed [25]. Our distinction between envi-
ronmental and inferential uncertainties is close to Kahneman and Tsersky’s [23] classical divi-
sion of external uncertainty (stochastic nature of the environment) versus internal uncertainty
(state of knowledge). A similar distinction is also made in recent computational works, e.g. in
[13], the environmental uncertainty would correspond to the 'risk' and 'unexpected uncertain-
ty', the inferential uncertainty to 'estimation uncertainty'; in [5] a similar distinction is made.
Internal uncertainty is sometimes called ambiguity, in particular in economics, when it charac-
terizes the absence of knowledge [25,26]. Our terminology (environmental vs. inferential un-
certainties), stresses that these two kinds of uncertainties differ in their epistemic nature. By
operationalizing this distinction, our study revealed how they are only partially related. We
built upon previous paradigms that manipulated environmental uncertainty [4,7] in order to
induce frequent variations in inferential uncertainty. We showed how a first-order environ-
mental uncertainty (probabilistic transitions between stimuli) increases the inferential uncer-
tainty, and how a second-order environmental uncertainty (unexpected changes in these
transition probabilities) produces additional fluctuations in inferential uncertainty over time.
The fact that environmental and inferential uncertainties are only partly related is particularly
salient in our task when a transition probability is 0.5. Such probability produces the least pre-
dictable outcomes (high environment uncertainty) and a precise estimation of this probability
needs more samples than any other probabilities (hence, a high inferential uncertainty). How-
ever, with a large number of observations, one can get quite confident that the outcomes are in-
deed completely unpredictable. All these effects were observed in a normative Ideal Observer
model, and subjects' confidence faithfully tracked ideal-observed confidence. Thus, human
adults possess sophisticated mechanisms for tracking their inferential uncertainty.

Juslin & Olson [27] made a different distinction, separating Brunswikian uncertainty, inde-
pendent from us and in that sense 'external', and Thurstonian uncertainty, due to the impreci-
sion of our information-processing systems. While Thurstonian uncertainty may have
contributed to the small deviations that we observed between subjective confidence and the op-
timal observer, we stress here that learners are uncertain, not only because they are faulty, but
primarily because inference from stochastic inputs is by essence uncertain. The Ideal Observer
quantifies this irreducible level of inferential uncertainty that any learner must face in our task.
It is an open question whether and how humans may combine this core inferential uncertainty
with the additional uncertainty arising from their cognitive limitations.

New perspectives on confidence
Broadly defined, confidence indexes a degree of belief in a particular prediction, estimation or
inference [19,23,25]. What confidence is about may thus vary drastically, from mere detection
(feeling of visibility, e.g. [28]), to accuracy in perceptual tasks [9,10,29], in memory retrieval
[8], or in response to general-knowledge questions [30,31]. Mathematical concepts clarify how
the present work differs from these previous studies. In most studies, confidence can be formal-
ized as the likelihood of some binary variable e.g. the posterior probability that a response is
correct/incorrect, a stimulus is seen/unseen, etc. [9]. By contrast, here we investigated confi-
dence in a continuous numerical quantity (the inferred transition probability), so that a princi-
pled and natural formalization for the strength of evidence is, as suggested previously [19], the
precision of this variable (its inverse variance). This computational distinction, in comparison
with most previous studies, entails a noticeable difference in practice. In typical binary decision
tasks, the accuracy of subjective confidence is estimated by comparison with the actual perfor-
mance of the subject. This estimation may be more or less susceptible to biases [32]. In our

Confidence and Probabilistic Reasoning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004305 June 15, 2015 13 / 25



task, confidence is defined as the precision of the variable inferred, and is therefore amenable
to a principled quantification with the Ideal Observer. Therefore here, the accuracy of subjec-
tive confidence can be estimated by comparison with this optimal confidence. Crucially, this
estimation is independent from the performance in the primary estimation task, which may
even remain unknown to the experimenter.

One could disagree with our particular formalization of confidence, and suggest alternative
mathematical quantities such as the inverse variance (not its log, as we did), or the posterior
probability of the mean or of the maximum of the inferred distribution, or the entropy of this
posterior distribution. All these metrics roughly quantify the same notion: they are highly cor-
related with the one we used, and running the analyses with these other metrics led to similar
(although less significant) results. The tight correlation between the ideal-observer precision
and human subjective confidence therefore strongly suggests that humans possess a remark-
able capacity to extract and use probabilistic information.

