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Recent human neurophysiological recordings have uncovered two fundamental modes of cerebral cortex ac-
tivity with distinct dynamics: an active mode characterized by a rapid and sustained activity (‘‘ignition’’) and a
spontaneous (resting-state) mode, manifesting ultra-slow fluctuations of low amplitude. We propose that
both dynamics reflect two faces of the same recurrent loop mechanism: an integration device that accumu-
lates ongoing stochastic activity and, either spontaneously or in a task-driven manner, crosses a dynamic
threshold and ignites, leading to content-specific awareness. The hypothesis can explain a rich set of behav-
ioral and neuronal phenomena, such as perceptual threshold, the high non-linearity of visual responses, the
subliminal nature of spontaneous activity fluctuations, and the slow activity buildup anticipating sponta-
neous behavior (e.g., readiness potential). Further elaborations of this unified scheme, such as a cascade
of integrators with different ignition thresholds or multi-stable states, can account for additional complexities
in the repertoire of human cortical dynamics.
Introduction: Two Modes of Cortical Function
Traditionally, research of human cortical function has focused

on mapping the neuronal activations triggered by supra-

threshold stimuli and well-defined tasks. Similar to numerous

studies in animal models, measurements in the human cortex

also revealed that the central characteristic of optimal neuronal

responses consists of rapidly emerging bursts of neuronal activ-

ity. Taking the human sensory cortex as a well-researched

example, cortical activations to optimal stimuli were shown to

be reflected in bursts of high firing rates in single neurons re-

corded invasively in patients undergoing clinical diagnosis for

epilepsy (e.g., Bitterman et al., 2008; Nir et al., 2007), in an

increase of broadband gamma power during invasive electro-

corticography (ECoG) recordings in patients (Nir et al., 2007;

Manning et al., 2009), in large blood-oxygen-level-dependent

(BOLD) responses in fMRI scans (e.g., Heeger and Ress,

2002; Mukamel et al., 2005), and in electroencephalography

(EEG) and magnetoencephalography (MEG) as reflected in large

event-related potential (ERP) responses (e.g., Hämäläinen et al.,

1993; Gao et al., 2013).

Particularly for sensory systems, it was assumed that in the

absence of a stimulus (e.g., in complete darkness), the sensory

cortex enters an uninformative, low-level baseline mode. How-

ever, following the pioneering research of Arieli et al. (1996) in

anesthetized animals, paralleled with BOLD fMRI recordings in

the human motor cortex by Biswal et al. (1995), numerous

studies have, by now, established that in the absence of a stim-

ulus or task—in what has been termed the ‘‘resting state’’—

cortical networks enter into a highly informative mode of sponta-

neous activity. In contrast to the active mode, these so-called
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resting-state fluctuations are characterized by low-amplitude

modulations of activity and ultra-slow (<0.1 Hz) dynamics.

Although most research on resting-state fluctuations has relied

on BOLD imaging, subsequent research has confirmed their ex-

istence also in firing-rate modulations (Nir et al., 2008), ECoG

recordings (He et al., 2008; Nir et al., 2008), and scalp EEG

(Schurger et al., 2015), following on the seminal studies of Berger

and colleagues (e.g., Niedermeyer and da Silva, 2005).

Importantly, the slow spontaneous fluctuations are not con-

fined to specific resting-state networks but emerge in each

and every cortical site that has been studied so far. For example,

the human visual cortex shows widely spread and highly struc-

tured spontaneous BOLD fluctuations in the absence of visual

inputs (e.g., Arcaro et al., 2015; Nir et al., 2006). The structure

of the spontaneous fluctuations appears to be highly informative

and likely reflects the statistics of the natural environment and

cognitive traits (Berkes et al., 2011; Harmelech and Malach,

2013). The structure and ubiquity of these fluctuations suggest

that they may constitute an important mode of cortical function.

Figure 1 compares the two modes of cortical function as re-

vealed in single units recorded in the auditory cortex of patients

in the course of diagnostic procedure for epilepsy (modified from

Bitterman et al., 2008; Nir et al., 2008). Shown are stimulus-

driven, active responses (Figure 1A) versus resting-state sponta-

neous fluctuations in firing rates (Figure 1B). The most striking

difference that can be readily appreciated is the transition from

rapid-burst dynamics in the active mode—in which bursts

develop within a fraction of a second in a response to an auditory

stimulation—to low-amplitude ultra-slow fluctuation dynamics

during resting mode, when there is no auditory stimulus and
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Figure 1. Two Modes of Cortical Function
Examples of active and resting-state spontaneous
modes reflected in firing of the same neurons re-
corded from human auditory cortex.
(A) Responses to tones of specific frequency
(modified from Bitterman et al., 2008).
(B) Spontaneous activity generated in the absence
of auditory stimulation. Note the strikingly different
timescales characterizing the two phenomena
(modified from Nir et al., 2008).

Neuron

Perspective
the patients rest in a quiet room. Here, we hypothesize that these

two modes, which seem to have such drastically different dy-

namic properties, may originate from the same network mecha-

nism of excitatory reverberatory loops.

Neuronal Mechanisms Underlying the Active Mode
At least within the domain of sensory system neurophysiology, a

number of experimental results suggest that, in addition to the

well-documented bottom-up and top-down flow of information,

there is a thirdmajor component that consists of strong reverber-

atory interactions relying on lateral connections. Such lateral

recurrent interactions can readily lead to highly non-linear posi-

tive-feedback dynamics.

