
Neuron

Perspective
The Neural Representation of Sequences:
From Transition Probabilities
to Algebraic Patterns and Linguistic Trees
Stanislas Dehaene,1,2,* Florent Meyniel,2 Catherine Wacongne,1,2 Liping Wang,3,4 and Christophe Pallier2
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A sequence of images, sounds, or words can be stored at several levels of detail, from specific items and their
timing to abstract structure. We propose a taxonomy of five distinct cerebral mechanisms for sequence
coding: transitions and timing knowledge, chunking, ordinal knowledge, algebraic patterns, and nested
tree structures. In each case, we review the available experimental paradigms and list the behavioral and
neural signatures of the systems involved. Tree structures require a specific recursive neural code, as yet
unidentified by electrophysiology, possibly unique to humans, and which may explain the singularity of
human language and cognition.
As early as the 1950s, the problem of serial order was identified

by Karl Lashley as one of the pressing questions that behavioral

and neural sciences should address (Lashley, 1951). The prob-

lem can be stated succinctly: how does the brain encode tempo-

ral sequences of items, such that this knowledge can be used

to retrieve a sequence from memory, recognize it, anticipate

on forthcoming items, and generalize this knowledge to novel

sequences with a similar structure?

Lashley noted that language perception and production, but

also bird song or rat spatial navigation behavior, presented spe-

cial problems for the then-dominant view of associative chains.

Humans and other animals do not simply associate each suc-

cessive item with the next one at a particular delay, but they

also grasp abstract multi-item sequential structures. This faculty

is most evident in human language: even a single word such as

‘‘inexplicably’’ may consist in a nested structure of morphemes

[[in-[explic-able]]-ly].

Sixty years of linguistic analysis have confirmed that an

accurate representation of language requires the postulation of

nested tree structures (Chomsky, 1956). In parallel, behavioral

and neurophysiological analyses of much simpler paradigms,

involving for instance sequences of tones or gestures, have re-

vealed a rich array of responses that go way beyond the simple

associative chain (Restle, 1970; Restle and Brown, 1970). The

purpose of the present article is to review those behavioral and

neural findings and to provide a minimal taxonomy of brain

mechanisms that any accurate model of sequence processing

should emulate. We argue that there is evidence for a minimum

of five distinct systems capable of representing sequence

knowledge at increasing degrees of abstraction (Figure 1):

d Transition and timing knowledge: knowledge of the

transitions from one item to the next (i.e., the identity and
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approximate timing of the next item relative to the preced-

ing ones).

d Chunking: the grouping of several contiguous items into a

single unit that can be manipulated as a whole at the next

hierarchical level.

d Ordinal knowledge: knowledge of which item comes first,

which comes second, and so on, independently of their

timing.

d Algebraic patterns: abstract schemas that capture the

sequential regularities underlying a sequence of items;

for instance, the word ‘‘cocolith’’ comprises twice the

same syllable followed by a different one (AAB pattern).

d Nested tree structures generated by symbolic rules: at

this level, characteristic of human languages, a sequence

can be ‘‘parsed’’ according to abstract grammatical

rules into a set of groupings, possibly embedded within

each other, forming a nested structure of arbitrary depth,

and possibly involving the recursive use of the same

elements at multiple levels; an example is the parsing

of the mathematical equation a + b sin ut as a nested

set of parentheses (a+(b (sin (ut)))) or, equivalently, a tree

structure:

.

Transition and Timing Knowledge
Many animal species are able to represent the time intervals

between sensory or motor events and use these temporal repre-

sentations in simple computations. An excellent example is pro-

vided by a temporal choice task that has been used to probe

temporal and probabilistic calculations in mice and humans

(Balci et al., 2009; Kheifets and Gallistel, 2012). On each trial,
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Figure 1. Illustration of the Proposed
Taxonomy of Sequence Knowledge
According to our proposal, incoming sequences
can be encoded internally at one of five possible
levels of abstraction: (1) transitions between spe-
cific items at a specific time delay; (2) a sequence
of ‘‘chunks,’’ for instance reproducible words
within a stream of syllables; (3) an ordered list, with
explicit knowledge of which item comes first,
second, third.; (4) an algebraic pattern suchAAB,
indicating that the first two items are identical while
the third is different; and (5) a tree structure, with
constituents nested inside other constituents, as
observed in human languages.
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one of two events may occur: either, 3 s after trial initiation, a left

lever press is rewarded or, 9 s after trial initiation, a right lever

press is rewarded. Participants quickly learn to adjust their antic-

ipations, first turning to the left lever, then if nothing occurs,

switching to the right lever. The results show that mice and hu-

mans carefully and near-optimally adjust the duration after which

they switch levers, taking into account both the imposed tempo-

ral delays and the internal and external uncertainties over which

event is most likely. Because the behavioral switches occur after

a roughly fixed delay, which is not cued by any sensory event, it

implies that the organism must maintain an internal representa-

tion of elapsed time and base its decisions on a comparison of

elapsed and memorized times of expected events. This and

many other similar paradigms imply that time is one of the dimen-

sions over which animals may compute (Gallistel, 1990).

A characteristic signature of this representation is its approx-

imate nature, subject to scalar variability, also termed Weber’s

law (Gibbon, 1977; Gibbon et al., 1997): the imprecision

(standard deviation) with which a delay is encoded is directly

proportional to its duration, such that increasingly longer delays

are represented with proportionally larger variability.

It is likely that, whenever we hear a sequence of stimuli X1..n,

their transitions Xi/Xi+ 1 and corresponding time delays are

automatically and unconsciously registered, and that such

knowledge of temporal delays therefore constitutes a first level

at which incoming sequences are internally represented. The

main paradigm that has been used to demonstrate this is the

auditory oddball paradigm, inwhicha reproducible series of audi-

tory stimuli is presented at regular intervals (Figure 2A). Crucially,
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when one of the stimuli is unexpectedly

replaced by another one, the brain emits

a mismatch response (MMR) (i.e., an acti-

vation increasing with the degree of

mismatch between the expected and ob-

tained stimuli) (Garrido et al., 2009). Most

strikingly, a similar brain response is

observed when the expected stimulus is

omitted, peaking roughly at the time

when the stimulus should have occurred

(Raij et al., 1997; Wacongne et al., 2011).

Such omission signals, which have been

tracedback toauditory cortices, incontro-

vertibly demonstrate that sensory circuits

can internalize the timing of a regular
sequence and generate an endogenous response in the absence

of any sensory input, purely in anticipation of an expected event.

Variations in stimulus onset asynchrony indicate that this capac-

ity to store temporal intervals operates up to delays of 2–5 s, with

a decreasing amplitude and an increasing temporal dilution

compatible with scalar variability (Mäntysalo and Näätänen,

1987; Pegado et al., 2010).