We assessed the accuracy of the subjective precision estimates based on their relative varia-
tions between trials. The metacognition literature however makes a classical distinction be-
tween whether the accuracy of confidence is only relative or also absolute [31]. Absolute
confidence levels, and thus the identity between the subjective and the optimal levels, cannot
be investigated in our design: indeed, mapping confidence onto a qualitative scale is subjective,
not principled. Subjects may produce absolute confidence measures for binary variables, e.g.
they may estimate the fraction of correct or seen trials, but asking them a numeric estimate of
subjective precision seemed too difficult, which is why we resorted to a qualitative confidence
scale. This aspect of our study leaves open the question of whether there is an internal scale for
precision that could be sufficiently calibrated to be transferred between tasks [33] or even indi-
viduals [34], as previously shown for binary judgments.

Our estimation of the accuracy of subjective confidence relies on a comparison with an
Ideal Observer. However, the literature on the perception of probabilities have evidenced fre-
quent deviations from optimality, e.g. the over and under estimation of small and large proba-
bilities [35,36], and a bias toward the detection of alternation vs. repetition [37,38]. Whether
adjusting the Ideal Observer to these biases could provide a tighter fit to subjective data is an
open issue and a matter for further research. Different options are available to include these bi-
ases in the ideal observer model. One possibility is that only the report of the probability is dis-
torted. In that case, the inference, and hence the confidence levels, would remain unaffected.
By contrast, the bias could affect a particular component of the inference itself. Potential targets
for such distortions include (1) the likelihood of the current observation given some inferred
probability estimate, which serves to update the posterior knowledge; (2) the posterior estimate
itself, which serves to evaluate the likelihood of future observations; (3) the prior about the gen-
erative probabilities, which biases the inference at the beginning of each new sequence, but also
at any time a jump in probabilities is suspected. These different potential sources of bias may
result in quantitative differences in confidence levels, which could help to arbitrate between
these scenarios.

Constraints on models of the learning process
Our results reveal some characteristics of the computation of confidence in humans. One pos-
sibility is that second-order estimates occur independently from the first-order estimates, by
relying on indirect cues or heuristics such as reaction time in the first-order task [23,24]. How-
ever, several aspects of our results contradict this view. First, the sophisticated heuristics we
tested did not fully account for confidence reports; similar results were reported in the percep-
tual domain [39]. Second, the accuracies of the first and the second-order estimates were tightly
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correlated across trials and subjects which contradicts that confidence levels
occur independently.

The alternative view is that first and second-order processes are related, e.g. the second-order
process relies on a readout of the same single-trial inferential data available to the first-order pro-
cess [40–42]. Signal detection theory formalized this readout process in perceptual decisions, postu-
lating that the second-order estimate corresponds to a statistical quantity (d-prime) characterizing
the first-order process [32]. Our hypothesis extends this idea to the learning domain: learning
could be supported by a probabilistic inference [17,43], resulting in a posterior distribution whose
mean and precision would yield, respectively, the first-order and second-order estimates.

The terms first-order and second-order estimates may indeed be unfortunate, as they sug-
gest a sequential process. It is in fact an open issue whether the primary response and the confi-
dence in this response arise in parallel or serially, and from a single brain circuit or not [11,40].
Parallel extraction by distinct circuits could account for the fact that confidence and perfor-
mance are often correlated, but still dissociable [44,45], for instance in situations of speeded
judgment [29], overconfidence [46], or when the accuracy of confidence is impaired while per-
formance is preserved.