An important cortical phenomenon that appears to reflect

such non-linear behavior concerns the threshold nonlinearities

observed in the input-output relationship between a sensory

stimulus and the neuronal response. A consistent observation

when gradually increasing the intensity of a weak sensory stim-

ulus—for example, by constraining participants to view a briefly

presented stimulus interrupted by amask (‘‘backward-masking’’

method reviewed in Kouider and Dehaene, 2007; Figure 2A)—is

that the neuronal response is not linearly related to the increase

in strength of the physical stimulus (e.g., exposure duration or

target-mask delay) but shows a highly non-linear, typically

steeply sigmoid function (e.g., visual awareness with EEG con-

trast response in Del Cul et al., 2007; and with contrasted

BOLD activity in Grill-Spector et al., 2000; or auditory awareness

in Gutschalk et al., 2008). Thus, there is a range of values, both

low and high, in which changing the stimulus intensity only

marginally affects the neuronal response, while in a rather narrow

range of values (which are termed the sensory ‘‘threshold’’),

minimal changes in the stimulus intensity lead to greatly amplified

neuronal activity. Such neuronal response non-linearity has been

demonstrated across allmeasurementmodalities fromBOLD im-

aging (Bar et al., 2001; Grill-Spector et al., 2000;Hesselmann and
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(Lamy et al., 2009; Sekar et al., 2013;

Wyart et al., 2012), ECoG recordings

(Fisch et al., 2009), and even single-

unit recordings in medial-temporal lobe

structures (Quiroga et al., 2008). Even for

a fixed stimulus presented close to

threshold, the neural response may be

bimodal, indexing the subject’s report:

high activity is observed on trials when

the subject reports perceiving the stim-

ulus, and low or no activity is observed

when he or she reports being unable to perceive it (Fisch et al.,

2009; Quiroga et al., 2008; Sergent et al., 2005).

A second informative aspect of these non-linear responses is

their sustained nature: once a neuronal response crosses the

threshold, changing or even removing the sensory input does

not shut off the neuronal response, which remains at a high

value for durations of up to a few hundred milliseconds. This

phenomenon is illustrated in Figure 2, which depicts a typical

backward-masking paradigm (Figure 2A) and two examples

of threshold phenomena revealed during backward masking.

In Figure 2B (modified from Fisch et al., 2009), ECoG re-

cordings from face-selective sites in patients show that, at

threshold, the very same stimulus (a briefly flashed face) can

lead to a highly amplified signal when reported as perceived

(red line) and to much a smaller response when reported as un-

perceived (blue line). In Figure 2D (modified from Dehaene and

Changeux, 2011), depicting BOLD-fMRI signals recorded from

the word-form area, a striking amplification of the signal is

evident at threshold for consciously perceived versus non-

perceived words (Dehaene et al., 2001). Furthermore, the sus-

tained nature of the ‘‘ignited’’ response can be appreciated in

Figure 2B by noting that the neuronal response upon perceiving

the target lasts for several hundreds of milliseconds, while the

target-stimulus duration itself was less than 20 ms. It should

be noted that this sustained ‘‘ignition’’ effect cannot be attrib-

uted merely to the first stages of the cortical hierarchy. It has

been demonstrated that non-linear responses in high-order

cortical areas can emerge in the absence of such effects in

earlier cortical stages (Bar et al., 2001; Del Cul et al., 2007;

Fisch et al., 2009; Grill-Spector et al., 2000; Kouider et al.,

2013).

Mechanisms Underlying the Ignition Threshold
The respective roles of local versus global long-distance network

phenomena in such ignitions are not fully established and remain
, October 7, 2015 ª2015 Elsevier Inc. 195
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Figure 2. Neuronal and Perceptual Evidence
for Threshold Non-linearity Ignition in the
Human Visual System
(A) The backward-masking experimental paradigm,
which allows precise timing of stimulus presenta-
tion and has been used extensively to uncover
ignition dynamics (modified from Fisch et al., 2009).
SOA, stimulus-onset asynchrony.
(B) Intracranially recorded ECoG responses from
human high-order, face-selective sites, showing
activation to perceived and non-perceived face
stimuli at threshold. Note the high signal amplitude
and relatively sustained responses, which far
outlast the duration of the presented stimulus
(indicated by the purple bar; modified from Fisch
et al., 2009).
(C) Behavioral evidence of an all-or none perceptual
response during the backward-masking paradigm.
Despite gradual changes in stimulus strength, both
objective and subjective responses show a clear
bifurcation into visible and non-visible states
(modified from Del Cul et al., 2007).
(D) BOLD-fMRI responses from the human
visual word-form area demonstrating the highly
nonlinear amplification of BOLD signal associated
with crossing the perceptual threshold during
visual perception of words (modified from Dehaene
and Changeux, 2011). Error bars indicate
means ± SEM.
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a matter of debate (Lamme, 2006). Empirically, both local and

global ignitions are revealed under various conditions (e.g., De-

haene and Changeux, 2005; Fisch et al., 2009; Noy et al.,

2015). A plausible model for their generation is readily suggested

by noting the dense lateral intra- and inter-areal connections that

characterize cortical networks (e.g., Amir et al., 1993; Douglas

and Martin, 1991; see review by Felleman and Van Essen,

1991). These lateral connections are mainly excitatory, making

them highly susceptible to entering into a positive feedback

reverberatory dynamics, once the net excitatory drive over-

comes the strong inhibitory and leakage control. Such net

excitation, emerging in densely and reciprocally connected net-

works, can readily lead to a fast and non-linear ignition. Figure 3

illustrates, using a simulation of a minimal one-dimensional dy-

namic system (see formal description in Supplemental Experi-

mental Procedures and also see Figure S1), how such non-linear

ignitions emerge naturally in a recurrent network (Figure 3A, top).

The dynamic consequences of having the net excitation exceed

the inhibitory suppression (Figure 3A, bottom left) are depicted

in Figure 3B. Note the sustained and high activity that follows
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stimulus onset, which resembles the ex-

perimentally observed dynamics (e.g.,

compare to Figure 2B).