Another remarkable characteristic of temporal sequence

encoding is its automaticity. MMR responses continue to

be emitted even of the absence of attention, awareness of

changes, or even of any consciousness, as during coma, vege-

tative state, or when falling sleep (Bekinschtein et al., 2009;

Strauss et al., 2015). In spite of this automaticity, MMR studies

have revealed that auditory sequences are internally stored

with a great variety of details. Changing the presence, pitch,

identity, intensity, or duration of the expected stimuli all lead to

MMRs localized to distinct sites in primary and secondary audi-

tory cortices as well as prefrontal cortex (PFC) (e.g., Giard et al.,

1995). Precisely timed neuronal responses, including mismatch

and omission responses, have also been observed inmany other

modalities, e.g., with visual stimuli in early visual cortex (Gavornik

and Bear, 2014; Namboodiri et al., 2015) and inferotemporal cor-

tex (Meyer and Olson, 2011; Meyer et al., 2014), with action se-

quences in premotor cortex and basal ganglia (Bartolo et al.,

2014; Crowe et al., 2014; Mello et al., 2015; Merchant et al.,

2011), and with anticipated reward in dopamine neurons (Fiorillo

et al., 2008). It is therefore likely that the neural mechanisms for

encoding temporal knowledge are replicated in several brain cir-

cuits that operate automatically and in parallel to each other.
88, October 7, 2015 ª2015 Elsevier Inc. 3
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Figure 2. Simple Auditory-Violation Paradigms, Combined with Magneto-Encephalography Recordings, Can Dissociate Different Types of
Sequence-Sensitive Mechanisms
Upon exposure to a sequence of repeated tones (aaaaa sequence, left column), auditory responses adapt, but recover when a novel tone is introduced (aaaab
sequence, red curve). This ‘‘oddball’’ response is thought to result from two distinct mechanisms: passive sensory adaptation to individual tones (bottom left) and
predictive coding based on transition probabilities between tones (bottle middle) The two mechanisms can be dissociated using a second auditory paradigm
where two tones alternate (ababa, middle column): an unexpected repetition (ababb) leads to a sharp MMR, which is thought to result from a violation of the
alternation prediction arising from past stimuli. Finally, a third paradigm, called local-global, presents a frequent sequence (in the illustrated example, the aaaab
sequence; right column). The occasional presentation of a rare deviant sequence (in this case, aaaaa) leads to a late novelty signal called ‘‘global response’’
because it arises from an integrated representation of the whole ‘‘chunk’’ (aaaab) or abstract pattern (AAAAB) rather than of the individual tones or transitions
between tones (adapted from data in Strauss et al., 2015).
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At least two neural mechanisms for the generation of MMRs

have been proposed: stimulus-specific adaptation (SSA) and

predictive coding. SSA reflects the well-known fact that sensory

responses tend to habituate over time, such as neurophysiolog-

ical responses evoked by a stimulus decrease with repetition

and recover when a fresh stimulus is presented. Predictive cod-

ing is the theory that cortical circuits form an internal model of

input sequences, actively generate a prediction of upcoming

items, and confront it with incoming stimuli. In this view, MMRs

reflect the prediction error (i.e., the difference between predic-

tion and reality) (Friston, 2005).

Although SSA undoubtedly contributes to the oddball para-

digm (May and Tiitinen, 2010), adaptation cannot fully account

for the whole range of mismatch effects. It fails to properly

account for MMRs evoked by omissions, stimuli of lowered

amplitude, or alternating stimuli. In the latter paradigm, two

stimuli A and B are presented in regular alternation at a fixed in-

terval: ABABA.(Figure 2B). When this regularity is occasionally
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violated by stimulus repetition (e.g., AA), an MMR is observed

(Horváth and Winkler, 2004; Strauss et al., 2015; Todorovic

and de Lange, 2012), although SSA alone should predict a

further decrease in evoked responses to a repeated stimulus.

The results are better explained by assuming that this signal re-

flects the violation of an active expectation of the alternating

stimulus. Similar findings in the visual modality indicate that the

bulk of what is generally attributed to ‘‘repetition suppression’’

may in fact arise from predictions and their violations (Egner

et al., 2010; Summerfield et al., 2008). Such findings suggest

that predictive coding is ubiquitous in various sensory cortices

(Friston, 2005).

Wacongne et al. (2012) proposed a spiking-neuron model of

predictive coding and mismatch detection. The model proposes

that a cortical region, sensitive to a given aspect of stimulus iden-

tity (e.g., auditory pitch), learns a predictive-coding model that

uses a temporal window on the recent past to generate anticipa-

tions of the future. When exposed to a sequence of events X1..n,
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the model cortex encodes it by strengthening a set of synapses

that connect a representation of the past events Xi,t�t to the pre-

sent event Xj,t. Those synapses capture any regularity in the

identity-by-delay matrix that connects past and present stimuli.

Thus, themodel assumes that what is being encoded at this level

is the conditional probability of observing a new event Xj,t at a

specific time t, given the items Xi,t�t observed in the recent

past. Simulations show that this mechanism can store transition

probabilities in sequences such as AAAA or ABAB and can ac-

count for major properties of the MMR, including its distribution

across cortical layers and dependency on NMDA-receptor

mechanisms (Javitt et al., 1996).

The Wacongne et al. (2012) model requires a neurophysiolog-

ical mechanism of ‘‘time-stamp’’ neurons that emit spikes at a

relatively fixed delay after a specific sensory or motor event.

Such neurons tuned to a relatively specific temporal interval

have been observed in dorsolateral PFC and caudate nucleus

(CN) (Jin et al., 2009). Time may also be encoded by monotoni-

cally increasing or decreasing firing patterns, as observed in pre-

motor cortex during a learned tapping task (Merchant et al.,

2014). Neurons in the cerebellum (Johansson et al., 2014; Oh-

mae et al., 2013), parietal cortex (Leon and Shadlen, 2003),

and hippocampus (Kraus et al., 2013) have also been observed

to encode elapsed time. Thus, it is not implausible to suggest

that time-stamp neurons are available, either locally or through

basal ganglia or cerebellar loops, to virtually any cortical area.

Theory and simulations show that, even if neurons exhibit noisy

chaotic dynamics, the presence of partially reproducible trajec-

tories, supplemented by a learning mechanism, suffices to

encode temporal sequences in a stable manner, subject to We-

ber’s law (Jin et al., 2009; Laje and Buonomano, 2013).

In summary, at our first level of sequence representation, se-

quences are stored by keeping a record of the transitions

between events and their approximate timing. At this level, the

sequence code is unconscious, shallow, item specific, and

temporally detailed. The signatures of this code are (1) precisely

timed neuronal firing, (2) subject to Weber’s law, and (3) with the

emission ofmismatch or omission responses when the expected

event sequence is violated. This mechanism seems to be dupli-

cated in many cortical and subcortical circuits.

Chunking
When a sequence of events recurs, those eventsmay be grouped

together as a ‘‘chunk’’ and stored as a single unit. A ‘‘chunk’’ can

be defined as a group of contiguous items that frequently recurs

as a whole and that are therefore usefully encoded as a single

group by the nervous system. An example is provided by a

word such as ‘‘caramel,’’ which groups several successive sylla-

bles or phonemes into a single unit (in this example, it is important

that the word ‘‘caramel’’ comprises a single morpheme: as dis-

cussed later, complex polymorphemic words are thought to

involve nested trees structures, e.g. ‘‘repainted’’ = {{re,paint},ed}).

Note that there is nothing in our definition of a chunk which is spe-

cific to sequences or to auditory stimuli. On the contrary, it is likely

that many brain areas independently encode recurring chunks in

multiple domains: frequent melodies and words are detected by

auditory areas; recurrent series of motor actions are compiled in

cortical and subcortical motor areas; groups of visual features
are detected as familiar faces, objects, and places in specialized

areas of the visual system, etc.

There is evidence that temporal chunking occurs in a simple

variant of the auditory oddball paradigm called the ‘‘local-global

paradigm’’ (Figure 2C) (Bekinschtein et al., 2009). In this variant,

the repeated sounds are no longer presented as a continuous

stream, but as short sequences, thus offering the opportunity

to store those sequences as ‘‘chunks.’’ In the critical condition,

subjects are presentedwith a sequence of the aaaab type, where

the first four tones are identical while the fifth sound differs. In hu-

man EEG and intracranial recordings, the deviancy of the last

sound initially leads to a series of potentials: first a MMR, then

a late surprising-elicited P3b wave. Repeatedly hearing the

same aaaab sequence, however, leads to a dramatic reduction

of those components. Interestingly, the MMR remains, confirm-

ing that this component reflects a shallow and automatic

response to local transition probabilities that does not take

global predictability into account. The P3B, however, disap-

pears, suggesting that, at some level, the ‘‘global’’ sequence is

memorized, including an expectation that the fifth tone will be

different. This interpretation can be confirmed by presenting

rare deviants consisting of five identical tones aaaaa: the P3b

wave immediately reappears, indicating that even a monotonic

sequence can be surprising if it violates prior expectations. The

findings indicate the existence of a distinct level of global repre-

sentation where the whole sequence is memorized. fMRI, ERP,

MEG and intracranial recordings indicate that this mechanism

is available to human adults (Bekinschtein et al., 2009; El Karoui

et al., 2014; King et al., 2013, 2014; Strauss et al., 2015;

Wacongne et al., 2011), 3-month-old infants (Basirat et al.,

2014), and macaque monkeys (Uhrig et al., 2014).