By revealing some characteristics of the computation of confidence, our results may reveal
some characteristics of the learning process itself. Indeed, if both the learned estimates and the as-
signed subjective confidence levels derive from the same inference, then investigating subjective
confidence could provide critical insights on the learning process. It should be the case if subjec-
tive confidence levels reveal something more than what the learned estimates already reveal by
themselves. We showed that it is the case: the accuracy of subjective confidence cannot be re-
duced to the accuracy of the learned estimates. This implies that the classic view of learning, ex-
emplified by the Rescorla Wagner rule, according to which learning simply consists in updating
parameter estimates, does not suffice—the brain also keeps track of the uncertainty associated
with each value. Recent computational works have already started to revisit this classic learning
model so as to incorporate notions of uncertainty [5,13]. Our results emphasize the need to in-
vestigate confidence as part of the learning algorithm. Future work should determine whether
learning relies on simplified computations involving only summary statistics such as mean and
variance [5], on sampling schemes [17,47], or on full computations over distributions [15].

Methods

Ethics statement
The study was approved by the local Ethics Committee (CPP n°08–021 Ile de France VII) and
participants gave their informed written consent prior to participating.

Task and participants
18 participants (9 females, mean age 23, sem: 0.74) were recruited by public advertisement.
The task was delivered on a laptop using Matlab (Version R2013a) and
PsychToolBox (Version 3.0.11). The experiment was divided into 4 blocks, each presenting a
sequence of 380 stimuli (denoted A and B). On alternated blocks, A and B were either auditory
or visual stimuli perceived without ambiguity, see Fig 1 for a description and the timing. A fixa-
tion dot separated the visual stimuli and remained present during the auditory blocks. The mo-
dality used in the first block was counterbalanced over subjects.

The sequence was generated randomly based on predefined transition probabilities between
stimuli, e.g. an 80% chance that A is followed by A and a 30% chance that B is followed by A.
These values are thus called 'generative transition probabilities'. The sequence was structured
into chunks: transition probabilities were constant within chunks and changed from one
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chunk to the next at so-called 'jumps'. Chunk lengths were sampled from a geometric distribu-
tion, with an average chunk length of 75 stimuli. To avoid blocks without jumps, chunks longer
than 300 stimuli were discarded. In each chunk, transition probabilities were sampled indepen-
dently and uniformly in the 0.1–0.9 interval, with the constraint that, for at least one of the two
transition probabilities, the change in odd ratio p/(1-p) relatively to the previous chunk should
be at least 4. The sequence was paused occasionally (every 15 stimuli, with a jitter of ± 1, 2 or 3
stimuli) to ask subjects about their probability estimates and confidence (see Fig 1). Probing
subjects more often would have provided more information on their internal estimates; howev-
er it would also have disrupted more their effort to integrate serial observations, which is criti-
cal to estimate transition probabilities. Asking every 15 stimuli is thus a compromise. The raw
data are provided as Supporting Information (S1 Dataset, see S1 Text for a description).

20 participants (12 females, mean age 25, sem: 0.76) were recruited for the control experi-
ment. The key difference compared to the main task was that subjects were only asked the con-
fidence question. The other task parameters were identical, excepted a minor modification:
subjects used a four-step scale instead of a continuous scale to report their confidence level.
Subjects first performed one session of the main experiment which served as training. Then,
they performed four sessions of the modified task.

Instructions and training
All participants received detailed explanation about how the sequences are generated. An inter-
active display made intuitive the notions of transition probabilities, jumps and randomness.
Transition probabilities were framed as state-dependent probabilities: e.g. if the current stimu-
lus is A, there is an 80% chance that it is repeated and a 20% chance that it changes for B. For
each state ('after A' and 'after B') these contingencies were presented as pie-charts. Random
sampling from these contingencies was illustrated as a 'wheel of fortune': a ball moved around
the pie chart, with decreasing speed, and the final position of the ball determined the next stim-
ulus (A or B). Participants could repeat this process and simulate a sequence of stimuli until
they felt familiar with the generative process. To introduce the concept of jump, a dedicated
key press triggered a change in the pie-chart (hence, in transition probabilities).

During the task, subjects were instructed to report jumps. They could press a key at any mo-
ment to pause the sequence and access the bottom right-hand screen shown in Fig 1. By adjust-
ing the counter displayed, they specified when the jump occurred (e.g. '13 stimuli ago'). It was
made clear that 1) the estimation and confidence questions would be prompted automatically,
2) the occurrence of questions and jumps was predefined and independent so that it was un-
likely that a question prompt would coincide with a jump and 3) answers in the task had no im-
pact on the actual generative transition probabilities.