More detailed network models of rever-

beratory activity also predict the emer-

gence of non-linear ignitions (Dehaene

and Changeux, 2005; Dehaene et al.,

2003; Martı́ et al., 2008; Wong and Wang,

2006) or even an extremely rapid nonlinear

‘‘network spike’’ (e.g., Tsodyks et al.,

2000). It should be noted that the steep-

ness of the signal rise, corresponding to
a short time constant during the ignition, does not necessarily

imply a short-latency response following, e.g., a visual stimulus.

Thus, an ignition can occur after a long delay of ‘‘dormant’’ activ-

ity. Indeed, bursts of visual responses were shown to emerge in

the human medial temporal lobe only after rather a long period

(>300 ms in Quiroga et al., 2008). Such long delays may be

due either to long subliminal buildup time following the stimulus

presentation (discussed later) or to a long chain of intermediate

links.

Simulations suggest that NMDA glutamate receptors, with

their slow dynamics, may play a specific role in inducing a pro-

longed ignited state (Wong and Wang, 2006). In Dehaene and

Changeux’s (Dehaene et al., 2003; Dehaene and Changeux,

2005) simulations, NMDA receptors were specifically allocated

to recurrent top-down connections. This hypothesis was re-

cently borne out experimentally, as late sustained activity in

V1 was selectively affected by NMDA receptor blockers (Self

et al., 2012), while the early feed-forward wave was spared.

It should be noted that recurrent networks tend to self-ignite

even in the absence of inputs, as observed both in simulations
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Figure 3. Illustration of the Network Dynamics Below and Above the Ignition Threshold
(A) The structure of the local recurrent network used for the illustration; the parameters of the network were specifically chosen to demonstrate the feasibility of the
observed dynamics (inspired from Martı́ et al., 2008).
(B) Illustration of the active ignited dynamics. Note the steep buildup and sustained high activity associated with crossing the threshold.
(C) Illustration of the resting-state, spontaneous dynamics. Note that the same network enters ultra-slow fluctuation dynamics when below the ignition threshold.
(D) Long anticipatory build-up. Even in the absence of external driving input, the slow fluctuations may spontaneously cross the ignition threshold initiating a rapid
signal amplification. Dark green indicates an average over 50 trials; light green indicates a single-trial example.
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(Dehaene and Changeux, 2005) and in isolated neural tissue

(e.g., Eytan and Marom, 2006). Thus, both modeling work and

characteristic cortical circuitry point to reverberatory network

activity as a prominent mechanism that could drive the non-

linear ignition process. However, we emphasize that the assign-

ment of the non-linear ignition to reverberating connections is

tentative at this point. Other neurobiological mechanisms based

on inhibitory loops (e.g., Lo and Wang, 2006) or on non-linear

dendritic events (Larkum, 2013) may play important roles as

well. Particularly interesting is the observation of a zone for the

initiation of calcium action potentials (Ca2+ spikes) in the apical

dendrites of layer 5 pyramidal neurons (Larkum and Zhu,

2002), which is described as ‘‘a tremendously explosive engine,

driving the L5 pyramidal cell to fire repetitively when ignited’’

(Larkum, 2013, p. 141). Recurrent feedback from distant cortical

areas is ideally suited to trigger this dendritic ignition phenome-

non, as such feedback lands simultaneously onto supragranular

apical and on infragranular layers (van Kerkoerle et al., 2014),

thus simultaneously contacting the apical and somatic dendrites

of pyramidal L5 cells in the target area. There is direct evidence

that this top-downmechanism plays a causal role in the late igni-

tion of somatosensory cortex in response to a tactile stimulus in

mice and that interfering with it suffices to prevent the perception

of tactile inputs (Manita et al., 2015).

Behavioral Correlates of Neuronal Ignitions
A significant issue, which can be studied particularly effectively

in humans, concerns the perceptual correlates of the ignition dy-

namics. The threshold non-linearity which is a major ‘‘signature’’

of the ignition process finds a ready counterpart in the highly
nonlinear input-output relationships observed in sensory psy-

chophysics (e.g., Sergent and Dehaene, 2004; Wilson and

Bergen, 1979). Figure 2C (modified from Del Cul et al., 2007) de-

picts a detailed illustration of such psychophysical threshold

derived from backward masking. Note the highly non-linear

transition in subjective visibility reports from seen to unseen

targets, despite a gradual change in the physical stimulation

parameter. Importantly, both objective and subjective behavioral

effects appear to follow such threshold non-linearity. Thus, the

threshold non-linearity was evident even when participants’ re-

ports were based on subjective, graded evaluations.

The all-or-none character of conscious perception has been

observed in a variety of paradigms, including masking (Del Cul

et al., 2007; Grill-Spector et al., 2000), visual search (Aly and Yo-

nelinas, 2012), attentional blink (Sergent and Dehaene, 2004;

Wierda et al., 2012), attentional selection in time and space

(Vul et al., 2009), working memory retrieval (Zhang and Luck,

2009), and long-term memory recollection (Harlow and Donald-

son, 2013).