The signatures of this mechanism distinguish it sharply from

simple transition-probability learning. First, it is slower: early

(�100–200 ms) event-related potentials such as the MMR are

transient and primarily affected by local transition probabilities,

and it typically takes an additional 100–200 ms before effects of

global context arise in a sustained and stable manner (King

et al., 2014). Second, the effect is no longer automatic: it essen-

tially vanishes when subjects are distracted by a visual task,

asleep, or unconscious (Bekinschtein et al., 2009; Strauss

et al., 2015). Third, it arises from a distributed set of regions,

including secondary auditory cortices; superior temporal sul-

cus; inferior frontal gyrus (IFG); and dorsolateral prefrontal,

intraparietal, anterior, and posterior cingulate cortices (Uhrig

et al., 2014).

The local-global paradigm does not provide a pure test

of sequence chunking, because it may engage higher-order

ordinal, algebraic, and tree learning mechanisms (as further dis-

cussed below). A simpler paradigm, however, has been used to

specifically demonstrate chunking of a speech stream and its

central role in word acquisition (Saffran et al., 1996). In this para-

digm, subjects are exposed to a continuous auditory stream of

syllables such as ‘‘tokibugikobagopilagikoba.’’ (Figure 1).

Inconspicuously, the syllables form recurring groups of three syl-

lables analogous to words (e.g., ‘‘gikoba’’ and ‘‘tokibu’’). After

being exposed to such a stream for 2 min, even 8-month-old ba-

bies show evidence of chunking: in a post-test, they attend less

to three-syllable stimuli that correspond to the original words
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 5
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than to otherwise similar stimuli consisting either in a random

arrangement of the same syllables, or in the end of a word fol-

lowed by the beginning of another word (Saffran et al., 1996).

Event-related potentials in adults indicate that, after training, a

left-lateralized rhythm emerges at one-third of the original sylla-

ble frequency, corresponding to the word presentation fre-

quency, suggesting that the stream is now parsed into three-syl-

lable chunks (Buiatti et al., 2009). fMRI studies suggest that such

chunking arises from the left planum temporale (PT) and/or left

IFG (Karuza et al., 2013; Tremblay et al., 2013).

The Saffran et al. (1996) stimuli had a higher transition proba-

bility of syllables within a word than between words and could

therefore be accounted for by transition-probability learning.

Graf Estes et al. (2007), however, provided direct evidence

that the three-syllables chunks were extracted as distinct units.

In this experiment, 17-month-old babies who had been exposed

to sequences of three-syllable words later showed evidence of

a fast acquisition of semantic association of those words with

visual objects, compared to non-exposed three-syllable strings.

Evidently, the extracted chunks became available as lexical en-

tries in the child’s mental lexicon. Saffran and Wilson, (2003)

likewise demonstrated that the chunked words could enter

into a higher-order learning process: 12-month-old infants ac-

quired the transition probabilities between those words, which

implies that they were coded as independent entities. Indeed,

chunking is thought to be one of the main mechanisms by which

children identify words in the continuous speech stream (Hay

et al., 2011).

A similar mechanism seems to operate in the visual and motor

domains, allowing human adults (Orbán et al., 2008), infants

(Bulf et al., 2011), and baboons (Minier et al., 2015) to chunk

spatial or temporal groups of visual shapes, locations, or ac-

tions. Orbán et al. (2008) describe a Bayesian learning mecha-

nism capable of discovering the minimal set of chunks that

captures a regular visual scene, and they provide strong behav-

ioral evidence that such a mechanism may be used by humans.

Interestingly, Bor et al. (2003) observed intense bilateral IFG acti-

vation whenever a sequence of visual locations could be

chunked into subsets forming familiar shapes such as a square,

and similar observations were made in a related paradigm

(Schapiro et al., 2013).

At the single-cell level, chunking has been primarily studied in

the context of the acquisition of motor habits (Fujii and Graybiel,

2003; Graybiel, 1998; Jin et al., 2014; Smith and Graybiel, 2013).

During the acquisition of a familiar motor sequence, single neu-

rons in PFC and basal ganglia dramatically change their firing

pattern: they initially emit a reproducible burst of spikes to every

action in the sequence, but eventually end up firing only to the

first and last items, thus signaling chunk boundaries (Figure 3).

These data thus confirm the neurophysiological reality of chunk-

ing but do not yet indicate whether and how neurons are allo-

cated to the encoding of entire chunks. Human fMRI suggests

that, in action planning, chunking may be hierarchical, leading

to the formation of ‘‘chunks of chunks’’ involving increasingly

anterior prefrontal areas (Koechlin and Jubault, 2006).

In summary, our second sequence representation mechanism

is one by which frequently co-occurring items are grouped

together as a ‘‘chunk,’’ which can then be manipulated as a sin-
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gle higher-level unit. The precise neural mechanisms of chunk

formation remain unknown, and are probably widely distributed

in multiple cortical areas, but include inferior frontal gyrus and

superior temporal regions for human auditory chunking and fron-

tal/basal ganglia loops for motor chunking.

Ordinal Knowledge
The transition-timing and chunking mechanisms discussed so

far can only recognize specific melodies or words and their vio-

lations. Indeed, the corresponding experimental paradigms typi-

cally do not evaluate the degree of abstraction of the sequence

representations involved, and whether abstract features com-

mon to multiple sequences are extracted. Other paradigms,

however, offer direct evidence that human and non-human pri-

mates extract at least one such feature: ordinal knowledge,

i.e., a representation of which event comes first, second, or third,

independently of when these events arise. The ordinal system

abstracts away from specific timing information and encodes

only relative temporal order. Possessing distinct mechanisms

for timing and ordinal knowledge is clearly useful: there are

many natural situations in which event timing is fixed and pre-

dictable (e.g., when an object falls from a certain height),

but there are equally numerous situations in which it is only

possible to predict that something will happen, or even how

many events will occur, without knowing when (e.g., when one

or more predators hide behind a tree). Prefrontal and parietal

circuits for working memory and number may have evolved to

bridge temporal gaps by predicting what and how many while

leaving open when.

In humans, ordinal knowledge is typically studied by request-

ing to memorize a list of items and, after a short delay, to repro-

duce it in the same order. The classic ‘‘primacy’’ and ‘‘recency’’

effects indicate, respectively, that the first and last items are

better remembered, suggesting that order information is used

to organize the list. Importantly, the same conclusion was

reached when this list learning paradigm was adapted to ma-

caque monkeys (Chen et al., 1997; Orlov et al., 2000; Terrace

et al., 2003). Strikingly, after learning two separate lists a1 a2
a3 and b1 b2 b3, monkeys were likely to confuse items with

the same ordinal position, for instance erroneously reporting

a1 b2 a3 (much more frequently than, say, a1 b3 a3). Thus, ordinal

position is a salient parameter by which monkeys and humans

organize incoming sequences. Both species also impose a

global ordinal representation to items that are merely presented

as pairs: for instance, presentation of pairs a/b; b/c; c/d;

d/e, in random order, leads to the implicit knowledge that

a is first, b second, and e last, and this ordinal knowledge

transfers to a sequence task (Jensen et al., 2013; Merritt and

Terrace, 2011).