Analysis of jump detection
We used two methods to analyze the accuracy of jump detection. The first is the classic ap-
proach of the Receiver Operating Characteristic (ROC): the reported jumps were compared to
the actual, generative jumps. The second approach is a follow-up of the ROC analysis, benefit-
ing from the Ideal Observer perspective: the binary subjective reports (there is a jump vs. there
is not) were compared with the continuous, normative posterior probability of a jump.

For both approaches, we sorted the subjects' responses into hits and false alarms. Given the
stochastic nature of the task, it is difficult to detect exactly when a jump occurred. Consider for
instance the sequence:

A1 B2 A3 A4 A5 A6 B7 A8 A9 A10 B11 B12 B13 B14 A15 B16 B17 B18
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Subscripts indicate stimulus position and the italic font indicates the second chunk. These
chunks were generated from the following transition probabilities: low for AB and high for BA
from stimulus 1 to 9; high for AB and low for BA from stimulus 10 to 17. The true generative
jump occurred at stimulus 10, yet it seems more likely to have occurred at stimulus 11: A9A10

better fits in the first chunk in which the AA transition rate is high. To circumvent this issue,
we tolerated some approximations in the jump detection by counting a hit when there was a
true generative jump within a window of ±5 stimuli around the reported jump location, and a
false alarm otherwise. This same window size was used throughout our data analysis, and other
choices did not change the qualitative findings.

In line with the ROC approach, we computed, for each subject, the difference in hit rate
minus false alarm rate, known as the informedness index. Informedness is bounded between -1
and 1, with values higher than 0 denoting a detection better than chance; and lower than 0 a de-
tection worse than chance. A t-test on informedness revealed that the mean value was signifi-
cantly larger than zero. However, to make sure that such a result was unlikely to emerge by
chance from the detection characteristics of our subjects and the generative structure of our se-
quences, we adopted a more conservative permutation-based approach. We computed a null
(chance-level) t-value distribution for informedness by keeping subject reports unchanged but
randomly regenerating (10000 times) the stimulus sequence. The p-value reported in the text
corresponds to the probability of observing a t-value equal or higher under the null distribu-
tion, indicating how likely it is that the result is due to chance.

We followed up the results of the ROC analysis by inspecting the posterior probability of
jump estimated by the Ideal Observer in trials corresponding to the subjects' hits, misses, false
alarms and correct rejections. More precisely, since we tolerated a margin of ±5 stimuli in the
subjects' jump detection, we compared the subjects' report with the posterior probability that a
jump occurred in a window of ±5 stimuli around each observation, see Fig 2E for an example
session. For hits and false alarms, we took the posterior probability of a jump at the position re-
ported by subjects, given the sequence they had observed when they reported it. It is less
straightforward for misses and correct rejections since, precisely, jumps were never reported at
these positions. We thus estimated for each subject the typical latencies of jump report and we
averaged over this list of latencies to compute the posterior probability of jump at each position
corresponding to a correct rejection or miss.

Regression analyses
To assess the accuracy of the subjects' probability estimates and confidence ratings, we used
several regressions against predictor variables. The significance of these regression analyses
was estimated by computing regression coefficients at the subject-level as a summary statistic
and then comparing these coefficients against zero with a two-tailed t-test at the group level (t
and p-values are reported in the text). All regression models included a constant and the z-
scored regressors of interest.

The multiple regressions corresponding to Fig 6 deserves more details. In Fig 6A the estima-
tion revision is the absolute difference of the Ideal Observer probability estimates between two
consecutive similar transitions. Consecutive transitions are not necessarily consecutive stimuli
(e.g. the transition 'from A' in ABBBBAA). In Fig 6B, the jump-wise count of samples was also
made per transition type. For this count, a log-scale was used since it is an analytical result that,
on average, confidence (the Ideal Observer log-precision) should increase linearly with the log-
number of samples. We based this count on the Ideal Observer. However, the Ideal Observer
does not estimate a binary variable (there is a jump vs. there is not), instead it computes the
continuous posterior probability that a jump occurs at each position of the observed sequence,