Brain imaging and neurophysiological research has examined

the relationship between psychophysical and neuronal thresh-

olds, establishing tight links between these two manifestations

of threshold non-linearity. Thus, in BOLD imaging, Grill-Spector

et al. (2000) have demonstrated, during the backward-masking

paradigm, that BOLD activation in object-selective cortical sites

was amplified at threshold, in parallel with the participants’ ability

to correctly recognize the briefly presented images. Crucially,

following perceptual training, which lowered the recognition

threshold, Grill-Spector et al. were able to demonstrate that

the BOLD ignition threshold covaried with the induced changes
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 197



Box 1. Current Status of the Field

d Each cortical site may be subject to two fundamental

modes of cortical dynamics: fast, high-amplitude, task-

driven activity and ultra-slow, low-amplitude, resting-state

activity.

d During sensory stimulation, a linear increase in stimulus

parameters may be associated with a non-linear ignition

dynamics, in which crossing a threshold leads to signal

amplification and sustained activity, seen in all modalities

of brain recording (EEG, BOLD-fMRI, intracranial ECoG re-

cordings, and single-unit recordings).

d Behavioral evidence is compatible with the existence of an

all-or-none state of conscious perception in a variety of

paradigms, including masking, visual search, attentional

blink, attentional selection in time and space, working

memory retrieval, and long-term memory recollection.

d Ultra-slow resting-state fluctuations have been demon-

strated in fMRI, EEG, ECoG, and single-unit recordings

at every cortical site.

d Spontaneous behaviors such as decision to move, free

recall, and spontaneous pupillary dilations are all charac-

terized by a slow buildup of neuronal activity ‘‘anticipating’’

the spontaneous decisions.
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in perceptual thresholds. In both BOLD-fMRI and scalp EEG

studies, crossing of the perceptual threshold during backward

masking is concomitant with a non-linear amplification of the

BOLD and ERP signals (Dehaene et al., 2001; Del Cul et al.,

2007). Using ECoG recording in face-selective sites in patients

during such backward-masking paradigms, Fisch et al. (2009)

were able to demonstrate that crossing the perceptual recogni-

tion threshold was linked to a robust amplification of neuronal

activity (Figures 2A and 2B). Finally, a highly non-linear firing of

medial temporal neurons was reported by Quiroga et al. (2008)

to be closely associated with patients’ recognition threshold,

even on a trial-by-trial basis.

To summarize (see Box 1, ‘‘Current Status of the Field’’),

studies of perception and neuronal activity converge in point-

ing to a clear correspondence between the ignition and psy-

chophysical thresholds. Simply stated, these studies suggest

that the dividing line between conscious and subconscious

processes is delineated by the neuronal threshold leading to

ignition.

Neuronal Mechanisms Underlying the Spontaneous,
Resting-State, Mode
In striking contrast to the rapidly evolving, high-amplitude igni-

tions associated with stimulus-driven neuronal activations, the

resting-state mode is characterized by ultra-slow fluctuations

of activity, often taking seconds to develop (see Figure 1A).

Detailed analysis of the power spectra of these resting-state ac-

tivity fluctuations conducted in invasive recordings in patients

reveal a scale-free power-law function (He et al., 2008; Nir

et al., 2008; Podvalny et al., 2015). While, in BOLD imaging,

the spontaneous fluctuations appear to be similar in amplitude

to task-driven activations (Nir et al., 2006; Raichle and Mintun,
198 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
2006), it is important to caution that it is difficult to infer, from

such amplitude comparisons, the firing rates of the underlying

neuronal populations. Specifically, short, high firing-rate bursts

may produce lower amplitude BOLD activations than low

but sustained neuronal activations. Single-unit recordings com-

paring optimal auditory stimulation with the fluctuations during

silent rest reveal that sensory-driven activations produce signif-

icantly higher firing rates than the no-stimulus spontaneous fluc-

tuations (Nir et al., 2008), but clearly, additional single-neuron

data are needed to validate the generality of this observation.

However, the power-law function characterizing spontaneous

fluctuations, while highlighting the important contribution of

ultra-slow fluctuations, also reveals some contributions from

higher frequencies as well. In fact, indications for such faster

contributions have been recently reported in BOLD-fMRI mea-

surements (e.g., Chen et al., 2015).

A fundamental feature of spontaneous fluctuations is their

ubiquity across the cortex. A large and rapidly growing body of

research reveals that, remarkably, each and every cortical site

has the potential to exhibit such spontaneous fluctuations, albeit

with a different level of correlation to other cortical loci (e.g.,

Damoiseaux et al., 2006; Fox and Raichle, 2007). This is an

important observation, not only because of its potentially clinical

significance as a method that ‘‘self-diagnoses’’ each cortical

network (e.g., Greicius et al., 2004; Hahamy et al., 2015; Han

et al., 2011; Harmelech and Malach, 2013), but because it indi-

cates that the spontaneous dynamics may reflect a common

or even canonical cortical phenomenon. Thus, revealing the

neuronal machinery that generates the spontaneous resting-

state fluctuations will constitute a major advance in our under-

standing of cortical function.

A central challenge when considering the neuronal mecha-

nisms that underlie the spontaneous fluctuations is to explain

their extremely slow timescales, which likely point to a large

memory capacity of the fluctuating network. At present, similar

to the case of the ignition dynamics, the exact biophysical mech-

anisms that generate spontaneous resting-state fluctuations

remain unknown. However, a number of modeling studies have

begun to unravel possible neuronal mechanisms, specifically

relying on experimentally observed network structures, that

could account for the experimentally observed resting-state

fluctuations (Deco et al., 2011; Honey et al., 2007).

Interestingly, models that attempted to simulate slow neuronal

dynamics have proposed a reverberatory circuit mechanism as

the source of such persistent activity (Martı́ et al., 2008; Okamoto

et al., 2007; Schurger et al., 2012;Wang, 2002). Notably, the slow

dynamics could not be explained in such models by isolated

cellular synaptic mechanisms and depended on the presence

of strong excitatory reverberations. In Figures 3A and 3C, we

illustrate how a simple one-dimensional simulation of a recurrent

network generates the slow stochastic dynamics typical of the

resting mode (compare Figure 3C with Figure 1B). Additionally,

homogeneous, balanced networks of uniformly connected

excitatory neurons cannot computationally explain the slow

spontaneous fluctuations, but homogeneous clustered networks

can (Litwin-Kumar and Doiron, 2012). The latter architectural

constraint of clustered connectivity is, of course, typical of cor-

tical architecture (Perin et al., 2011; Song et al., 2005; Amir



Neuron

Perspective
et al., 1993; Rockland and Lund, 1983). Other direct attempts at

network simulations of spontaneous fluctuations again relied on

clustered recurrent activations but emphasized the importance

of long-range, large-scale connectivity (Chaudhuri et al., 2014;

Deco et al., 2011; Ghosh et al., 2008). Finally, it is important to

clarify that the ultra-slow spontaneous fluctuations do not repre-

sent the entire repertoire of spontaneous, self-generated phe-

nomena in the brain. As we argue later, the slow, spontaneous

fluctuations can sometimes lead to spontaneous ignitions. How-

ever, in clear distinction from externally generated ignitions, such

self-generated ignitions are often preceded by a slow buildup of

subliminal activity.