Neurophysiological recordings in dorsolateral prefrontal and

intraparietal cortex have revealed a neural code for ordinal num-

ber (Figure 4). In monkeys trained to remember a series of three

shapes and reproduce it, Ninokura et al. (2004) observed that as

many as 44% of prefrontal neurons were tuned to serial position

in the list, thus responding identically to entirely different shapes,

solely on the basis of order information (Figure 4). In monkeys

trained to identify the total number in a series of identical sounds

or light flashes, with variable duration and timing, Nieder and



Figure 3. Evidence for Sequence Chunking in Monkey PFC and Basal Ganglia
(A) A PFC neuron exhibits enhanced firing at the start and end of a four-target sequential saccade task. Raster plots and peristimulus time histograms are shown
for 35 different trials. Pink denotes the 400-ms window during which the end response is observed (‘‘extra peak’’ denoted by a pink arrow).
(B) Invariance of the start and end responses of the PFC neuron shown in (A) to different sequences: blocks with a single saccade (top), six saccades (middle), or
four saccades with a longer inter-target interval (bottom).
(C) Peri-event time histograms of the activity of two neurons from PFC and CN during the four-saccade task (after Fujii and Graybiel, 2003).
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colleagues observed that many PFC and IPS neurons were

tuned to a specific ordinal number and discharged maximally

to one of four possible serial positions, with the characteristic

signature of Weber’s law (Nieder, 2012; Nieder et al., 2006). A

significant proportion of such ordinal neurons, particularly in

PFC, were tuned to the same number of simultaneously pre-

sented visual items, confirming that they were encoding an

abstract parameter of number. In supplementary and presup-

plementary areas, neurons may also signal the number of re-

maining movements needed before a reward is obtained

(Sohn and Lee, 2007). Order-sensitive neurons are present in a

broadly distributed set of areas including the supplementary

motor area (SMA), presupplementary motor area (pre-SMA),

supplementary eye field (SEF), and dorsolateral PFC (Berdyyeva

and Olson, 2010). Time- and order-sensitive neurons appear

to be intermingled in the medial premotor cortex (Crowe et al.,

2014).

While the above experiments involved highly trained animals,

even untrained animals are sensitive to the numerical dimen-

sion of sequences. Experiments with untrained animals have

primarily tested knowledge of the total number of items in a
sequence, not the ordinal position of each item, but it can be

safely assumed that the two properties are intimately related,

as knowledge of total number implies keeping track of how it

evolves with each new item. Behaviorally, untrained or even

newborn animals have been found to compare two numbers

(Haun et al., 2010; McComb et al., 1994). A spontaneous capac-

ity for matching the total numerosity of visual displays and audi-

tory sequences has also been observed in newborn babies (Izard

et al., 2009). When toddlers watch a puppet and are asked

to imitate it, they spontaneously reproduce the approximate

number of actions, again exhibiting Weber’s law (Figure 3D)

(Sella et al., 2015). Neurophysiologically, number-tuned neurons

have been recorded in PFC and IPS of untrained macaque

monkeys (Viswanathan and Nieder, 2013), and spontaneous

responses to number have been observed with fMRI (Wang

et al., 2015). Thus, number is a very salient parameter that

many species spontaneously take into account as they encode

an incoming sequence.

While evidence for an abstract numerical code is over-

whelming, an interesting question is how this abstract knowl-

edge is applied to a specific sequence—how do we remember
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 7



Figure 4. Representation of ordinal numerical information.
(A–C) Monkey neurons selective to ordinal number.
(A) Recording sites in PFC and IPS where such cells are found.
(B) (top) illustrates the temporal succession of individual tones represented by each square pulse, and the corresponding discharges of a cell whose firing peaks
just after the second item.
(C) The average tuning curves for neurons tuned to first, second, third, or fourth items (after Nieder, 2012; Figure 3).
(D) Evidence that young children spontaneously use number knowledge when matching a specific number of actions (after Sella et al., 2015).
(E) Responses of two prefrontal cells in monkeys trained to remember the order of three visual objects (denoted by letters ABC). Cell 1 responds to the first item,
regardless of its identity, while cell 2 responds to the second item (after Ninokura et al., 2004; Figure 2).
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that, in the sequence of meaningless syllables ‘‘ba ki do,’’ ‘‘ba’’

was first, ‘‘ki’’ second, and ‘‘do’’ last? Botvinick and Watanabe

(2007) have proposed a simple and effective neural code for se-

rial order in working memory. Their model assumes that abstract

ordinal information (presumably conveyed by IPS neurons) is

conjoinedwith item-specific information (e.g., conveyed by audi-

tory cortex) through a gain-field mechanism: prefrontal neurons

would be tuned to the product of those two variables, thus exhib-

iting a joint preference for a specific item and a specific ordinal

rank. Simulations demonstrated that such a coding scheme,

combined with Weber’s law, could reproduce the main behav-

ioral properties of working memory for ordered sequences,

including primacy and recency effects as well as confusions be-

tween consecutive or similar items (Botvinick and Watanabe,

2007). Remarkably, conjunctive cells jointly sensitive to ordinal

information and to stimulus identity have been reproducibly

recorded in PFC, both formotor and for sensory sequences (Bar-

one and Joseph, 1989; Inoue andMikami, 2006). Gain fields are a

very natural mechanism for neuronal coding, which has been

observed in other contexts (Andersen et al., 1985). As further dis-

cussed below, the concept of neurons jointly sensitive to the
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product of a specific identity or ‘‘filler’’ and to its abstract

‘‘role‘‘ (here ordinal position) may go a long way towards explain-

ing themore abstract sense of syntax in humans (Smolensky and

Legendre, 2006).

In summary, at our third level of sequence representation, a

sequence is encoded by specifying which item comes first, sec-

ond, third, etc. The signatures of this representation are primacy

and recency effects,Weber’s law for number, and neurons tuned

to ordinal number, either abstractly or in conjunction with spe-

cific item features.

Algebraic Patterns
The levels of representation that we considered so far all involve

storing a series of specific items. We now consider the mental

representation of more abstract schemas called ‘‘algebraic pat-

terns’’ that capture the relationships between successive stimuli

or stimulus categories. Consider, for instance, a 7-month-old

baby listening to a sequence of syllables suchas ‘‘totobu,’’ ‘‘mim-

ika,’’ ‘‘paparo,’’ etc. Even a few minutes of such exposure ap-

pears sufficient for the baby to recognize that all such sequences

obey a similar pattern that may be denoted as AAB (i.e., two
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identical syllables followed by a different one). Thus, the baby

is sensitive to the identity relation between successive sounds,

irrespective of their specific identity. When this pattern is

violated, for instance by an ABB item, the baby reacts with longer

looking times, indicating that the changewas perceived (Marcus,

2001;Marcus et al., 1999). Such evidence implies that the babies

categorized the incoming syllables using concepts of same/

different and grasped that the first two syllables were always

identical.

Marcus introduced the term ‘‘algebraic pattern’’ to refer to an

abstract schema (e.g.,AAB) that captures the regularities behind

several specific sequences (e.g., aab, ccd, etc). Following

Marcus’ seminal work, research has concentrated on algebraic

patterns defined by identity relationships (Endress et al., 2009;

Marcus, 2001; Marcus et al., 1999, 2007). Here, we propose to

apply this term whenever there is evidence that an input

sequence is internally coded by a corresponding sequence of

abstract relationships, concepts, or categories. For instance,

there is evidence that infants perceive a sequence of increasing

numbers as analogous to a sequence of lines of increasing

length (de Hevia and Spelke, 2010)—this implies that infants

possess an algebraic pattern for increasing size, which can be

denoted as A < B < C.

Rudiments of the algebraic level of representation seem to be

available to non-human primates (Saffran et al., 2008; Shima

et al., 2007; Wang et al., 2015). For instance, Shima et al.

