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Research on confidence spreads across several sub-fields of psychology and neuroscience. Here, we
explore how a definition of confidence as Bayesian probability can unify these viewpoints. This computa-
tional view entails that there are distinct forms in which confidence is represented and used in the brain,
including distributional confidence, pertaining to neural representations of probability distributions, and
summary confidence, pertaining to scalar summaries of those distributions. Summary confidence is, norma-
tively, derived or ‘‘read out’’ from distributional confidence. Neural implementations of readout will trade off
optimality versus flexibility of routing across brain systems, allowing confidence to serve diverse cognitive
functions.
The sense of confidence has been defined as ‘‘a belief about the

validity of our own thoughts, knowledge or performance that

relies on a subjective feeling’’ (Grimaldi et al., 2015). This psycho-

logical definition would not seem out of place in the late 19th

century, when psychologists began to ask human subjects

about their confidence to unravel the determinants of this feeling

(Peirce and Jastrow, 1884). Relatively recently, comparative

psychology opened the study of confidence to non-human ani-

mals (for a review, see Smith et al., 2003) and neuroscience

began to probe the electrophysiological underpinnings of confi-

dence in monkeys and rodents (Hampton, 2001; Kepecs et al.,

2008; Kiani and Shadlen, 2009). The translation of confidence

from psychology to neuroscience has revealed underlying insta-

bilities within the conceptual foundations of the still nascent area

of confidence studies. Psychological definitions, such as that

above, rely on concepts like ‘‘belief,’’ ‘‘feelings,’’ and ‘‘thought’’

that from a neuroscientific perspective pose unanswered trans-

lational challenges in themselves. Neuroscience definitions tend

toward the notion that brains represent and process information

using probabilistic codes at the level of populations of cells; their

relationship to the psychological definition has been unclear. We

hold that the study of confidence would benefit from a more uni-

fied framework that can provide more solid bridges between

psychology and neuroscience and between research in humans

and in other animals. Toward that end, in this review, we propose

a view of subjective confidence that emphasizes its diverse func-

tions and wide applicability tomany different forms of neural rep-

resentation and behavior. This view identifies both commonal-

ities and unique features across these forms and identifies the

importance of understanding the transformations among them.

In particular, we identify a distributional form of confidence that

pertains to probabilistic representations and a summary form

that pertains to scalar representations derived from those distri-

butions. We argue that recognizing this distinction and under-

standing the relationship between these two forms will help to
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reconcile several apparent controversies and to clarify the

agenda for future work in the field.

Formal Definitions and Outline of the Proposal Review
A general understanding of the notion of confidence is that it

fundamentally quantifies a degree of belief, or synonymously, a

degree of reliability, trustworthiness, certitude, or plausibility.

This common notion coincides closely with a formal one: that

of Bayesian probability. Although a probability is sometimes

considered to describe the likelihood of occurrence of random

events in the world, from the viewpoint of an observer, whether

such likelihoods constitute objective facts or reflect subjective

knowledge is indistinguishable. Thus, probabilities simply are

degrees of belief from the Bayesian viewpoint (Jaynes, 2003).

Recognizing that much remains to be unpacked, we adopt the

notion of Bayesian probability as the formal definition of subjec-

tive confidence.

From this modest premise, our seemingly lofty aim is to bridge

the gap between psychology on the one hand and neuroscience

on the other. The foundation for our approach is first to recognize

that, semantically, confidence is a property (degree, probability,

etc.) that describes or modifies a referent (belief, response,

memory, future event, etc.). Therefore it is impossible to refer

precisely to confidence without specifying the object to which

it pertains. In common usage the referent is often not made

explicit and this is likely to contribute to conceptual confusion.

We propose that the same general formal notion of confidence

as Bayesian probability can be applied to widely different struc-

tures and processes. These include populations of neurons, neu-

ral functions, behavioral outputs, persons, etc. Depending on the

nature of its referent there are specific and significant conse-

quences for the computational or conceptual definition and

treatment of each particular use of confidence (see Box 1: ‘‘Cur-

rent Status of the Field’’). Fleshing out this point is the thread that

ties together much of this review.
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Box 1. Current Status of the Field

d Multiple domains. The sense of confidence characterizes

the reliability of internal representations in a variety

of cognitive domains, at least: perception, decision

accuracy, reward probability, general knowledge, and

memorization.

d Multiple manifestations. It can be probed experimentally

through several behavioral measures, explicit (verbal

reports, ratings, etc.) and implicit (choices, reaction

times, etc.).

d Multiple species. The implicit behavioral measures of con-

fidence demonstrate that the sense of confidence is not

specifically humans, but shared with other mammals like

monkeys and rodents.

d Multiple functions. The estimation of confidence canmodu-

late learning, information seeking and decision-making.

d Multiple processing steps. Confidence is estimated at

different stages of information processing: it may charac-

terize sensory inputs, a decision variable, a prediction, a

decision process, a post-decision evaluation.

d Different kinds of accuracies. The accuracy of confidence

can be assessed as an absolute estimate (whether it can

be mapped onto an objective variable) or as a relative es-

timate (whether trial-by-trial variations make sense).
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A key claim of this review is that the notion of ‘‘uncertainty’’

used in research on Bayesian neural computation (Fiser et al.,

2010; Ma and Jazayeri, 2014; Pouget et al., 2013) and the notion

of ‘‘confidence’’ used inmetacognitive research are two different

manifestations of the same concept of Bayesian probability.

First, we note that ‘‘uncertainty’’ and ‘‘confidence’’ are merely

the inverse (or reciprocal) of one another, so the choice of

emphasis is not an important difference. Instead, the critical dif-

ference is that ‘‘confidence’’ in the metacognitive field is a single

number, such as a numerical rating, whereas ‘‘uncertainty’’ in the

Bayesian computation field is a property of an array of numbers,

such as a distribution of firing rates across neurons. What we will

suggest is that the conceptual relationship between these two

forms of confidence (uncertainty) is very much the same as the

relationship between ‘‘summary statistics’’ (mean, standard de-

viation, etc.) and the data they describe. Summary statistics are

scalars and data are sets of distributions of numbers. We will

therefore borrow this terminology and refer to summary confi-

dence and distributional confidence. While in principle summary

confidence might share only a nominal relationship to distribu-

tional confidence, we argue that from a normative point of

view, summary confidence is derived within the brain from distri-

butional confidence, just as a statistician calculates the standard

deviation of a distribution. We term this process confidence

readout.

From this conceptual parcellation it becomes clear that recon-

ciling neuroscientific and psychological approacheswill hinge on

understanding the relationship between distributional and sum-

mary forms of confidence. Our strategy is as follows: first, in

Confidence and the Neural Representation of Uncertainty: Distri-

butions and Summaries we review briefly the Bayesian coding
field and important elements of this normative view that we

embrace. Next, in From Data to Summary: Reading out Sum-

mary Confidence from Distributions, we consider the problem

of readout of a summary from a computational perspective.

We suggest that understanding how summary confidence is

derived from distributional confidence is of great importance

for confidence research going forward. We then turn to look at

some of the diversity of uses of confidence in Uses of Summary

Confidence and Behavioral Manifestations, pointing out that

explicit reporting of confidence only scratches the surface of

the important uses of confidence in adaptive behavior, which

include critical functions such as setting learning rates and

setting evidence thresholds. In A Brain-Scale, Hierarchical Neu-

ral Architecture for Confidence we review attempts to map con-

fidence to neuronal substrates across different brain areas,

emphasizing the implications of the fact that neural circuits use

both distributional and summary representations of confidence.

Finally, in The Rough Edges, we discuss the relationship be-

tween Bayesian optimality seen in sensorimotor behaviors and

suboptimality seen in confidence reporting and other ‘‘high

level’’ behaviors, arguing that understanding how confidence

summaries are formed in the brain will help to illuminate the

latter.