To summarize, both modeling and experimental results raise

the possibility that the long timescales typical of ultra-slow spon-

taneous fluctuations are generated by neuronal accumulators

implemented by recurrent reverberations in excitatory cortical

circuits. As the spontaneous fluctuations appear to involve

each and every human cortical network, this suggests that the

recurrent accumulator mechanism is operating not only in spe-

cific, well-studied, accumulator circuits, e.g., in parietal and fron-

tal cortex, but in fact is a canonical property of most, if not all,

cortical areas (although with distinct timescales; Chaudhuri

et al., 2014; He et al., 2008).

Hypothesis: A Common Network Mechanism Underlying
Ignition and Resting-State Spontaneous Fluctuations
When considering together the possible mechanisms underlying

the activation threshold, the ignition and the spontaneous fluc-

tuations, it becomes evident that, despite their drastically

different dynamic nature, they could both potentially rely on

the same network mechanism: excitatory reverberatory loops.

Under such a hypothetical unification, the different dynamics

are explained as resulting from their relationship to the ignition

threshold. Thus, when the overall excitation of the reverberating

network exceeds the inhibitory or leakage ‘‘quench,’’ the

network ignites, i.e., rapidly enters into the active mode. Once

such a network is in the ignitedmode, its activity can remain sus-

tained through the intrinsic network reverberations and no longer

depends on the feed-forward drive (Barak and Tsodyks, 2007;

Dehaene and Changeux, 2005; Wong and Wang, 2006). The

observed return of such network to its pre-ignition baseline

may be explained by various mechanisms of adaptation, inhibi-

tory drive, or synaptic depression (e.g., Tsodyks et al., 1998).

By contrast, when the network activity remains below the ignition

threshold, the reverberating excitatory connections act essen-

tially as a low-pass filter with a long time constant (Goldman

et al., 2009), endowing the network with slow, persistent activity

that integrates the rapidly varying input noise typical of cortical

circuits (e.g., Marom, 2010) over long timescales.

Considering, side by side, the ignition dynamics that is

apparent during the active mode in response to a sensory

stimulation or task and the resting-state dynamics that emerges

in the absence of any stimulus or task, it thus appears that both

can be explained by the same mechanism: reverberatory

network dominated by excitatory connections. Under this hy-

pothesis, the transition between these drastically different

modes of cortical dynamics is set by the ignition threshold.

Whenever the overall network activity is driven above the posi-
tive-feedback threshold (even in the absence of any stimulus),

it leads to the activemode. On the other hand, when there is min-

imal input drive, the excitatory feedback is tooweak to overcome

the inhibitory balance but is nevertheless sufficient to impose

long timescales in the storage of the intrinsically weak noise fluc-

tuations (Deco et al., 2011; Wang, 2002). The link between the

strength of input drive and fluctuations’ time constants appears

to be a natural property of recurrent networks, although, in the

case of sensory stimulation, there is a general shortening of time-

scales (e.g., Wong and Wang, 2006).

It should be emphasized that this unifying attempt—attributing

the active and resting-state dynamics to a single mechanism—

does not rule out the possibility that additional factors may differ-

entiate the active from the rest states. In particular, attention

and arousal mechanisms are enhanced during active states

and contribute to modulate network interactions. Such atten-

tional effects, involving the release of acetylcholine and other

neuromodulators, have been suggested to affect the distance

of intra-cortical communication, which, in turn, could modulate

the amplitude and dynamics of cortical network fluctuations

(Pinto et al., 2013). Indeed, in support of such effects, studies

in behaving primates have revealed that attentional modulation

can directly affect the amplitude of spontaneous fluctuations of

cortical neurons (Churchland et al., 2010; Cohen and Maunsell,

2009; Mitchell et al., 2009).

Consequences of the Proposed Hypothesis
Our proposed hypothesis points to the neuronal ignition

threshold as the critical parameter that separates the slow,

quasi-linear, accumulator dynamics (manifested in ultra-slow

resting-state fluctuations) from the rapid rise of non-linear bursts

of activity manifested during the active mode. Crucially, ignition

is also postulated to relate to conscious perception. Specifically,

it has been previously proposed that, when ignition occurs in a

network of cortical neurons, the corresponding content be-

comes subjectively available for conscious report. Alternative

models emphasize a global neuronal workspace (GNW) that

broadcasts a neural representation to many cortical sites (De-

haene and Changeux, 2011; Dehaene et al., 2003), or a more

local framework where the subjective content depends mainly

on ignition in content-selective representations (e.g., Noy et al.,

2015). The neuronal ignition threshold would, therefore, be the

physiological correlate of the threshold for content-specific

perceptual awareness, as defined psychophysically. This hypo-

thetical scheme leads to three main consequences. First, it

implies that any neuronal activity that occurs below this

threshold should remain subliminal, below the level of the partic-

ipant’s awareness. Under the present hypothesis, the sponta-

neous fluctuations, provided that their amplitude remains below

the ignition threshold, should, therefore, not be directly corre-

lated to reportable conscious events. This view, therefore,

predicts that, despite their robust and widespread nature, as re-

vealed in numerous BOLD imaging studies, resting-state activity

fluctuations should not be associated with a conscious feeling,

inasmuch as they remain at low subthreshold amplitude.