Confidence and Probabilistic Reasoning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004305 June 15, 2015 17 / 25



and it revises this estimate each time a new observation is made. We therefore transformed the
posterior probability estimates (a two-dimensional matrix, see Fig 2E for an example) into dis-
crete jumps. The thresholded (two-dimensional) posterior probability serves to identify when
the sequence should be interrupted to report a jump and what should be the location of the re-
ported jump, e.g, report at trial W that a jump occurred at position Z (thus W-Z trials ago).
The posterior jump probability being relatively smooth (e.g. in Fig 2E), the thresholding forms
patches. Each of these patches corresponds to a jump; the reported W and Z corresponds to
the coordinates of the upper limit of each patch. We used a Receiver Operating Characteristic
to identify the threshold (posterior probability = 0.25) that maximized the accuracy of this dis-
cretization, with respect to the actual generative jumps: we searched the threshold that resulted
in the maximal difference between hit and false alarm rates.

Within-subject correlation between estimation and confidence
accuracies
We took as an estimate of single-trial accuracy, the un-signed error (i.e. the distance) between
the subject estimate and the Ideal Observer estimate. The probability estimates in both the sub-
jects and the Ideal Observer are expressed on the same probability scale: they can be compared
directly. This is not the case for confidence: the scale for the Ideal Observer is normative, it is
the log-precision which can be potentially infinite; by contrast for subjects the scale was bound-
ed and qualitative, the mapping between confidence levels and the scale is thus highly subjec-
tive. To express the Ideal Observer and the subject confidence on a common scale, we adjusted
their offset and scaling based on a linear fit.

For each subject, the single-trial accuracies in probability estimates and confidence ratings
were taken into a Pearson correlation over trials. The resulting correlation coefficients could
then have been taken into a classical t-test; however, we wanted to estimate to what extent the
correlation would be positive due to a systematic mapping between probability estimates and
confidence ratings. We thus devised two permutation-based estimations, each corresponding
to a null-hypothesis distribution of the correlation of accuracies between probability estimates
and confidence ratings. Shuffling #1 (Fig 5C, middle) preserved the mapping but disrupted the
sequence, by keeping pairs of probability estimates—confidence ratings and shuffling their
order in the sequence separately for the Ideal Observer and the subjects. Shuffling #2 (Fig 5C,
right) disrupted both the mapping and the sequence by shuffling the trials independently for
probability estimates and confidence ratings, thus removing any correlation between them.
10000 distinct permutations were used to estimate each null distribution. Given that the shuf-
fling was applied within-subject, we computed the null t-distribution for the paired differences
between 'Observed data' and 'Shuffling keeping pairs'. The 'Full shuffling' resulted in values
close to 0 for all participants so that the estimated null t-distribution was equivalent to the
parametric t-distribution; tests against the 'Full shuffling' null were thus classical t-tests against
0. P-values in Fig 5C correspond to one-tailed t-test.

Ideal Observer
We derived mathematically the optimal observation-driven estimates of the transition proba-
bilities and jump locations: the so-called Ideal Observer. This optimal inference relies on Bayes-
ian principles and returns a distribution of estimates p(θ | y), i.e. the posterior distribution of
the transition probability, θ, at each time step in the experiment, given the observed sequence
of stimuli, y. From this distribution, we derive the expected value of the inferred transition
probability: μ =

R
θp(θ | y)dθ and the confidence in that estimation, which we defined as its

log-precision: -log(
R
(θ − μ)2 p(θ | y)dθ).
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We designed two algorithms for this Ideal Observer: a sampling approach and an iterative
approach. The iterative approach was used to double check the sampling approach: both pro-
vided numerically similar values of probability estimates, confidence levels and jump location.
The sampling approach explicitly computes the likelihood of possible decompositions of the
sequence into chunks, whereas the iterative approach computes the likelihood that a jump oc-
curred at any given position, independently from the other potential positions. The sampling
approach is computationally slower but it allows a straightforward estimation of jump-related
statistics used here: 1) The likelihood that a jump occurred around a given position, e.g. within
a window of ±5 stimuli; 2) The variance of the estimated length of the current chunk, which re-
flects the precision of the knowledge of the observer about the last jump location. The deriva-
tion of each algorithm is presented in detail below. Computations were performed numerically
in Matlab using regular grids.