Confidence and the Neural Representation of
Uncertainty: Distributions and Summaries
A central example of probabilistic computation is the problem of

combining different sources of information. Normatively, this

problem requires a solution in which each source is weighted

by its inverse uncertainty, or confidence (Jaynes, 2003; Knill

and Pouget, 2004; Ma et al., 2006; Pearl, 1997). This general

uncertainty-weighting problem is illustrated in Figure 1. This

problem occurs in cue combination, such as when inferring the

orientation of a bar given both visual and haptic sensory inputs.

At a behavioral level, human subjects are indeed close to optimal

when performing multi-sensory cue combination (Ernst and

Banks, 2002) and in sensorimotor integration (Körding and Wol-

pert, 2004; Todorov, 2004; Wolpert and Ghahramani, 2000). This

raises the natural question of how such probabilistic computa-

tions take place in the brain.

Several prominent theories in computational neuroscience

posit that computations and information processing in brain

circuits are essentially probabilistic, or Bayesian. These theories

are strongly normative because computing on probability distri-

butions is considered to be the optimal solution.

A prominent computational theory of how brains implement

normative solutions is known as probabilistic population coding.

This theory suggests that neurons encode parameters of proba-

bility distributions (Knill and Pouget, 2004). Thus, tuning curves

are interpreted as likelihood detectors: a neuron tuned to a

particular orientation signals the likelihood that the stimulus

has this orientation, and a population of neurons tuned to

different orientations represents the full probability distribution

of the orientation of the stimulus (see Figure 2A), thus forming

a probabilistic population code (Deneve et al., 1999; Ma et al.,

2006). Another theory, known as Bayesian sampling theory, is

similar in spirit to probabilistic population coding but different

in details. Sampling theory proposes that neurons encode
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 79



Figure 1. Confidence in a Combination of Inputs
The left plot shows the optimal combination (in yellow) of two input probability
distributions (blue and red). Confidence can be read out as the precision of the
distributions (their inverse variance). Note that confidence-weighting of infor-
mation entails that the output distribution (yellow) is closer to the more precise
(red) distribution. This optimal combination corresponds to different situations
in practice. In the perceptual domain, the input datamay be the orientation of a
bar provided by visual and tactile information; and the output data the multi-
modal integration. In the learning domain, the input data may be prior infor-
mation and current likelihood conveyed by sensory data, and the output data
the posterior estimate. The right plot shows that the precision of the combined
distribution is higher than that of the input distributions. When distributions are
Gaussians as here, the combination of precision is exactly additive.
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directly the inferred probabilistic variables (Fiser et al., 2010;

Hoyer and Hyvärinen, 2003; Lee and Mumford, 2003). The activ-

ity of a neuron at a particular moment is thus interpreted as a

sample from the inferred variable, such as the orientation of a

stimulus.

We refer the reader to several reviews for more details and

discussion about the relative merit of each theory (Fiser

et al., 2010; Pouget et al., 2013; Ma and Jazayeri, 2014). For

our purposes it is worth highlighting a few key points. First,

because these theories posit that activity in neural populations

represents (approximately) entire probability distributions,

these representations inherently convey confidence informa-

tion. We call this implicit representation of confidence distribu-

tional confidence. Second, these theories have not yet been

empirically validated. Because we know that behavior can in

some cases take into account uncertainty (Ernst and Banks,

2002; Körding and Wolpert, 2004; Ma and Jazayeri, 2014;

Maloney and Zhang, 2010), we know that some kind of prob-

abilistic representation must exist, but it need not be a full

probability distribution (e.g., Rich et al., 2015). One alternative

to the idea of neural codes based on probability distributions

are codes in which summary statistics, such as the mean

and variance, are represented and computed independently.

While arguably less parsimonious, there is some evidence to

support representations along these lines (e.g., O’Reilly

et al., 2013). As we will argue, we believe it is likely that

both such codes (as well as others) co-exist in the brain, in

particular if one considers different stages of information pro-

cessing. We present in From Data to Summary: Reading out

Summary Confidence from Distributions the notion of readout:

a process that extracts summary statistics from distributional

representations.
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A third point is that these theories have so far been explored

and tested mostly in the domain of perceptual processing (Bej-

janki et al., 2011; Berkes et al., 2011; Deneve et al., 1999; Fiser

et al., 2010; Kim and Basso, 2010; Ma et al., 2006). It remains

an open question to what extent probabilistic computation holds

beyond low-level sensory and motor representations: e.g.,

the belief that ‘‘it may rain tomorrow,’’ a reward expectation,

etc. Forming probability distributions by simulating internal

models could serve as the basis for a distributional neural re-

presentation of confidence in a variety of problems. There do

exist a number of models for higher-level computations, for

instance involving sampling schemes with integration of sam-

ples internally generated, e.g., for evaluating general-knowledge

statements (Gigerenzer et al., 1991; Juslin et al., 2007; Koriat,

2012), for learning and goal-directed decisions (Hinton and

Dayan, 1996; Legenstein and Maass, 2014; Solway and Botvi-

nick, 2012), and even for probabilistic abstract reasoning (Chater

et al., 2006; Denison et al., 2013; Vul et al., 2009).

It is clear that much work remains to understand the precise

representations used by the brain and that this workwill no doubt

refine or possibly even upend our notion of confidence insofar as

it is embedded within these neural representations.

From Data to Summary: Reading out Summary
Confidence from Distributions
Cue combination (Ernst and Banks, 2002; Ma et al., 2006) and

motor control (Körding and Wolpert, 2004; Todorov, 2004;

Wolpert and Ghahramani, 2000) are examples of behaviors

whose optimization requires the use of confidence (inverse un-

certainty) and in which computations at the level of probability

distributions could elegantly account for both choice and con-

fidence implicitly. For instance, cue combination can be imple-

mented optimally using probabilistic population codes simply

by summing the activity of populations of neurons: the very

format of probabilistic neural representations could therefore

allow an automatic and optimal weighting by uncertainty (Ma

et al., 2006). However, there are behaviors in which confidence

must be expressed independently of the choice itself. One of

the simplest examples is a two-alternative choice decision.

Here, a subject is required to select one of two incompatible

binary alternatives. This ‘‘forced choice’’ by design eliminates

information about confidence that might have existed in the

original information on which the decision was based (see

Figure 2A). Yet, insofar as the original information was a prob-

abilistic neural representation, the original distributional confi-

dence information should also be available for independent

readout. For example, readout into a summary confidence

value would allow confidence to be reported verbally on a rat-

ing scale. Essentially, what needs to be done is to extract a

single number, a scalar, as a summary statistic of an entire dis-

tribution. This process, which we term ‘‘confidence readout,’’

could be considered closely analogous to the process of ex-

tracting a choice from a distribution; choice is just a summary

of a different statistic.

To see how this works in a more formal manner, in what fol-

lows, we first consider the case of binary choice and we then

consider the case of continuous choice or estimation. In Uses

of Summary Confidence and Behavioral Manifestations, we will



Figure 2. Readout of Choice and Confidence with Probabilistic Neural Codes
We compare two circuits that read out a choice (A) and a confidence level (B) from similar input information: a direction of motion encoded with a probabilistic
neural code. In both cases, the bottom graphs depict the probability distributions that can be decoded by a Bayesian observer from the population activity
illustrated above. Confidence at the level of the input is represented implicitly as the precision of the distribution.
(A) This circuit reads out a choice: it implements a categorization. It collapses the input distribution into a binary value: direction to the left or to the right.
Categorization can be implemented by an attractor network, in which two pools of neurons mutually inhibit each other, and receive excitatory input, as in Wang
(2002). The synaptic weights of these excitatory connections are fixed and reflect the feature encoded, e.g., neurons tuned to �90� connect strongly to the blue
pool of neurons. The width of the blue and red lines denotes the excitatory drive, which is a function of the fixed synaptic weight and the stimulus-dependent firing
rate. The precision of the input distribution contributes to the categorization and its robustness against noise, but this information is lost in the output: the
distributional confidence information remains ‘‘encapsulated’’ in this circuit.
(B) This circuit reads out the confidence in the orientation. This corresponds to Example 3 in the text, and it is different from the confidence in a left/right
categorization (Example 1 in the text). Here the circuit translates the input distribution into a level of activity that reflects its precision. With probabilistic population
codes, this computation can be implemented by linear summation of activities (Ma et al., 2006). Three example distributions are shown to stress that, unlike the
‘‘categorization process’’ illustrated in (A), the output here does not depend on whether the mean value is closer to the left or the right direction, it reflects only
precision.
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go on to examine in more detail other kinds of functions in which

summary readout of confidence may be critical.