Several recent studies appear to support this counterintuitive

outcome of our hypothesis. Ramot et al. (2011) showed that

when participants rest with their eyes closed, the spontaneous,
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 199
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resting-state BOLD fluctuations are significantly coupled to

slow, drifting eye movements that emerge spontaneously upon

eye closure. Despite this significant BOLD-oculomotor link, par-

ticipants were completely unaware that such BOLD and oculo-

motor fluctuations were actually taking place.

An even more striking demonstration of the subliminal nature

of the spontaneous fluctuations has been demonstrated by Shi-

bata et al. (2011). This group used a real-time multivariate neuro-

feedback procedure in which participants were rewarded when-

ever their spontaneous fluctuations matched a target pattern

associated with a specific visual stimulus. Remarkably, partici-

pants were able to enhance the probability of appearance of

the target BOLD pattern and, furthermore, showed improved

perceptual sensitivity to the trained visual stimulus. However,

crucially, the participants were completely unaware of the occur-

rence of the spontaneously emerging BOLD pattern (despite the

fact that they were continuously rewarded for this pattern). When

prompted, they remained at chance in identifying the reward

pattern (e.g., deciding whether the biofeedback was elicited by

the activation pattern corresponding to a vertical or horizontal

grid).

A second strong consequence of our hypothesis, related to

the conjecture that the same reverberatory circuit could mediate

both spontaneous fluctuations and the network ignition, con-

cerns the transition between the spontaneous and active states.

Under the present hypothesis, if the spontaneous fluctuations

are high enough to approach the ignition threshold, then they

may cross it, initiating an ignition on the one hand and an overt

cognitive or behavioral event on the other.

A significant support for this conjecture is the finding that a

consistent signature of spontaneous or ‘‘voluntary’’ behaviors

(i.e., behaviors that do not depend on external sensory stimuli)

is an ultra-slow buildup of activity preceding such voluntary be-

haviors. In a model with continuously accumulating fluctuations,

this phenomenon is very natural: prior to crossing a threshold for

voluntary decision, the stochastic fluctuations must have accu-

mulated more or less steadily up to the threshold level (Schurger

et al., 2012). Such an event is illustrated in our simulation in

Figure 3D. Note the slow buildup anticipating the threshold

crossing under the ‘‘free-behavior’’ mode. Such phenomena

were studied particularly intensively in the case of voluntary de-

cisions to move, starting with the pioneering research of Korn-

huber and Deecke (1965), followed by Libet et al.’s (1983) series

of ‘‘free-will’’ studies. This research showed, using EEG record-

ings, that a slow potential—the so-called ‘‘readiness’’ poten-

tial—anticipates the decision of participants to initiate a move-

ment (see also Schurger et al., 2012; Figure 4B). While some

anticipatory buildup is to be expected in any dynamical system,

a consistent observation is that such buildup is strikingly slower

when generated freely, compared to when generated following

an external cue.

The aspect most relevant to our hypothesis, one that has been

repeatedly documented, is that participants are unaware of this

slowly developing neuronal build-up. Under our hypothetical

framework, such lack of awareness is readily explained by the

fact that the anticipatory signal remains below the ignition

threshold. These results have been further confirmed in single-

unit recordings in patients (Fried et al., 1997). Recent studies
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have revealed similar anticipatory buildups in BOLD imaging,

often lasting several seconds in duration (Bode et al., 2011;

Soon et al., 2008).

Significantly, the phenomenon of slow anticipatory buildup

prior to ‘‘voluntary’’ decisions is not confined to the motor

domain. Thus, recording single-neuron responses inmedial tem-

poral lobe structures during free recall of previously shown video

clips, Gelbard-Sagiv et al. (2008) found an anticipatory increase

in neuronal firing rate that preceded the recall event by several

seconds. Importantly, such long anticipatory buildup was abol-

ished when the participants directly viewed rather than freely re-

called the video clips (Gelbard-Sagiv et al., 2008). This result is

depicted in Figure 4A.

In direct relation to our present hypothesis, it has been pro-

posed by Schurger et al. (2012) that the intriguing slow buildup

before voluntary decisions to move is compatible with the

assumption that these decisions occur when slow, spontaneous

fluctuations cross the decision threshold, thus simultaneously

entering awareness and leading to themotor response (Schurger

et al., 2012). The slow dynamics of the anticipatory signal is then

explained by the inherent ultra-slow character of the sponta-

neous fluctuations (Figure 4B). Schurger et al. (2012) supported

their hypothesis by demonstrating that unexpected interrupting

cues delivered during high activity peaks of the spontaneous

fluctuations resulted in accelerated responses, supporting the

notion that these fluctuations actually contribute, subliminally,

to voluntary decisions. Recently, in agreement with this view,

the influence of the slow fluctuations on the timing of awareness

was further described in a Libet-like experiment: transcranial

direct current (DC) stimulation in the angular gyrus and the pri-

mary motor cortex increased the neuronal excitability and the

spontaneous fluctuations’ amplitude, leading to faster aware-

ness of conscious motor intentions (Douglas et al., 2015).

A valid critique of the use of voluntary paradigms to study the

role of spontaneous fluctuations is that such paradigms do not

represent a true resting state, since the participants are involved

in a demanding (albeit voluntary) task. To circumvent this

problem, while indirectly monitoring the cognitive state of partic-

ipants, Yellin et al. (2015) opted to measure spontaneous fluctu-

ations in pupil diameter while subjects were resting with their

eyes open. Extensive previous research has documented direct

links between pupil diameter and cognitive load (Eldar et al.,

2013; Kahneman and Beatty, 1966; Kloosterman et al., 2015),

so that examining pupil diameter fluctuations during rest and

their relationship to spontaneous activity fluctuations could

potentially reveal some indication of the cognitive state of indi-

viduals without interfering with their resting state.