(2007) trained monkeys to perform series of four actions on a

lever (e.g., for a short period, they repeatedly did ‘‘push push

pull pull’’) (Figure 5). Remarkably, some PFC neurons were tuned

to the abstract algebraic pattern underlying themotor sequence:

some fired to repetition (AAAA), others to alternation (ABAB), and

yet others to paired sequences (AABB), while totally disregarding

the specific actions (push, pull, or turn).

Our laboratory used fMRI to explore macaque monkeys’

competence for algebraic patterns in the auditory domain, based

on a variant of the local/global paradigm (Wang et al., 2015).

In short blocks, naive macaque monkeys were exposed to

sequences of tones varying in pitch, tempo, and duration, yet

with a constant algebraic pattern (either AAAB or AAAA). Using

fMRI, we then tested for brain responses to violations affecting

the total number of items (e.g., going from four sounds to two

sounds or to six sounds), the sound-repetition pattern (going

from AAAA to AAAB or vice-versa), or both (e.g., going from

AAAA toAAAAAB). Monkeys showed responses to both number

(in intraparietal cortex, anterior cingulate and SMA) and sound-

repetition pattern (in basal ganglia, ventral inferior prefrontal,

and temporal cortex). Those findings confirm that naive non-

human primates are capable of representing the abstract numer-

ical and algebraic patterns of sequences (Nieder, 2012; Shima

et al., 2007). Many other species such as corvids (Veit and

Nieder, 2013) and bees (Avarguès-Weber et al., 2012; Giurfa

et al., 2001) may represent abstract relationships such as

same-different, above-below, and right-left.

This is not to say, of course, that such abstract knowledge

is identically encoded in human and non-human brains.

When comparing fMRI activations in humans and macaques

exposed to identical stimuli exemplifying a simple algebraic

pattern (e.g., AAAB, as explained above), we observed a strik-
ing difference (Wang et al., 2015): in monkeys, disjoint cortical

sites responded to violations in number and in sound-repeti-

tion pattern, while in humans, those changes elicited overlap-

ping and precisely correlated responses at the same sites in

inferior frontal and posterior superior temporal cortex—sites

that also happened to be activated during linguistic sentence

processing. Monkeys did show ventrolateral PFC responses

to pattern changes, but there was no sensitivity to number at

this site. On this basis, we speculated that human language

areas exhibit a superior ability to assemble abstract sequence

information into a single unified ‘‘expression’’ (e.g., ‘‘3 identical

sounds, then a different one’’); monkeys, on the other hand,

may only possess disjoint knowledge of number (‘‘four sounds

in total’’) and identity relationships (‘‘one item is different’’)

(Wang et al., 2015).

The reason why algebraic patterns are of great interest,

indeed, is that they may provide a model domain for the types

of patterns present in language, music, mathematic, and other

domains of singular competence in the human species. For

instance, each human language is characterized by specific

‘‘phonotactic’’ rules (i.e., a specification of which phoneme se-

quences are acceptable). For instance, the English language ac-

cepts syllables with consonant clusters (CC or CCC structures;

e.g., /pr/ in ‘‘price’’ or ‘‘spl’’ in /split/), while Japanese does not.

Human infants quickly learn such phonotactic rules (Jusczyk

et al., 1994). At a higher grammatical levels, young children

learn abstract patterns such as ‘‘determiners precede nouns’’

(in English) and ‘‘determiners agree with nouns in gender and

number’’ (in French), and they quickly generalize them to novel

instances (e.g., Bernal et al., 2010; Melançon and Shi, 2015). It

is not clear that such rules are available to any non-human

species. For instance, even a highly trained chimpanzee, after

learning to use sign language and to produce some combina-

tions of signs, still lacked the combinatorial productivity evident

in human children’s very first linguistic productions (Yang,

2013).

In summary, our fourth level of sequence representation is

characterized by the capacity to abstract away from the specific

identity and timing of the sequence items and to grasp their

generic underlying pattern. The main signatures of this level

are a behavioral capacity to generalize to novel items and a

neurophysiological tuning of PFC neurons to abstract patterns.

There is, to the best of our knowledge, no accepted neural

network mechanism by which such an abstract encoding is

achieved, as all current neural network proposals seem too

limited to account for human abstract rule-extraction abilities

(Hadley, 2009; Marcus, 2001).

Nested Tree Structures
Do transition-timing, chunking, numerical, and algebraic pat-

terns suffice to account for themost advanced form of sequence

processing, namely language?Most linguists believe that human

language abilities imply an additional competence for nested

tree structures (Chomsky, 1956). Consider for instance the

phrase ‘‘black taxi driver.’’ It can be parsed as ‘‘black [taxi

driver]’’ or as ‘‘[black taxi] driver.’’ Such an ambiguity would

be impossible to express in a system comprising only ‘‘flat’’

sequence structures such as transition probabilities between
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 9



Figure 5. Neurophysiological Evidence that Monkey Prefrontal Neurons Encode the Algebraic Patterns Underlying Motor Sequences
(A) Diagram illustrating the temporal sequences of events in a behavioral task requiring the categorization of multiple sequences. Initially, a correct sequence of
four movements is cued with visual stimuli. Monkeys are trained under visual guidance for five trials and then required to perform the same sequence of
movements from memory.
(B) Single-unit activity was recorded in monkey PFC. Green dots denote the density of pattern-selective cells.
(C) Activity of a prefrontal cell selective to the ‘‘alternate’’ ABAB pattern during motor planning, just prior to sequence reproduction.
(D) Time courses of population responses for PFC cells tuned to three different patterns (left: alternate ABAB pattern; middle: paired AABB pattern; right: repeat
AAAA pattern).
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words or even between categories of words. Rather, such rela-

tionships require substitution rules such as NP/A NP (a noun

phrase can comprise an adjective followed by a noun phrase)

and NP/NP N (a noun phrase can be formed by compounding

a noun phrase with a noun). Once such rules are available, their

nested application can generate the appropriate structures: [A [N

N]] or [[A N] N].

Linguists call ‘‘constituents’’ any of the nested blocks of

words that belong together in a sentence—thus, ‘‘black taxi

driver’’ is a constituent, itself comprising ‘‘black taxi’’ and
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‘‘taxi driver’’ as two potential sub-constituents. A great variety

of linguistic observations support the notion that constituent

structures are a fundamental building block of language (Spor-

tiche et al., 2013). Thus, ellipsis and substitution indicate that

certain groups of words form constituents because they can

be deleted and/or replaced by a shorter word—consider for

instance ‘‘he [drove [to [this [big house]]]’’ / ‘‘he drove to this

one,’’ ‘‘he drove to it,’’ ‘‘he drove there,’’ ‘‘he did.’’ Coordination

indicates that constituents of the same type (e.g., noun phrases)

can be combined by ‘‘and,’’ as in ‘‘[my [big dog]] and [I].’’
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Constituents may also move as a unit, for instance when form-

ing a cleft sentence: ‘‘it is [to this house] that he drove.’’ The lin-

guistic rules that govern such movements (called ‘‘wh-move-

ment’’ because it is used to form questions in English) operate

over tree structures rather than over mere word sequences.

Tree structures are also indispensable to account for agreement

(e.g., the link between subject and verb) and binding (the link

between a pronoun and its antecedent noun). For instance, in

the sentence ‘‘The cars [that pass this truck] are red,’’ the plural

subject (cars) agrees with the verb (are), irrespective of the inter-

vention of an arbitrarily large relative sentence including another

noun in the singular (truck). Such ‘‘long-distance depen-

dencies,’’ which characterize languages, can only be formulated

by assuming that the underlying mental representation is a tree

structure that directly links the words ‘‘cars’’ and ‘‘are’’ in spite

of their temporal separation. Conversely, note how the above

sentence, although obviously grammatical, contains the super-

ficially ungrammatical sequence ‘‘this truck are red’’ (which is

not a constituent, is barely detectable, and plays no role in syn-

tactic operations). This and many other examples indicate that

transition probability, ordinal, chunking, or pattern-detection

mechanisms that are only sensitive to ‘‘flat’’ local order cannot

capture the grammaticality of constituent structures—nested

trees are required.