Example 1: Readout of Confidence in a Binary

Forced-Choice Decision

Consider the decision of whether a stimulus is tilted clockwise

(a+) or counter-clockwise (a�) and the confidence in this deci-

sion. We first give a formal treatment of this problem and we

then provide a potential implementation.

Given the evidence received, r, (the bold font indicates a vec-

tor), there is formally a probability distribution p(ajr) that de-

scribes the posterior probability of possible angles a given r.

The optimal choice between a+ and a� is to pick the option

with the highest integrated probability over all the clockwise or

counter-clockwise angles: p(a+jr) or p(a�jr). Confidence in this

decision is then formally just the value of this maximal probabil-

ity. In this case, the choice and the confidence are read out

directly from p(ajr). Alternatively, one can compute an intermedi-

ate decision variable, d, which should take the form of the log

probability ratio (LPR): d = log(p(a+jr)/p(a�jr)). The choice is

then determined by the sign of d (choose a+ if d > 0, otherwise

choose a�) and confidence in this decision is the absolute value
of d. This formalism is standard in Bayesian decision theory and

signal detection theory. More examples and further discussion

can be found for instance in Galvin et al. (2003) and Kepecs

and Mainen (2012). This example shows (1) that a formal notion

of confidence can be quantified in a principled manner, (2) that

different, equivalent algorithms can be designed, and (3) that

choice and confidence can be read out from the same informa-

tion. In this example, the distribution p(ajr) carries confidence in-

formation in ‘‘distributional’’ form (to what extent the mass of the

distribution is more on the a+ or a� side) and the highest proba-

bility among p(a+jr) and p(a�jr) is a summary that provides a

scalar value to express confidence in the decision.

Example 2: Integration of Evidence in Time

One aspect that was omitted in this signal detection formalism is

that in real life, the evidence r often has a temporal dimension.

Therefore, momentary evidence must be integrated over time.

The computation of the LPR can be updated for each sample

of evidence received across time, a procedure known as the

sequential probability ratio test, to quantify, at any given

moment, what is the best option to choose and what is the

associated summary confidence level (Wald, 1945; Wald and
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 81
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Wolfowitz, 1948). Relying on such a decision variable is the basis

of the drift diffusion model (DDM) and related ‘‘accumulation-to-

bound’’ models. These models have been extensively used in

mathematical psychology (Pleskac and Busemeyer, 2010; Rat-

cliff, 1988; Smith and Vickers, 1988; Vickers et al., 1985). Impor-

tantly, the decision variables posited by these accumulation

models have a candidate neural substrate exhibited in the ramp-

ing neural activity observed in parietal cortex and other brain

regions (reviewed in Gold and Shadlen, 2007). Accumulation-

to-bound models can account not only for choice and reactions

times, but also for decision confidence (Fetsch et al., 2014;

Kepecs et al., 2008; Vickers et al., 1985). The theory of probabi-

listic population codes can provide a normative algorithm for

integration of evidence over time that may be optimal for action

selection under a large range of conditions (Beck et al., 2008;

Drugowitsch and Pouget, 2012). In these models, a summary

confidence level (akin to the LRP) can be computed using linear

integration of neural activity (Beck et al., 2008; Drugowitsch and

Pouget, 2012).

Example 3: Readout of Confidence as Precision

Consider now the estimation of confidence in a quantitative var-

iable, the orientation of the stimulus. If one thinks of the probabil-

ity distribution over possible angles, high confidence in the

orientation should correspond to a distribution concentrated

onto one particular angle (see Figure 2B). This formally corre-

sponds to the precision of the distribution, its inverse variance,

which is a natural quantification of confidence in a continuous

variable (Meyniel et al., 2015; Yeung and Summerfield, 2012).

The distributional confidence information here is contained in

the full shape of the distribution, and the summary confidence

level by the precision. The precision expresses a specific ‘‘loss

function,’’ that is, how much cost one pays for being off in

one’s estimate by a given amount (Maloney and Zhang, 2010).

For a loss function based on squared error, the inverse variance

is all one needs to summarize about the distribution. However,

one can easily imagine more complex loss functions in which

precision would not be a good summary statistic. For example,

errors in one direction may be worse than in the other direction.

In this case, the precision may be an approximation, but it does

not convey all the confidence information contained in the distri-

bution. Interestingly, with a probabilistic population code and un-

der some biologically plausible assumptions, the precision of a

representation such as the orientation of a stimulus is simply pro-

portional to the sum of activities across neurons in the probabi-

listic population code (Ma et al., 2006). The readout mechanism

here is thus as simple as a linear summation (see Figure 2B).

However, the proportionality factor in this mechanism, which re-

lates to the number of neurons and the properties of their tuning

curves, raises the problem of the calibration of the summary con-

fidence, an issue to which we will return in The Rough Edges.

Relationship to Previous Models of Confidence

To sumup, we have given different names (summary confidence,

distributional confidence) to aspects of confidence that we think

are worth keeping distinct. We have described how, for simple

examples, summary confidence can be derived normatively

from the distributional confidence information conveyed by

probabilistic neural representations. We will go into more com-

plexity later, with less direct routes and deviations from opti-
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mality (see A Brain-Scale, Hierarchical Neural Architecture for

Confidence and also The Rough Edges). For themoment, the im-

plications of this basic conceptualization can be related to the

classic literature on confidence. We suggest that some confu-

sion in the field of confidence studies is due to the conflation

of distributional and summary forms.

We propose that in decision-making, choice and confidence

can be read out from the same neural representation (Kepecs

and Mainen, 2012; Kepecs et al., 2008). This view resembles

the ‘‘shared encoding’’ hypothesis reported by Grimaldi et al.

(2015) or ‘‘first-order model’’ (Timmermans et al., 2012) in which

the same stream of information accounts for choice and confi-

dence. However, these models are usually thought to entail

that the same circuitry underpins choice and confidence (Gri-

maldi et al., 2015). We suggest the opposite: the mechanisms

that read out a choice and a summary confidence from the

same representation must be partly different, simply because

they result in different things. Such ‘‘parallel processing’’ of

choice and confidence is the landmark of ‘‘dual route models’’

(Timmermans et al., 2012), but our framework rejects a pure

parallelism by assuming a common initial representation. Our

view could therefore seem closer to ‘‘hierarchical models’’

(Fleming and Dolan, 2012; Fleming et al., 2012; Timmermans

et al., 2012). However, such models make a distinction between

a first-order level (choice) and a second-order level (confidence)

processing. This distinction is a landmark in the metacognition

literature. In our view, there is no need for such a terminology:

readout of choice and confidence are simply different without

one being subordinate to the other.

We can see one case in which such a distinction of ‘‘orders’’

makes sense in our view. It is the distinction made between

type 1 and type 2 confidence, reviewed in Galvin et al. (2003).

We used the example of confidence in whether a stimulus was

oriented clockwise or counter-clockwise. This would corre-

spond to first-order (type 1) confidence. This is different from se-

lecting one option, and then evaluating the confidence that this

selection is correct, which would correspond to second-order

(type 2) confidence. Type 2 confidence and the choice are not

necessarily read out from the same representation. For instance,

additional information about the orientation of the stimulus may

be processed between the choice and the type 2 confidence

report. Such a two-stage processing has been proposed (Ple-

skac and Busemeyer, 2010; Resulaj et al., 2009).