The results of this study confirmed and extended previous

observations of free behavior and are in line with our hypoth-

esis: pupil dilation events (presumably indexing spontaneously

emerging conscious thoughts) were preceded by a slow build-

up of BOLD activity in areas belonging to the default-mode

network (DMN) (Yellin et al., 2015). The DMN has, indeed, been

previously implicated in mind wandering and intrinsically ori-

ented thoughts (Mason et al., 2007; Preminger et al., 2011).

Furthermore, testing various models with different dynamics

led to the conclusion that the model that best fit the observed

correlation between BOLD and pupil diameter was, indeed, a
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Figure 4. Three Examples Illustrating the
Slow Buildup of Activity Characteristic of
Spontaneous, Free Behaviors
(A) Slow buildup of single-neurons’ firing rate prior
to free recall of previously viewed videos in human
middle temporal lobe (MTL) (modified from Gel-
bard Sagiv et al., 2008). Note the strikingly slower
dynamics of the signal prior to free recall (bottom)
compared to the neuronal response following
actually presented video (top). H, hippocampus;
EC, entorhinal cortex.
(B) Slow buildup of EEG signal (readiness poten-
tial) that has been extensively studied during free
decisions to move (modified from Schurger et al.,
2012).
(C) Slow buildup of BOLD-fMRI signals recorded
in the human default mode network prior to
spontaneous pupil dilation during rest, presum-
ably associated with the generation of sponta-
neous thoughts during rest (modified from Yellin
et al., 2015).
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slow buildup of neuronal activity up to a threshold followed by

rapid neuronal activation (Yellin et al., 2015; Figure 4C). This

model is nicely compatible with the notion that subliminal non-

conscious spontaneous fluctuations become cognitively rele-

vant upon crossing a high-amplitude threshold. Thus, we find

converging lines of evidence suggesting that the ignition phe-

nomenon is not confined to sensory-driven representations but

can be detected in intrinsic networks as well, being linked then

to spontaneously emerging awareness of internal cognitive

processes such as spontaneous thoughts and free recall. Note

that, in this respect, our model extends the possibility of sponta-

neous, self-generated ignitions to the domain of spontaneously

emerging conscious thoughts. As in the case of other sponta-

neous behaviors, such thoughts are likely to be preceded by a

slow buildup of subliminal activity.

This set of converging findings consistently contrasts ultra-

long timescales during buildup of spontaneous behavior with
Neuron 88
the extremely short evolution of sensory-

or task-driven responses (compare, e.g.,

the active and free modes in Figure 4A).

This striking difference between the

active aware state on the one hand and

the ultra-slow, subliminal preparatory sig-

nals on the other—which have also been

a focus of intense cognitive and even phil-

osophical debates (Dennett, 2003; Libet,

1985; Shadlen, 2014)—is nicely explained

by our present hypothesis. In the absence

of external inputs, the ultra-slow sponta-

neous fluctuations are proposed to

contribute to the initiation of voluntary

‘‘free’’ decisions based on slow accumu-

lator-like anticipatory signals of which

participants remain unaware. By con-

trast, upon external sensory or task

activation, the reverberating network

is rapidly driven above the ignition

threshold, leading to its intense activation

concomitant with cognitive awareness.
A third consequence of the current hypothesis concerns the

differential circuit dynamics found across cortical areas. While

we have so far emphasized the ‘‘canonical’’ principles that are

common across the entire constellation of human cortical net-

works, a potentially robust outcome of our hypothesis relates

to differences in neuronal dynamics across different cortical

areas and networks. Even at the level of anatomical connectivity,

which, under the present hypothesis, should play an important

role in mediating the reverberation dynamics, such differences

are evident. For example, examining the anatomical spread

of lateral anatomical connections at different levels of the visual

hierarchy in the monkey brain reveals a gradual increase in

the anatomical span as one moves to higher levels of the cortical

hierarchy (e.g., Amir et al., 1993). In the same line of ideas, in

the human brain, pyramidal cells become more branched

and spinous from the occipital lobe to the temporal lobe and

from the latter to the prefrontal lobe (Elston et al., 2001). A
, October 7, 2015 ª2015 Elsevier Inc. 201



Box 2. Future Directions

d Can a realistic model circuit integrate the concepts of evi-

dence accumulation and ignition, specifically demon-

strating (1) accumulation of noisy neuronal signals in a

quasi-linear manner, (2) threshold crossing, and (3) ignition

dynamics?

d How can we account for local ignition-like events that

apparently are dissociated from awareness (e.g., V1 bursts

of activity)?

d Can the concept of ignition be reconciled with the graded

nature of neural firing and the apparent dissociations be-

tween signal reduction (e.g., adaptation) and perceptual

awareness?

d What are the neuronal mechanisms by which an ignition is

‘‘broadcast’’ to the rest of the cortex?