Sampling algorithm for the Ideal Observer
If we assume that the transition probabilities generating the sequence are stable over time, then
the inference can be computed analytically: the posterior distribution is a function of the num-
ber of transitions observed in the sequence. The formula is derived in the first sub-section
below. However, sequences in the task were generated with jumps. For a given partition, the in-
ference of transition probabilities can be made chunk-wise using the above-mentioned formu-
la. Such an inference is conditional in the sense that it is computed given a particular partition.
However, the partition itself is unknown and must be inferred from the sequence observed.
The estimation of the transition probabilities must therefore factor out the uncertainty in the
partition, which is achieved by marginalizing the conditional inference over all partitions:

pðyjy1; . . . ; ytÞ ¼
X

p

pðyjy1; . . . ; yt; pÞpðpjy1; . . . ; ytÞ ð1Þ

Where y is the sequence of A and B stimuli, θ = [θA|B, θB|A] are the transition probabilities
'from B to A' and 'from A to B' respectively, and π is a partition describing the location of
jumps. The 1st term of the sum is thus the conditional posterior distribution of transition prob-
abilities given a particular partition of the sequence; the second term is the posterior probability
of this partition.

The sequence length being 380, there are 2380 possible partitions of the data. The exact infer-
ence would require that we compute the sum over these 2380 partitions. It is computationally
intractable and actually not necessary: most partitions are very unlikely and contribute little to
the sum. The posterior distribution of transition probabilities can thus be approximated nu-
merically by averaging the conditional posterior distributions of transition probabilities over a
subset of partitions sampled uniformly [22]. The second subsection below shows how to sam-
ple uniformly from the posterior distribution of partitions.

Posterior inference of transition probabilities within a chunk. The posterior probability
of θ can be computed with Bayes rule:

pðyjyÞ ¼ pðyjyÞpðyÞ
pðyÞ ð2Þ

Since p(y) is a scaling factor independent from the parameters to infer (θ), we only need to
compute the likelihood and the prior. By design of the sequences, the likelihood of a stimulus
in a particular chunk depends only on the transition probabilities and the identity of the previ-
ous stimulus. The likelihood of a sequence of stimuli can thus be written as the product of the
likelihood of every transition in the sequence. As a result, the likelihood of a sequence, given
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the transition probabilities between stimuli, is entirely determined by the likelihood of the first
stimulus and the number of transitions:

pðyjyÞ ¼ pðy1; . . . ; ynjyÞ
¼ pðy1jyÞpðy2jy1;yÞpðy3jy2;yÞ . . . pðynjyn�1; yÞ
¼ pðy1jyÞ½y

NAjB
AjB ð1� yAjBÞNBjB �½yNBjA

BjA ð1� yBjAÞNAjA �
ð3Þ

The two terms outlined by square brackets correspond to beta distributions, their shape is
controlled by the number of transition types (denoted Nx|y). To keep the benefit of having beta
distributions in our formula, we used a conjugate prior distribution. The parameters of the
(beta) prior distribution can be interpreted as prior transition counts. The likelihood of the
first stimulus can be considered as independent from the transition probabilities (as if it be-
longed to the previous chunk), so that the posterior is actually proportional to the product of
two beta distributions:

pðyjyÞpðyÞ / y
NAjBþN�

AjB
AjB ð1� yAjBÞNBjBþN�

BjB y
NBjAþN�

BjA
BjA ð1� yBjAÞNAjAþN�

AjA

/ BetaðyAjBjNAjB þ N�
AjB þ 1;NBjB þ N�

BjB þ 1ÞBetaðyBjAjNBjA þ N�
BjA þ 1;NAjA þ N�

AjA þ 1Þ
ð4Þ

Where N�
x|y denotes the prior transition count. In practice, we used a non-informative

prior: every transition probability is considered with the same plausibility a priori (all N� are
zeros, so that the prior distribution is a flat beta distribution).