Uses of Summary Confidence and Behavioral
Manifestations
We have so far discussed how confidence may be represented

and how it may be read out from a distribution into a single sum-

mary value. We have already seen how distributional confidence

(uncertainty) can be used without summary to optimize sensori-

motor behaviors. Now we turn to look at some of the uses of

summary confidence. We consider first the use of summary

confidence in decision-making and then two other examples,

learning and sampling.

Decision Optimization

A key example of the use of summary confidence is when sub-

jects report it on a quantitative scale to communicate the reli-

ability of an entity (a choice, a memory, an opinion) to others.
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This usage of confidence requires a summary form because it

must be reduced to a single value, a scalar. Explicit verbal ratings

were the initial thread of research in psychology (Peirce and Jas-

trow, 1884) and they continue to be a focal point for psycholog-

ical studies (for reviews, see Galvin et al., 2003; Pleskac and

Busemeyer, 2010). Reports of confidence can be useful in col-

lective decision (Bahrami et al., 2010; Bang et al., 2014). Indeed,

an optimal collective decision can benefit from the uncertainty

weighting of individual decisions and this is an important area

for research (Pérez-Escudero and de Polavieja, 2011). For purely

individual decisions, expressing summary confidence with a

verbal report seems irrelevant, but experimental designs can

translate this information into specific behaviors, such as post-

decision wagers. Thus, rather than reporting confidence on a

scale from high to low, subjects must decide an amount of

money (again, a scalar) to invest in a decision with a degree of

uncertainty (Persaud et al., 2007). Using a similar logic, animals

can also be induced to ‘‘wager’’ on the outcomes of their deci-

sions (reviewed by Kepecs and Mainen, 2012; Smith et al.,

2003). Insofar as humans and animals optimize the payoffs of

risky decisions, this will induce the expression of confidence in

the wagers. This area is an active and important area of conver-

gence of human and animal studies. Let us consider in more

detail one of several paradigms, the so-called ‘‘opt-out’’ task.

Considering the example of orientation discrimination, we saw

above that a summary confidence level in the orientation

discrimination could be derived as the probability that the stim-

ulus has one orientation rather than the other (a+ or a�). Suppose

that the participant is given the opportunity to either provide an

answer (a+ or a�) and gain a large reward if it is correct and no

reward in case of error, or to opt-out (decline to provide an

answer) and get a small reward for sure. This is a classic

value-based decision-making problem (Glimcher et al., 2009;

Rangel et al., 2008). Maximizing the expected reward in this

problem requires multiplying the reward magnitude and the

probability of reward (pR). If the subject opts out, pR = 1. Other-

wise, the subject’s estimate of pR should correspond to the sum-

mary confidence in the orientation discrimination. Therefore,

having observed a decision to opt-out or not, one can infer

whether the subject’s summary confidence was above or below

the ratio of the value of the sure reward to the risky one (Hamp-

ton, 2001; Kiani and Shadlen, 2009; Middlebrooks and Sommer,

2012).

The opt-out example illustrates how choices based on uncer-

tain information can serve to measure a subject’s summary con-

fidence. Insofar as people and animals seek to optimize their

gains, these choices require that summary confidence is derived

as accurately as possible from the subject’s internal representa-

tion of that information. That is, optimal wagering decisions

require optimal readout of summary confidence from distribu-

tional confidence, provided that such information is available

to inform the outcome. Importantly, because wagering-based

measures do not require verbal report, they are well-suited to

measuring summary confidence in non-human animals. Also

importantly, the opt-out task is only one of a larger class of

wagering-like paradigms that can take advantage of ecologically

relevant scenarios. In waiting-time paradigms, reward is deliv-

ered for correct decisions, but only after a delay and the subject
has the opportunity to initiate a new trial instead of waiting. Wait-

ing after an error thus has an opportunity cost, so willingness to

wait should, normatively, depend on the estimated accuracy

(Kepecs et al., 2008; Lak et al., 2014). For more examples and

details on paradigms, see Kepecs and Mainen (2012) and for a

review of comparative studies, see Smith et al. (2003). It is impor-

tant to note that a subject’s gain/loss function will also in general

dependent on other factors and biases, such as loss or risk aver-

sion, which will interact with it in ways that can make confidence

difficult to disentangle from other factors (Fleming and Dolan,

2010).

The above description suggests that behaviors such as opt-

out, wagering, waiting-time, etc. are indirect measures of the

subject’s summary confidence. In our framework, the relevant

distributional confidence information could be read out into a

summary confidence level that could then be translated into a

specific report. However, we also note that the existence of a

summary confidence level as an intermediate variable is not

necessary as such: the readout of the distributional confidence

information could be directly mapped onto a specific behavior.

Optimization of Learning

The role of confidence in learning is often overlooked in the con-

fidence literature, but it is well established in computational

learning theory, where it is typically referred to as ‘‘uncertainty.’’

Decisions build on prior knowledge and learning. Confidence (or

uncertainty) plays a key role in acquiring knowledge and updat-

ing it according to new data. The Bayesian view provides a

normative account for the updating process, indicating how,

based on uncertainty, prior knowledge and new observations

should be combined during learning. Optimal algorithms, such

as the Kalman filter, developed by engineers in the 1960s form

a foundation for modern accounts of learning in cognitive sci-

ence and neuroscience (Bach and Dolan, 2012; Bland and

Schaefer, 2012; Daunizeau et al., 2010; Mathys et al., 2011; Nas-

sar et al., 2010; Payzan-LeNestour and Bossaerts, 2011; Pre-

uschoff and Bossaerts, 2007). Essentially, the more confident

we are in a new observation (e.g., because the stimulus is clear),

the more this observation should impact our prior knowledge.

Conversely, the more confident we are in our prior knowledge

(e.g., because of extensive and successful prior experience)

the less a new discrepant observation should affect it.

Therefore, in learning, confidence should play the role of a

weighting factor to balance incoming and prior information in up-

dating one’s current knowledge. There is evidence that human

subjects indeed adapt their learning rates according to both prior

knowledge (Behrens et al., 2007; McGuire et al., 2014; Nassar

et al., 2010; Payzan-LeNestour and Bossaerts, 2011; Yu and

Dayan, 2005) and the likelihood of observed data (O’Reilly

et al., 2013). One can envision a role for either distributional con-

fidence representations or summary (scalar) representations in

this process. On the one hand, if priors and evidence are both

represented in properly formed probability distributions (Berkes

et al., 2011), then confidence could be assessed in the same

manner as it would be for the representation of a sensory poste-

rior (Bejjanki et al., 2011). On the other hand, confidence

about current or prior knowledge could also be summarized

and represented as a single value that could be used to scale

other probability distributions or set a learning rate. The neural
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implementation of adjustable learning rates could involve the

major ascending neuromodulatory systems (dopamine, seroto-

nin, noradrenaline, and acetylcholine) as they may convey confi-

dence information (Doya, 2002; Yu and Dayan, 2005). Given the

small number of neurons and their widespread projection pat-

terns, these systems are more likely to represent scalar values

(summary confidence) than distributions (distributional confi-

dence). This view implies that a readout of the summary confi-

dence broadcast by these systems might occur either in the

related brainstem nuclei or in their input structures.

The role of confidence in learning raises interesting chal-

lenges. How to estimate (algorithmically and mechanistically)

confidence in a new observation that suffers from sensory uncer-

tainty is essentially the same problem as extracting confidence

for a decision. However, estimating confidence from prior knowl-

edge, so that it can be used to adjust learning rates, has received

less attention. Computationally, one way to estimate the error

rate of a model is by computing deviations between predictions

derived from this knowledge and actual observations (Courville

et al., 2004; Preuschoff and Bossaerts, 2007). Such a process

is in some sense agnostic of the form in which this prior knowl-

edge is represented before being turned into an error signal. In

fact, confidence need not be represented explicitly in any

manner other than the error signals themselves.