d Can a causal relation be demonstrated between ultra-slow

spontaneous fluctuations in neuronal activity and the gen-

eration of free, self-generated, spontaneous behaviors,

such as free motor movements, free associations, and

spontaneously emerging insights?
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straightforward consequence of such changes in anatomical cir-

cuitry is an increasingly slower (more persistent) timescale of the

circuit storage mechanism. If, indeed, our hypothesis that the

slow spontaneous fluctuations and the supra-threshold sensory

activations are derived from the same reverberatory loops is

right, we should expect that, despite the striking differences in

the frequency contents of the two phenomena, changes in the

characteristic dynamics of the spontaneous fluctuations across

cortical sites should parallel similar changes in the dynamics of

their task-driven responses. A suggestion that this, indeed,

may be the case has been recently provided (Honey et al.,

2012). The authors recorded both ECoG responses (Honey

et al., 2012) and BOLD-fMRI responses (Stephens et al., 2013)

and demonstrated a hierarchy of increasingly slower accumu-

lator dynamics in neuronal responses to naturalistic stimuli

leading from auditory cortex to DMN structures. In agreement

with our hypothesis, they found a significant correlation between

the stimulus-driven dynamics and the ones found during resting-

state spontaneous fluctuations. Thus, cortical regions that re-

sponded in a sluggish manner to the naturalistic stimuli also

expressed slower frequencies in their spontaneous activity fluc-

tuations during rest. A similar relationship between the dynamics

of resting and task activations was found in a meta-analysis of

neuronal activity responses in monkey cortex (Murray et al.,

2014). It should be noted in this respect, that in our framework,

the sluggish nature of the frontal circuits will predict longer sub-

liminal buildup prior to active ignitions. Nevertheless, such slug-

gish buildup should not preclude the crossing of the ignition and

awareness threshold in these slow circuits as well.

However, a more extensive analysis of the relationship be-

tween task-driven and spontaneous dynamics will be needed

to better establish the possible common source of these two

modes of cortical activity. It will be particularly informative to

examine the dynamics of those aspects that may be more diag-

nostic of the storage capacity of the network; for example, the
202 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
duration of the sustained activity following brief stimulus presen-

tations (e.g., Fisch et al., 2009).

Elaborations
Given the extreme complexity of cortical circuits, and the many

parameters that impact on their dynamics, the proposed hypoth-

esis should naturally be viewed as an oversimplification. Thus,

additional experiments (see also Box 2, ‘‘Future Directions’’)

and elaborations of the basic scheme proposed here should

be considered. Here, we point out three particularly prominent

ones and attempt to show how a simple extension of our hypoth-

esis could account for these complications.

A major indication that the all-or-none ignition hypothesis is an

oversimplification comes from the many observations that the

neuronal response during the active state can be graded. In

the perceptual domain, certain perceptual dimensions appear

to be continuous, such as motion velocity, contrast levels, and

so forth. In the neuronal domain, a ubiquitous case is the phe-

nomena of adaptation and ‘‘repetition suppression,’’ in which

the amplitude of neuronal responses to optimal stimuli can

be significantly reduced upon stimulus repetition (Grill-Spector

and Malach, 2004; Grill-Spector et al., 2006; Krekelberg et al.,

2006; Malach, 2012). Such graded responses indicate that addi-

tional parameters, such as network excitability levels on the one

hand and synaptic depression (e.g., Tsodyks and Markram,

1997) on the other, should be added to the simple all-or-none

feedback network activations. A plausible, more nuanced elab-

oration of the all-or-none ignition model could be implemented

in networks expressing multi-stable levels (e.g., Ghosh et al.,

2008; Hansen et al., 2015). Furthermore, as noted earlier, synap-

tic depression mechanisms may account for the termination of

the ignition response that, otherwise in a simple point-attrac-

tor-like model, would persist indefinitely.

A secondmajor discrepancy with the present hypothesis is the

observation that the neuronal buildup during voluntary behaviors

does not always lead to an ignition in the accumulator network

itself. For example, the readiness potential leading to a voluntary

decision to move does not appear to be followed by a non-linear

neuronal event that is associated with movement awareness

(Fried et al., 1997; Libet et al., 1983). Again, such observations

indicate that the assumption that accumulation and ignition

must always occur in the same network is likely an oversimplifi-

cation. A plausible scenario, also suggested for perceptual

decisions under uncertainty (Gold and Shadlen, 2007) and for

voluntary behavior in rodents (Murakami et al., 2014), is that

the voluntary decision may involve a cascade of reverberatory

loops, in which an upstream network may possess a higher igni-

tion threshold than its target area. Under such a scenario,

network fluctuations that remain below the ignition threshold in

one cortical area may, nevertheless, drive a downstream area

above its own (lower) ignition threshold, leading to voluntary

behavior associated with an ignition event that is anatomically

separated from the accumulator network. In a related proposal,

Lo and Wang (2006) propose that the readout of threshold-

crossing events could occur subcortically; for instance, in the

superior colliculus.

An interesting observation that may appear to contradict the

notion that high signal activity should correspond to conscious
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awareness concerns sleep states. In particular, it is well estab-

lished that, during non-rapid eye movement sleep (NREM),

peak neuronal activity does not diminish compared to the REM

and awake states (see, e.g., Nir et al., 2011; Ramot et al.,

2013). A plausible explanation for the lack of reportable experi-

ences during NREM sleep could be the frequent off-states,

which are characteristics of NREM sleep. Such off-states may

quench the ability of local high-amplitude signals to cascade

into a global brain-scale ignition, thus gaining access to memory

networks and, hence, preventing conscious recall (Nir et al.,

2011). A similar fragmentation of brain activity into locally pre-

served but globally incoherent states has been described with

intracranial recordings during human anesthesia (Lewis et al.,

2012).

Finally, while our model emphasizes the dynamic role of ex-

citatory connections and assumes a largely stationary impact

of the inhibitory drive, this is clearly an oversimplification, as

many studies have demonstrated a tight link between averaged

excitatory activity and neuronal inhibition (see, e.g., the reviews

Buzsáki et al., 2004; and Zhang and Sun, 2011). Thus, a more

realistic rendition of network activation under rest and sensory-

driven modes should consider a more dynamic and balanced

behavior of network inhibition.

To summarize, we propose here that a common mechanism,

recurrent positive-feedback loops, may account for two drasti-

cally different cortical dynamics. The ubiquity of these dynamics

across the cortex suggests that they reflect a canonical cortical

characteristic, i.e., common phenomena across all cortical cir-

cuits. They highlight the networks’ ignition threshold as a critical

aspect of cortical decision making and conscious awareness.
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