In his recent ‘‘minimalist’’ research program, Noam Chomsky

has championed the idea that a single mental operation, called

‘‘merge,’’ underlies the formation of tree structures in all of the

world’s languages. Merge is a hypothetical operation that forms

a minimal binary tree by taking two mental objects X, Y and

creating a new object Z = {X,Y}, the pair formed by X and Y

(Chomsky, 2013). The resulting object Z can itself enter into

further merge operations, thus creating extended tree struc-

tures—for instance the noun phrase ‘‘very happyman’’ can result

from two nested merges {{very,happy},man}. Note that the

outcome of merge is postulated to be an unordered pair, and

thus this view of language predicts that the internal representa-

tion of syntax abstracts away from the temporality of the word

sequence: at a deep syntactic level, there is no temporal or

ordinal information, only structure. Various properties of word or-

der, including movement, would be ‘‘traced back to the neces-

sity for natural language to organize words in linear order at the

interface with the perceptual-articulatory module’’ (Moro,

1997). In other word, linearization into an ordered sequence

would be imposed during sentence production, but the inner

representations of language would be unordered binary trees,

thus explaining the primacy of constituent structures and long-

distance dependencies over temporal proximity in various lan-

guage phenomena.

Chomsky and many other linguists postulate that even simple

sentences are represented by long and complex tree structures.

Marcus (2013) argues that this aspect is implausible and difficult

to implement within the constraints of human memory and pro-

poses instead that ‘‘mental representations of sentences [is]

realized via a systemof overlapping but incompletely bound sub-

trees or treelets that are unified only in transitory and imperfect

ways.’’ Each dependency relationship, for instance, between a

verb and its object, an auxiliary and a verb, or a determiner

and a noun, would be represented by a small tree or ‘‘treelet,’’
but there would not any overarching structure, just a list of small

trees that would need to be re-explored whenever a specific

question ormental transformation is required. A similar proposal,

‘‘tree-adjoining grammar,’’ also assumes that complex phrase

structures are built out of a small set of elementary tree struc-

tures (Kroch and Joshi, 1985).

While the minimalist program and the optimal linguistic

formalism remain hotly debated issues (e.g., Pinker and Jack-

endoff, 2005), there is very little doubt among linguists that trees

comprising nested constituents will have to be an essential

component of any future theory of language. Furthermore,

although the neural codes underlying linguistic trees remain un-

known, the brain areas involved are beginning to be localized.

Over a century of lesion studies and 20 years of brain imaging

have delineated a left-lateralized network of areas for sentence

comprehension, involving primarily the left superior temporal

sulcus (STS), middle temporal gyrus (MTG), temporal poles

(TP), temporo-parietal junction (TPJ), and especially the left infe-

rior frontal gyrus or ‘‘Broca’s area’’ (including Brodmann areas

[BA] 44 and 45) (Friederici, 2011; Mazoyer et al., 1993). The

left putamen (Pallier et al., 2011) and left CN are also frequently

involved (Monti et al., 2009; Moro et al., 2001). Specific studies

of syntax have homed in on a narrower circuit involving left pu-

tamen, STS, and IFG, interconnected by the arcuate fascicle

and the extreme capsule (Rolheiser et al., 2011; Saur et al.,

2010; Tyler et al., 2011). Activation of this network correlates

tightly with predictors of syntactic complexity derived from

formal linguistics, including nested constituent structures, wh-

movement, and syntactic ambiguity (Brennan et al., 2012;

Musso et al., 2003; Ben-Shachar et al., 2004; Shetreet and

Friedmann, 2014; Shetreet et al., 2009; Snijders et al., 2009).

For instance, Musso et al. (2003) trained subjects to transform

sentences in what was described to them as a new language

(e.g., Japanese). Unbeknownst to them, the learned transforma-

tions operated either according to ‘‘real’’ linguistic rules based

on nested trees (e.g., forming a question by moving the ques-

tioned constituent to the front of the sentence; i.e., wh-move-

ment) or according to ‘‘unreal’’ rules based on superficial

sequence features such as the ordinal position of words

(e.g., forming a question by inverting the linear order of all

words). Although subjects learned both types of rules, only

real rules led to a progressive increase of fMRI activation in

IFG (Brodmann’s area 45). Likewise, this region increases its

activation whenever constituents are moved out of their normal

location by wh-movement (Ben-Shachar et al., 2004; Shetreet

and Friedmann, 2014).

Additional cues as to how constituent structures are encoded

were recently obtained from a parametric study of constituent

size (Pallier et al., 2011). Subjects were exposed to sequences

of 12 words while parametrically varying how many of those

words could be bound into nested constituents (Figure 6). Sub-

jects read or heard sequences of words or pseudowords forming

either no constituents at all (C01, word-list condition), word pairs

(C02), triplets (C03), quadruplets (C04), sextuplets (C06), or an

entire sentence of 12 words (C12). The reasoning was that an

increasingly larger number of nested constituents would lead

to an increase in the activation of relevant brain areas. Indeed,

a chain of areas in the left STS and IFG showed increasing
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 11



Figure 6. Parametric Properties of Human Brain Regions Responding to the Constituent Structure of Language
(A–C) Variation of constituent size. Although the stimuli always comprise a fixed total number of words (12), the regions in (A) show increasingly higher activation
as a function of the number of words that can be integrated into a linguistic constituent. Their response profile as a function of constituent size appears in (B).
Regions in red respond to phrases with both words and pseudowords, suggesting a sensitivity to syntax, while regions in yellow respond only to meaningful
phrases with real words, suggesting a sensitivity to semantics (from Pallier et al., 2011). In most regions, the fMRI response is also increasingly delayed for larger
constituents (C).
(D) Response of this language processing network (light blue) as well as auditory cortex (red) to sentences with various degrees of acceleration (from 100%down
to 20% of their original duration). Auditory activation is monotonically accelerated, but language activation is not: it is constant (STS) or even increases
with compression (IFG) up to a critical value, somewhere between 20% and 40% of original sentence duration, where activation suddenly collapses (from
Vagharchakian et al., 2012). These findings suggest that language areas host a slow process of constituent structure formation.
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fMRI activation with the logarithm of the number of words that

could be entered in a constituent. Remarkably, when the stimuli

were ‘‘delexicalized’’ by substituting all content words with

meaningless pseudowords while maintaining all grammatical

words and inflections, a core set of areas in left IFG and pSTS

continued to respond identically, suggesting their central role

in the construction of abstract syntactic trees. Furthermore,

analysis of the phase of the fMRI response indicated that the
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build-up of constituents took increasingly longer time for larger

structures (Pallier et al., 2011). During sentence processing,

anterior temporal and inferior frontal areas respond much more

slowly than primary or secondary auditory areas (Dehaene-Lam-

bertz et al., 2006; Hasson et al., 2008; Pallier et al., 2011), and

experiments with speech compression indicate that this slow

processing speed cannot be accelerated beyond a fixed limit

(Figure 6D) (Vagharchakian et al., 2012).
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Overall, fMRI experiments that have manipulated nesting

depth (Goucha and Friederici, 2015; Pallier et al., 2011; Shetreet

et al., 2009) lead to the tentative suggestion that constituents are

constructed through a slow process of progressive word accre-

tion, reflected in slowly increasing brain activity: the innermost

words would be bound first (e.g., ‘‘black taxi’’), then this constit-

uent would itself be bound at the next level (‘‘{black taxi} driver’’),

and so on. AnMEG study found a correlate of this sentence-con-

struction process in a progressive increase of power in the beta

and theta bands (Bastiaansen et al., 2010). Unfortunately, this

study did not pinpoint the source of these signals, but other

studies suggest that left IFG and anterior temporal regions are

primarily involved (Brennan et al., 2012; Pallier et al., 2011). While

the syntax-related fMRI activation in Pallier et al. (2011), with

French stimuli and subjects, was primarily located to Brod-

mann’s areas 45 and 47, a recent replication and extension in

German demonstrated a joint involvement of BA 44 and 45,

with BA44 playing a specific role for ‘‘pure syntax’’ once lexical

information and derivational morphology were carefully sup-

pressed (Goucha and Friederici, 2015). In Hebrew, when manip-

ulating syntactic embedding depth, Shetreet et al. (2009) only

observed BA 45. At present, therefore, the contribution of

distinct IFG areas is not fully understood and might even differ

according to language. An interesting possibility is that IFG par-

ticipates in the ‘‘merge’’ (Chomsky, 2013) or ‘‘unification’’