It has also been proposed that confidence may contribute not

only to the optimization of learning algorithms, but also to the se-

lection between different, competing algorithms, such asmodel-

based and model-free learning strategies (Daw et al., 2005).

Optimization of Information-Seeking

Decisions require not only selecting between alternatives but

also require knowing when to stop weighing evidence and to

act on what is known. When we integrate information sequen-

tially, more samples of information can enablemore accurate de-

cisions but at the cost of longer deliberation. A real-world

example of this is a student deciding how long to study for an

exam. Themore information is acquired, the higher the likelihood

of giving correct answers in the test and, hence, the greater the

probability of the ensuring benefits of good grades. But studying

is taxing and has the opportunity cost of not engaging in more

interesting activities like socializing. To optimize this problem

the student should take advantage of confidence in knowing

the information being studied.

We have seen in From Data to Summary: Reading out Sum-

mary Confidence from Distributions how confidence can be ob-

tained as an output from decision variables in sequential sam-

pling models. We can also consider in the same models that

confidence could also be critical as an input to set the level of

the stopping bound. Formally, the samples determine the likeli-

hood of each alternative, and the ratio of likelihoods (or its log,

as the LPR above) quantifies the expressed confidence level

that one alternative is better than the other. In the 1940s, Wald

showed that, in decisions based on sequential samples, one

can compute the LPR iteratively and commit to a choice when

the test first meets a pre-defined confidence criterion (Wald,

1945). Most importantly, Wald showed that this strategy mini-

mizes the number of samples integrated, while controlling the

expected error rate (Wald and Wolfowitz, 1948). This decision

rule is the principle of drift-diffusion models, among which
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several variants have been proposed (Kiani et al., 2014; Pleskac

and Busemeyer, 2010; Ratcliff, 1988; Smith and Vickers, 1988;

Vickers et al., 1985). Little is known, in terms of neural mecha-

nisms, about what determines the bound or stopping rule in a

decision process. Scaling a threshold parameter could be imple-

mented by an appropriate confidence summary signal and this

too might be conveyed by a neuromodulatory signal.

A Brain-Scale, Hierarchical Neural Architecture for
Confidence
Feed-Forward Processing in Brain-Scale Circuits

Our basic view posits that widespread confidence information

conveyed by probabilistic neural representations can sometimes

be used directly in its implicit distributional form andmay in other

cases be read out into a summary (scalar) confidence signal.

Readout is probably most evident when subjects are interro-

gated verbally, but it might underlie other behavioral expressions

of confidence. The examples of setting learning rates or setting a

decision threshold, which might be carried out by scalar signals

carried by neuromodulators, illustrate an intrinsic advantage fa-

voring the readout of confidence into a scalar confidence level: a

scalar signal requires much less wiring to transmit than a full dis-

tribution andmay facilitate flexible routing of this kind of informa-

tion. Thus, although a summary statistic must necessarily be an

approximation of a full probability distribution, representing con-

fidence using a scalar could offer benefits of efficiency that

outweigh that liability, particularly for functions involving more

global computations.

This two-part model implies a kind of ‘‘bottom up’’ processing

of information—from implicit distributional forms of confidence

to simpler and more explicit, summarized forms. For the case

of decision-making this entails two predictions. First, manipu-

lating the source of the original probabilistic representation

should affect the readouts of both choices and confidence

levels. Stronger levels of evidence lead, as expected, to higher

levels of confidence in humans, monkeys, and rodents across

a variety of tasks, such as visual or olfactory discrimination (Bar-

thelmé and Mamassian, 2010, 2009; Kepecs et al., 2008; Kiani

and Shadlen, 2009; King and Dehaene, 2014; Peirce and Jas-

trow, 1884). Further evidence is provided by manipulation of

neural representations in early sensory areas. Application of

transcranial magnetic stimulation (TMS) to the visual cortex while

human participants performed a visual task induced changes in

both choice and confidence (Rahnev et al., 2012). In monkeys,

small currents injected in motion-sensitive regions MT/MST dur-

ing a motion discrimination task mimicked an increment in

perceived motion, which shifted both choices and confidence

levels; higher levels of currents mimicked an increment in

perceptual noise that degraded the accuracy of both choices

and confidence (Fetsch et al., 2014).

Readout from a neural representation can be considered akin

to a routing process; it may serve to ‘‘untangle’’ different kinds

of information that are implicit in a neural representation. For

example, the ventral visual stream is thought to progressively un-

tangle different features of a visual scene through non-linear de-

coding (DiCarlo andCox, 2007). Once choice and confidence are

read out from a neural representation, different downstream

areas may process them independently. Therefore, the second
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implication of our proposal is that manipulating a step that is

downstream of the source representation might selectively and

independently affect the readout of summary confidence or

choice. In particular, it should sometimes be possible to manip-

ulate summary confidence while leaving the decision accuracy

unaffected.

Indeed, it has been shown that inactivation of the pulvinar nu-

cleus of the thalamus, in a visual opt-out task in monkeys (Ko-

mura et al., 2013), and inactivation of the orbito-frontal cortex

(OFC), in an olfactory waiting-time task in rats (Kepecs et al.,

2008; Lak et al., 2014), selectively disrupted confidence while

leaving decision accuracy unaffected. In these studies, it was

further shown that activity in these regions correlated with the

expressed confidence. However, it is not clear whether inactiva-

tion disrupted an area specifically concerned with the represen-

tation of summary confidence, or whether instead it disrupted

the regulation of a behavior (opt-out, waiting-time) more closely

associated with the expression of that confidence. Tests in

which multiple reporting modalities can be queried would be

helpful to tease apart these alternatives.

Specialized Brain-Scale Circuits for Confidence?

According to our basic view, we would expect that many brain

circuits may ultimately prove to be implicated in confidence,

but in different ways. Consider the case of a perceptual task

that includes a waiting-time component (e.g., Lak et al.

(2014); see Uses of Summary Confidence and Behavioral

Manifestations). Sensory regions relevant for the decision are

strongly involved in computing/representing the distributional

confidence information. Additional circuits may perform the

readout to extract the summary confidence level, such as

perhaps the OFC. And this summary confidence level could

then be used to regulate the behavior (how long to wait), which

likely involves frontal control and motor circuits (e.g., Murakami

et al., 2014). Taken together, this covers a large swath of

cortical circuitry.

A more specific and challenging question is whether there are

specific regions or circuits critical for confidence readout or

summary confidence representation. It has been proposed that

the anterior prefrontal cortex (corresponding to the OFC, the

fronto-polar cortex, and dorso-medial PFC) could be involved

in this process (Barttfeld et al., 2013; Fleming et al., 2010; Ke-

pecs et al., 2008; Lak et al., 2014; Middlebrooks and Sommer,

2012; Yokoyama et al., 2010). De Martino and colleagues (De

Martino et al., 2013) showed that in value-based decisions in

humans, the ventromedial prefrontal cortex (vmPFC) conveys

mixed information about value and confidence, hence providing

an implicit code of confidence. Instead, the rostrolateral prefron-

tal cortex (rlPFC) correlated with confidence (independently of

value) and hence may be, in this task, a more likely candidate

to encode the result of the readout process. Moreover, the

strength of the connectivity between vmPFC and rlPFC pre-

dicted the precision of confidence judgments of individuals in

this task. This is a macroscopic marker that suggests that vari-

ability in the readout (here indexed by the strength between

these two cortical regions) can account for inter-individual differ-

ences in the estimation of confidence.