Sampling from the posterior distribution of partitions. Conditionally on jumps, the se-
quence of stimuli within each chunk is independent from the other chunks, so that the likeli-
hood of a sequence given some jumps is the product of the likelihood of each chunk defined by
these jumps:

pðyjpÞ ¼
YNc

k¼1

pðyi2pðkÞÞ

¼
YNc

k¼1

MLðpðkÞÞ
ð5Þ

Where π(k) denotes the list of indices of the stimuli belonging to the k-th chunk. We intro-
duce the notation ML(π(k)) to denote the marginal likelihood of the sequence in the k-th
chunk, i.e. the likelihood of this sequence after marginalizing over the range of transition prob-
abilities (this integral has an analytical solution, involving gamma functions).

Eq (5) shows that the likelihood of a sequence given a partition is the product of the margin-
al likelihoods of the chunks of this partition. Say that we want to introduce a new jump in this
partition, at position i. To compute the likelihood of this new partition, which differs from the
previous one by only one new jump, we simply have to identify the chunk corresponding the i-
th position and to replace in (5) the marginal likelihood of this chunk (denoted c below) by the
product of marginal likelihoods of the two chunks defined by the new jump (denoted c1 and c2
below). We can thus compute the relative posterior probability that a jump occurred at position
i (denoted Ji = 1, which occurs with prior probability pJ) conditionally on the jumps at the
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other positions (denoted J-i):

pðJijJ�i; yÞ / pðyjJi; J�iÞpðJiÞ
pðJijJ�i; yÞ / MLðc1ÞMLðc2ÞpJ if Ji ¼ 1

/ MLðcÞð1� pJÞ if Ji ¼ 0

ð6Þ

For a given partition, we can quantify with Eq (6) whether adding or deleting a jump at a
given position would increase the likelihood of the partition. Based on this property, we designed
an algorithm which iteratively improves the sampling from the posterior J: a Gibbs sampler [22].
We initialized the Gibbs sampler without jump. Convergence was achieved within few iterations,
reflecting that there are only few positions in the sequence around which jumps are likely. Indeed,
few jumps were used to generate the sequences. Using only 200 iterations was enough to sample
accurately from the posterior distribution (we discarded the first 20 iterations as a warm-up).

Iterative algorithm for the Ideal Observer
It is not necessary to decompose the sequence explicitly into a partition to compute the posteri-
or θ distribution given the stimuli observed. Indeed, if we know θ at position t in the sequence,
then at position t+1, θ should remain the same if no jump occurred, or be different if a jump
occurred. In case a jump occurred, the new θ is sampled from the prior distribution and the
likelihood can be assessed given the (t+1)-th stimulus. In that case, the observations made be-
fore t become no longer needed to estimate θ after t. This so-called Markov property makes it
possible to estimate θ iteratively, by going forward: at stimulus t+1, we update the estimate
made at time t, based on the new observation.

In the following we derive the forward algorithm to estimate θ, the transition probabilities. We
also derive a backward algorithm to estimate the likelihood of jumps in the observed sequence.
Note that both algorithms are provided with the exact same observations as those presented to the
subject. In particular, the backward sweep does not benefit from extra stimuli not yet observed by
the subject, but simply processes the information received by moving backward in time.

Forward algorithm to estimate the transition probabilities. We note θt = {θt, 1|0, θt, 0|1} the
estimate of the two transition probabilities made at time t. The estimation problem can be recast
as a Hidden Markov Model by the discretization of θ into some so-called states: the continuous
{θt, 1|0, θt, 0|1} are discretized into some states {x1t, x

2
t}, where subscripts denote the t-th position

(or stimulus) of the sequence and supscripts 1 and 2 denote the two transition probabilities.
The forward algorithm updates iteratively the joint probability, denoted α, of the states and

the stimuli observed so far (noted y1:t):

atðx1t ; x2t Þ ¼ pðx1t ; x2t ; y1:tÞ ð7Þ

The iterative property can be seen by marginalizing over past states, in particular when the
matrix notation is used:

atðx1t ; x2t Þ ¼
X

x1
t�1

;x2
t�1

pðx1t�1; x
2
t�1; x

1
t ; x

2
t ; y1:tÞ

¼
X

x1
t�1

;x2
t�1

pðx1t�1; x
2
t�1; y1:t�1Þpðx1t ; x2t jx1t�1; x

2
t�1Þpðytjx1t ; x2t ; yt�1Þ

at ¼ L � ðTTat�1Þ

ð8Þ
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In the second line of (8), the first probability is αt-1, the second term is the probability of the
transition between states and the last term is the likelihood of the current observation yt given
some transition probabilities {x1t, x

2
t} and the previous observation yt-1. We achieve a more

compact formula with the matrix notion (bold font), where the dot denotes the dot product, L
is the column vector of likelihood and T is the matrix of transition probability between states.
A diagonal element in T corresponds to the probability of staying in the same state, when no
jump occurred (pJ).