(Snijders et al., 2009) operations needed to assembled tree

structures, while different regions of the STS provide the ‘‘raw

materials’’ (words, grammatical categories, thematic roles,

etc.) to be assembled. Compatible with this idea, recent fMRI

suggests that the STS may be subdivided into subregions or

‘‘slots’’ that encode the agent, the verb, and the patient of an ac-

tion, regardless of temporal order (i.e., coding identically ‘‘the

dog bites the man’’ and ‘‘the man was bitten by the dog’’) (Frank-

land and Greene, 2015). It is still unclear, however, how this

mechanism could create recursive structures such as relative

sentences with multiple agents, verbs, or patients.

It is important to acknowledge that the formation of nested

trees is by nomeansunique to language. Rather, a formof combi-

natorial syntax is also present in motor action, music, or mathe-

matics. Already in the 1970s, behavioral studies by Frank Restle

revealed that simple sequences of actions are stored in an ab-

stract compressed form that goes beyond the simple associative

chain and requires the postulation of an internal tree structure

(Restle, 1970; Restle and Brown, 1970). More recently, fMRI

studies have revealed that musical syntax, like language, en-

gages the left IFG and pSTS, but also their right-hemispheric

homologs (Koelsch, 2005). Concerning the syntax of written

mathematical expressions such as ‘‘(2 3 4 + 1) � 3,’’ a distinct

dorsal network involving fusiform gyrus, parietal cortex and dor-

sal BA44 is involved (Maruyama et al., 2012; Monti et al., 2012;

Nakai and Sakai, 2014). Even within language, distinct parallel

IFG/STS circuits contribute to combinatorial structures for

morphology, syntax, and semantics (Xiang et al., 2009). As noted

earlier, a single word such as ‘‘repainted’’ may comprise a tree of

morphemes. Even a single syllable is thought to be internally rep-

resented in humans by a hierarchical tree structure that distin-

guishes onset and rhyme, and within the rhyme, vocalic nucleus

and coda, themselves comprising multiple phonemes (� plant
[ = {{p,l},{a,{n,t}}}). What these examples show is that, in hu-

mans, tree structures areubiquitous: thehumanbrainmayexhibit

a specific � dendrophilia [ (Fitch, 2014) (i.e., a propensity to

impose tree structures to virtually any domain of perception, ac-

tion, or thought). Onemay formulate the tentative hypothesis that

multiple parallel IFG areas, with distinct cytoarchitectony

(Amunts et al., 2010) and connectivity to posterior cortices

(Clos et al., 2013; Neubert et al., 2014) and basal ganglia, may

be involved in the construction of tree structures in different do-

mains.

Artificial stimuli obeying simpler regularities than those of

human languages have been used to determine the minimal

properties that engage Broca’s area. This approach has demon-

strated that BA44 can be activated bymeaningless sequences of

syllables that mimic the nested structures of language (Bahl-

mann et al., 2008; Fitch and Friederici, 2012; Friederici et al.,

2006). For instance, Bahlmann et al. (2008) had subjects learn

sequences of meaningless syllables such as ‘‘ge bi di tu po

ko’’ in which the items were paired according either to temporal

adjacency ([ge bi] [di tu] [po ko]) or to nested rules (ge [bi [di tu]

po] ko). Although all stimuli were virtually identical, nested struc-

tures led to increased activation in left IFG (BA 44) as well as

additional sites in right premotor cortex, bilateral anterior insula

and basal ganglia. As described above, the human IFG even

responds to simple sequences of tones with a minimal algebraic

structure such as AAAB (three identical tones, then a different

one) (Wang et al., 2015). Even when submitted to a random

sequence of stimuli, the IFG responds to violations in a

chance pattern of repetition or alternation (Huettel et al.,

2002). The evidence therefore suggests that the human IFG ex-

hibits a remarkable sensitivity to detect all sorts of regularities,

from simple repetitions and alternations to complex nested

structures.

A fascinating question for future research is whether the ca-

pacity to form nested representations of sequences is unique

to human brains. Undoubtedly, non-human primates can learn

to detect structures within auditory sequences (Wilson et al.,

2013) and may even represent certain abstract features of

such sequences such as their number or algebraic pattern

(Nieder, 2012; Nieder et al., 2006; Wang et al., 2015). However,

those competences need not imply that nested rules are

involved: specific experiments are needed to probe this repre-

sentational level. An early behavioral experiment suggested

that tamarin monkeys were unable to grasp center-embedded

nested tree structures of the type A[A[AB]B]B, while they suc-

ceeded in learning non-nested pairwise structures [AB] [AB]

[AB] (Fitch and Hauser, 2004). More recently, some researchers

have claimed that macaque monkeys and even songbirds could

encode such nested structures (Abe andWatanabe, 2011; Gent-

ner et al., 2006). However, those claims have been heavily

disputed on the ground that the paradigms failed to include suf-

ficiently abstract generalization items and that the behavior was

in fact driven by simpler non-recursive representation of transi-

tion probabilities and transition patterns (Beckers et al., 2012;

ten Cate and Okanoya, 2012; Fitch and Friederici, 2012; van

Heijningen et al., 2009). Instead, a variety of behaviors such as

sequence learning, tool use, music, or mathematics suggest

that the capacity to acquire and manipulate embedded tree
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 13



Figure 7. Converging Evidence for a Core
LanguageCircuit and Its Recent Evolution in
Humans
(A) Areas activated by syntactic movement, that
is, showing a greater response to sentences with
unusual word order (object subject verb, after
transformation by a linguistic process called wh-
movement) than to sentences with usual word
order (subject verb object) (from Shetreet and
Friedmann, 2014).
(B) Areaswhose lesioning correlates with deficits in
a syntactic judgment task in patients with left-
hemisphere lesions (from Tyler et al., 2011).
(C) Areas activated in two-month infants listening
to sentences in their mother tongue (from data in
Dehaene-Lambertz et al., 2006).
(D) Areas of recent cortical expansion across the
primate lineage (from Chaplin et al., 2013).
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structures may be a uniquely human feat (Fitch, 2014; Hauser

et al., 2002; Penn et al., 2008).

This conclusion, if validated, would fit well with neuroscientific

evidence which indicates that (1) the areas that subserve lan-

guage, including human IFG, superior temporal cortex, inferior

parietal cortex, and underlying white matter have expanded

and show greater hemispheric asymmetry in humans (Chaplin

et al., 2013; Glasel et al., 2011; Hill et al., 2010; Rilling et al.,

2008; Schoenemann et al., 2005) (Figure 7); (2) the IFG shows

human-specific functional connectivity to superior temporal

(Neubert et al., 2014) and inferior parietal areas (Mantini et al.,

2013) that is not observed in macaque monkeys; (3) in 2-

month-old human babies, the IFG and STS are already active,

at their classical adult location, when they listen to sentences

in their mother tongue (Dehaene-Lambertz et al., 2002, 2006);

and (4) early pathologies, such thiamine deprivation in infancy,

can dramatically impair the processing of syntactic movement

and embedding (Fattal et al., 2011). While such evidence clearly

suggests an early and genetically determined channeling of lan-

guage inputs to reproducible areas of the human brain, it does

not however conclusively demonstrate that nested structures

are the key difference between human and non-human

brains—this is an important area for further research.