The quest for a general brain circuit performing confidence

readout is complicated in practice because it is difficult to disen-
tangle between circuits that perform a readout of a summary

confidence level from the circuits serving as input for the readout

or those that use this readout. We point to two brain circuits that

may suffer this issue. The first is the anterior prefrontal cortex re-

ported above. This region is often associated with confidence in

tasks that involve evaluating one’s own performance and the

detection of errors (Yeung and Summerfield, 2012), which is

likely to be related to circuits involved in executive and cognitive

control (Fernandez-Duque et al., 2000). The second is the ventral

striatum, which has been related to confidence (d’Acremont

et al., 2013; Hebart et al., 2014; O’Reilly et al., 2013; Preuschoff

et al., 2006; Vilares et al., 2012), butmostly insofar as predicting a

reward or success is involved. A more nuanced view would sug-

gest that different circuits (which remain to be pinned down) will

be flexibly involved depending on the way the confidence infor-

mation is routed based on behavioral needs.

Interestingly, the readout of confidence can be selectively

impaired in specific domains. Fleming and colleagues reported

such a case: patients with brain lesions in the anterior PFC had

preserved performance in the memory and perceptual domains

and degraded confidence judgments specifically in the percep-

tual domain (Fleming et al., 2014). The fact that choice perfor-

mance was preserved rules out the possibility that perception

or memory, as a whole, were impaired, and points to the readout

of confidence itself. This example suggests that one region alone

does not suffice to read out confidence: at a minimum, it should

involve a circuitry to collect specific inputs from different cogni-

tive domains.

Beyond Forward Linear Processing of Information

The view adopted so far might suggest feed-forward linear pro-

cessing of information. However, considering both the highly

recurrent nature of brain circuitry and the fact that sources of un-

certainty are often interdependent, we suspect that the real case

will be a hierarchical and loopy architecture, with branches and

feedback (Bach and Dolan, 2012). As a first example, following

the example discussed in From Data to Summary: Reading out

Summary Confidence from Distributions (Galvin et al., 2003),

consider the distinction between confidence in an orientation

discrimination (type 1) and the confidence in the answer made

about this orientation discrimination (type 2). The contrast be-

tween two experimental studies illustrates the need, for post-

decision (type 2) confidence, to represent both the sensory infor-

mation and the answer made. The injection of noise by applying

TMS to the visual cortex could be expected to perturb the con-

fidence report in a visual task, as was shown in Rahnev et al.

(2012). But curiously, TMS applied to the dorsal premotor cortex

also disrupted the accuracy of the confidence report while leav-

ing the accuracy of the decision unaffected (Fleming et al., 2015).

This pair of experiments could be interpreted as implying that

premotor TMS introduced uncertainty about which motor re-

sponses was made, and thus about whether the visual decision

was accurate.

A second example relates to learning. Generally, each time

new evidence is received, a prior and a current likelihood must

be combined to infer a posterior. This implies a recursive pro-

cess: at each iteration, the prior must be adjusted based on

the observed accuracy of the prediction that arose from this

prior and the momentary evidence (likelihood). The need for a
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feedback loop again breaks the simple linear forward information

processing view.

Encapsulation of Confidence

Not all the probabilistic representations will undergo summariza-

tion and broadcasting. Distributional confidence information

could be described as ‘‘encapsulated’’ when it is implicitly

conveyed by a probabilistic neural representation but remains

confined within a particular, specialized circuit. In computer pro-

gramming, from where the term is drawn, encapsulation is a way

of deliberately shielding information; here, we consider only that

it is de facto not accessible. There are several non-mutually

exclusive reasons why distributional confidence information

may not be accessible outside from a given circuit or brain re-

gion. Themost trivial is that that area is poorly connected to other

regions. Another reason is that the circuit is connected, but the

connections are not amenable to a readout of confidence. A sim-

ple example of this is a circuit that performs response selection

(see Figure 2; Soltani and Wang, 2010; Wang, 2002). This circuit

may accurately compute the probability that a stimulus is pre-

sent but it may collapse this probability to yield a binary variable

signaling the presence or absence of the stimulus. In an action

selection circuit such as this one, details about the computation,

including the confidence information, remain inaccessible.

Dense connections of the sort that might be necessary for

readout are typically found within specialized, well-tuned sys-

tems for perception, motor control or learning. But connections

between systems are usually sparser, a connectivity profile

known as ‘‘rich-club’’ (van den Heuvel et al., 2012; Zylberberg

et al., 2010). This could suggest that not all sub-systems can

read out confidence from all the other sub-systems, and that

only a limited fraction of the distributional confidence information

is read out and routed between systems. Or in other words, that

confidence information may usually remain encapsulated.

A Global Workspace for Confidence?

When confidence is not encapsulated but read out, the summary

confidence level can be used for multiple purposes (see Uses of

Summary Confidence and Behavioral Manifestations) across a

variety of cognitive tasks. This suggests a flexible routing of sum-

mary confidence levels between different domains in a ‘‘global

neuronal workspace,’’ a set of interconnected high-level cortical

regions that underpins the flexible sharing and routing of infor-

mation globally in the brain (for a review, see Dehaene et al.,

2014).

A hallmark of global workspace processing is that only a

limited amount of information is selected and amplified (De-

haene, 2014; Sergent et al., 2005; Zylberberg et al., 2010). Due

to its limited capacity, global workspace processing may, unlike

sensorimotor transformations, be incompatible with full pro-

babilistic representation and inference. Global processing may

nevertheless be able to access summary forms of confidence,

as, for instance, the level of accumulated evidence can be moni-

tored (Dehaene et al., 2014).

Limited capacity may be the cost of the flexibility afforded by

processing in a global workspace. Some experimental designs

make such a flexible routing particularly salient. One example

is when confidence in performance must be used not only within

a particular task type, but also compared between two different

task types (de Gardelle and Mamassian, 2014). Use of simpler
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scalar confidence representations could allow the flexibility

necessary to perform this comparison even for arbitrary pairs

of tasks. Another example is the comparison of confidence

from two brain systems (e.g., model-based and model-free

learning systems) to decide which strategy to follow (Daw

et al., 2005). In principle, this could also be performed by

comparing summary confidence levels without the use of full

distributional information.

Shea and colleagues (Shea et al., 2014) have argued that

confidence reports made by non-human animals (see Uses of

Summary Confidence and Behavioral Manifestations) do not

necessarily require a global workspace. This is an important

point, also valid in humans. Cognitive processes are full of exam-

ples in which some information is available to a certain extent

and impacts behavior, but without being reportable (Atas et al.,

2014; Rose et al., 2005; Schlaghecken et al., 2000; van Zuijen

et al., 2006). A relevant example for confidence may be sublim-

inal reinforcement learning: subjects can become confident in

the reward delivery following specific cues, which is demon-

strated by their choices and the neural prediction errors

observed in case of violations, but they remain unaware of it

(Pessiglione et al., 2008).

The Rough Edges
The aim of this section is to help to solve a conundrum. If neural

circuits function inherently probabilistically, why is confidence

sometimes estimated in a way that is inconsistent with probabil-

ity theory, reflecting biases and reliable inconsistencies (Kahne-

man, 2013)? Many behaviors are close to optimal (Ma and

Jazayeri, 2014; Maloney and Zhang, 2010; Pouget et al., 2013)

but decades of experimentation in ‘‘real-life’’ decision problems

have also shown that humans commonly assign confidence sub-

optimally, relying on sub-samples of the data, focusing on

tokens (representative exemplars), ignoring the variance of the

distribution, and over-weighting evidence confirming commit-

ments and choices that have been made (Griffin and Tversky,

1992; Kahneman, 2013).

One simple possibility is that errors of confidence are found in

real life because real life involves complex high dimensional

problems for which there may not be accurate distributional rep-

resentations available in neural circuits. However, distortions of

confidence can be observed even in simple decision tasks (Gra-

ziano and Sigman, 2009; Jarvstad et al., 2013; Rahnev et al.,

2012; Wu et al., 2009; Zylberberg et al., 2012, 2014). Distortions

of confidence were mentioned already in the seminal work of

Peirce and Jastrow on small differences in tactile perception

(Peirce and Jastrow, 1884). Here we argue that suboptimality

arises from approximations inherent in probabilistic representa-

tions, particularly in the readout of summary confidence from

probabilistic representations, and that this framework can

potentially help to explain the specific deviations from optimality

that arise as a consequence of specific features of these approx-

imations.