Estimation of jump positions with a backward algorithm. In Eq (8), the terms in the
sum can be grouped, depending on whether they reflect the occurrence of a jump or not: the
terms corresponding to the absence of a jump at position t come from the diagonal elements of
T, the other come from the off-diagonal elements of T. The joint probability αt can thus be re-
written to tease apart the occurrence and absence of a jump at position t:

atðx1t ; x2t Þ ¼ atðx1t ; x2t ; Jt ¼ 0Þ þ atðx1t ; x2t ; Jt ¼ 1Þ ð9Þ

However, the observations y1:t convey little information on whether a jump occurred at t: by
definition of a change, the observations made after position t are more informative. The for-
ward algorithm at position t does not consider observations made after t; however the back-
ward algorithm does. We thus use it to complement the forward algorithm and to estimate the
likelihood of jumps.

The backward algorithm updates iteratively the likelihood of observing future observations
(noted yt+1:N) given the current state {x1t, x

2
t}, which we note β:

btðx1t ; x2t Þ ¼ pðytþ1:N jx1t ; x2t Þ ð10Þ

The iterative property can be seen by marginalizing over future states, and again, using the
matrix notation:

bt�1ðx1t�1; x
2
t�1Þ ¼

X

x1t ;x
2
t

pðyt:N ; x1t ; x2t jx1t�1; x
2
t�1Þ

¼
X

x1t ;x
2
t

pðx1t ; x2t jx1t�1; x
2
t�1Þpðytþ1:N jx1t ; x2t Þpðytjx1t ; x2t ; ytþ1Þ

βt ¼ TðL � βtÞ

ð11Þ

In this sum, we can identify the probability of the transitions between states (T), βt, and a
likelihood term (L). The likelihood term here is not as straightforward as in Eq (8), but it can
be decomposed as follows:

pðytjx1t ; x2t ; ytþ1Þ ¼
pðytþ1jx1t ; x2t ; ytÞpðytjx1t ; x2t Þ

pJpðytþ1jytÞ þ ð1� pJÞpðytþ1jyt; x1tþ1 ¼ x1t ; x
2
tþ1 ¼ x2t Þ

ð12Þ

As for the forward algorithm, we can rearrange the sum in Eq (11) to tease apart the occur-
rence and absence of a jump:

bðx1t ; x2t Þ ¼ pðytþ1:N ; Jt ¼ 0jx1t ; x2t Þ þ pðytþ1:N ; Jt ¼ 1jx1t ; x2t Þ
¼ bðx1t ; x2t ; Jt ¼ 0Þ þ bðx1t ; x2t ; Jt ¼ 1Þ ð13Þ

The forward and backward quantities can be combined to estimate the posterior distribu-
tion of the transition probabilities and the probability of a jump, at position k based on

Confidence and Probabilistic Reasoning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004305 June 15, 2015 22 / 25



observations y1:t (with k�t):

gtðx1k ; x2k ; JkÞ ¼ pðx1k ; x2k ; Jkjy1:tÞ
¼ pðx1k ; x2k ; Jkjy1:kÞpðykþ1:tjx1k ; x2k ; JkÞ

¼ pðx1k ; x2k ; Jkjy1:kÞ
pðykþ1:t; Jkjx1k ; x2kÞ

pðJkÞ

¼ aðx1k ; x2k ; JkÞX

x1
k
;x2
k
;Jk

aðx1k ; x2k ; JkÞ
bðx1k ; x2k ; JkÞ

pðJkÞ

ð14Þ

Note p(Jk) = pJ when Jk = 1 and (1-pJ) otherwise. We can obtain the posterior probability of
Jk, irrespective of the transition probabilities {x1t, x

2
t} by marginalizing γ over {x1t, x

2
t}.
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