A second, essential limit to our current knowledge concerns

the neurophysiological representation of linguistic structures.

Although some neural-network simulations have claimed to cap-

ture basic aspects of language (e.g., Dominey et al., 2009; El-

man, 1990; van der Velde and de Kamps, 2006), they fall short

of mimicking the detailed knowledge accrued by linguists (Spor-
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tiche et al., 2013). Smolensky and Legen-

dre (2006) and Eliasmith et al. (2012)

argue that progress will only be made

through the identification of mathematical

principles capable of bridging between

low-level neurophysiological and high-

level linguistic descriptions. Building

upon earlier work by Smolensky (1990)

and Plate (1995), they propose that tree

structures are encoded neurophysiologi-

cally by ‘‘vector symbolic architectures.’’

This concept is an extension of the clas-
sical notion that eachmental representation can be implemented

by a vector of activity over a population of neurons in a given area

(i.e., a set of approximate numerical values for the firing rate of

each neuron, with some neurons firing at an elevated rate while

other remain silent). Evidence for vector codes has been

observed in various domains: the direction of a planned move-

ment can be represented by a vector of firing rate over a popu-

lation of motor neurons (Georgopoulos et al., 1989), color and

motion can be jointly represented by superimposed vectors in

PFC (Mante et al., 2013), etc. What is unique to ‘‘vector symbolic

architectures’’ is the proposal that nested, syntactically orga-

nized representations can be encoded by vectors combinations.

Specifically, the proposal entails:

1. Assigning vectors of neural activity to each possible

sequence item (called a ‘‘filler’’).

2. Assigning other vectors to the abstract syntactic ‘‘roles’’

that these items play in the sequence (e.g., subject,

verb, object).

3. Binding each filler to its role by computing a mathematical

operation called ‘‘tensor product’’ or ‘‘circular convolution’’

of those two vectors—simplifying somewhat, these opera-

tionsessentially involveallocatinganewvector toeachcom-

bination of filler and role through a product-like operation.

4. Summing those products to represent the total set of role-

filler relationships in a phrase or constituent.

5. Making the resulting vector sum available for further bind-

ing by the same mechanism, thus allowing for the recur-

sive construction of nested structures.



Box 1. Current Status of the Field

d Transition probabilities and timing of sensory and motor

sequences can be represented by a great diversity of neu-

ral circuits including PFC, basal ganglia, and cerebellum.

d Similar computational principles of prediction and predic-

tion error underlie sequence knowledge in many different

domains and sensory modalities.

d Monkeys and humans share a capacity for representing

the abstract numerical and sequence structure of temporal

sequences.

d Transitions and timing, chunking, ordinal knowledge, alge-

braic patterns, and nested rules are all quickly available to

humans during infancy.

d A reproducible network of cortical and subcortical areas

underlies the representation and manipulation of language

syntax in humans.

Box 2. Future Directions

d How is predictive coding implemented? What, if any, is the

specific contribution of cortical layers and subcortical

regions to the extraction of sequence structure and the

prediction of forthcoming items?

d What are the respective roles of cortical, basal ganglia, and

cerebellar circuits to sequence coding?

d How are abstract algebraic patterns encoded in neural

circuits?

d How are nested trees and recursive structures encoded in

the human brain?

d Is the human brain endowed with early, genetically deter-

mined circuits for language processing and extraction of

nested rules?

d Do the uniquely human abilities for abstraction stem from a

domain-specific system for language processing, or from

a broader competence for representing abstract rules,

possibly duplicated in several parallel circuits engaging

in language, mathematics, music.?
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While still unsupported by direct physiological observation,

this theory is appealing for several reasons. The proposedmech-

anism (vector codes that combine according to a multiplicative

relationship) is similar to a previous proposal for serial order in

working memory, as described earlier (Botvinick and Watanabe,

2007). It predicts the observation of ‘‘gain fields’’ (i.e., neurons

tuned to the product of two experimental variables that, as noted

above, have indeed been reported for spatial dimensions in pos-

terior parietal cortex) (Andersen et al., 1985) and for binding of

ordinal and identity information in PFC (Barone and Joseph,

1989; Inoue and Mikami, 2006). Most importantly, assuming

that one of the two vector codes is sparse (i.e., only a small sub-

set of neurons are active), the proposed summation mechanism

may explain why brain activation increases monotonically with

the number of nested constituents being encoded, as observed

experimentally with fMRI (Pallier et al., 2011) and withMEG (Bas-

tiaansen et al., 2010). Thus, the proposal has some face validity

and should be further tested using intracranial recordings or

other high-resolution methods in humans.

In summary, the formation of nested tree structures, as exem-

plified by the constituent structure of language, relates to an

identified circuit in IFG and pSTS. One signature of this code is

an increasingly stronger and delayed activation as the constitu-

ents comprise more words. Nevertheless, the exact neural code

that underlies those effects remains elusive.

CONCLUSION

We have reviewed the evidence for a minimum of five levels of

sequence knowledge: transition-timing, chunking, ordinal, alge-

braic, and nested structures (see Box 1). Fragmentary evidence

suggests that aspects of the last two of these levels may be

available only to humans and may relate to the uniquely human

competences for language, music, and mathematics. These

representations are currently understudied at the neural level.

A focused research program, using dedicated methods to visu-

alize human and non-human primate brain activity at a high level

of spatial and temporal resolution, is urgently needed to resolve

the mechanisms by which those representations are encoded
and to determine if vector codes and vector product operations

are involved, as predicted by some theories (see Box 2).

The coexistence, in different brain circuits, of multiple systems

for sequence learning raises an interesting issue for further

research: how does the brain determine what is the best model

for a given sequence?Do all systems compete to reduce the pre-

diction error in the sensory input, until one of them effectively

manages it to predict it and ‘‘blocks’’ the learning in other sys-

tems? Or, on the contrary, do all systems operate independently

of each other, each attempting to grasp an aspect of the

incoming sequence? The latter possibility is supported by the

experimental finding that local transition probabilities (as re-

flected in the MMN) are extracted independently of the concom-

itant knowledge of the global sequence (as reflected by the

P3 wave) (Bekinschtein et al., 2009; Wacongne et al., 2011).

However, specific experiments, putting multiple interpretations

of the same sequence in competition with each other, will be

needed to clarify this point.

More generally, we hope that our proposed taxonomy may

facilitate the identification of minimal stimuli capable of isolating

a specific level of representation. In the current literature, confus-

ingly, diverse sequence-learning paradigms are lumped together

under the term ‘‘artificial grammar learning,’’ even when the stim-

uli do not require anything more than the learning of transition

probabilities. Careful stimulus design, particularly in the selec-

tion of generalization items, will be essential in order to bolster

claims of abstract rule learning in animals and humans (Beckers

et al., 2012). Whether a given test requires abstract sequence

knowledge should be explicitly tested by demonstrating that

simpler properties such as sensory adaptation, transition proba-

bilities, or chunking cannot account for it. To this aim, two

detailed neurophysiological models are available for simulation,

one for transition probabilities and their timing (Wacongne et al.,

2012), and the other for ordinal knowledge in working memory

(Botvinick and Watanabe, 2007). The field would greatly benefit

from the development of similar models for chunking, algebraic
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 15
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patterns, and nested tree structures (e.g., see Frank and Tenen-

baum, 2011).
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