Calibration

Formally, a confidence level in X is calibrated if it reflects directly

a normative quantity, such as the probability of X (Baranski and

Petrusic, 1994; Kepecs and Mainen, 2012; Koriat, 2012). Uncal-

ibrated, or miscalibrated estimates are pervasive issues for
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confidence. Even in language, individuals use different expres-

sions to describe identical probabilistic situations (Wallsten

and Budescu, 1995). Verbal expression of probabilities is highly

idiosyncratic, but characterizing individual idiosyncrasies helps

to standardize linguistic reports of uncertainty between individ-

uals (Karelitz and Budescu, 2004). This study showed that

probabilities are represented precisely but translate differently

between individuals’ verbal readouts. The expression of confi-

dence may also differ culturally: some groups of people express

continuous notions of probabilities whereas other groups

are more categorical (all-or-none) (Phillips and Wright, 1977).

Well-calibrated confidence levels have obvious advantages,

e.g., for sharing confidence between individuals (Bang et al.,

2014). Calibrated summary confidence (be they linguistic or

not) is also useful at the individual level, for instance to use con-

fidence across different tasks (de Gardelle and Mamassian,

2014), or more generally, whenever confidence is used to adjust

a behavior.

The readout of summary confidence in neural systems is sub-

jected to calibration issues. In From Data to Summary: Reading

out Summary Confidence from Distributions, we described a

mechanism to compute the precision of a neural representation

(the orientation of a stimulus), that relied on a scaling factor (Ma

et al., 2006). The possibility that precision estimates from two

different representations may be scaled differently impedes a

direct comparison. Normalization would provide an absolute

reference, but may not be trivial to compute. To establish a map-

ping between a scalar quantity and a norm (a probability, a preci-

sion), scaling factors and transfer functions may have to be

adjusted. As with other mappings, this process may require

learning and feedback, so that with substantial training distor-

tions of confidence may be reduced to calibrate the readout pro-

cess. Indeed, at least at the behavioral level, there is evidence

that a better calibration of confidence reports can be achieved

by relying on appropriate feedback (Baranski and Petrusic,

1994; Hart et al., 2015). At the neuronal level, the implementation

of such a tuning of the readout is entirely an open issue and,

similarly, the class of problems for which a precise readout of

summary confidence levels can be achieved remains largely un-

known. However, the fact that readout parameters ought to be

learned indicates that a neural circuit for confidence cannot rely

on purely feed-forward processing, but most likely also involves

feedback mechanisms to calibrate and adjust the parameters.

Heuristics Revisited

Our framework posits that confidence and choice result from

different readouts of the same neuronal circuits. Again this needs

to be reconciled with a very different view that emerges from the

field of behavioral economics, which has proposed that confi-

dence estimates rely on short-cuts and ‘‘heuristics’’ (Kahneman

and Tversky, 1982; Tversky and Kahneman, 1974). The term

‘‘heuristic’’ is often quite vague and may refer to very different

computations. Some are simply approximations. Below we

discuss how approximations in the readout process may result,

in our framework, in expressions of confidence that are typically

observed in human subjects. A second type of heuristic involves

relying on observables beyond the relevant distributional neural

representations of confidence. For instance in a visual task, one

could index confidence by statistics of the input that reflect the
difficulty of the decision, e.g., whether the stimulus is crowded,

masked, etc., rather than on the more complex neural represen-

tation on which the choice is based.

It is possible to quantify the ‘‘richness’’ and sophistication of

the information from which confidence is read out, by testing

the extent to which a subset of the available information can ac-

count for the observed confidence. In the previous example,

confidence about performance reported by subjects matched

their actual performance more closely than what could be pre-

dicted from particular visual properties of the stimuli (crowded-

ness and masking), suggesting that subjects based their choice

and confidence report on more complex information (Barthelmé

and Mamassian, 2010). Similarly, in a probabilistic learning task,

subjective confidence in the learned estimates followed the

optimal Bayesian confidence levels in a tighter parallel than a

whole list of ‘‘cues’’ taken together, suggesting that the repre-

sentation from which confidence is read out was particularly

rich and most likely probabilistic (Meyniel et al., 2015).

The two examples above (Barthelmé and Mamassian, 2010;

Meyniel et al., 2015) are cases stressing that choice readout

and confidence readout can be based on the same information.

But it is a corollary of our thesis that the confidence readout

may be based only on a subset of the information, compared to

the choice readout. This is one restatement of the notion of ‘‘heu-

ristic’’ in terms of the model that we propose in which different

levels of description of probability distributions are assumed.

Our framework also posits the existence of ‘‘encapsulated’’ con-

fidence information: the relevant source of information from

which to derive a summary confidencemay simply not be acces-

sible. In addition, we introduced the idea that readout mecha-

nisms of confidence could ‘‘learn’’ how to produce reasonable

summary confidence levels. It is conceivable in our framework

that learned readout strategies have converged to very indirect

correlates of confidence levels, especially when the distributional

confidence is encapsulated. This is for instance what people do

when they infer the subjective confidence of another person, sim-

ply through the observation of their actions (Patel et al., 2012).

Another way of reinterpreting ‘‘heuristic’’ with our probabilistic

framework is to consider the case in which the correct computa-

tion is applied in the wrong situation. One example is provided by

the drift diffusion model (DDM). In the DDM, under some as-

sumptions, the time to reach a pre-defined threshold of accumu-

lated evidence is a valid summary statistic for confidence in the

decision (Kiani and Shadlen, 2009; Kiani et al., 2014). One of the

assumptions is that the process that delivers the noisy evidence

is stable across time. Reading out confidence from decision

time, which is often called a heuristic, is therefore a valid readout

mechanism, but only in some circumstances; using it when the

input signal is not stable therefore produces sub-optimal sum-

mary confidence levels (Kiani et al., 2014).

Another example of correct computation in thewrong situation

is the confirmatory bias or ‘‘halo’’ effect, according to which we

seek and favor evidence that confirms our current hypothesis.

This effect is seen even in very simple perceptual decisions

such as luminance or motion judgments (Zylberberg et al.,

2012). A Bayesian analysis can capture the asymmetry that evi-

dence favoring the current hypothesis may be weighted differ-

ently than evidence against. In Bayesian terms, the confirmatory
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Figure 3. Deviation from optimality in the framework of signal
detection theory
(A) The green curve illustrates how to account for decision (here, orientation
discrimination) and confidence with signal detection theory. Sensory evidence
is represented internally by a variable, x. The true orientation of the stimulus, m,
is translated into the internal variable x with some noise, as denoted by the
green distribution. Say that the subject has to categorize this orientation with
respect to 0. Despite the fact that true orientation (m) is positive, it is not unlikely
that a negative value is erroneously sampled, since a large portion of the green
distribution crosses the boundary. The probability of error would be reduced
for higher values of the true orientation (m more positive). As a consequence,
the sign of smaller values of x are more likely to differ from the actual true sign
of m because of perceptual noise: erroneous categorization is more likely. The
width of the low confidence zone should depend on the estimated noise in the
perceptual system (width of the green distribution).
(B) The curves show the probability for a given true orientation m to be asso-
ciated with sensory evidence (denoted x in panel A) in the high confidence
zone. The blue curve illustrates the counter-intuitive result that when the signal
is low (m �0) and the confidence zone remains the same, then an increase in
perceptual noise should lead to over-confidence.

Box 2. Future Directions

d Neural codes for probabilities and uncertainty. At least two

families of probabilistic neural representations were pro-

posed: probabilistic neural codes and sampling-based co-

des. Do different codes correspond to different uses of

confidence?

d Mechanism for readout. We described confidence as an

emergent property of computations based on probabilistic

neural representations. Confidence can however also be

read out and summarized: what are the neural mecha-

nisms that single out and extract the confidence informa-

tion from probabilistic neural representations?

d How many systems? Distinct neural correlates were re-

ported for distinct kinds of uncertainty. However these cor-

relates can correspond to the readout of confidence levels

as such or to computations that are entailed by this confi-

dence level (decide to wait, collect more information, etc.).

It is still unclear which systems truly read out summary

confidence.

d The role of global processing. Confidence is sometimes re-

ported explicitly, suggesting that it is processed in a global

workspace. To what extent can confidence be read out

without entering a global workspace and how may global

processes interact with local readout processes?
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bias corresponds to biasing the current sample by the posterior

probability estimated so far. Biasing momentary samples by

prior expectations facilitates perceptual decisions and is rele-

vant when the input signals are structured in time, as they often

are (Summerfield and de Lange, 2014). However, when one

should learn equally and independently from each samples,

then it is sub-optimal to bias momentary evidence in this way.

Approximated Probabilistic Computations

Deviations from optimality observed in behavior are often used as

reasons to reject a probabilistic view of brain functioning. The

examples above show that decision making, even in simple

perceptual problems, can follow a probabilistic logic and still be

suboptimal because of specific approximations (Griffiths et al.,

2012; Ma and Jazayeri, 2014). Acerbi and colleagues showed in

a sensory motor task that prior distributions with different shapes

(Gaussian, non-symmetric, bimodal, etc.) could be usedwith only

minor errors that, crucially, were independent from the shape of

the distribution (Acerbi et al., 2014). Their results suggest that de-

viations from optimality observed in the behavior are not due to a

fundamental inability to represent and combine probability distri-

butions, butmight instead bedue to randomnoise in this process.

A similar argument is made by Costello and Watts, who suggest

that biases in probability judgment may arise from a fundamental

adherence to probability theory, but corrupted by random ap-

proximations (Costello and Watts, 2014).

An algorithmic level of description also reveals that the

Bayesian framework accounts for both optimal behaviors and

systematic deviations. For instance, processing a sequence of

inputs can be modeled algorithmically by particle filters, a popu-

lar approximation of Bayesian inference. These models have the
88 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
advantage of relying only on a few free parameters (e.g., the num-

ber of samples used, the stability of samples between iterations,

etc.), which delineate some regimes that are close to optimal

inference, and other regimes that produce common biases

such as primacy and recency effects (Abbott andGriffiths, 2011).

One last example shows that approximations in uncertainty

(variance) estimates can be amplified in confidence levels. For

instance, in signal detection theory, confidence relates formally

to the ratio between themean evidence (‘‘signal’’) and its reliability

(‘‘variance’’). Note that since the variance term is in the denomina-

tor, because of scaling effects, slight errors in the estimation of the

variance may lead to large mis-estimations of confidence. A full

Bayesian analysis confirms this intuition and experiments show

that slight mis-perception in the variance of an internal represen-

tation may lead to marked overconfidence in trials with unreliable

evidence (Zylberberg et al., 2014; see Figure 3).

In summary, what we perceive as heuristics in confidence

judgmentsmay result fromdifferent sources: (1) genuine approx-

imations of a read-out process, including issues of calibration; (2)

applying stereotyped read-out procedures that make certain as-

sumptions that do not hold in a given context, a form of approx-

imation referred as relaxation; and (3) using variables that covary

with the relevant neural confidence information in cases in which

this information is not accessible for explicit reports.

Challenges

We acknowledge that there are substantial experimental chal-

lenges for the identification of distributional and summary confi-

dence signals in the brain (see Box 2 ‘‘Future directions’’).

Indeed, decoding distributional confidence information will ulti-

mately require one to understand the nature of the relevant prob-

abilistic neural representations. This may be particularly difficult
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for representations that are akin to probability distributions,

involving numerous neurons. Simultaneous recordings of the

relevant neurons, together with ‘‘labels’’ of what each neuron en-

codes are necessary, which is difficult if these relevant neurons

are intermingled and scattered in a large population, or if the in-

formation they encode is not a simple property amenable to se-

lective manipulation.

It may seem comparatively easy to find neurons whose activity

co-varies with summary confidence. However, as we have re-

viewed, such co-variation is not strong evidence that this activity

results directly from a readout of confidence, since it could also

reflect processes that correlate with confidence levels, either

being downstream as part of the reporting mechanism or in

confidence-regulated functions such as learning, information

seeking, etc. We saw in A Brain-Scale, Hierarchical Neural Archi-

tecture for Confidence that it is difficult to tease apart the struc-

tures that are involved in reading out confidence from the struc-

tures that use summary confidence levels.

Another important challenge for our theory is that it is inspired

by what we know about probabilistic neural codes, which is still

largely restricted to sensory areas. We make the proposal that

the separation between distributional confidence information

and its readout into a summary could be general. However, the

way it works will depend on the specifics of neural codes, which

could differ in non-sensory domains. Interestingly, a number of

classic models of cognitive and neural processing can be recast

in the framework of probabilistic coding (Solway and Botvinick,

2012), providing candidate hypotheses for neural representa-

tions in these domains.
Conclusions
In this perspective we stressed that defining confidence as

Bayesian probability clarifies the notion of confidence and invites

one to consider a wide range of functions and implementations

for confidence-based computations in the brain. In that sense,

the concept of confidence may be pervasively relevant in neuro-

science and broader than previously envisaged. We proposed a

distinction between two fundamental levels: distributional confi-

dence information, conveyed by probabilistic neural representa-

tions, and the summary confidence values that can be read out

from these distributions.Wehighlighted different functional char-

acteristics and kinds of confidence-based computations and

caution that the study of confidence should therefore not be

separated from its functions and the levels at which it operates.
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Rose, M., Haider, H., and Büchel, C. (2005). Unconscious detection of implicit
expectancies. J. Cogn. Neurosci. 17, 918–927.

Schlaghecken, F., Stürmer, B., and Eimer, M. (2000). Chunking processes in
the learning of event sequences: electrophysiological indicators. Mem. Cognit.
28, 821–831.

Sergent, C., Baillet, S., and Dehaene, S. (2005). Timing of the brain events un-
derlying access to consciousness during the attentional blink. Nat. Neurosci.
8, 1391–1400.

Shea,N., Boldt, A., Bang,D., Yeung,N., Heyes,C., and Frith, C.D. (2014). Supra-
personal cognitive control and metacognition. Trends Cogn. Sci. 18, 186–193.

Smith, P.L., and Vickers, D. (1988). The accumulator model of two-choice
discrimination. J. Math. Psychol. 32, 135–168.

Smith, J.D., Shields, W.E., and Washburn, D.A. (2003). The comparative psy-
chology of uncertainty monitoring and metacognition. Behav. Brain Sci. 26,
317–339, discussion 340–373.

Soltani, A., and Wang, X.-J. (2010). Synaptic computation underlying probabi-
listic inference. Nat. Neurosci. 13, 112–119.

Solway, A., and Botvinick, M.M. (2012). Goal-directed decision making as
probabilistic inference: a computational framework and potential neural corre-
lates. Psychol. Rev. 119, 120–154.

Summerfield, C., and de Lange, F.P. (2014). Expectation in perceptual deci-
sion making: neural and computational mechanisms. Nat. Rev. Neurosci. 15,
745–756.

Timmermans, B., Schilbach, L., Pasquali, A., and Cleeremans, A. (2012).
Higher order thoughts in action: consciousness as an unconscious re-descrip-
tion process. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1412–1423.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neuro-
sci. 7, 907–915.

Tversky, A., and Kahneman, D. (1974). Judgment under uncertainty: heuristics
and biases. Science 185, 1124–1131.
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